1,766
Views
62
CrossRef citations to date
0
Altmetric
Review Article

Electrochemical Sensors Containing Schiff Bases and their Transition Metal Complexes to Detect Analytes of Forensic, Pharmaceutical and Environmental Interest. A Review

, ORCID Icon, , , , , , , , , ORCID Icon & show all
Pages 488-509 | Published online: 15 Feb 2019

References

  • Tozzo, E.; Romera, S.; dos Santos, M. P.; Muraro, M.; de A. Santos, R. H.; Lião, L. M.; Vizotto, L.; Dockal, E. R. Synthesis, Spectral Studies and X-Ray Crystal Structure of N, N′-(±)-Trans-1, 2-Cyclohexylenebis (3-Ethoxysalicylideneamine) H 2 (t-3-EtOsalchxn). J. Mol. Struct. 2008, 876, 110–120. DOI:10.1016/j.molstruc.2007.05.043.
  • Masoudi, M.; Behzad, M.; Arab, A.; Tarahhomi, A.; Rudbari, H. A.; Bruno, G. Crystal Structures, DFT Calculations and Hirshfeld Surface Analyses of Three New Cobalt(III) Schiff Base Complexes Derived from Meso-1,2- Diphenyl-1,2-Ethylenediamine. J. Mol. Struct. 2016, 1122, 123–133. DOI:10.1016/j.molstruc.2016.05.092.
  • Garnovskii, A. D.; Nivorozhkin, A. L.; Minkin, V. I. Ligand Environment and the Structure of Schiff Base Adducts and Tetracoordinated Metal-Chelates. Coordin. Chem. Rev. 1993, 126, 1–69.
  • Ziessel, R. Schiff-Based Bipyridine Ligands. Unusual Coordination Features and Mesomorphic Behaviour. Coordin. Chem. Rev. 2001, 216–217, 195–223. DOI:10.1016/S0010-8545(00)00410-0.
  • Costamagna, J.; Vargas, J.; Latorre, R.; Alvarado, A.; Mena, G. Coordination Compounds of Copper, Nickel and Iron with Schiff Bases Derived from Hydroxynaphthaldehydes and Salicylaldehydes. Coordin. Chem. Rev. 1992, 119, 67–88. DOI:10.1016/0010-8545(92)80030-U.
  • Tyagi, M.; Chandra, S.; Tyagi, P. Mn(II) and Cu(II) Complexes of a Bidentate Schiff's Base Ligand: Spectral, Thermal, Molecular Modelling and Mycological Studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 117, 1–8.
  • Hobday, M. D.; Smith, T. D. N, N'-Ethylenebis (Salicylideneiminato) Transition Metal Ion Chelates. Coordin. Chem. Rev. 1973, 9, 311–337. DOI:10.1016/S0010-8545(00)82081-0.
  • Holm, R. H.; Everett, G. W., Jr.; Chakravorty, A. Metal Complexes of Schiff Bases and β-Ketoamines. Prog. Inorg. Chem. 1966, 7, 83–214.
  • Cozzi, P. G. Metal–Salen Schiff Base Complexes in Catalysis: Practical Aspects. Chem. Soc. Rev. 2004, 33, 410–421. DOI:10.1039/B307853C.
  • Salehi, M.; Rahimifar, F.; Kubicki, M.; Asadi, A. Structural, Spectroscopic, Electrochemical and Antibacterial Studies of Some New Nickel (II) Schiff Base Complexes. Inorg. Chim. Acta 2016, 443, 28–35. DOI:10.1016/j.ica.2015.12.016.
  • El-Sherif, A. A.; Aljahdali, M. S. Review: Protonation, Complex-Formation Equilibria, and Metal–Ligand Interaction of Salicylaldehyde Schiff Bases. J. Coordin. Chem. 2013, 66, 3423–3468. DOI:10.1080/00958972.2013.839027.
  • Olalekan, T. E.; Ogunlaja, A. S.; VanBrecht, B.; Watkins, G. M. Spectroscopic, Structural and Theoretical Studies of Copper(II) Complexes of Tridentate NOS Schiff Bases. J. Mol. Struct. 2016, 1122, 72–79. DOI:10.1016/j.molstruc.2016.05.098.
  • Panda, A.; Panda, S.; Srivastava, K.; Singh, H. B. Chemistry of Selenium/Tellurium-Containing Schiff Base Macrocycles. Inorg. Chim. Acta 2011, 372, 17–31. DOI:10.1016/j.ica.2011.02.031.
  • Torki, M.; Tangestaninejad, S.; Mirkhani, V.; Moghadam, M.; Mohammadpoor-Baltork, I. RuIII (OTf) SalophenCH2–NHSiO2–Fe: An Efficient and Magnetically Recoverable Catalyst for Trimethylsilylation of Alcohols and Phenols with Hexamethyldisilazane. Appl. Organometal. Chem. 2014, 28, 304–309. DOI:10.1002/aoc.3125.
  • Priya, N. P.; Arunachalam, S.; Manimaran, A.; Muthupriya, D.; Jayabalakrishnan, C. Mononuclear Ru (III) Schiff Base Complexes: Synthesis, Spectral, Redox, Catalytic and Biological Activity Studies. Spectrochim. Acta A 2009, 72, 670–676. DOI:10.1016/j.saa.2008.10.028.
  • Schiff, H. Synthesis of Schiff Bases. Ann. 1864, 3, 343.
  • Yamada, S. Advancement in Stereochemical Aspects of Schiff Base Metal Complexes. Coordin. Chem. Rev. 1999, 190–192, 537–555. DOI:10.1016/S0010-8545(99)00099-5.
  • Kojima, M.; Taguchi, H.; Tsuchimoto, M.; Nakajima, K. Tetradentate Schiff Base–Oxovanadium (IV) Complexes: Structures and Reactivities in the Solid State. Coordin. Chem. Rev. 2003, 237, 183–196. DOI:10.1016/S0010-8545(02)00227-8.
  • Calligaris, M.; Nardin, G.; Randaccio, L. Structural Aspects of Metal Complexes with Some Tetradentate Schiff Bases. Coordin. Chem. Rev. 1972, 7, 385–403. DOI:10.1016/S0010-8545(00)80018-1.
  • Al Zoubi, W.; Gun Ko, Y. Organometallic Complexes of Schiff Bases: Recent Progress in Oxidation Catalysis. J. Organomet. Chem. 2016, 822, 173–188. DOI:10.1016/j.jorganchem.2016.08.023.
  • Canali, L.; Sherrington, D. C. Utilisation of Homogeneous and Supported Chiral Metal (Salen) Complexes in Asymmetric Catalysis. Chem. Soc. Rev. 1999, 28, 85–93. DOI:10.1039/a806483k.
  • Pradeep, C. P.; Das, S. K. Coordination and Supramolecular Aspects of the Metal Complexes of Chiral N-Salicyl-ˇ-Amino Alcohol Schiff Base Ligands: Towards Understanding the Roles of Weak Interactions in their Catalytic Reactions. Coordin. Chem. Rev. 2013, 257, 1699–1715. DOI:10.1016/j.ccr.2013.01.028.
