934
Views
22
CrossRef citations to date
0
Altmetric
Review Article

Recovery of Anthocyanins Using Membrane Technologies: A Review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 143-175 | Published online: 23 Jan 2018

References

  • Andersen, O. M.; Markham, K. R. Chemistry, Biochemistry, and Applications; Taylor and Francis: Boca Raton, Fla., 2006.
  • Harborne, J. B.; Williams, C. A. Anthocyanins and Other Flavonoids. Nat. Prod. Rep. 2001, 18(3), 310–333. DOI:10.1039/b006257j.
  • Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant Polyphenols: Chemical Properties, Biological Activities and Synthesis. Angew. Chem. Int. Ed. 2011, 50(3), 586–621. DOI:10.1002/anie.201000044.
  • Martín Bueno, J.; Ramos-Escudero, F.; Sáez-Plaza, P.; Muñoz, A. M.; Navas, M. J.; Asuero, A. G. Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part I: General Considerations Concerning Polyphenols and Flavonoids. Crit. Rev. Anal. Chem. 2012, 42, 102–125. DOI:10.1080/10408347.2011.632312.
  • Martín Bueno, J.; Sáez-Plaza, P.; Ramos-Escudero, F.; Jimenez, A. M.; Fett, R.; Asuero, A. G. Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part II: Chemical Structure, Color, and Intake of Anthocyanins. Crit. Rev. Anal. Chem. 2012, 42, 126–151. DOI:10.1080/10408347.2011.632314.
  • Newsome, A. G.; Culver, C. A.; Breemen, R. B. Nature's Palette: The Search for Natural Blue Colorants. J. Agric. Food Chem. 2014, 62(28), 6498–6511. DOI:10.1021/jf501419q.
  • He, J.; Giusti, M. M. Anthocyanins: Natural Colorants with Health-Promoting Properties. Annu. Rev. Food Sci. Technol. 2010, 1(1), 163–187. DOI:10.1146/annurev.food.080708.100754.
  • Martin, J.; Kuskoski, E. M.; Navas, M. J.; Asuero, A. G. Antioxidant Capacity of Anthocyanin Pigments. In Flavonoids; Justino, J. C., Ed.; Intech: Rijeka, 2017; pp 205–255.
  • Kuskoski, E. M.; Asuero, A. G.; Morales, M. T.; Fett, R. Frutos Tropicais Silvestres e Polpas De Frutas Congeladas: Atividade Antioxidante, Polifenóis e Antocianinas. Ciência Rural. 2006, 36(4), 1283–1287. DOI:10.1590/S0103-84782006000400037.
  • Kuskoski, E. M.; Asuero, A. G.; Troncoso, A. M.; Mancini-Filho, J.; Fett, R. Aplicación De Diversos Métodos Químicos Para Determinar Actividad Antioxidante En Pulpa De Frutos. Food Sci. Technol. (Campinas). 2005, 25(4), 726–732. DOI:10.1590/S0101-20612005000400016.
  • Kuskoski, E. M.; Asuero, A. G.; García-Parrilla, M. C.; Troncoso, A. M.; Fett, R. Actividad Antioxidante De Pigmentos Antociánicos. Food Sci. Technol. (Campinas). 2004, 24(4), 691–693. DOI:10.1590/S0101-20612004000400036.
  • Lila, M.; Burton-Freeman, B.; Grace, M.; Kalt, W. Unraveling Anthocyanin Bioavailability for Human Health. Annu. Rev. Food Sci. Technol. 2016, 7, 375–393. DOI:10.1146/annurev-food-041715-033346.
  • Crozier, A.; Jaganath, I. B.; Clifford, M. N. Dietary Phenolics: Chemistry, Bioavailability and Effects on Health. Nat. Prod. Rep. 2009, 26(8), 1001–1043. DOI:10.1039/b802662a.
  • Fraga, C. G. Plant Phenolics and Human Health: Biochemistry, Nutrition and Pharmacology; Press: New York, 2010.
  • Andersen, O. M.; Jordheim, M. Basic Anthocyanin Chemistry and Dietary Sources. In Anthocyanins in Health and Disease; Wallace, T. C., Giusti, M. M., Eds.; CRC Press: Boca Raton, 2014; pp 13–89.
  • Smeriglio, A.; Bareca, D.; Belloccoco, E.; Trombetta, D. Chemistry, Pharmacology and Health Benefits of Anthocyanins. Phytother. Res. 2006, 30(8), 1256–1286.
  • Li, X.; Ma, H.; Huang, H.; Li, D.; Yao, S. Natural Anthocyanins from Phytoresources and their Chemical Researches. Nat. Prod. Res. 2013, 27(4–5), 456–469. DOI:10.1080/14786419.2012.706299.
  • Ziyatdinova, G. K.; Nudnikov, H. C. Natural Phenolic Antioxidants in Bioanalytical Chemistry: State of the Art and Prospects of Development. Russ. Chem. Rev. 2015, 84(2), 194–224. DOI:10.1070/RCR4436.
  • Yousuf, B.; Gul, K.; Wani, A.A.; Singh, P. Health Benefits of Anthocyanins and their Encapsulation for Potential Use in Food Systems: A Review. Crit. Rev. Food Sci. Nutr. 2016, 56(13), 2223–2230. DOI:10.1080/10408398.2013.805316.
  • Galanakis, C. M. Recovery of High Added-Value Components from Food Wastes: Conventional, Emerging Technologies and Commercialized Applications. Trends Food Sci. Technol. 2012, 26, 68–87. DOI:10.1016/j.tifs.2012.03.003.
  • Kammerer, D. R.; Kammerer, J.; Valet, R.; Carle, R. Recovery of Polyphenols from the By-Products of Plant Food Processing and Application as Valuable Food Ingredients. Food Res. Int. 2014, 65A, 2–12. DOI:10.1016/j.foodres.2014.06.012.
  • Ren, Q.; Xing, H.; Zao, Z.; Su, B.; Yang, Q.; Yang, Y.; Zhang, Z. Recent Advances in Separation of Bioactive Natural Products. Chin. J. Chem. Engineer. 2013, 21(9), 937–952. DOI:10.1016/S1004-9541(13)60560-1.
  • Selvamuthukumaran, M.; Shi, J. Recent Advances in Extraction of Antioxidants from Plant By-Products Processing Industries. Food Qual. Saf. 2017, 1, 61–81. DOI:10.1093/fqs/fyx004.
  • Martin, J.; Navas, M. J.; Jimenez-Moreno, A. M.; Asuero, A. G. Anthocyanin Pigments, Importance, Sample Preparation and Extraction. In Phenolic Compounds-Natural Sources, Importance and Applications; Soto-Hernandez, M., Palma-Tenango, M., Garcia-Mateos, M.R., Eds.; InTech: Rijeka, 2016; pp 117–152.
  • Navas, M. J.; Jiménez-Moreno, A. M.; Martín Bueno, J.; Sáez-Plaza, P.; Asuero, A. G. Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part III: An Introduction to Sample Preparation and Extraction. Crit. Rev. Anal. Chem. 2012, 42, 284–312. DOI:10.1080/10408347.2012.680341.
  • Navas, M. J.; Jiménez-Moreno, A. M.; Martín Bueno, J.; Sáez-Plaza, P.; Asuero, A. G. Analysis and Antioxidant Capacity of Anthocyanin Pigments. Part IV: Extraction of Anthocyanins. Crit. Rev. Anal. Chem. 2012, 42, 313–342. DOI:10.1080/10408347.2012.680343.
  • Silva, V. O.; Freitas, A. A.; Maçanita, A. L.; Quina, F. H. Chemistry and Photochemistry of Natural Plant Pigments: The Anthocyanins. J. Phys. Org. Chem. 2016, 29, 594–599. DOI:10.1002/poc.3534.
  • Dai, J.; Mumper, R. J. Plant Phenolics: Extraction, Analysis and their Antioxidant and Anticancer Properties. Molecules. 2010, 15(10), 7313–7352. DOI:10.3390/molecules15107313.
  • Ajila, C. M.; Brar, S. K.; Verma, M.; Tyagi, R. D.; Godbout, S.; Valéro, J. R. Extraction and Analysis of Polyphenols: Recent Trends. Crit. Rev. Biotechnol. 2011, 31, 227–249. DOI:10.3109/07388551.2010.513677.
  • Castro-López, C.; Rojas, R.; Sánchez-Alejo, E. J.; Niño-Medina, G.; Martínez-Avila, G. C. G., Phenolic Compounds Recovery from Grape Fruti and By-Products: An Overview of Extraction Methods. In Grape and Wine Biotechnology; Morata, A., Loira, I., Eds.; InTech: Rijeka, 2016; pp 103–123.
  • Galanakis, C. M. Emerging Technologies for the Production of Nutraceuticals from Agricultural By-Products: A Viewpoint of Opportunities and Challenges. Food Bioprod. Process. 2013, 91(4), 571–579. DOI:10.1016/j.fbp.2013.01.004.
  • Barba, F. J.; Puértolas, E.; Brncic, M.; Panchev, I. N.; Dimitrov, D. A.; Athès-Dutour, V.; Moussa, M.; Souchon, I. Emerging extraction. In Food Waste Recovery, Processing Technologies and Industrial Techniques; Galanakis, C., Ed.; Elsevier: Amsterdam, 2015; pp 249–2725.
