221
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Antioxidant and Anticholinesterase Potentials of Novel 4,6-Dimethoxyindole based Unsymmetrical Azines: Synthesis, Molecular Modeling, In Silico ADME Prediction and Biological Evaluations

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1326-1347 | Received 11 Jan 2023, Accepted 15 Mar 2023, Published online: 03 Apr 2023

References

  • S. S. Chourasiya, D. Kathuria, S. Singh, V. C. Sonawane, A. K. Chakraborti, and P. V. Bharatam, “Design, Synthesis and Biological Evaluation of Novel Unsymmetrical Azines as Quorum Sensing Inhibitors,” RSC Advances 5, no. 97 (2015): 80027–38. doi:10.1039/C5RA12925G
  • S. Bondock, H. Gieman, and A. El-Shafei, “Selective Synthesis, Structural Studies and Antitumor Evaluation of Some Novel Unsymmetrical 1-Hetaryl-4-(2-Chloroquinolin-3-Yl)Azines,” Journal of Saudi Chemical Society 20, no. 6 (2016): 695–702. doi:10.1016/j.jscs.2015.01.005
  • J. Safari, and S. Gandomi-Ravandi, “Structure, Synthesis and Application of Azines: A Historical Perspective,” RSC Advances. 4, no. 86 (2014): 46224–49. doi:10.1039/C4RA04870A
  • C. Chiter, A. Bouchama, T. N. Mouas, H. Allal, M. Yahiaoui, I. Warad, A. Zarrouk, and A. Djedouani, “Synthesis, Crystal Structure, Spectroscopic and Hirshfeld Surface Analysis, NCI-RDG, DFT Computations and Antibacterial Activity of New Asymmetrical Azines,” Journal of Molecular Structure. 1217 (2020): 128376. doi:10.1016/j.molstruc.2020.128376
  • Y. Sun, J.-H. Hu, J. Qi, and J.-B. Li, “A Highly Selective Colorimetric and “Turn-on” Fluorimetric Chemosensor for Detecting CN− Based on Unsymmetrical Azine Derivatives in Aqueous Media,” Spectrochimica Acta Part A 167 (2016): 101–5. doi:10.1016/j.saa.2016.05.017
  • V. B. Kurteva, S. P. Simeonov, and M. Stoilova-Disheva, “Symmetrical Acyclic Aryl Aldazines with Antibacterial and Antifungal Activity,” Pharmacology & Pharmacy 02, no. 01 (2011): 1–9. doi:10.4236/pp.2011.21001
  • J. Lasri, M. M. Aly, N. E. Eltayeb, and B. A. Babgi, “Synthesis of Symmetrical and Asymmetrical Azines from Hydrazones and/or Ferrocenecarboxaldehyde as Potential Antimicrobial–Antitumor Agents,” Journal of Molecular Structure. 1164 (2018): 1–8. doi:10.1016/j.molstruc.2018.03.030
  • H. Suleyman, H. I. Gul, and M. Asoglu, “Anti-İnflammatory Activity of 3-Benzoyl-1-Methyl-4-Phenyl-4-Piperidinol Hydrochloride,” Pharmacological Research 47, no. 6 (2003): 471–5. doi:10.1016/S1043-6618(03)00015-X
  • C. Liang, J. Xia, D. Lei, X. Li, Q. Yao, and J. Gao, “Synthesis, in Vitro and in Vivo Antitumor Activity of Symmetrical bis-Schiff Base Derivatives of İsatin,” European Journal of Medicinal Chemistry 74 (2014): 742–50. doi:10.1016/j.ejmech.2013.04.040
  • J. Easmon, G. Pürstinger, G. Heinisch, T. Roth, H. H. Fiebig, W. Holzer, W. Jäger, M. Jenny, and J. Hofmann, “Synthesis, Cytotoxicity, and Antitumor Activity of Copper(II) and İron(II) Complexes of 4N-Azabicyclo[3.2.2]Nonane Thiosemicarbazones Derived from Acyl Diazines,” Journal of Medicinal Chemistry 44, no. 13 (2001): 2164–71. doi:10.1021/jm000979z