  • Matsunaga, S.; Shibasaki, M. Multimetallic Schiff Base Complexes as Cooperative Asymmetric Catalysts. Synthesis 2013, 45, 421–437. DOI:10.1055/s-0032-1316846.
  • Jones, R. D.; Summerville, D. A.; Basolo, F. Synthetic Oxygen Carriers Related to Biological Systems. Chem. Rev. 1979, 79, 139–179. DOI:10.1021/cr60318a002.
  • Prakash, A.; Adhikari, D. Application of Schiff Bases and their Metal complexes-A Review. Int. J. ChemTech Res. 2011, 3, 1891–1896.
  • Casas, J. S.; Couce, M. D.; Sordo, J. Coordination Chemistry of Vitamin B6 and Derivatives: A Structural Overview. Coordin. Chem. Rev. 2012, 256, 3036–3062. DOI:10.1016/j.ccr.2012.07.001.
  • Miyasaka, H.; Saitoh, A.; Abe, S. Magnetic Assemblies Based on Mn (III) Salen Analogues. Coordin. Chem. Rev. 2007, 251, 2622–2664. DOI:10.1016/j.ccr.2007.07.028.
  • Fatibello-Filho, O.; Dockal, E. R.; Marcolino-Junior, L. H. Electrochemical Modified Electrodes Based on Metal‐Salen Complexes. Anal. Lett. 2007, 40, 1825–1852. DOI:10.1080/00032710701487122.
  • Al Zoubi, W.; Al Mohanna, N. Membrane Sensors Based on Schiff Bases as Chelating Ionophores–A Review. Spectrochim. Acta A 2014, 132, 854–870. DOI:10.1016/j.saa.2014.04.176.
  • Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Advances in Copper Complexes as Anticancer Agents. Chem. Rev. 2014, 114, 815–862.
  • Garoufis, A.; Hadjikakou, S. K.; Hadjiliadis, N. Palladium Coordination Compounds as Anti-Viral, Anti-Fungal, Anti-Microbial and Anti-Tumor Agents. Coordin. Chem. Rev. 2009, 253, 1384–1397. DOI:10.1016/j.ccr.2008.09.011.
  • Sun, R. W.-Y.; Che, C.-M. The Anti-Cancer Properties of Gold(III) Compounds with Dianionic Porphyrin and Tetradentate Ligands. Coordin. Chem. Rev. 2009, 253, 1682–1691. DOI:10.1016/j.ccr.2009.02.017.
  • Theeuwen, A. B. E.; Verweij, A. M. A. Impurities in Illicit Amphetamine. 7. Identification of Benzyl Methyl Ketone Phenylisopropilymine. Forensic Sci. Int. 1980, 15, 237–241. DOI:10.1016/0379-0738(80)90140-1.
  • Allen, A.; Cantrell, T. S. Synthetic Reductions in Clandestine Amphetamine and Methamphetamine Laboratories – A Review. Forensic Sci. Int. 1989, 42, 183–199. DOI:10.1016/0379-0738(89)90086-8.
  • Błachut, D.; Danikiewicz, W.; Olejnik, M.; Czarnocki, Z. Electron Ionization Mass Spectrometry as a Tool for the Investigation of the Ortho Effect in Fragmentation of Some Schiff Bases Derived from Amphetamine Analogs. J. Mass Spectrom. 2004, 39, 966–972. DOI:10.1002/jms.633.
  • Błachut, D.; Wojtasiewicz, K.; Krawczyk, K.; Maurin, J.; Szawkało, J.; Czarnocki, Z. Identification and Synthesis of By-Products Found in 4-Methylthioamphetamine (4-MTA) Produced by the Leuckart Method. Forensic Sci. Int. 2012, 216, 108–120. DOI:10.1016/j.forsciint.2011.09.005.
  • Rozin, R.; Almog, J. Colorimetric Detection of Urea Nitrate: The Missing Link. Forensic Sci. Int. 2011, 208, 25–28.
  • Lemberger, N.; Almog, J. Structure Elucidation of Dyes that Are Formed in the Colorimetric Detection of the Improvised Explosive Urea Nitrate. J. Forensic Sci. 2007, 52, 1107–1110. DOI:10.1111/j.1556-4029.2007.00504.x.
  • Feng, H.-T.; Zheng, Y.-S. Highly Sensitive and Selective Detection of Nitrophenolic Explosives by Using Nanospheres of a Tetraphenylethylene Macrocycle Displaying Aggregation-Induced Emission. Chemistry 2014, 20, 195–201. DOI:10.1002/chem.201302638.
  • de Oliveira, L. S.; Balbino, M. A.; de Menezes, M. M. T.; Dockal, E. R.; de Oliveira, M. F. Voltammetric Analysis of Cocaine Using Platinum and Glassy Carbon Electrodes Chemically Modified with Uranyl Schiff Base Film. Microchem. J. 2013, 110, 374–378. DOI:10.1016/j.microc.2013.04.017.
  • Ribeiro, M. F. M.; da Cruz, J. W., Jr.; Dockal, E. R.; McCord, B. R.; de Oliveira, M. F. Voltammetric Determination of Cocaine Using Carbon Screen Printed Electrodes Chemically Modified with Uranyl Schiff Base Films. Electroanalysis 2016, 28, 320–326. DOI:10.1002/elan.201500372.
  • de Oliveira, L. S.; Poles, A. P. S.; Balbino, M. A.; de Menezes, M. M. T.; de Andrade, J. F.; Dockal, E. R.; Tristão, H. M.; de Oliveira, M. F. Voltammetric Determination of Cocaine in Confiscated Samples Using a Carbon Paste Electrode Modified with Different [UO2(X-MeOsalen)(H2O)] · H2O Complexes. Sensors 2013, 13, 7668–7679.
  • Jamasbi, E. S.; Rouhollahi, A.; Shahrokhian, S.; Haghgoo, S.; Aghajani, S. The Electrocatalytic Examination of Cephalosporins at Carbon Paste Electrode Modified with CoSalophen. Talanta 2007, 71, 1669–1674. DOI:10.1016/j.talanta.2006.07.058.
  • Shahrokhian, S.; Souri, A.; Khajehsharifi, H. Electrocatalytic Oxidation of Penicillamine at a Carbon Paste Electrode Modified with Cobalt Salophen. J. Electroanal. Chem. 2004, 565, 95–101. DOI:10.1016/j.jelechem.2003.09.039.
  • Shahrokhian, S.; Jannat-Rezvani, M. J. Voltammetric Studies of Propylthiouracil at a Carbon-Paste Electrode Modified with Cobalt(II)-4-Chlorosalophen: Application to Voltammetric Determination in Pharmaceutical and Clinical Preparations. Microchim. Acta 2005, 151, 73–79. DOI:10.1007/s00604-005-0382-z.
  • Shahrokhian, S.; Ghalkhani, M. Voltammetric Determination of Methimazole Using a Carbon Paste Electrode Modified with a Schiff Base Complex of Cobalt. Electroanalysis 2008, 20, 1061–1066. DOI:10.1002/elan.200704149.