  • Ameer, K.; Shahbaz, M.; Kwon, J.-H. Green Extraction Methods for Polyphenols from Plant Matrices and their Byproducts: A Review. Compr. Rev. Food Sci. Food Saf. 2017, 16(2), 295–315. DOI:10.1111/1541-4337.12253.
  • Barba, F. J.; Zhu, Z.; Koubaa, M.; Sant'Ana, A. S. Green Alternative Methods for the Extraction of Antioxidant Bioactive Compounds from Winery Wastes and By-Products: A Review. Trends Food Sci. Technol. 2016, 49, 96–109. DOI:10.1016/j.tifs.2016.01.006.
  • Chemat, F.; Rombaut, N.; Meullemiestre, A.; Turk, M.; Perino, S.; Fabiano-Tixier, A.-S.; Albert-Vian, M. Review of Green Food Processing techniques. Preservation, transformation, and extraction. Innov. Food Sci. Emerg. Tech. 2017, 41, 357–377. DOI:10.1016/j.ifset.2017.04.016.
  • Tiwari, B. K. Ultrasound: A Clean, Green Extraction Technology. Trends Anal. Chem. 2015, 71, 100–109. DOI:10.1016/j.trac.2015.04.013.
  • Da Fonseca Machado, A. P.; Duarte Pereira, A. L.; Fernández Barbero, G.; Martínez, J. Recovery of Anthocyanins from Residues of Rubus Fruticosus, Vaccinium Myrtillus and Eugenia Brasiliensisby Ultrasound Assisted Extraction, Pressurized Liquid Extraction and their Combination. Food Chem. 2017, 231, 1–10. DOI:10.1016/j.foodchem.2017.03.060.
  • Grigoras, C. G.; Destandau, E.; Zubrzycki, S.; Elfakir, C. Sweet Cherries Anthocyanins: A Environmental Friendly Extraction and Purification Method. Sep. Purif. Technol. 2012, 100, 51–58. DOI:10.1016/j.seppur.2012.08.032.
  • Romanik, G.; Gilgenast, E.; Przyjazny, A.; Kamiński, M. Techniques of Preparing Plant Material for Chromatographic Separation and Analysis. J. Biochem. Biophys. Methods. 2007, 70, 253–261. DOI:10.1016/j.jbbm.2006.09.012.
  • Pouliot, Y.; Conway, V.; Leclerc, P.-L. Separation and Concentration Technologies in Food Processing. In Food Processing: Principles and Applications; Clark, S., Jung, S., Eds., Second Edition; John Wiley & Sons, Ltd.: New York, 2014; pp 33–60.
  • Tylkowski, B.; Nowak, M.; Tsibranska, I.; Trojanowska, A.; Marcianiak, L.; Valls, R. G.; Gumi, T.; Giamberini, M.; Jastrzab, R. Concentration and Fractionation of Polyphenols by Membrane Operations. Curr. Pharm. Design. 2017, 23(2), 231–241.
  • Castro-Muñoz, R.; Yáñez-Fernández, J.; Fíla, V. Phenolic Compounds Recovered from Agro-Food By-Products using Membrane Technologies: An Overview. Food Chem. 2016, 213, 753–762. DOI:10.1016/j.foodchem.2016.07.030.
  • Cassano, A. Recovery Technologies for Water-Soluble Bioactives: Advances in Membrane-Based Processes. In Engineering Foods for Bioactives Stability and Delivery; Roos, Y. H., Livney, Y. D., Eds.; Springer: New York, 2017; pp 51–83.
  • Bazinet, L.; Doyen, A. Antioxidants, Mechanism, and Recovery by Membrane Processes. Crit. Rev. Food Sci. Nutr. 2017, 57(4), 677–700. DOI:10.1080/10408398.2014.912609.
  • Zhu, X.; Bai, R. Separation of Biologically Active Compounds by Membrane Operations. Curr. Pharm. Design. 2017, 23(2), 218–230.
  • Cassano, A.; Mazzei, R. Antioxidants Recovery by Integrated Membrane Operations, In Encyclopedia of Membranes; Drioli, A. E., Giorno, L. Eds.; Springer: Heidelberg, 2016; pp 94–96.
  • Akin, O.; Temelli, F.; Köseglu, S. Membrane Applications in Functional Foods and Nutraceuticals. Crit. Rev. Food Sci. Nutr. 2012, 52(4), 347–371. DOI:10.1080/10408398.2010.500240.
  • Nath, K. Membrane Separation Processes. In PHI Learning Private Limited; Asoke, K., Ed.; New Delhi: New Delhi, 2012; p 322. ISBN-978-81-203-3532-5.
  • Daufin, G.; Escudier, J. E.; Carrère, H.; Bérot, S.; Fillaudeau, L.; Decloux, M. Recent and Emerging Applications of Membrane Processes in the Food and Dairy Industry. Food Bioprod. Process. 2001, 79, 89–102. DOI:10.1205/096030801750286131.
  • Miraje, S. Y.; Amlepatil, N. M.; Sahoo, A. K.; Mote, G. V. Anthocyanin Extraction from Winery Waste Material: A Review. J. Innov. Pharm. Biol. Sci. 2015, 2(2), 218–221.
  • Bhattacharjee, C.; Saxena, V. K.; Dutta, S. Fruit Juice Processing using Membrane Technology: A Review. Innov. Food Sci. Emerg. Tech. 2017, 43, 136–153. DOI:10.1016/j.ifset.2017.08.002.
  • Cuevas Valenzuela, J.; Rodrigo Vergara-Salinas, J.; Pérez-Correa, J. R. Advances in Technologies for Producing Food Relevant Polyphenols; CRC Press: Boca Raton, 2017.
  • Puértolasa, E.; Barba, F. J. Electrotechnologies Applied to Valorization of By-Products from Food Industry: Main Findings, Energy and Economic Cost of their Industrialization. Food Bioprod. Process. 2016, 100, 172–184. DOI:10.1016/j.fbp.2016.06.020.
  • El Rayess, Y.; Mietton-Peuchot, M. Membrane Technology in Wine Industry: An Overview. Crit. Rev. Food Sci. Nutr. 2016, 56(12), 2005–2020. DOI:10.1080/10408398.2013.809566.
  • El Rayess, Y.; Manon, Y.; Jitariouk, N.; Albasi, C.; Mietton-Peuchof, M.; Devatine, A.; Fillaudeau, L. Wine Clarification with Rotating and Vibrating Filtration (RVF). Investigation of the Impact of Membrane Material, Wine Composition and Operating Conditions. J. Membrane Sci. 2016, 513, 47–57. DOI:10.1016/j.memsci.2016.03.058.
  • Kotsanopoulos, K.; Arvanitoyannis, I. S. Membrane Processing Technology in Food Industry: Food Processing, Wastewater Treatment and Effects on Physical, Microbiological, Organoleptic and Nutritional Properties of Foods. Crit. Rev. Food Sci. Nutr. 2015, 55(9), 1147–1175. DOI:10.1080/10408398.2012.685992.
  • Winterhalter, F.; Kuhnert, S.; Ewald, P. Bioactives from Side Streams of Wine Processing. In Advances in Wine Research. Ebeler, S. B., Sacks, G., Vidal, S., Winterhalter, P., Eds.; ACS Symposium Series: Washington, 2015, Vol. 1203; pp 337–345. ISBN13: 9780841230101e, ISBN:9780841230118.
  • Galanakis, C. Membrane Technologies for the Separation of Compounds Recovered from Grape Processing By-Products. In Handbook of Grape Processing By-Products. Sustainable Solutions; Galanakis, C., Ed.; Elsevier: London, 2017; pp 137–154.
  • Cassano, A.; Drioli, E. Integrated Membrane Operations in the Food Production; de Gruyter: Berlin, 2014.
  • Belleville, M.-P.; Vaillant, F. Membrane Technology for Production of Nutraceuticals; Taylor & Francis Group LLC: Boca Raton, Fla, 2016.
  • Malik, A. A.; Kour, H.; Bhat, A.; Kaul, R. K.; Khan, S.; Khan, S. V. Commercial Utilization of Membranes in Food Industry. Int. J. Food Nutr. Saf. 2013, 3(3), 147–170.
  • Moskvin, L. V.; Nikitina, T. G. Membrane Methods of Substance Separation in Analytical Chemistry. J. Anal. Chem. 2004, 59(1), 2–16. DOI:10.1023/B:JANC.0000011661.47796.b2.
  • Hylton, K.; Mitra, S. Automated, On-Line Membrane Extraction. J. Chromatogr. A. 2007, 1152, 199–214. DOI:10.1016/j.chroma.2006.12.047.
  • Moreira Gonçalvez, L.; Valente, I. M.; Rodrigues, J. A. Recent Advances in Membrane-Aided Extraction and Separation for Analytical Purposes. Sep. Purif. Rev. 2017, 46, 179–194. DOI:10.1080/15422119.2016.1235050.
  • Strathmann, H.; Grabowski, A.; Eigenberger, G. Electromembrane Processes, Efficient and Versatile Tools in a Sustainable Industrial Development. Desalination. 2006, 199, 1–3. DOI:10.1016/j.desal.2006.03.130.
  • Coutinho, C. M.; Chiu, M. C.; Basso, R. C.; Ribero, A. P. B.; Gonçalves, L. A. G. State of the Art of the Application of Membrane Technology to Vegetable Oils: A Review. Food. Res. Int. 2009, 42(5–6), 536–550. DOI:10.1016/j.foodres.2009.02.010.