  • W. J. Stratton, “Metal Complexes with Azine Ligands. II. Iron(II), Cobalt(II), and Nickel(II) Complexes with 2-Pyridyl Methyl Ketazine,” Inorganic Chemistry 9, no. 3 (1970): 517–20. doi:10.1021/ic50085a017
  • A. Garg, and J. P. Tandon, “Coordination Behaviour of Azines towards İron(II), Palladium(II) and Platinum(II),” Transition Metal Chemistry 13, no. 5 (1988): 395–7. doi:10.1007/BF01225136
  • D. Palanimuthu, R. Poon, S. Sahni, R. Anjum, D. Hibbs, H.-Y. Lin, P. V. Bernhardt, D. S. Kalinowski, and D. R. Richardson, “A Novel Class of Thiosemicarbazones Show Multi-Functional Activity for the Treatment of Alzheimer’s Disease,” European Journal of Medicinal Chemistry. 139 (2017): 612–32. doi:10.1016/j.ejmech.2017.08.021
  • Muhammad Yar, Marek Bajda, Rana Mehmood, Lala Sidra, Nisar Ullah, Lubna Shahzadi, Muhammad Ashraf, Tayaba Ismail, Sohail Shahzad, Zulfiqar Khan, et al, “Design and Synthesis of New Dual Binding Site Cholinesterase İnhibitors: İn Vitro İnhibition Studies with in Silico Docking,” Letters in Drug Design & Discovery 11, no. 3 (2014): 331–8. doi:10.2174/15701808113106660078
  • Carolina S. Passos, Claudia A. Simões-Pires, Alessandra Nurisso, Tatiane C. Soldi, Lucilia Kato, Cecilia M. A. de Oliveira, Emiret O. de Faria, Laurence Marcourt, Carmem Gottfried, Pierre-Alain Carrupt, et al, “Indole Alkaloids of Psychotria ∼ as Multifunctional Cholinesterases and Monoamine Oxidases İnhibitors,” Phytochemistry 86 (2013): 8–20. doi:10.1016/j.phytochem.2012.11.015
  • Pilar Muñoz-Ruiz, Laura Rubio, Esther García-Palomero, Isabel Dorronsoro, María del Monte-Millán, Rita Valenzuela, Paola Usán, Celia de Austria, Manuela Bartolini, Vincenza Andrisano, et al, “Design, Synthesis, and Biological Evaluation of Dual Binding Site Acetylcholinesterase Inhibitors: new Disease-Modifying Agents for Alzheimer’s Disease,” Journal of Medicinal Chemistry 48, no. 23 (2005): 7223–33. doi:10.1021/jm0503289
  • Gerda Brunhofer, Adyary Fallarero, Daniela Karlsson, Ana Batista-Gonzalez, Pravin Shinde, C. Gopi Mohan, and Pia Vuorela, “Exploration of Natural Compounds as Sources of New Bifunctional Scaffolds Targeting Cholinesterases and Beta Amyloid Aggregation: The Case of Chelerythrine,” Bioorganic and Medicinal Chemistry. 20, no. 22 (2012): 6669–79. doi:10.1016/j.bmc.2012.09.040
  • Milenko N. Ristić, Niko S. Radulović, Biljana R. Dekić, Vidoslav S. Dekić, Novica R. Ristić, and Zorica Stojanović-Radić, “Synthesis and Spectral Characterization of Asymmetric Azines Containing a Coumarin Moiety: The Discovery of New Antimicrobial and Antioxidant Agents,” Chemistry & Biodiversity 16, no. 1 (2019): e1800486. doi:10.1002/cbdv.201800486
  • W. S. Hamama, M. A. Gouda, H. A. Kamal El-Din, and H. H. Zoorob, “Highlights on the Synthesis of Novel Phenothiazine-Based Azines Scaffold as Antioxidant Agents,” Journal of Heterocyclic Chemistry 57, no. 1 (2020): 257–67. doi:10.1002/jhet.3771
  • T. Yamamura, K. Suzuki, T. Yamaguchi, and T. Nishiyama, “Antioxidant Activities of Phenothiazines and Related Compounds: Correlation between the Antioxidant Activities and Dissociation Energies of O–H or N–H Bonds,” Bulletin of the Chemical Society of Japan 70, no. 2 (1997): 413–9. doi:10.1246/bcsj.70.413