  • Amiri, M.; Pakdel, Z.; Bezaatpour, A.; Shahrokhian, S. Electrocatalytic Determination of Sumatriptan on the Surface of Carbon-Paste Electrode Modified with a Composite of Cobalt/Schiff-Base Complex and Carbon Nanotube. Bioelectrochemistry 2011, 81, 81–85. DOI:10.1016/j.bioelechem.2011.03.003.
  • Amiri, M.; Bezaatpour, A.; Pakdel, Z.; Nekoueian, K. Simultaneous Voltammetric Determination of Uric Acid and Ascorbic Acid Using Carbon Paste/Cobalt Schiff Base Composite Electrode. J. Solid State Electrochem. 2012, 16, 2187–2195. DOI:10.1007/s10008-011-1636-9.
  • Hassanzadeh1, N.; Zare-Mehrjardi, H. R. Selective Electrochemical Sensing of Dopamine and Ascorbic Acid Using Carbon Paste Electrode Modified with Cobalt Schiff Base Complex and a Surfactant. Int. J. Electrochem. Sci. 2017, 12, 3950–3964. DOI:10.20964/2017.05.07.
  • Dashti-Ardakani, M.; Zare-Mehrjardi, H. R.; Kargar, H. Simultaneous Detection of Dopamine and Ascorbic Acid at Cobalt Schiff Base Complex/Surfactant-Modified Carbon Paste Electrode. Anal. Bioanal. Electrochem. 2017, 9, 439–452.
  • Amini, K.; Khorasani, J. H.; Khaloo, S. S.; Tangestaninejad, S. Cobalt(II) Salophen-Modified Carbon-Paste Electrode for Potentiometric and Voltammetric Determination of Cysteine. Anal. Biochem. 2003, 320, 32–38. DOI:10.1016/S0003-2697(03)00355-5.
  • Kakhki, S.; Shams, E.; Barsan, M. M. Electrocatalytic Oxidation of Cysteine at a CoSalophen/n-(Butyl) 4SiW12O40 Carbon Paste Electrode. Electroanalysis 2013, 25, 2100–2108. DOI:10.1002/elan.201300235.
  • Shahrokhian, S.; Ghorbani-Bidkorbeh, F.; Mohammadi, A.; Dinarvand, R. Electrochemical Determinations of 6-Mercaptopurine on the Surface of a Carbon Nanotube-Paste Electrode Modified with a Cobalt Salophen Complex. J. Solid State Electrochem. 2012, 16, 1643–1650. DOI:10.1007/s10008-011-1575-5.
  • Shahrokhian, S.; Amiri, M. Voltammetric Determination of Thiocytosine Based on its Electrocatalytic Oxidation on the Surface of Carbon Paste Electrode Modified with Cobalt Schiff Base Complexes. J. Solid State Electrochem. 2007, 11, 1133–1138. DOI:10.1007/s10008-006-0250-8.
  • Teixeira, M. F. S.; Marcolino-Junior, L. H.; Fatibello-Filho, O.; Dockal, E. R.; Cavalheiro, E. T. G. Voltammetric Determination of Dipyrone Using a N,N’ Ethylenebis (salicylideneaminato)Oxovanadium(IV) modified Carbon-Paste Electrode. J. Braz. Chem. Soc. 2004, 15, 803–808. DOI:10.1590/S0103-50532004000600003.
  • Teixeira, M. F. S.; Marino, G.; Dockal, E. R.; Cavalheiro, E. T. G. Voltammetric Determination of Pyridoxine (Vitamin B-6) at a Carbon Paste Electrode Modified with Vanadyl(IV)-Salen Complex. Anal. Chim. Acta 2004, 508, 79–85. DOI:10.1016/j.aca.2003.11.046.
  • Bergamini, M. F.; Teixeira, M. F. S.; Dockal, E. R.; Bocchi, N.; Cavalheiro, E. T. G. Evaluation of Different Voltammetric Techniques in the Determination of Amoxicillin Using a Carbon Paste Electrode Modified with [N, N′-Ethylenebis(salicylideneaminato)] Oxovanadium (IV). J. Electrochem. Soc. 2006, 153, E94–E98.
  • Raymundo-Pereira, P. A.; Teixeira, M. F. S.; Fatibello-Filho, O.; Dockal, E. R.; Bonifacio, V. G.; Lino-Junior, L. H. M. Electrochemical Sensor for Ranitidine Determination Based on Carbon Paste Electrode Modified with Oxovanadium (IV) Salen Complex. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 4081–4085. DOI:10.1016/j.msec.2013.05.051.
  • Teixeira, M. F. S.; Dockal, E. R.; Cavalheiro, E. T. G. Sensor for Cysteine Based on Oxovanadium(IV) Complex of Salen Modified Carbon Paste Electrode. Sens. Actuators B Chem. 2005, 106, 619–625. DOI:10.1016/j.snb.2004.07.031.
  • Teixeira, M. F. S.; Marcolino-Junior, L. H.; Fatibello-Filho, O.; Dockal, E. R.; Bergamini, M. F. An Electrochemical Sensor for (L)-Dopa Based on Oxovanadium-Salen Thin Film Electrode Applied Flow Injection System. Sens. Actuators B Chem. 2007, 122, 549–555. DOI:10.1016/j.snb.2006.06.032.
  • Nigam, P.; Mohan, S.; Kundu, S.; Prakash, R. Trace Analysis of Cefotaxime at Carbon Paste Electrode Modified with Novel Schiff Base Zn(II) Complex. Talanta 2009, 77, 1426–1431. DOI:10.1016/j.talanta.2008.09.026.
  • Hasanzadeh, M.; Shadjou, N.; Saghatforoush, L.; Dolatabadi, J. E. N. Preparation of a New Electrochemical Sensor Based on Iron(III) Complexes Modified Carbon Paste Electrode for Simultaneous Determination of Mefenamic Acid and Indomethacin. Colloids Surf. B Biointerfaces 2012, 92, 91–97. DOI:10.1016/j.colsurfb.2011.11.026.
  • dos Santos, S. X.; Cavalheiro, E. T. G. Using of a Graphite-Polyurethane Composite Electrode Modified with a Schiff Base as a Bio-Inspired Sensor in the Dopamine Determination. J. Braz. Chem. Soc. 2014, 25, 1071–1077.
  • Pazalja, M.; Kahrović, E.; Zahirović, A.; Turkušić, E. Electrochemical Sensor for Determination of L-Cysteine Based on Carbon Electrodes Modified with Ru(III) Schiff Base Complex, Carbon Nanotubes and Nafion. Int. J. Electrochem. Sci. 2016, 11, 10939–10952. DOI:10.20964/2016.12.86.
  • Keypour, H.; Saremi, S. G.; Veisi, H.; Noroozi, M. Electrochemical Determination of Citalopram on New Schiff Base Functionalized Magnetic Fe3O4 Nanoparticle/MWCNTs Modified Glassy Carbon Electrode. J. Electroanal. Chem. 2016, 780, 160–168. DOI:10.1016/j.jelechem.2016.08.022.
  • Sakthinathan, S.; Chen, S. M.; Liao, W. C. Multiwalled Carbon Nanotube Supported Schiff Base Copper Complex Inorganic Nanocomposite for Enhanced Electrochemical Detection of Dopamine. Inorg. Chem. Front. 2017, 4, 809–819. DOI:10.1039/C7QI00002B.