  • Rawa-Adkonis, M.; Wolska, L.; Namiesnik, J. Modern Techniques of Extraction of Organic Analytes from Environmental Matrices. Crit. Rev. Anal. Chem. 2003, 33(3), 199–248. DOI:10.1080/713609164.
  • Cassano, A.; De Luca, G.; Conidi, C.; Drioli, E. Effect of Polyphenols-Membrane Interactions on the Performance of Membrane-Based Processes. A Review. Coord. Chem. Rev. 2017, 351, 45–75. DOI:10.1016/j.ccr.2017.06.013.
  • Strathmann, H. Membrane Separation Processes. J. Membrane Sci. 1981, 9, 121–189. DOI:10.1016/S0376-7388(00)85121-2.
  • Jakubowska, N.; Polkowska, Z.; Namiesnik, Z.; Przyjazny, J. Analytical Applications of Membrane Extraction for Biomedical and Environmental Liquid Sample Preparation. Crit. Rev. Anal. Chem. 2005, 35(3), 217–235. DOI:10.1080/10408340500304032.
  • Diaconu, I.; Ruse, E.; Aboul-Enein, H. Y.; Burnaciv, A. A. Analytical Applications of Transport Through Bulk Liquid Membranes. Crit. Rev. Anal. Chem. 2016, 46(4), 332–341. DOI:10.1080/10408347.2015.1064759.
  • Pabby, A. K.; Sastre, A. M. Membrane Techniques in Analytical Applications: Developments and Recent Advances; Encyclopedia of Analytical Chemistry; John Wiley & Sons, Ltd.: New York, 2009.
  • Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA.
  • Van de Merbel, N. C.; Hageman, J. J.; Brinkman, U. A. Th. Membrane-Based Sample Preparation for Chromatography. J. Chromatogr. 1993, 634, 1–29. DOI:10.1016/0021-9673(93)80308-U.
  • Baker, W. R. Membrane Technologies and Applications; Mc-Graw-Hill Companies: New York, 2000.
  • Baker, R. W. Membrane Technology and Applications; Wiley: Chichester, U.K., 2012.
  • Argyle, I. S. Synthetic Membrane Performance Modification by Selective Species Adsorption. Ph.D. Thesis, Department of Chemical Engineering, University of Bath, England, 2015.
  • Nady, N. PES Surface Modification using Green Chemistry: New Generation of Antifouling Membranes. Membranes. 2016, 6, 1–15. DOI:10.3390/membranes6020023.
  • Eljaddi, T.; Lebrun, L.; Hlaibi, M. Review on Mechanism of Facilitated Transport on Liquid Membranes. J. Membrane Sci. Res. 2017, 3, 199–208.
  • http://www.kochmembrane.com/PDFs/Other-Documents/membrane-filtration-technology.aspx
  • Girard, B.; Fukumoto, L. R. Membrane Processing of Fruit Juices and Beverages: A Review. Crit. Rev. Food Sci. Nutr. 2000, 40(2), 91–157. DOI:10.1080/10408690091189293.
  • Rastogi, N. K. Opportunities and Challenges in Application of Forward Osmosis in Food Processing. Crit. Rev. Food Sci. Nutr. 2016, 56(2), 266–291. DOI:10.1080/10408398.2012.724734.
  • Sant'anna, V.; Ferreira Marczak, L. D.; Tesauro, I. C. Membrane Concentration of Lidquid Foods by Forward Osmosis: Process and Quality View. J. Food Eng. 2012, 111, 483–489. DOI:10.1016/j.jfoodeng.2012.01.032.
  • Nayak, C. A. Forward Osmosis Membrane Concentration Process of Anthocyanins from Pomegranate Fruit; 2014-84-89. Presented at the International Conference on Clean Green and Sustainable Technology in Biotechnology and Chemical Engineering, 2014, pp 233–266.
  • Onsekizoglu, P. Membrane Distillation: Principles, Advances, Limitations and Future Prospects in Food Industry. In Distillation – Advances from Modeling to Applications; Zereshki, S., Ed.; Intech: Rijeka, Croatia, 2012.
  • Rizvi, S. Separation, Extraction and Concentration Processes in the Food, Beverage and Nutraceutical Industries; Woodhead Publishing Series in Food Science, Technology and Nutrition; Elsevier 2010, p 694. ISBN: 9780857090751.
  • Velizarov, S.; Crespo, J. G. Membrane Processing for the Recovery of Bioactive Compounds in Agro-Industries. In Innovation in Food Engineering: New Techniques and Products; Ribeiro, C. P., Passos, M. L., Eds.; CRC Press: Boca Raton, Fla., 2010; pp 137–160.
  • Matsuura, T. Membrane Separation Technologies. In Wastewater Recycle, Reuse, and Reclamation; Vigneswaran, S., Ed.; Encyclopedia of Life Support Systems: Paris, France, 2009, pp 98–135.
  • Chimuka, L.; Cukrowska, E.; Jönsson, J. A. Application of Membrane-Based Extraction Techniques to Food and Agricultural Samples. ACS Symposium Series. 2006, 926, 149–162.
  • Suk, E.; Matsuura, T. Membrane-Base Hybrid Processes: A Review. Sep. Sci. Technol. 2006, 41(4), 595–626. DOI:10.1080/01496390600552347.
  • Patterson, C. A. Membrane Processing: State of the Art Technology. Technol. Watch. 2005, 2(2), 1–12.
  • Miro, M.; Frenzel W. Automated Membrane-Based Sampling and Sample Preparation Exploiting Flow-Injection Analysis. Trends Anal. Chem. 2004, 23(9), 624–636. DOI:10.1016/j.trac.2004.07.006.
  • Ahmadi, M.; Elmongy, H.; Madrakian, T.; Abdel-Rehim, M. Nanomaterials as Sorbents for Sample Preparation in Bioanalysis: A Review. Anal. Chim. Acta. 2017, 958, 1–21. DOI:10.1016/j.aca.2016.11.062.
  • Almeida, M. I. G. S.; Cattrall, R. W.; Kolev, S. D. Polymer Inclusion Membranes (PIMs) in Chemical Analysis – A Review. Anal. Chim. Acta. 2017, xxx, 1–14. DOI:10.1016/j.aca.2017.07.032.
  • Bhadra, M.; Mitra, S. Nanostructured Membranes in Analytical Chemistry. Trends Anal. Chem. 2013, 45, 248–263. DOI:10.1016/j.trac.2012.12.010.
  • Herrera-Herrera, A. V.; González-Curbelo, M. A.; Hernández-Borges, J.; Rodríguez-Delgado, M. A. Carbon Nanotubes Applications in Separation Science: A Review. Anal. Chim. Acta. 2012, 734, 1–30. DOI:10.1016/j.aca.2012.04.035.
  • Peinemann, K.-V.; Pereira Nunes, S.; Giorno, L. Membrane Technology; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2010.
  • Basheer, C.; Alnedhary, A. A.; Madhava Rao, B. S.; Valliyaveettil, S.; Lee, H. K. Development and Application of Porous Membrane-Protected Carbon Nanotube Micro-Solid-Phase Extraction Combined with Gas Chromatography/Mass Spectrometry. Anal. Chem. 2006, 78, 2853–2858. DOI:10.1021/ac060240i.
  • Jönsson, J. A.; Mathiasson, L. Membrane Extraction in Analytical Chemistry. J. Sep. Sci. 2001, 24(7), 495–507. DOI:10.1002/1615-9314(20010801)24:7%3c495::AID-JSSC495%3e3.0.CO;2-B.
  • Galanakis, C. M. Separation of Functional Macromolecules and Micromolecules: From Ultrafiltration to the Border of Nanofiltration. Trends Food Sci. Technol. 2015, 42(1), 44–63. DOI:10.1016/j.tifs.2014.11.005.
  • Ilane, S.; Singh, S. Application of Membrane Separation in Fruit and Vegetable Juice Processing: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55(7), 964–987. DOI:10.1080/10408398.2012.679979.
  • Tsibranska, I.; Tylkowski, B. Concentration of Polyphenols by Integrated Membrane Operations. In Integrated Membrane Operations in the Food Production; Cassano, A., Drioli, E., Eds.; de Gruyter: Berlin, 2014; Chapter 11, pp 281–193.
  • Tsibranska, I.; Saykova, I. Combining Nanofiltration and Other Separation Methods. J. Chem. Technol. Metall. 2013, 48(4), 333–340.
  • Bouchoux, A. Etude de la Nanofiltration pour son Integration dans les Procedes de Production d'Acides Organiques. Th.D. Thesis, l'Université Paul Sabatier, Toulousse III, France, 2012.
  • Dasgupta, S.; Sarkar, B. Membrane Applications in Fruit Processing Technologies. In Advances in Fruit Processing Technologies; Rodrigues, S., Fernandes, A. N. F., Eds.; CRC Press: Boca Raton, FL, 2012; pp 87–148.
  • Echevarría, A. P.; Torras, C.; Pagán, J.; Ibarz, A. Fruit Juice Processing and Membrane Technology Application. Food Eng. Rev. 2011, 3(3–4), 136–158. DOI:10.1007/s12393-011-9042-8.