  • E. R. Radwanski, and R. L. Last, “Tryptophan Biosynthesis and Metabolism: biochemical and Molecular Genetics,” Plant Cell. 7 (1995): 921–34. doi:10.1105/tpc.7.7.921
  • I. P. Kema, E. G. de Vries, and F. A. Muskiet, “Clinical Chemistry of Serotonin and Metabolites,” Journal of Chromatography B: Biomedical Sciences and Applications 747, no. 1-2 (2000): 33–48. doi:10.1016/S0378-4347(00)00341-8
  • R. McDanell, A. E. M. McLean, A. B. Hanley, R. K. Heaney, and G. R. Fenwick, “Chemical and Biological Properties of İndole Glucosinolates (Glucobrassicins): a Review,” Food Chemistry. 26, no. 1 (1988): 59–70. doi:10.1016/0278-6915(88)90042-7
  • B. B. Aggarwal, and H. Ichikawa, `“`Molecular Targets and Anticancer Potential of İndole-3-Carbinol and İts Derivatives,” Cell Cycle 4, no. 9 (2005): 1201–15. doi:10.4161/cc.4.9.1993
  • V. Sharma, P. Kumar, and D. Pathak, “Biological Importance of the Indole Nucleus in Recent Years: A Comprehensive Review,” Journal of Heterocyclic Chemistry. 47 (2010): 491–502. doi:10.1002/jhet.349
  • A. Ahmad, W. A. Sakr, and K. M. Wahidur Rahman, “Anticancer Properties of İndole Compounds: mechanism of Apoptosis İnduction and Role in Chemotherapy,” Current Drug Targets 11, no. 6 (2010): 652–66. doi:10.2174/138945010791170923
  • M. F. Saglam, M. Bingul, E. Şenkuytu, M. Boga, Y. Zorlu, H. Kandemir, and I. F. Sengul, “Synthesis, Characterization, UV–Vis Absorption and Cholinesterase İnhibition Properties of Bis-İndolyl İmine Ligand Systems,” Journal of Molecular Structure. 1215 (2020): 128308. doi:10.1016/j.molstruc.2020.128308
  • E. Şenkuytu, M. Bingul, M. F. Saglam, H. Kandemir, and I. F. Sengul, “Synthesis of a Novel N,N',N'-Tetraacetyl-4,6-Dimethoxyindole-Based Dual Chemosensor for the Recognition of Fe3+ and Cu2+ İons,” Inorganica Chimica Acta 495 (2019): 118947. doi:10.1016/j.ica.2019.05.046
  • M. Bingul, S. Ercan, and M. Boga, “The Design of Novel 4,6-Dimethoxyindole Based Hydrazide-Hydrazones: Molecular Modeling, Synthesis and Anticholinesterase Activity,” Journal of Molecular Structure. 1213 (2020): 128202. doi:10.1016/j.molstruc.2020.128202
  • M. Bingul, “Synthesis and Characterisation of Novel 4,6-Dimethoxyindole-7- and -2-Thiosemicarbazone Derivatives: Biological Evaluation as Antioxidant and Anticholinesterase Candidates,” Journal of Chemical Research 43, no. 9–10 (2019): 399–406. doi:10.1177/1747519819868386
  • M. Bingul, M. F. Saglam, H. Kandemir, M. Boga, and I. F. Sengul, “Synthesis of İndole-2-Carbohydrazides and 2-(İndol-2-Yl)-1,3,4-Oxadiazoles as Antioxidants and Their Acetylcholinesterase İnhibition Properties,” Monatshefte für Chemie 150, no. 8 (2019): 1553–60. doi:10.1007/s00706-019-02462-y
  • A. Mollica, R. Costante, A. Akdemir, S. Carradori, A. Stefanucci, G. Macedonio, M. Ceruso, and C. T. Supuran, “Exploring New Probenecid-Based Carbonic Anhydrase İnhibitors: Synthesis, Biological Evaluation and Docking Studies,” Bioorganic & Medicinal Chemistry 23, no. 17 (2015): 5311–8. doi:10.1016/j.bmc.2015.07.066