  • Redžić, S.; Kahrović, E.; Zahirović, A.; Turkušić, E. Electrochemical Determination of Dopamine with Ruthenium(III)-Modified Glassy Carbon and Screen-Printed Electrodes. Anal. Lett. 2017, 50, 1602–1619. DOI:10.1080/00032719.2016.1241799.
  • Zare-Mehrjardi, H. R. Preparation of Modified Electrode Using Toluidine Blue O and Molybdenum Schiff Base Complex for Detection of Dopamine in the Presence of Ascorbic Acid. Anal. Bioanal. Electrochem. 2018, 10, 52–63.
  • Çakmak, D.; Çakran, S.; Yalçinkaya, S.; Demetgül, C. Synthesis of Salen-Type Schiff Base Metal Complexes, electropolymerization on Graphite Electrode Surface and Investigation of Electrocatalytic Effects. J. Electroanal. Chem. 2018, 808, 65–74. DOI:10.1016/j.jelechem.2017.11.058.
  • Zhang, Z.; Li, X.; Wang, C.; Zhang, C.; Liu, P.; Fang, T.; Xiong, Y.; Xu, W. A Novel Dinuclear Schiff-Base Copper(II) Complex Modified Electrode for Ascorbic Acid Catalytic Oxidation and Determination. Dalton Trans. 2012, 41, 1252–1258. DOI:10.1039/C1DT11370D.
  • Kumar, S. P.; Giribabu, K.; Manigandan, R.; Munusamy, S.; Muthamizh, S.; Padmanaban, A.; Dhanasekaran, T.; Suresh, R.; Narayanan, V. Simultaneous Determination of Paracetamol and 4-Aminophenol Based on Poly(Chromium Schiff Base Complex) Modified Electrode at Nanomolar Levels. Electrochim. Acta 2016, 194, 116–126. DOI:10.1016/j.electacta.2016.02.087.
  • Sonkar, P. K.; Ganesan, V.; Gupta, S. K. S.; Yadav, D. K.; Gupta, R.; Yadav, M. Highly Dispersed Multiwalled Carbon Nanotubes Coupled Manganese Salen Nanostructure for Simultaneous Electrochemical Sensing of Vitamin B2 and B6. Electroanal. Chem. 2017, 807, 235–243. DOI:10.1016/j.jelechem.2017.11.050.
  • Shamsipur, M.; Pashabadi, A.; Taherpour, A. A.; Bahrami, K.; Sharghi, H. Manganese Mediated Oxidation of Progesterone in Alkaline Medium: Mechanism Study and Quantitative Determination. Electrochim. Acta 2017, 225, 292–302. DOI:10.1016/j.electacta.2016.12.174.
  • Noroozi, M.; Keypour, H. Novel Mefenamic Acid PVC Membrane Sensor Based on a New Cd Schiff's Base Complex Containing a Phenanthroline Unit. RSC Adv. 2017, 7, 39118–39126. DOI:10.1039/C7RA06821B.
  • Fleischmann, M.; Korinek, K.; Pletcher, D. The Oxidation of Organic Compounds at a Nickel Anode in Alkaline Solution. Electroanal. Chem. 1971, 31, 39–49.
  • Revenga-Parra, M.; Martínez-Periñán, E.; Moreno, B.; Pariente, F.; Lorenzo, E. Rapid Taurine and Lactate Biomarkers Determination with Disposable Electrochemical Detectors. Electrochim. Acta 2017, 240, 506–513. DOI:10.1016/j.electacta.2017.04.100.
  • Turkušić, E.; Redžić, S.; Kahrović, E.; Zahirović, A. Determination of Adrenaline at Ru(III) Schiff Base Complex Modified Carbon Electrodes. Croat. Chem. Acta 2017, 90, 345–352.
  • Mazloum-Ardakani, M.; Naser-Sadrabadi, A.; Sheikh-Mohseni, M. A.; Naeimi, H.; Benvidi, A.; Khoshroo, A. Oxidized Multiwalled Carbon Nanotubes for Improving the Electrocatalytic Activity of a Schiff Base Modified Electrode in Determination of Isoprenaline. J. Electroanal. Chem. 2013, 705, 75–80. DOI:10.1016/j.jelechem.2013.07.028.
  • Honarmand, E.; Motaghedifard, M. H.; Hadi, M.; Mostaanzadeh, H. Electro-Oxidation Study of Promethazine Hydrochloride at the Surface of Modified Gold Electrode Using Molecular Self-Assembly of a Novel Bis-Thio Schiff Base from Ethanol Media. J. Mol. Liq. 2016, 216, 429–439. DOI:10.1016/j.molliq.2015.12.094.
  • Deng, P.; Fei, J.; Feng, Y. Sensitive Voltammetric Determination of Tryptophan Using an Acetylene Black Paste Electrode Modified with a Schiff’s Base Derivative of Chitosan. Analyst 2011, 136, 5211–5217. DOI:10.1039/c1an15351j.
  • Uzun, D.; Gunduzalp, A. B.; Hasdemir, E. Selective Determination of Dopamine in the Presence of Uric Acid and Ascorbic Acid by N,N’-Bis(indole-3-Carboxaldimine)-1,2- diaminocyclohexane Thin Film Modified Glassy Carbon Electrode by Differential Pulse Voltammetry. J. Electroanal. Chem. 2015, 747, 68–76. DOI:10.1016/j.jelechem.2015.03.036.
  • Egashira, N.; Aragaki, S.; Iwanaga, H.; Ohga, K. Selective Determination of Pyridoxal with an Octadecylamine Modified Carbon-Paste Electrode. Anal. Sci. 1991, 7, 691–694. DOI:10.2116/analsci.7.691.
  • Purcell, T. W.; Peters, J. J. Sources of Silver in the Environment. Environ. Toxicol. Chem. 1998, 17, 539–546. DOI:10.1002/etc.5620170404.
  • Satarug, S.; Baker, J. R.; Urbenjapol, S.; Haswell-Elkins, M.; Reilly, P. E. B.; Williams, D. J.; Moore, M. R. A Global Perspective on Cadmium Pollution and Toxicity in Non-Occupationally Exposed Population. Toxicol. Lett. 2003, 137, 65–83. DOI:10.1016/S0378-4274(02)00381-8.
  • Barceloux, D. G.; Barceloux, D. Copper. J. Toxicol. Clin. Toxicol. 1999, 37, 217–230. DOI:10.1081/CLT-100102421.
  • Gidlow, D. A. Lead Toxicity. Occup Med (Lond.) 2015, 65, 348–356.
  • Barceloux, D. G.; Barceloux, D. Cobalt. J. Toxicol. Clin. Toxicol. 1999, 37, 201–216. DOI:10.1081/CLT-100102420.
  • Nayak, P. Aluminum: Impacts and Disease. Environ. Res. 2002, 89, 101–115.