  • El Rayess, Microfiltration Tangentielle Appliquée à l'oenologie: Compréhension Et Maitrise Des Phénomènes De Colmatage. Th.D. Thesis, Institut National Polytechnique de Toulouse, Université de Toulouse, France, 2011.
  • Rai, P.; De, S. Membrane-Based Separation Process for Juice Processing. In Membrane Technologies and Applications; Purkait, M. K., Ed.; CRC Press: Boca Raton, FL, 2011; pp 214–230.
  • Rathore, A. S.; Shirke, A. Recent Developments in Membrane Based Separation Processes in Biotechnology Processes: Review. Prep. Biochem. Biotechnol. 2011, 41(4), 398–421. DOI:10.1080/10826068.2011.613976.
  • Crespo, J. P.; Brazinha, C. Membrane Processing: Natural Antioxidants from Winemaking By-Products. Filtrat. Sep. 2010, 47(2), 32–35. DOI:10.1016/S0015-1882(10)70079-3.
  • Kumar, A. Membrane Separation Technology in Processing Bioactive Components. In Functional Food Ingredientes and Nutraceuticals Processing Technologies; Shi, J., Ed.; CRC Press, Boca Raton, FL., 2007; Chapter 8, pp 193–208.
  • Shi, J.; Nawaz, H.; Pohorly, J.; Mittal, G.; Kakuda, Y.; Jiang, Y. Extraction of Polyphenolics from Plant Material for Functional Foods – Engineering and Technology. Food Rev. Int. 2005, 21(1), 139–166. DOI:10.1081/FRI-200040606.
  • Huang, C.; Chen, Z.; Gjelstad, A.; Pedersen-Bjergaard, S.; Shen, X. Electromembrane Extraction. Trends Anal. Chem. 2017, 95, 47–56. DOI:10.1016/j.trac.2017.07.027.
  • Pedersen-Bjergaard, S.; Huang, C.; Gjelstad, A. Electromembrane Extraction–Recent Trends and Where to Go. J. Pharm. Anal. 2017, 7(3), 141–147. DOI:10.1016/j.jpha.2017.04.002.
  • Hunag, C.; Gjelstad, A.; Pedersen-Bjergaard, S. Organic Solvents in Electromembrane Extraction: Recent Insights. Rev. Anal. Chem. 2016, 35(4), 169–183.
  • Huang, C.; Jensen, H.; Seip, K. F.; Gjelstad, A.; Pedersen-Bjergaard, S. Mass Transfer in Electromembrane Extraction – The Link Between Theory and Experiments. J. Sep. Sci. 2016, 39(1), 188–197. DOI:10.1002/jssc.201500905.
  • Oedit, A.; Ramautar, R.; Hankemeier, T.; Lindenburg, P. W. Electroextraction and Electromembrane Extraction: Advances in Hyphenation to Analytical Techniques. Electrophoresis. 2016, 37(9), 1170–1186. DOI:10.1002/elps.201500530.
  • Wuethrich, A.; Haddad, P. R.; Quirino, J. P. The Electric Field – An Emerging Driver in Sample Preparation. Trends Anal. Chem. 2016, 80, 604–611. DOI:10.1016/j.trac.2016.04.016.
  • Huang, C.; Seip, K. F.; Gjelstad, A.; Pedersen-Bjergaard, S. Electromembrane Extraction for Pharmaceutical and Biomedical Analysis – Quo Vadis. J. Pharm. Biomed. Anal. 2015, 113, 97–107. DOI:10.1016/j.jpba.2015.01.038.
  • Seidi, S.; Yamini, Y.; Rezazadeh, M. Electrochemically Assisted Solid Base Extraction Techniques: A Review. Talanta. 2015, 132, 339–353. DOI:10.1016/j.talanta.2014.08.059.
  • Seip, K. F.; Gjelstad, A.; Pedersen-Bjergaard, S. The Potential of Electromembrane Extraction for Bioanalytical Applications. Bioanalysis. 2015, 7(4), 463–480. DOI:10.4155/bio.14.303.
  • See, H. H.; Hauser, P. C. Automated Electric-Field-Driven Membrane Extraction System Coupled to Liquid Chromatography−Mass Spectrometry. Anal. Chem. 2014, 86, 8665–8670. DOI:10.1021/ac5015589.
  • Marothu, V. K.; Gorrepati, M.; Vusa, R. Electromembrane Extraction – A Novel Extraction Technique for Pharmaceutical, Chemical, Clinical and Environmental Analysis. J. Chromatogr. Sci. 2013, 51(7), 619–631. DOI:10.1093/chromsci/bmt041.
  • Seip, K. F.; Jensen, H.; Sonsteby, M. H.; Gjelstad, A.; Pedersen-Bjergaard, P. Electromembrane Extraction: Distribution or Electrophoresis? Electrophoresis. 2013, 34(5), 792–799. DOI:10.1002/elps.201200587.
  • Bazinet, L.; Brianceau, S.; Dubé, P.; Desjardins, Y. Evolution of Cranberry Juice Physico-Chemical Parameters During Antioxidant Enrichment by Electrodialysis with Filtration Membrane. Sep. Purif. Technol. 2012, 87, 31–39. DOI:10.1016/j.seppur.2011.11.017.
  • Luque De Castro, M. D.; Priego Capote, F.; Sánchez Ávila, N. Is Dialysis Alive as a Membrane-Based Separation Technique? Trends Anal. Chem. 2008, 27(4), 315–326. DOI:10.1016/j.trac.2008.01.015.
  • Pedersen-Bjergaard, S.; Rasmussen, K. E. Electrical Potential can Drive Liquid-Liquid Extraction for Sample Preparation in Chromatography. Trends Anal. Chem. 2008, 27(10), 934–941. DOI:10.1016/j.trac.2008.08.005.
  • Bazinet, L. Electrodialytic Phenomena and their Application in the Diary Industry: A Review. Crit. Rev. Food Sci. Nutr. 2005, 45(4), 307–326. DOI:10.1080/10408690490489279.
  • Sajid, M. Porous Membrane Protected Micro-Solid-Phase Extraction: A Review of Features, Advancements and Applications. Anal. Chim. Acta. 2017, 965, 36–53. DOI:10.1016/j.aca.2017.02.023.
  • Alexovic, M.; Horstkotte, B.; Solich, P.; Sabo, J. Automation of Static and Dynamic Non-Dispersive Liquid Phase Microextraction. Part 2: Approaches Based on Impregnated Membranes and Porous Supports. Anal. Chim. Acta. 2016, 907, 18–30. DOI:10.1016/j.aca.2015.11.046.
  • Chen, X.; Shen, J.; Hu, Z.; Huo, X. Manufacturing Methods and Applications of Membranes in Microfluidics. Biomed. Microdevices. 2016, 18(6), 104. DOI:10.1007/s10544-016-0130-7.
  • Carasek, E.; Merib, J. Membrane-Based Microextraction Techniques in Analytical Chemistry: A Review. Anal. Chim. Acta. 2015, 880, 8–25. DOI:10.1016/j.aca.2015.02.049.
  • Pan, J.; Zhang, C.; Zhang, Z.; Li, G. Review of Online Coupling of Sample Preparation Techniques with Liquid Chromatography. Anal. Chim. Acta. 2014, 815, 1–15. DOI:10.1016/j.aca.2014.01.017.
  • Gjelstad, A.; Rasmussen, K. E.; Pedersen-Bjergaard, S. Hollow Fiber Liquid-Phase Microextraction. In Comprehensive Sampling and Sample Preparation; 2012; pp 475–496. ISBN: 9780123813749.
  • Jönsson, J. A. Membrane Extraction: General Overview and Basic Techniques. In Comprehensive Sampling and Sample Preparation; 2012; pp 461–474. ISBN: 9780123813749.
  • Jönsson, J.A. Membrane-Based Extraction for Environmental Analysis. In Comprehensive Sampling and Sample Preparation; 2012; pp 591–602. ISBN: 9780123813749.
  • Chimuka, L.; Michel, M.; Cukrowska, E.; Buszewski, B. Advances in Sample Preparation Using Membrane-Based Liquid-Phase Microextraction Techniques. Trends Anal. Chem. 2011, 30(11), 1781–1792. DOI:10.1016/j.trac.2011.05.008.
  • Davey, N. G.; Krogh, E. T.; Gill, C. G. Membrane-Introduction Mass Spectrometry (MIMS). Trends Anal. Chem. 2011, 30(9), 1477–1485. DOI:10.1016/j.trac.2011.05.003.
  • Barri, T.; Jönsson, J. A. Advances and Developments in Membrane Extraction for Gas Chromatography: Techniques and Applications. J. Chromatogr. A. 2008, 1186(1–2), 16–38. DOI:10.1016/j.chroma.2008.02.002.
  • Esteve-Turrillas, F. A.; Yusa, V.; Pastor, A.; de la Guardia, M. New Perspectives in the Use of Semipermeable Membrane Devices as Passive Samplers. Talanta. 2008, 74, 443–457. DOI:10.1016/j.talanta.2007.06.019.
  • Hyötyläinen, T.; Riekkola, M.-L. Sorbent- and Liquid-Phase Microextraction Techniques and Membrane-Assisted Extraction in Combination with Gas Chromatographic Analysis: A Review. Anal. Chim. Acta. 2008, 614, 27–37. DOI:10.1016/j.aca.2008.03.003.