  • M. Bingul, B. B. Cheung, N. Kumar, and D. S. Black, “Synthesis of Symmetrical and Unsymmetrical Diindolylmethanes via Acid-Catalysed Electrophilic Substitution Reactions,” Tetrahedron 70, no. 40 (2014): 7363–9. doi:10.1016/j.tet.2014.06.087
  • M. S. Blois, “Antioxidant Determinations by the Use of a Stable Free Radical,” Nature 181, no. 4617 (1958): 1199–200. doi:10.1038/1811199a0
  • N. J. Miller, C. Rice-Evans, and M. J. Davies, “A New Method for Measuring Antioxidant Activity,” Biochemical Society Transactions 21, no. 2 (1993): 95S. doi:10.1042/bst021095s
  • R. Apak, K. Güçlü, M. Özyürek, S. E. N. Karademir, and M. Altun, “Total Antioxidant Capacity Assay of Human Serum Using Copper(II)-Neocuproine as Chromogenic Oxidant: The CUPRAC Method,” Free Radical Research 39, no. 9 (2005): 949–961. doi:10.1080/10715760500210145
  • G. L. Ellman, K. D. Courtney, V. Andres, and R. M. Featherstone, “A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity,” Biochemical Pharmacology. 7, no. 2 (1961): 88–95. doi:10.1016/0006-2952(61)90145-9
  • J. Cheung, M. J. Rudolph, F. Burshteyn, M. S. Cassidy, E. N. Gary, J. Love, M. C. Franklin, and J. J. Height, “Structures of Human Acetylcholinesterase in Complex with Pharmacologically İmportant Ligands,” Journal of Medicinal Chemistry 55, no. 22 (2012): 10282–10286. doi:10.1021/jm300871x
  • A. Meden, D. Knez, M. Jukic, M. X. Brazzolotto, M. Grsic, A. Pislar, A. Zahirovic, J. Kos, F. Nachon, J. Svete, et al, “Tryptophan-Derived Butyrylcholinesterase İnhibitors as Promising Leads against Alzheimer’s Disease,” Chemical Communications 55, no. 26 (2019): 3765–3768. doi:10.1039/C9CC01330J
  • F. Y. Dupradeau, A. Pigache, T. Zaffran, C. Savineau, R. Lelong, N. Grivel, D. Lelong, W. Rosanski, and P. Cieplak, “The R.E.D. tools: Advances in RESP and ESP Charge Derivation and Force Field Library Building,” Physical Chemistry Chemical Physics 12, no. 28 (2010): 7821–7839. doi:10.1039/c0cp00111b
  • F. Wang, J. P. Becker, P. Cieplak, and F. Y. Dupradeau, “R.E.D. Python: Object Oriented Programming for Amber Force Fields,” Université de Picardie – Jules Verne, Sanford Burnham Prebys Medical Discovery Institute, Nov. 2013.
  • S. Ercan, “Docking and Molecular Dynamics Calculations of Some Previously Studied and Newly Designed Ligands to Catalytic Core Domain of HIV-1 Integrase and an Investigation to Effects of Conformational Changes of Protein on Docking Results,” Journal of the Turkish Chemical Society, Section A 4, no. 1 (2016): 243–243. doi:10.18596/jotcsa.287327
  • M. Bingul, N. Kumar, and D. S. Black, “Synthesis and Reactions of New 2-Hydroxymethyldimethoxyindoles,” Tetrahedron 72, no. 1 (2016): 234–9. doi:10.1016/j.tet.2015.11.038
  • A. M. McDonnell, and C. H. Dang, “Basic Review of the Cytochrome p450 System,” Journal of the Advanced Practitioner in Oncology 4, no. 4 (2013): 263–8. doi:10.6004/jadpro.2013.4.4.7
  • Z. Bibi, “Role of Cytochrome P450 in Drug İnteractions,” Nutrition & Metabolism 5, no. 1 (2008): 27. doi:10.1186/1743-7075-5-27

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.