  • Singh, J.; Singh, A. K.; Jain, A. K. Fabrication of Novel Coated Graphite Electrodes for the Selective Nano-Level Determination of Cd2+ Ions in Biological and Environmental Samples. Electrochim. Acta 2011, 56, 9095–9104. DOI:10.1016/j.electacta.2011.06.106.
  • Bandi, K. R.; Singh, A. K.; Upadhyay, A. Electroanalytical and Naked Eye Determination of Cu2+ Ion in Various Environmental Samples Using 5-Amino-1,3,4-Thiadiazole-2-Thiol Based Schiff Bases. Mater. Sci. Eng. C 2014, 34, 149–157. DOI:10.1016/j.msec.2013.09.006.
  • K. R.; Bandi; Singh, A. K.; Kamaluddin; Jain, A.K.; Gupta, V. K. Electroanalytical Studies on Cobalt(II) Ion-Selective Sensor of Polymeric Membrane Electrode and Coated Graphite Electrode Based on N2O2 Salen Ligands. Electroanalysis 2011, 23, 2839–2850.
  • Gupta, V. K.; Pal, M. K.; Singh, A. K. Comparative Study of Ag(I) Selective Poly(vinyl Chloride) Membrane Sensors Based on Newly Developed Schiff-Base Lariat Ethers Derived from 4,13-Diaza-18-Crown-6. Anal. Chim. Acta 2009, 631, 161–169. DOI:10.1016/j.aca.2008.10.033.
  • Ratte, H. T. Bioaccumulation and Toxicity of Silver Compounds: A Review. Environ. Toxicol. Chem. 1999, 18, 89–108. DOI:10.1002/etc.5620180112.
  • Afkhami, A.; Soltani-Felehgari, F.; Madrakian, T.; Ghaedi, H.; Rezaeivala, M. Fabrication and Application of a New Modified Electrochemical Sensor Using Nano-Silica and a Newly Synthesized Schiff Base for Simultaneous Determination of Cd2+, Cu2+ and Hg2+ Ions in Water and Some Foodstuff Samples. Anal. Chim. Acta 2013, 771, 21–30. DOI:10.1016/j.aca.2013.02.031.
  • Mashhadizadeh, M. H.; Sheikhshoaie, I.; Saeid-Nia, S. Asymmetrical Schiff Bases as Carriers in PVC Membrane Electrodes for Cadmium (II) Ions. Electroanalysis 2005, 17, 648–654. DOI:10.1002/elan.200403134.
  • Gupta, V. K.; Al Khayat, M.; Singh, A. K.; Pal, M. K. Nano Level Detection of Cd(II) using Poly(vinyl Chloride) Based Membranes of Schiff Bases. Anal. Chim. Acta 2009, 634, 36–43.
  • Soleymanpour, A.; Shafaatian, B.; Kor, K.; Hasaninejad, A. R. Coated Wire Lead(II)-Selective Electrode Based on a Schiff Base Ionophore for Low Concentration Measurements. Monatsh. Chem. 2012, 143, 181–188. DOI:10.1007/s00706-011-0634-z.
  • Afkhami, A.; Ghaedi, H.; Madrakian, T.; Rezaeivala, M. Highly Sensitive Simultaneous Electrochemical Determination of Trace Amounts of Pb(II) and Cd(II) using a Carbon Paste Electrode Modified with Multi-Walled Carbon Nanotubes and a Newly Synthesized Schiff Base. Electrochim. Acta 2013, 89, 377–386. DOI:10.1016/j.electacta.2012.11.050.
  • Afkhami, A.; Bagheri, H.; Khoshsafar, H.; Saber-Tehrani, M.; Tabatabaee, M.; Shirzadmehr, A. Simultaneous Trace-Levels Determination of Hg(II) and Pb(II) Ions in Various Samples Using a Modified Carbon Paste Electrode Based on Multi-Walled Carbon Nanotubes and a New Synthesized Schiff Base. Anal. Chim. Acta 2012, 746, 98–106. DOI:10.1016/j.aca.2012.08.024.
  • Fakhari, A. R.; Raji, T. A.; Naeimi, H. Copper-Selective PVC Membrane Electrodes Based on Salens as Carriers. Sens. Actuators B 2005, 104, 317–323. DOI:10.1016/j.snb.2004.05.024.
  • Gupta, V. K.; Goyal, R. N.; Jain, A. K.; Sharma, R. A. Aluminium (III)-Selective PVC Membrane Sensor Based on a Schiff Base Complex of N,N_-Bis (Salicylidene)-1, 2-Cyclohexanediamine. Electrochim. Acta 2009, 54, 3218–3224. DOI:10.1016/j.electacta.2008.11.020.
  • Uauy, R.; Olivares, M.; Gonzalez, M. Essentiality of Copper in Humans. Am. J. Clin. Nutr. 1998, 67, 952S–959S.
  • Gaetke, L. M.; Chow-Johnson, H. S.; Chow, C. K. Copper: Toxicological Relevance and Mechanisms. Arch. Toxicol. 2014, 88, 1929–1938. DOI:10.1007/s00204-014-1355-y.
  • Sadeghi, S.; Eslahi, M.; Naseri, M. A.; Naeimi, H.; Sharghi, H.; Shamelic, A. Copper Ion Selective Membrane Electrodes Based on Some Schiff Base Derivatives. Electroanalysis 2003, 15, 15–16.
  • Ganjali, M. R.; Emami, M.; Salavati-Niasari, M. Novel Copper(II)-Selective Sensor Based on a New Hexadentates Schiff’s Base. Bull. Korean Chem. Soc. 2002, 23, 1394–1398.
  • Poursaberi, T.; Hajiagha-Babaei, L.; Yousefi, M.; Rouhani, S.; Shamsipur, M.; Kargar-Razi, M.; Moghimi, A.; Aghabozorg, H.; Ganjali, M. R. The Synthesis of a New Thiophene-Derivative Schiff’s Base and Its Use in Preparation of Copper-Ion Selective Electrodes. Electroanalysis 2001, 13, 1513–1517. DOI:10.1002/1521-4109(200112)13:18<1513::AID-ELAN1513>3.0.CO;2-X.
  • Afkhami, A.; Moosavi, R.; Madrakian, T.; Keypour, H.; Ramezani-Aktij, A.; Mirzaei-Monsef, M. Construction and Application of an Electrochemical Sensor for Simultaneous Determination of Cd(II), Cu(II) and Hg(II) in Water and Foodstuff Samples. Electroanalysis 2014, 26, 786–795. DOI:10.1002/elan.201300619.
  • Afkhami, A.; Soltani-Shahrivar, M.; Ghaedi, H.; Madrakian, T. Construction of Modified Carbon Paste Electrode for Highly Sensitive Simultaneous Electrochemical Determination of Trace Amounts of Copper (II) and Cadmium (II). Electroanalysis 2016, 28, 296–303. DOI:10.1002/elan.201500308.
  • Gholivand, M. B.; Ahmadi, F.; Rafiee, E. A Novel Al(III)-Selective Electrochemical Sensor Based on N,N’-Bis(salicylidene)-1,2-Phenylenediamine Complexes. Electroanalysis 2006, 18, 1620–1626. DOI:10.1002/elan.200503572.