  • Lee, J.; Lee, H. K.; Rasmussen, K. E.; Pedersen-Bjergaard, S. Environmental and Bioanalytical Applications of Hollow Fiber Membrane Liquid-Phase Microextraction: A Review. Anal. Chim. Acta. 2008, 624, 253–268. DOI:10.1016/j.aca.2008.06.050.
  • Bårdstu, K. F.; Ho, T. S.; Rasmussen, K. E.; Pedersen-Bjergaard, S.; Jönsson, J. A. Supported Liquid Membranes in Hollow Fiber Liquid-Phase Microextraction (LPME – Practical Considerations in the Three-Phase Mode. J. Sep. Sci. 2007, 30(9), 1364–1370. DOI:10.1002/jssc.200600486.
  • Jönsson, J. A. Membrane Extraction in Environmental Chemical Analysis. Proceedings of ECOpole, Conference Congress, Opole University. 2007, 1(1–2), 37–42.
  • Kocherginski, N. M.; Yang, Q.; Seelam, L. Recent Advances in Supported Liquid Membrane Technology. Sep. Purif. Technol. 2007, 13(2), 171–177. DOI:10.1016/j.seppur.2006.06.022.
  • Pawliszyn, J.; Pedersen-Bjergaard, S. Analytical Microextraction: Current Status and Future Trends. J.Chromatogr. Sci. 2006, 44(6), 291–307. DOI:10.1093/chromsci/44.6.291.
  • Turner, C. Overview of Modern Extraction Techniques for Food and Agricultural Samples. In Modern Extraction Techniques, ACS Symposium Series; Turner, C, Eds.; ACS: Washington, DC., 2006; Chapter 1, pp 1–19.
  • Chimuka, L.; Cukrowska, E.; Jönsson, A. Why Liquid Membrane Extraction is an Attractive Alternative in Sample Preparation. Pure Appl. Chem. 2004, 76(4), 707–722. DOI:10.1351/pac200476040707.
  • Jönsson, J. A. Membrane Extraction for Sample Preparation – A Practical Guide. Chromatographia. 2003, 57(1), S317–S324.
  • Jönsson, J. A.; Mathiasson, L. Membrane Extraction. In Comprehensive Analytical Chemistry XLI; Mester and Sturgeon, Eds.; Elsevier: B.V., 2003; pp 559–575.
  • Jönsson, J. A. Liquid Membrane Techniques. In Comprehensive Analytical Chemistry; 2002, 37, chapter 15, pp 503–530.
  • Jönsson, J. A.; Mathiasson, L. Membrane-Based Techniques for Sample Preparation. J. Chromathogr. A. 2000, 902, 205–255. DOI:10.1016/S0021-9673(00)00922-5.
  • Klayson, C.; Cath, T. Y.; Depuydt, T.; Vankelecom, I. F. J. Forward Aid Pressure Retarded Osmosis: Potential Solution for Global Callenges in Energy and Water Supply. Chem. Soc. Rev. 2013, 42, 6959–6989. DOI:10.1039/c3cs60051c.
  • Nahimana, H.; Zhang, M.; Mujumdar, A. S.; Ding, Z. Mass Transfer Modeling and Shrinkage Consideration During Osmotic Dehydratation of Fruits and Vegetables. Food Rev. Int. 2011, 27(4), 331–356. DOI:10.1080/87559129.2010.518298.
  • Jiao, B.; Cassano, A.; Drioli, E. Recent Advances on Membrane Processes for the Concentration of Fruit Juices: A Review. J. Food Eng. 2003, 63, 303–324. DOI:10.1016/j.jfoodeng.2003.08.003.
  • Raghvarao, K. S. M. S.; Madhusuhan, M. C.; Tavanandi, A. H.; Niranjan, K. Athermal Membrane Processes for the Concentration of Liquid Foods and Natural Colors. In Emerging Technologies for Food Processing; Sun, D.-W., Eds.; Academic Press-Elsevier: San Diego, 2014; pp 213–238.
  • Van de Merbel, N. C.; Hageman, J. J.; Brinkman, U. A. Th. Membrane-Based Sample Preparation for Chromatography. J. Chromatogr. 1993, 634, 1–29. DOI:10.1016/0021-9673(93)80308-U.
  • Jönsson, J. A.; Mathiasson, L. Supported Liquid Membrane Techniques for Sample Preparation and Enrichment in Environmental and Biological Analysis. Trends Anal. Chem. 1992, 11, 106–114. DOI:10.1016/0165-9936(92)85008-S.
  • Jönsson, J. A.; Mathiasson, L. Liquid Membrane Extraction in Analytical Sample Preparation. I Principles. Trends Anal. Chem. 1999, 18(5), 318–325. DOI:10.1016/S0165-9936(99)00102-8.
  • Jönsson, J. A.; Mathiasson, L. Liquid Membrane Extraction in Analytical Sample Preparation. II Aplications. Trends Anal. Chem. 1999, 18(5), 325–334. DOI:10.1016/S0165-9936(99)00103-X.
  • Conidi, C.; Cassano, A.; Caiazzo, F.; Drioli, E. Separation and Purification of Phenolic Compounds from Pomegranate Juice by Ultrafiltration and Nanofiltration Membrane. J. Food Eng. 2017, 195, 1–13. DOI:10.1016/j.jfoodeng.2016.09.017.
  • Meng, L.; Lozano, Y.; Bombarda, I.; Gaydou, E.; Li, B. Anthocyanin and Flavonoid Production from Perilla Frutescens: Pilot Plant Scale Processing Including Cross-Flow Microfiltration and Reverse Osmosis. J. Agric. Food Chem. 2006, 54(12), 4297–4303. DOI:10.1021/jf0604079.
  • Zhu, Z.; Guan, A.; Koubaa, M.; Barba, F.J.; He, J. Preparation of Highly Clarified Anthocyanin-Enriched Purple Sweet Potato Juices by Membrane Filtration and Optimization of their Sensorial Properties. J. Food Preserv. 2017, 41, 1–7. DOI:10.1111/jfpp.12929.
  • Giacobbo, A.; Bernardes, A. M.; de Pinho, M. N. Membrane Based Process for Polyphenols Recovery from Winery Effluents. Paper presented at the 2016 AIChE Annual Meeting, San Francisco, November, 2016.
  • He, S.; Lou, Q.; Shi, J.; Sun, H.; Zhang, M.; Li, Q. Water Extraction of Anthocyanins from Black Rice and Purification Using Membrane Separation and Resin Adsorption. J. Food Process.Preservat. 2016, 41(4), 1–8.
  • Soto, M.; Acosta, O.; Vaillant, F.; Pérez, A. Effect of Mechanical and Enzymatic Pretreatment on Extraction of Polyphenols from Blackberry Fruits. J. Food Proc. Eng. 2016, 39(5), 492–500. DOI:10.1111/jfpe.12240.
  • Zhang, P. P.; Zhang, M. L.; He, S. D.; Cao, X. D.; Sun, H. J.; Chen, X. Y.; Xie, X. P.; Lou, Q. Y.; Wang, X.; Ye, Y. K. Extraction and Probiotic Properties of New Anthocyanins from Purple Sweet Potato (Solanum tuberosum). Curr. Topic Nutr. Res. 2016, 14(2), 153–160.
  • Zhu, Z. Z.; Jiang, T.; He, H. J.; Barba, F. J.; Cravotto, G.; Koubaa, M. Ultrasound-Assisted Extraction, Centrifugation and Ultrafiltration: Multistage Process for Polyphenols Recovery from Purple Potatoes. Molecules. 2016, 21(4), 1584. DOI:10.3390/molecules21111584.
  • Zhu, Z. Z.; Yuang, F. Q.; Xu, Z. M.; Wang, W. L.; Di, X. H.; Barba, F. J.; Shen, W. Y.; Koubaa, M. Stirring-Assisted Dead-Ed Ultrafiltration for Protein and Polyphenol Recovery from Purple Sweet Potato Juices: Filtration Behavior Investigation and HPLC-DAD-ESI-MS2 Profiling. Sep. Purif. Technol. 2016, 169, 25–32. DOI:10.1016/j.seppur.2016.05.023.
  • Chandrasekhar, J.; Raghavarao, K. S. M. S. Separation and Concentration of Anthocyanins from Jamun: An Integrated Process. Chem. Eng. Commun. 2015, 202(10), 1368–1379. DOI:10.1080/00986445.2014.935351.
  • Jampani, C.; Raghavarao, K. S. M. S. Process Integration for Purification and Concentration of Red Cabbage (Brassica olearacea L.) Anthocyanins. Sep. Purif. Technol. 2015, 141, 10–16. DOI:10.1016/j.seppur.2014.11.024.
  • Mohanmmadifakhr, M.; Parjkolael, B. Z.; Roda-Serrat, M.; Norddahi, B. Production of Anthocyanins from Chokeberry (Aronia melanocarpa) Pomace by Treatment, and Membrane Filtration. Paper presented at the Abstract from Euromembrane Conference, Aachen, 7–10 September, 2015.
  • Rajha, H. W.; Boussetta, N.; Loyka, N.; Maroun, R. G.; Vorobiete, F. Effect of Alternative Physical Pretreatment (Pulsed Electric Field, High Voltage Electrical Discharges and Ultrasounds on the Dead-End Ultrafiltration of Vine-Shot Extracts. Sep. Pur. Technol. 2015, 146, 243–251. DOI:10.1016/j.seppur.2015.03.058.
  • Zhu, Z. Z.; Liu, Y.; Guan, Q. Y.; He, J. R.; Liu, G.; Li, S. Y.; Ding, L. H.; Jaffrin, M. Y. Purification of Purple Sweet Potato Extract by Dead-End Filtration and Investigation of Membrane Fouling Mechanism. Food Bioproc. Technol. 2015, 8(8), 1680–1689. DOI:10.1007/s11947-015-1532-x.
  • Cassano, A.; Conidi, C.; Ruby-Figueroa, R. Recovery of Flavonoids from Orange Press Liquor by an Integrated Membrane Process. Membranes. 2014, 4(3), 509–524. DOI:10.3390/membranes4030509.
  • Gunathilake, K. D. P. P.; Juan Yu, L.; Vasantha Rupasinghe, H. P. Reverse Osmosis as a Potential Technique to Improve Antioxidant Properties Of Fruit Juices Used for Functional Beverages. Food Chem. 2014, 148, 335–341. DOI:10.1016/j.foodchem.2013.10.061.
  • Mena, P.; Martí, N.; García-Viguera, C. The Impact of Processing and Storage on the (Poly)phenolic Fraction of Pomegranate (Punica granatum L.) Juices. In Processing and Impact on Antioxidants in Beverages; Preedy, V. R., Ed.; Academic Press: New York, 2014; pp 173–184.
  • Valero, M.; Vegara, N.; Martí, N.; Saura, D. Clarification of Pomegranate Juice at Industrial Scale. J. Food Process. Technol. 2014, 5(5), 1000324. DOI:10.4172/2157-7110.1000324.
  • Chanukya, B. S.; Rastogi, N. K. Extraction of Alcohol from Wine and Color Extracts Using Liquid Emulsion Membrane. Sep. Pur. Technol. 2013, 105, 41–47. DOI:10.1016/j.seppur.2012.12.001.
  • Galanakis, C. M.; Markouli, V.; Gekas, E. Recovery and Fractionation of Different Phenolic Classes from Winery Sludge Using Ultrafiltration. Sep. Purif. Technol. 2013, 107, 245–251. DOI:10.1016/j.seppur.2013.01.034.
  • Gil, M.; Estévez, S.; Kontoudakis, N.; Fort, F.; Canals, J. M.; Zamora, F. Influence of Partial Dealcoholization by Reverse Osmosis on Red Wine Composition and Sensory Characteristics. Eur. Food Res. Technol. 2013, 237(4), 481–488. DOI:10.1007/s00217-013-2018-6.
  • Husson, E.; Araya-Farias, M.; Desjardins, Y.; Bazinet, L. Selective Anthocyanins Enrichment of Cranberry Juice by Electrodialysis with Ultrafiltration Membranes Stacked. Innov. Food Sci. Emerg. Technol. 2013, 17, 153–162. DOI:10.1016/j.ifset.2012.09.011.
  • Husson, E.; Araya-Farias, M.; Gagné, A.; Bazinet, L. Selective Anthocyanins Enrichment of Cranberry Juice by Electrodialysis with Filtration Membrane: Influence of Membranes Characteristics. J. Membrane Sci. 2013, 448, 114–124. DOI:10.1016/j.memsci.2013.06.061.
  • Koffi, E. N.; Le Guernevé, C.; Lozano, P. R.; Meudec, E.; Adjé, F. A.; Bekro, Y. A.; Lozano, Y. F. Polyphenol Extraction and Characterization of Justicia Secunda Vahl Leaves for Traditional Medicinal Uses. Ind. Crops Prod. 2013, 49, 682–689. DOI:10.1016/j.indcrop.2013.06.001.
  • Vladisavljević, G. T.; Vukosavljević, P.; Veljović, M. S. Clarification of Red Raspberry Juice Using Microfiltration with Gas Backwashing: A Viable Strategy to Maximize Permeate Flux and Minimize a Loss of Anthocyanins. Food Bioprod. Process. 2013, 91(4), 473–480.
  • Agbangnan, D. P. C.; Tachon, C.; Dangou, J.; Chrostowska, A.; Fouquet, E.; Sohounhloue, D. C. K. Optimization of the Extraction of Sorghum's Polyphenols for Industrial Production by Membrane Processes. Res. J. Recent Sci. 2012, 1(4), 1–8.
  • Adje, F. A.; Lozano, Y. F.; Le Gerneve, C. Phenolic Acid and Flavonol Water Extracts of Delonix Regia Red Flowers. Ind. Crops Prod. 2012, 37(1), 303–310. DOI:10.1016/j.indcrop.2011.12.008.
  • Bazinet, L. How to Separate Bioactive Molecules from Complex Feedstock: Electrodialysis with Filtration Membrane an Innovative Solution. BioVeille CQVB. 2012, 4(2), 1.
  • Conidi, C.; Cassano, A.; Drioli, E. Recovery of Phenolic Compounds from Orange Press Liquor by Nanofiltration. Food Bioprod. Process. 2012, 90(4), 867–874. DOI:10.1016/j.fbp.2012.07.005.
  • Gonçalves, F. G.; Rocha, S. M.; Coimbra, M. A. Study of the Retention Capacity of Anthocyanins by Wine Polymeric Material. Food Chem. 2012, 134(2), 957–963. DOI:10.1016/j.foodchem.2012.02.214.
  • Molnár, Zs.; Bánvölgyi, Sz.; Kozác, A.; Kiss, I.; Békássy-Molnár, E.; Vatai, Gy. Concentration of Raspberry (Rubus Idaeus L.) Juice Using Membrane Processes. Acta Alimentaria. 2012, 41, 147–159. DOI:10.1556/AAlim.41.2012.Suppl.14.
  • Pap, N.; Mahosenaho, M.; Pongráez, E.; Mikkonen, H.; Jaakkola, M.; Virtanen, N. Effect of Ultrafiltration on Anthocyanin and Flavonol Content of Black Currant Juice (Ribes nigrum L.). Food Bioprocess Technol. 2012, 5(3), 921–928. DOI:10.1007/s11947-010-0371-z.
  • Vilar, J.; Freitas, S.; Silva, L. F.; Cabral, L. M. Concentration of Blackberry (Rubus sp.) Juice Using Membrane Processes. Paper presented at the IFT 12 Annual Meeting + Food Expo: Las Vegas, Monday, June 25–28, 2012.
  • Xu, Z.; Li, Y.; Chen, F.; Liao, X.; Sun, Z.; Wu, J. Clarification and Concentration of Red Cabbage Anthocyanins Using Integrated Membrane Process. Trans. Chin. Soc. Agric. Eng. 2012, 28(9), 242–249.
  • Azofeifa, G.; Quesada, S.; Pérez, A.-M. Effect of the Microfiltration Process on Antioxidant Activity and Lipid Peroxidation Protection Capacity of Blackberry Juice. Braz. J. Pharmacogn. 2011, 21(5), 829–834. DOI:10.1590/S0102-695X2011005000133.
  • Bazinet, L.; Brianceau, S.; Araya-Farias, M.; Desjardins, Y. Production of Antioxidant Enriched Cranberry Juice by Electrodialysis with Filtration Membrane: Impact of Process on Juice Composition. Paper presented at the ICEF11 International Congress on Engineering and Food, Athens, Greece, May 22–26, 2011.
  • Bouayed, J.; Hoffmann, L.; Bohn, T. Total Phenolics, Flavonoids, Anthocyanins and Antioxidant Activity Following Simulated Gastrointestinal Digestion and Dialysis of Apple Varieties: Bioaccessibility and Potential Update. Food Chem. 2011, 128(1), 14–21. DOI:10.1016/j.foodchem.2011.02.052.
  • Cassano, A.; Conidi, C.; Drioli, E. Clarification and Concentration of Pomegranate Juice (Punica granatum L.) Using Membrane Processes. J. Food Eng. 2011, 107(3), 366–373. DOI:10.1016/j.jfoodeng.2011.07.002.
  • Cissé, M.; Vaillant, F.; Pallet, D.; Dornier, M. Selecting Ultrafiltration and Nanofiltration Membranes to Concentrate Anthocyanins from Roselle Extract (Hibiscus sabdariffa L.). Food Res. Int. 2011, 44(9), 2607–2614. DOI:10.1016/j.foodres.2011.04.046.
  • Couto, D. S.; Dornier, M.; Pallet, D.; Reynes, M.; Dijoux, D.; Freitas, S. P.; Cabral, L. M. C. Evaluation of Nanofiltration Membranes for the Retention of Anthocyanins of Acai (Euterpe oleracea Mart.) Juice. Desalination Water Treat. 2011, 27(1–3), 108–113. DOI:10.5004/dwt.2011.2067.
  • Machado, R. M. D.; Haneda, R. N.; Trevisan, B. P. Effect of Enzymatic Treatment on the Cross-Flow Microfiltration of Açai Pulp: Analysis of the Fouling and Recovery of Phytochemicals. J. Food Eng. 2012, 113(3), 442–452. DOI:10.1016/j.jfoodeng.2012.06.022.
  • Molnár, Zs.; Özdemir, K.; Békássy-Molnár, E.; Vatai, Gy. Valuable Components Concentration of Raspberry Marc Extract by Membrane Filtration, 6th International CIGR Technical Symposium – Towards a Sustainable Food Chain: Food Process. Bioprocessing and Food Quality Management. 2011, 1, 1–6.