  • Abbaspour, A.; Esmaeilbeig, A. R.; Jarrahpour, A. A.; Khajeh, B.; Kia, R. Aluminium(III)-Selective Electrode Based on a Newly Synthesized Tetradentate Schiff Base. Talanta 2002, 58, 397–403. DOI:10.1016/S0039-9140(02)00290-4.
  • Selvan, K. S.; Narayanan, S. S. Synthesis and Characterization of Carbon Nanotubes/Asymmetric Novel Tetradentate Ligand Forming Complexes on PIGE Modified Electrode for Simultaneous Determination of Pb(II) and Hg(II) in Sea Water, Lake Water and Well Water Using Anodic Stripping Voltammetry. J. Electroanal. Chem. 2018, 810, 175–184.
  • Afkhami, A.; Khoshsafar, H.; Bagheri, H.; Madrakian, T. Construction of a Carbon Ionic Liquid Paste Electrode Based on Multi-Walled Carbon Nanotubes-Synthesized Schiff Base Composite for Trace Electrochemical Detection of Cadmium. Mater. Sci. Eng. C 2014, 35, 8–14. DOI:10.1016/j.msec.2013.10.025.
  • Li, N.; Zhang, X.; Guo, H. Synthesis of a Schiff Base for Carbon Sphere Modification and Cd2+ Electrochemical Determination. Int. J. Electrochem. Sci. 2017, 12, 11571–11579. DOI:10.20964/2017.12.75.
  • Rana, S.; Mittal, S. K.; Singh, N.; Singh, J.; Banks, C. E. Schiff Base Modified Screen Printed Electrode for Selective Determination of Aluminium(III) at Trace Level. Sens. Actuator B 2017, 239, 17–27. DOI:10.1016/j.snb.2016.07.133.
  • Bondy, S. C. Low Levels of Aluminum Can Lead to Behavioral and Morphological Changes Associated with Alzheimer’s Disease and Age-Related Neurodegeneration. Neuro Toxicol. 2016, 52, 222–229. DOI:10.1016/j.neuro.2015.12.002.
  • Ganjali, M. R.; Poursaberi, T.; Basiripour, F.; Salavati-Niassari, M.; Yousefi, M.; Shamsipur, M. Highly Selective Thiocyanate Poly(Vinyl Chloride) membrane Electrode Based on a Cadmium–Schiff’s Base Complex. Fresenius J. Anal. Chem. 2001, 370, 1091–1095. DOI:10.1007/s002160100915.
  • Chai, Y.-Q.; Dai, J.-Y.; Yuan, R.; Zhong, X.; Liu, Y.; Tang, D.-P. Highly Thiocyanate-Selective Membrane Electrodes Based on the N,N'-Bis-(Benzaldehyde)-Glycine Copper(II) Complex as a Neutral Carrier. Desalination 2005, 180, 207–215. DOI:10.1016/j.desal.2004.12.038.
  • Sun, Z.-Y.; Yuan, R.; Chai, Y.-Q.; Xu, L.; Gan, X.-X.; Xu, W.-J. Study of a Bis-Furaldehyde Schiff Base Copper(II) Complex as Carrier for Preparation of Highly Selective Thiocyanate Electrodes. Anal. Bioanal. Chem. 2004, 378, 490–494. DOI:10.1007/s00216-003-2301-7.
  • Dai, J. ‐Y.; Chai, Y. Q.; Yuan, R.; An, L. X.; Liu, Y.; Zhong, X.; Tang, D. P. Tricoordinate Schiff Base Copper(II) Complex as Neutral Carrier for Highly Selective Thiocyanate Electrode. Anal. Lett. 2005, 38, 389–400. DOI:10.1081/AL-200047759.
  • Ardakani, M. M.; Sadeghi, A.; Salavati-Niasari, M. Highly Selective Thiocyanate Membrane Electrode Based on Butane-2,3-Dione Bis(Salicylhydrazonato)zinc(II) Complex. Talanta 2005, 66, 837–843. DOI:10.1016/j.talanta.2004.12.039.
  • Ardakani, M. M.; Salavati-Niassari, M.; Sadeghi, A. Novel Selective Thiocyanate PVC Membrane Electrode Based on New Schiff Base Complex of 2.2-[(1,3-Dimethyl-1,3-Propanediylidene)Dinitrilo]Bis-Benzenethiolato Cadmium(II). New J. Chem. 2004, 28, 595–599. DOI:10.1039/b400681j.
  • Shamsipur, M.; Ershad, S.; Samadi, N.; Rezvani, A. R.; Haddadzadeh, H. The First Use of a Rh(III) Complex as a Novel Ionophore for Thiocyanate-Selective Polymeric Membrane Electrodes. Talanta 2005, 65, 991–997. DOI:10.1016/j.talanta.2004.08.032.
  • Chandra, S.; Hooda, S.; Tomar, P. K.; Malik, A.; Kumar, A.; Malik, S.; Gautam, S. Synthesis and Characterization of Bisnitrato[4-Hydroxyacetophenonesemicarbazone) Nickel(II) Complex as Ionophore for Thiocyanate-Selective Electrode. Mater. Sci. Eng. C 2016, 62, 18–27. DOI:10.1016/j.msec.2015.12.065.
  • Ganjali, M. R.; Norouzi, P.; Daftari, A.; Faridbod, F.; Salavati-Niasari, M. Fabrication of a Highly Selective Eu(III) Membrane Sensor Based on a New S–N Hexadentates Schiff’s Base. Sens. Actuators B 2007, 120, 673–678. DOI:10.1016/j.snb.2006.03.028.
  • Bandi, K. R.; Singh, A. K.; Upadhyay, A. Biologically Active Schiff Bases as Potentiometric Sensor for the Selective Determination of Nd3+ Ion. Electrochim. Acta 2013, 105, 654–664. DOI:10.1016/j.electacta.2013.05.038.
  • Sahani, M. K.; Singh, A. K.; Jain, A. K. Quantification of Zn2+ Ion in Environmental Samples by Fabrication of Pyrolytic Graphite Electrode Based on Schiff Bases of Hydrazinecarbothioamide Derivatives. J. Electrochem. Soc. 2017, 169, H657–H666. DOI:10.1149/2.1361709jes.
  • Rana, S.; Mittal, S. K.; Kaur, N.; Banks, C. E. Disposable Screen Printed Electrode Modified with Imine Receptor having a Wedge Bridge for Selective Detection of Fe (II) in Aqueous medium. Sens. Actuators B 2017, 249, 467–477. DOI:10.1016/j.snb.2017.04.135.
  • Ganjali, M. R.; Matloobi, P.; Ghorbani, M.; Norouzi, P.; Salavati-Niasari, M. La(III) Selective Membrane Sensor Based on a New N-N Schiff's Base. Bull. Korean Chem. Soc. 2005, 26, 38–42.
  • Ganjali, M. R.; Qomi, M.; Daftari, A.; Norouzi, P.; Salavati-Niasari, M.; Rabbani, M. Novel Lanthanum(III) Membrane Sensor Based on a New N-S Schiff’s Base. Sens. Actuators B 2004, 98, 92–96. DOI:10.1016/j.snb.2003.09.028.
  • Ganjali, M. R.; Ghesmi, A.; Hosseini, M.; Pourjavid, M. R.; Rezapour, M.; Shamsipur, M.; Salavati-Niasari, M. Novel Terbium(III) Sensor Based on a New Bis-Pyrrolidene Schiff’s Base. Sens. Actuators B 2005, 105, 334–339. DOI:10.1016/j.snb.2004.06.016.
  • Shamsipur, M.; Ershad, S.; Samadi, N.; Esmaeilbeig, A. R.; Kia, R.; Abdolmaleki, A. Polymeric Membrane Lanthanum(III)-Selective Electrode Based on N,N’-Adipylbis(5-Phenylazo Salicylaldehyde Hydrazone). Electroanalysis 2005, 17, 1828–1834. DOI:10.1002/elan.200503309.
  • Upadhyay, A.; Singh, A. K.; Jain, A. K.; Gupta, V. K.; Bandi, K. R. Potentiometric Study of Coated Graphite Electrode and Polymeric Membrane Electrode for the Determination of Sm3+ Ion. Electroanalysis 2012, 24, 1630–1638. DOI:10.1002/elan.201200050.
  • Singh, P.; Singh, A. K. Determination of Thiocyanate Ions at Nanolevel in Real Samples Using Coated Graphite Electrode Based on Synthesized Macrocyclic Zn(II) Complex. Anal. Bioanal. Chem. 2011, 400, 2261–2269. DOI:10.1007/s00216-011-4930-6.
  • Abdel-Haleem, F. M.; Badr, I. H. A.; Rizk, M. S. Potentiometric Anion Selectivity and Analytical Applications of Polymer Membrane Electrodes Based on Novel Mn(III)- and Mn(IV)-Salophen Complexes. Electroanalysis 2016, 28, 2922–2929. DOI:10.1002/elan.201600335.
  • Singh, A. K.; Mehtab, S. Polymeric Membrane Sensors Based on Cd(II) Schiff Base Complexes for Selective Iodide Determination in Environmental and Medicinal Samples. Talanta 2008, 74, 806–814. DOI:10.1016/j.talanta.2007.07.016.
  • Aziz, A. A. A.; Kamel, A. H. Batch and Hydrodynamic Monitoring of Vitamin C Using Novel Periodate Selective Sensors Based on a Newly Synthesized Ni(II)-Schiff Bases Complexes as a Neutral Receptors. Talanta 2010, 80, 1356–1363. DOI:10.1016/j.talanta.2009.09.036.
  • Themelis, D. G.; Tzanavaras, P. D.; Kika, F. S. On-Line Dilution Flow Injection Manifold for the Selective Spectrophotometric Determination of Ascorbic Acid Based on the Fe(II)-2,2_-Dipyridyl-2-Pyridylhydrazone Complex Formation. Talanta 2001, 55, 127–134. DOI:10.1016/S0039-9140(01)00401-5.
  • Ganjali, M. R.; Norouzi, P.; Yousefian, N.; Faridbod, F.; Adib, M. Sub-Micro Molar Monitoring of La3+ by a Novel Lanthanum PVC-Based Membrane Sensor Based on 3-Hydroxy-N'-(Pyridin-2-Ylmethylene)-2-Naphthohydrazide. Bull. Korean Chem. Soc. 2006, 27, 1581–1586.
  • Abbaspour, A.; Khajehzadeh, A.; Noori, A. A Simple and Selective Sensor for the Determination of Ascorbic Acid in Vitamin C Tablets Based on Paptode. Anal. Sci. 2008, 24, 721–725.
  • Parsaei, M.; Asadi, Z.; Khodadoust, S. A Sensitive Electrochemical Sensor for Rapid and Selective Determination of Nitrite Ion in Water Samples Using Modified Carbon Paste Electrode with a Newly Synthesized Cobalt(II)-Schiff Base Complex and Magnetite Nanospheres. Sens. Actuators B Chem. 2015, 220, 1131–1138. DOI:10.1016/j.snb.2015.06.096.
  • Ensafi, A. A.; Karimi-Maleh, H.; Ghiaci, M.; Arshadi, M. Characterization of Mn-Nanoparticles Decorated Organo-Functionalized SiO2–Al2O3 Mixed-Oxide as a Novel Electrochemical Sensor: Application for the Voltammetric Determination of Captopril. J. Mater. Chem. 2011, 21, 15022–15030. DOI:10.1039/c1jm11909e.
  • Kaya, I.; Yıldırım, M.; Avcı, A. Synthesis and Characterization of Fluorescent Polyphenol Species Derived from Methyl Substituted Aminopyridine Based Schiff Bases: The Effect of Substituent Position on Optical, Electrical, Electrochemical, and Fluorescence Properties. Synth. Met. 2010, 160, 911–920. DOI:10.1016/j.synthmet.2010.01.044.
  • Martin, C. S.; Dadamos, T. R. L.; Teixeira, M. F. S. Development of an Electrochemical Sensor for Determination of Dissolved Oxygen by Nickel–Salen Polymeric Film Modified Electrode. Sens. Actuators B 2012, 175, 111–117. DOI:10.1016/j.snb.2011.12.098.
  • Dadamos, T. R. L.; Teixeira, M. F. S. Electrochemical Sensor for Sulfite Determination Based on a Nanostructured Copper-Salen Film Modified Electrode. Electrochim. Acta 2009, 54, 4552–4558. DOI:10.1016/j.electacta.2009.03.045.
  • Iwan, A.; Sek, D. Processible Polyazomethines and Polyketanils: From Aerospace to Light-Emitting Diodes and Other Advanced Applications. Prog. Polym. Sci. 2008, 33, 289–345. DOI:10.1016/j.progpolymsci.2007.09.005.
  • Aubert, P.-H.; Audebert, P.; Roche, M.; Capdevielle, P.; Maumy, M.; Ricart, G. Synthesis and Electrochemical Investigations of Bis(Salen) Complex Precursors Allowing the Formation of a Ladder-Type Polymer. Chem. Mater. 2001, 13, 2223–2230. DOI:10.1021/cm010240t.
  • Martin, C. S.; Machini, W. B. S.; Teixeira, M. F. S. Electropolymerization Using Binuclear Nickel(II) Schiff Base Complexes Bearing N4O4 Donors as Supramolecular Building Blocks. RSC Adv. 2015, 5, 39908–39915. DOI:10.1039/C5RA03414K.
  • Kaya, I.; Yıldırım, M.; Aydın, A.; Senol, D. Synthesis and Characterization of Fluorescent Graft Fluorene-Co-Polyphenol Derivatives: The Effect of Substituent on Solubility, thermal Stability, Conductivity, Optical and Electrochemical Properties. React. Funct. Polym. 2010, 70, 815–826. DOI:10.1016/j.reactfunctpolym.2010.07.013.
  • Shahrokhian, S.; Kamalzadeh, Z.; Bezaatpour, A.; Boghaei, D. M. Differential Pulse Voltammetric Determination of N-Acetylcysteine by the Electrocatalytic Oxidation at the Surface of Carbon Nanotube-Paste Electrode Modified with Cobalt Salophen Complexes. Sens. Actuators B 2008, 133, 599–606. DOI:10.1016/j.snb.2008.03.034.