  • Gurak, P. D.; Cabral, L. M. C.; Rocha-Leão, M. H. M.; Matta, V. M.; Freitas, S. P. Quality Evaluation of Grape Juice Concentrated by Reverse Osmosis. J. Food Eng. 2012, 96(3), 421–426. DOI:10.1016/j.jfoodeng.2009.08.024.
  • Mirsaeedghazi, H.; Emam-Djomeh, Z.; Mohammad Mousavi, S.; Ahmadkhaniha, R.; Shafiee, A. Effect of Membrane Clarification on the Physicochemical Properties of Pomegranate Juice. Int.J. Food Sci.Technol. 2010, 45(7), 1457–1463. DOI:10.1111/j.1365-2621.2010.02284.x.
  • Mirsaeedghazi, H.; Emam-Djomeh, Z.; Mohammad Mousavi, S.; Aroujalian, A.; Navidbakhsh, M. Clarification of Pomegranate Juice by Microfiltration with PVDF Membranes. Desalination. 2010, 264(3), 243–248. DOI:10.1016/j.desal.2010.03.031.
  • Monteiro, F. S. Obtenção De Suco De Amora-Preta (Rubus Spp.) Concentrado Em Antocianinas Utilizando Processos De Separação Por Membranas. Dissertação de mestrado. Faculdade de engenharia de alimentos. UNICAMP, Campinas – SP, Brasil, 2011.
  • Nayak, C. A. Integrated Downstream Processing involving Biocompatible Methods for Extraction, Purification and Concentration of Anthocyanin, a Natural Colorant. Ph.D. Thesis, University of Mysore, Karnataka, India, 2010.
  • Nayak, C. A.; Rastogi, N. K. Forward Osmosis for the Concentration of Anthocyanin from Garcinia Indica Choisy. Sep. Purif. Technol. 2010, 71(2), 144–151. DOI:10.1016/j.seppur.2009.11.013.
  • Pap, N.; Pongrácz, E.; Jaakkola, M.; Tolonen, T.; Virtanen, V.; Turkki, A.; Horváth-Hovorka, Z.; Vatai, G.; Keiski, R. L. The Effect of Pre-Treatment on the Anthocyanin and Flavonol Content of Black Currant Juice (Ribes nigrum L.) in Concentration by Reverse Osmosis. J. Food Eng. 2010, 98(4), 429–436. DOI:10.1016/j.jfoodeng.2010.01.024.
  • Bazinet, L.; Cossec, C.; Gaudreau, H.; Desjardins, Y. Production of a Phenolic Antioxidant Enriched Cranberry Juice by Electrodialysis with Filtration Membrane. J. Agr. Food Chem. 2009, 57(21), 10245–10251. DOI:10.1021/jf9021114.
  • Bánvölgyi, S.; Horváth, S.; Stefanovits-Bányai, E.; Békássy-Molnár, E.; Vatai, G. Integrated Membrane Process for Blackcurrant (Ribes nigrum L.) Juice Concentration. Desalination. 2009, 241(1–3), 281–287. DOI:10.1016/j.desal.2007.11.088.
  • Khalili, V.; Meyssami, B.; Fatemi, H. Investigation of Extraction and Separation of Anthocyanins from Red Cabbage by Ultrafiltration Hollow Fibers Membrane Process. Amirkabir J. Sci. Technol. 2009, 20(70), 27–35.
  • Kozák, A.; Békássy-Molnár, E.; Vatai, G. Production of Blackcurrant Juice Concentrate by Using Membrane Distillation. Desalination. 2009, 241, 309–314. DOI:10.1016/j.desal.2008.02.033.
  • Molnár, Zs.; Hesz, A.; Bánvölgyl, Sz.; Skerget, M.; Knez, Z.; Vtai, Gy. Concentration and Formulation of Elderberry (Sambucus Nigra L.) Anthocyanins Using Membrane Process and PGSSTM Technology. Paper presented at the 5th International Technical Symposium and Food Processing Monitoring Technology in Bioprocesses and Food Quality Management: Germany; August 31-September 2, 2009.
  • Patil, G.; Madhusudhan, M. C.; Ravindra Babu, B.; Raghavarao, K. S. M. S. Extraction, Dealcoholization and Concentration of Anthocyanin from Red Radish. Chem. Eng. Process. 2009, 48(1), 364–369. DOI:10.1016/j.cep.2008.05.006.
  • Kozák, A.; Banvölgyi, S.; Vincze, I.; Kiss, I.; Békássy-Molnár, E.; Vatai, G. Comparison of Integrated Large Scale and Laboratory Scale Membrane Processes for the Production of Black Currant Juice Concentrate. Chem. Eng. Process. 2008, 47, 1171–1177. DOI:10.1016/j.cep.2007.12.006.
  • Gilewicz-Łukasik, B.; Koter, S.; Kurzawa, J. Concentration of Anthocyanins by the Membrane Filtration. Sep. Purif. Technol. 2007, 57(3), 418–424. DOI:10.1016/j.seppur.2006.03.026.
  • Kalbasi, A.; Cisneros-Zevallos, L. Fractionation of Monomeric and Polymeric Anthocyanins from Concord Grape (Vitis labrusca L.) Juice by Membrane Ultrafiltration. J. Agric. Food Chem. 2007, 55(17), 7036–7042. DOI:10.1021/jf0706068.
  • Li, J. L. Study of the Extraction, Purification by Membrane Technology and Stability of Anthocyanin Pigment from Purple Sweet Potato. Ph.D. Thesis, Nanchang University, Jiangxi, China, 2007.
  • Liu, X.; Xu, Z.; Gao, Y.; Yang, B.; Zhao, J.; Wang L. Adsorption Characteristics of Anthocyanins from Purple-Fleshed Potato (Solanum tuberosum Jasim) Extract on Macroporous Resins. Int. J. Food Eng. 2007, 3(5), 1556–3758. DOI:10.2202/1556-3758.1230.
  • Patil, G.; Raghavarao, K. S. M. S. Integrated Membrane Process for the Concentration of Anthocyanin. J. Food Eng. 2007, 78(4), 1233–1239. DOI:10.1016/j.jfoodeng.2005.12.034.
  • Xu, L.; Kumar, A.; Lamb, K.; Layton, L. Recovery of Isoflavones from Red Clover Flowers by a Membrane Based Process. Innov. Food Sci. Emerg. Technol. 2006, 7, 251–256. DOI:10.1016/j.ifset.2005.12.001.
  • Pap, N.; Pongrácz Myllykoski, L.; Keiski, R. L. Waste Minimization in Berry Processing – Use of Membrane Technologies for Cranberry and Blackcurrant Juice Concentration. In Proceedings of the RESOPT closing seminar ‘Waste Minimization and Utilization in Oulu Region: Drivers and Constraints; Pongrácz, E., Ed.; Oulu University Press: Oulu, 2005; pp 71–83.
  • Hossain, M. M. Concentration of Anthocyanin Pigments in Blackcurrant Pomace by Ultrafiltration. Food Aust. 2003, 55(6), 263–266.
  • Rodriguez-Saona, L. E.; Giusti, M. M.; Durst, R. W.; Wrolstad, R. E. Development and Process Optimization of Red Radish Concentrate Extract as Potential Natural Red Colorant. J. Food Process. Preserv. 2001, 25(3), 165–182. DOI:10.1111/j.1745-4549.2001.tb00452.x.
  • Quoc, A. L.; Lamaarche, F.; Makhlouf, J. Acceleration of pH Variation in Cloudy Apple Juice Using Electrodialysis with Bipolar Membranes. J. Agr. Food Chem. 2000, 48(6), 2160–2166. DOI:10.1021/jf991233g.
  • Liu, S. S.; Chiang, B. H.; Hwang, L. S. Recovery of Perilla Anthocyanins from Spent Brine by Diafiltration and Electrodialysis. J. Food Eng. 1989, 9(1), 21–33. DOI:10.1016/0260-8774(89)90048-4.
  • Chung, M. Y.; Hwang, L. S.; Chiang, B. H. Concentration of Perilla Anthocyanins by Ultrafiltration. J. Food Sci. 1986, 51(6), 1494–1497. DOI:10.1111/j.1365-2621.1986.tb13843.x.
  • Woo, A. H.; Von Elbe, J. H.; Amundson, C. H. Anthocyanin Recovery from Cranberry Pulp Wastes by Membrane Technology. J. Food Sci. 1980, 45(4), 875–879. DOI:10.1111/j.1365-2621.1980.tb07469.x.
  • Salehi, F. Current and Future Applications for Nanofiltration Technology in the Food Processing. Food Bioprod. Precess. 2014, 92(2), 161–177. DOI:10.1016/j.fbp.2013.09.005.
  • Nabetani, H. Development of a Membrane System for Highly Concentrated Fruit Juice. J. Membrane (Japanese). 1996, 21(2), 102–108. doi:10.5360/membrane.21.102.
  • Albasi, C.; Bacchin, P.; Devatine, A.; El Rayess, Y.; Mietton-Peuchot, M.; Raynal, J.; Taillandier, P. Impact of the Physico-Chemistry of the Wine on Membrane Filtration Performance. Paper presented at the 2nd International Congress on Green Process Engineering, 2nd European Process Intensification Conference, Venise, Italie, June 14–17, 2009.