  • Feng, L.-J.; Wang, L.-W.; Tian, Y.; Xian, Y.-Z.; Jin, L.-T. Nanostructured Biosensors Built by Layer-by-Layer Assembly OS Multiwall Carbon Nanotubes and Zn-Salen. Presented at the 2nd IEEE International Nanoelectronics Conference, INEC 2008.
  • Lu, B.; Zhang, Z.; Hao, J.; Xu, G.; Zhang, B.; Tang, J. Electrochemical Sensing Platform Based on Schiff-Base Cobalt(II)/Single-Walled Carbon Nanohorns Complexes System. Anal. Methods 2012, 4, 3580–3585. DOI:10.1039/c2ay25940k.
  • Gupta, V. K.; Ganjali, M. R.; Norouzi, P.; Khani, H.; Nayak, A.; Agarwal, S. Electrochemical Analysis of Some Toxic Metals by Ion–Selective Electrodes. Crit. Rev. Anal. Chem. 2011, 41, 282–313. DOI:10.1080/10408347.2011.589773.
  • Kucukkolbasi, S.; Erdoğan, Z. Ö.; Barek, J.; Sahin, M.; Kocak, N. A Novel Chitosan Nanoparticle-Schiff Base Modified Carbon Paste Electrode as a Sensor for the Determination of Pb(II) in Waste Water. Int. J. Electrochem. Sci. 2013, 8, 2164–2181.
  • Afkhami, A.; Shirzadmehr, A.; Madrakian, T.; Bagheri, H. Improvement in the Performance of a Pb2+ Selective Potentiometric Sensor Using Modified Core/Shell SiO2/Fe3O4 Nano-Structure. J. Mol. Liq. 2014, 199, 108–114. DOI:10.1016/j.molliq.2014.08.027.
  • Bazrafshan, A.; Hajati, S.; Ghaedi, M. Improvement in the Performance of a Zinc Ionselective Potentiometric Sensor Using Modified Core/shell Fe3O4@SiO2 Nanoparticles. RSC Adv. 2015, 5, 105925–105933. DOI:10.1039/C5RA16572E.
  • Afkhami, A.; Madrakian, T.; Shirzadmehr, A.; Tabatabaee, M.; Bagheri, H. New Schiff Base-Carbon Nanotube–Nanosilica–Ionic Liquid as a High Performance Sensing Material of a Potentiometric Sensor for Nanomolar Determination of Cerium(III) Ions. Sens. Actuators B 2012, 174, 237–244. DOI:10.1016/j.snb.2012.07.116.
  • Afkhami, A.; Khoshsafar, H.; Keypour, H.; Zeynali, H.; Madrakian, T. Novel Sensor Fabrication for the Determination of Nanomolar Concentrations of Hg2+ in Some Foods and Water Samples Based on Multi-Walled Carbon Nanotubes/Ionic Liquid and a New Schiff Base. Food Anal. Methods 2014, 7, 1204–1212. DOI:10.1007/s12161-013-9734-1.
  • Sharma, R. K.; Sharma, S.; Gulati, S.; Pandey, A. Fabrication of a Novel Nano-Composite Carbon Paste Sensor Based on Silica-Nanospheres Functionalized with Isatin Thiosemicarbazone for Potentiometric Monitoring of Cu2+ Ions in Real Samples. Anal. Methods 2013, 5, 1414–1426. DOI:10.1039/c3ay26319c.
  • Zhang, Y.; Geng, X.; Ai, J.; Gao, Q.; Qi, H.; Zhang, C. Signal Amplification Detection of DNA Using a Sensor Fabricated by One-Step Covalent Immobilization of Amino-Terminated Probe DNA onto the Polydopamine-Modified Screen-Printed. Sens. Actuators B Chem. 2015, 221, 1535–1541. DOI:10.1016/j.snb.2015.08.005.
  • Qiumei, C.; Hongmei, B.; Zhaoxia, Y.; Liu, J.; Xi, F. A Reagentless Electrochemical Immunosensor Based on Probe Immobilization and the Layer-By-layer Assembly Technique for Sensitive Detection of Tumor Markers. Anal. Methods 2015, 7, 9655–9662. DOI:10.1039/C5AY01871D.
  • Gupta, V. K.; Singh, A. K.; Mehtab, S.; Gupta, B. A Cobalt(II)-Selective PVC Membrane Based on a Schiff Base Complex of N,N_-Bis(salicylidene)-3,4-Diaminotoluene. Anal. Chim. Acta 2006, 566, 5–10. DOI:10.1016/j.aca.2006.02.038.
  • Gupta, V. K.; Jain, A. K.; Maheshwari, G. Manganese (II) Selective PVC Based Membrane Sensor Using a Schiff Base. Talanta 2007, 72, 49–53.
  • Jain, A. K.; Gupta, V. K.; Ganeshpure, P. A.; Raisoni, J. R. Ni(II)-Selective Ion Sensors of Salen Type Schiff Base Chelates. Anal. Chim. Acta 2005, 553, 177–184. DOI:10.1016/j.aca.2005.08.016.
  • Gupta, V. K.; Agarwal, S.; Jakob, A.; Lang, H. A Zinc-Selective Electrode Based on N,N-Bis(Acetylacetone)Ethylenediimine. Sens. Actuators B 2006, 114, 812–818.
  • Ganjali, M. R.; Emami, M.; Rezapour, M.; Shamsipur, M.; Maddah, B.; Salavati-Niasari, M.; Hosseini, M.; Talebpoui, Z. Novel Gadolinium Poly(Vinyl Chloride) Membrane Sensor Based on a New S–N Schiff’s Base. Anal. Chim. Acta 2003, 495, 51–59. DOI:10.1016/S0003-2670(03)00921-8.
  • Ganjali, M. R.; Pourjavid, M. R.; Rezapour, M.; Poursaberi, T.; Daftari, A.; Salavati-Niasari, M. Ruthenium(III) Schiff × s Base Complex as Novel Chloride Selective Membrane Sensor. Electroanalysis 2004, 16, 922–927. DOI:10.1002/elan.200302833.
  • Ardakani, M.; Mohammad, M.; Roya, M.; Hossein, M.; Naeimi, H.; Rabiei, K. Highly Selective Perchlorate Membrane Electrode Based on Synthesized Schiff Base Complex. Iran. J. Chem. Chem. Eng. 2010, 29 (3), 123–132.
  • Ganjali, M. R.; Rezapour, M.; Pourjavid, M. R.; Salavati-Niasari, M. Highly Selective PVC-Membrane Electrodes Based on Co(II)-Salen for Determination of Nitrile Ion. Anal. Sci. 2003, 19, 1127–1131. DOI:10.2116/analsci.19.1127.
  • Ganjali, M. R.; Shirvani-Arani, S.; Norouzi, P.; Rezapour, M.; Salavati-Niasari, M. Novel Nitrite Membrane Sensor Based on Cobalt(II) Salophen for Selective Monitoring of Nitrite Ions in Biological Samples. Microchim. Acta 2004, 146, 35–41. DOI:10.1007/s00604-003-0116-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.