  • Díaz-Reinoso, B.; Moure, A.; Domínguez, H.; Parajó, J. C. Ultra- and Nanofiltration of Aqueous Extracts from Distilled Fermented Grape Pomace. J. Food Engineer. 2009, 91, 587–593. DOI:10.1016/j.jfoodeng.2008.10.007.
  • Sun, W.; Liu, J.; Chu, H.; Dong, B. Pretreatment and Membrane Hydrophilic Modification to Reduce Membrane Fouling. Membranes (Basel). 2013, 3(3), 226–241. DOI:10.3390/membranes3030226.
  • Corson MacNeil, J. Membrane Separation Technologies for Treatment of Hazardous Wastes. Crit. Rev. Environ. Control. 1988, 18(2), 91–131. DOI:10.1080/10643388809388344.
  • Cassano, A.; Drioli, E.; Galaverna, G.; Marchelli, R.; Di Silvestro, G.; Cagnasso, P. Clarification and Concentration of Citrus and Carrot Juices by Integrated Membrane Processes. J. Food Eng. 2003, 57, 153–163. DOI:10.1016/S0260-8774(02)00293-5.
  • Cassano, A.; Jiap, B.; Drioli, E. Production of Concentrated Kiwifruit Juice by Integrated Membrane Processes. Food Res. Intern. 2004, 37, 139–148. DOI:10.1016/j.foodres.2003.08.009.
  • Cassano, A.; Conidi, C.; Timpone, R.; Avella, M. D.; Drioli, E. Membrane-Based Process for the Clarification and the Concentration of the Cactus Pear Juice. J. Food Eng. 2007, 80, 914–921. DOI:10.1016/j.jfoodeng.2006.08.005.
  • Cassano, A.; Figoli, A.; Tagarelli, A.; Sindona, G.; Drioli, E. Integrated Membrane Process for the Production of Highly Nutritional Kiwifruit Juice. Desalination. 2006, 189, 21–30. DOI:10.1016/j.desal.2005.06.009.
  • Galaverna, G.; Di Silvestro, G.; Cassano, A.; Sforza, S.; Dossena, A.; Drioli, E.; Marchelli, R. A New Integrated Membrane Process for the Production of Concentrated Blood Orange Juice: Effect on Bioactive Compounds and Antioxidant Activity. Food Chem. 2008, 106, 1021–1030. DOI:10.1016/j.foodchem.2007.07.018.
  • Sarmento, L. A. V.; Machado, R. A. F.; Petrus, J. C. C.; Tamanini, T. R.; Bolzan, A. Extraction of Polyphenols from Cocoa Seeds and Concentration Through Polymeric Membranes. J. Supercrit. Fluids. 2008, 45, 64–69. DOI:10.1016/j.supflu.2007.11.007.
  • Geng, X.; Ren, P.; Pi, G.; Shi, R.; Yuang, Zh.; Wang, Ch. High Selective Purification of Flavonoids from Natural Plants Based on Polymeric Adsorbent with Hydrogen-Bonding Interaction. J. Chromatogr. A. 2009, 1216, 8331–8338. DOI:10.1016/j.chroma.2009.09.015.
  • Beltrán, E.; Pallet, D.; Vera, E.; Ruales, J. Use of Membrane Technology and Resins for the Separation and Purification of polyphenols Purple Tree Tomato (Solanum betaceum Cav)). Enfoque UTE V.7-N.4. 2016, 71–85. http://ingenieria.ute.edu.ec/enfoqueute/.
  • Díaz-Reinoso, B.; González-López, N.; Moure, A.; Domínguez, H.; Parajó, J. C. Recovery of Antioxidants from Industrial Waste Liquors Using Membranes and Polymeric Resins. J. Food Engineer. 2010, 96, 127–133. DOI:10.1016/j.jfoodeng.2009.07.007.
  • Conidi, C.; Rodriguez-Lopez, A. D.; Garcia-Castello, E. M.; Cassano, A. Purification of Artichoke Polyphenols by Using Membrane Filtration and Polymeric Resins. Sep. Purif. Technol. 2015, 144, 153–161. DOI:10.1016/j.seppur.2015.02.025.
  • Charcosset, C. Applications of Membrane Contactors in the Food Industry. In New Topics in Food Engineering; Comeau, M. A., Ed.; Nova Science Publishers, Inc.: New York, 2011; pp 279–288.
  • Kujawski, W.; Gierszewska-DruśYńSka, M.; Sobolewska, A.; Dobrak, A.; Güell, C.; Ferrando, M.; Lopez, F.; Warczok, J. Application of Pervaporation and Osmotic Membrane Distillation in Fruits and Fruit Juices Processing; XXIII Ars Separatoria – Toruń: Poland, 2008.
  • Cassano, A.; Drioli, E.; Galaverna, G.; Marchelli, R.; Di Silvestro, G.; Cagnasso, P. Clarification and Concentration of Citrus and Carrot Juices by Integrated Membrane Processes. J. Food Engineer. 2003, 57, 153–163. DOI:10.1016/S0260-8774(02)00293-5.
  • Onsekizoglu, P.; Bahceci, K. S.; Acar, M. J. Clarification and the Concentration of Apple Juice Using Membrane Processes: A Comparative Quality Assessment. J. Membrane Sci. 2010, 352, 160–165. DOI:10.1016/j.memsci.2010.02.004.
  • Raghavarao, K. S. M. S.; Ranganathan, T.; Srinivas, N.; Barhate, R. S. Aqueous Two Phase Extraction—An Environmentally Benign Technique. Clean Technol. Environ. Policy. 2003, 5, 136–141. DOI:10.1007/s10098-003-0193-z.
  • Wu, Y.; Zhang, W.; Wang, Y.; Hna, J.; Liu, Y.; Hu, Y.; Ni, L. Extraction and Preliminary Purification of Anthocyanins from Grape Juice in Aqueous Two-Phase System. Sep. Purif. Technol. 2014, 124, 170–178. DOI:10.1016/j.seppur.2014.01.025.
  • Liu, X.; Mu, T.; Sun, H.; Zhang, M.; Chen, Jingwang. Optimisation of Aqueous Two-Phase Extraction of Anthocyanins from Purple Sweet Potatoes by Response Surface Methodology. Food Chem. 2013, 141(3), 3034–3041. DOI:10.1016/j.foodchem.2013.05.119.
  • Liu, Y.; Han, J.; Wang, Y.; Lu, Y.; Zhang, G.; Sheng, C.; Yan, Y. Selective Separation of Flavones and Sugars from Honeysuckle by Alcohol/Salt Aqueous Two-Phase System and Optimization of Extraction Process. Sep. Purif. Technol. 2013, 118, 776–783. DOI:10.1016/j.seppur.2013.08.018.
  • Silva, V. O.; Freitas, A. A.; Maçanita, A. L.; Quina, F. H. Chemistry and Photochemistry of Natural Plant Pigments: The Anthocyanins. J. Phys. Org. Chem. 2016, 29, 594–599. DOI:10.1002/poc.3534.
  • Quina, F. H.; Moreira, P. F.; Vautier-Giongo, C.; Rettori, D.; Rodrigues, R. F.; Freitas, A. A.; Silva, P. F.; Maçanita, A. L. Photochemistry of Anthocyanins and their Biological Role in Plant Tissues. Pure Appl. Chem. 2009, 81(9), 1687–1694. DOI:10.1351/PAC-CON-08-09-28.
  • Mazza, G.; Brouillard, R. Recent Developments in the Stabilization of Anthocyanin in Food Products. Food Chem. 1987, 25(3), 207–225. DOI:10.1016/0308-8146(87)90147-6.
  • Stalikas, C. D. Extraction, Separation and Detection Methods for Phenolic Acids and Flavonoids. J. Sep. Sci. 2007, 30(18), 3268–3295. DOI:10.1002/jssc.200700261.
  • Yang, X.; Wang, B.-C.; Zhang, X.; Yang, S. P.; Li, W.; Tang, Q.; Singh, G. K. Simultaneous Determination of Nine Flavonoids in POLYGONUM HYDROPIPER L. Samples Using Nanomagnetic Powder Three-Phase Hollow Fibre-Based Liquid-Phase Microextraction Combined with Ultrahigh Performance Liquid Chromatography–Mass Spectrometry. J. Pharm. Biomed. Anal. 2011, 54, 311–316. doi:10.1016/j.jpba.2010.08.026.
  • Manna, M. S.; Saha, P.; Ghoshal, A. K. Separation of Medicinal Catechins from Tea Leaves (Camellia sinensis) Extract Using Hollow Fiber Supported Liquid Membrane (HF-SLM) Module. J. Membrane Sci. 2014, 471, 219–226. DOI:10.1016/j.memsci.2014.08.011.
  • Manna, M. S.; Bhatluri, K. K.; Saha, P.; Ghoshal, A. K. Transportation of Bioactive (+) Catechin from its Aqueous Solution Using Flat Sheet Supported Liquid Membrane. J. Membrane Sci. 2013, 447, 325–334. DOI:10.1016/j.memsci.2013.07.024.
  • Chaieb, N.; Lõpez-Mesas, M.; González, J. L.; Mars, M.; Valiente, M. Hollow Fibre Liquid Phase Micro-Extraction by Facilitated Anionic Exchange for the Determination of Flavonoids in Faba Beans (Vicia faba L.). Phytochem. Anal. 2015, 26(5), 346–352. DOI:10.1002/pca.2569.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.