394
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Derivatization of γ-Amino Butyric Acid Analogues for Their Determination in the Biological Samples and Pharmaceutical Preparations: A Comprehensive Review

, ORCID Icon, , , & ORCID Icon
Pages 1727-1754 | Published online: 07 Jun 2021

References

  • Falco-Walter, J. J.; Scheffer, I. E.; Fisher, R. S. The New Definition and Classification of Seizures and Epilepsy. Epilepsy Res. 2018, 139, 73–79. DOI: 10.1016/j.eplepsyres.2017.11.015.
  • Schulz, M.; Iwersen-Bergmann, S.; Andresen, H.; Schmoldt, A. Therapeutic and Toxic Blood Concentrations of Nearly 1,000 Drugs and Other Xenobiotics. Crit. Care 2012, 16, R136. DOI: 10.1186/cc11441.
  • Regenthal, R.; Krueger, M.; Koeppel, C.; Preiss, R. Drug Levels: Therapeutic and Toxic Serum/Plasma Concentrations of Common Drugs. J. Clin. Monit. Comput. 1999, 15, 529–544. DOI: 10.1023/A:1009935116877.
  • Heltsley, R.; DePriest, A.; Black, D. L.; Robert, T.; Caplan, Y. H.; Cone, E. J. Urine Drug Testing of Chronic Pain Patients. Iv. Prevalence of Gabapentin and Pregabalin. J. Anal. Toxicol. 2011, 35, 357–359. DOI: 10.1093/anatox/35.6.357.
  • Spigset, O.; Westin, A. A. Detection Times of Pregabalin in Urine after Illicit Use: When Should a Positive Specimen Be Considered a New Intake? Ther. Drug Monit. 2013, 35, 137–140. DOI: 10.1097/FTD.0b013e31827789dd.
  • Wad, N.; Krämer, G. Sensitive High-Performance Liquid Chromatographic Method with Fluorometric Detection for the Simultaneous Determination of Gabapentin and Vigabatrin in Serum and Urine. J. Chromatogr. B 1998, 705, 154–158. DOI: 10.1016/S0378-4347(97)00521-5.
  • Sanchez-Ponce, R.; Wang, L.-Q.; Lu, W.; Von Hehn, J.; Cherubini, M.; Rush, R. Metabolic and Pharmacokinetic Differentiation of Stx209 and Racemic Baclofen in Humans. Metabolites 2012, 2, 596–613. DOI: 10.3390/metabo2030596.
  • Bialer, M.; Johannessen, S.; Kupferberg, H.; Levy, R.; Loiseau, P.; Perucca, E. Progress Report on New Antiepileptic Drugs: A Summary of the Fourth Eilat Conference (Eilat Iv). Epilepsy Res. 1999, 34, 1–41. DOI: 10.1016/S0920-1211(98)00108-9.
  • Mudiam, M. K. R.; Chauhan, A.; Jain, R.; Ch, R.; Fatima, G.; Malhotra, E.; Murthy, R. Development, Validation and Comparison of Two Microextraction Techniques for the Rapid and Sensitive Determination of Pregabalin in Urine and Pharmaceutical Formulations after Ethyl Chloroformate Derivatization Followed by Gas Chromatography–Mass Spectrometric Analysis. J. Pharm. Biomed. Anal. 2012, 70, 310–319.
  • Douša, M.; Gibala, P.; Lemr, K. Liquid Chromatographic Separation of Pregabalin and Its Possible Impurities with Fluorescence Detection after Postcolumn Derivatization with O-Phtaldialdehyde. J. Pharm. Biomed. Anal. 2010, 53, 717–722. DOI: 10.1016/j.jpba.2010.04.008.
  • Field, M. J.; Oles, R. J.; Singh, L. Pregabalin May Represent a Novel Class of Anxiolytic Agents with a Broad Spectrum of Activity. Br. J. Pharmacol. 2001, 132, 1–4. DOI: 10.1038/sj.bjp.0703794.
  • Walash, M.; Belal, F.; El‐Enany, N.; El‐Maghrabey, M. H. Simple and Sensitive Spectrofluorimetric Method for the Determination of Pregabalin in Capsules through Derivatization with Fluorescamine. Luminescence 2011, 26, 342–348. DOI: 10.1002/bio.1235.
  • Vermeij, T.; Edelbroek, P. Simultaneous High-Performance Liquid Chromatographic Analysis of Pregabalin, Gabapentin and Vigabatrin in Human Serum by Precolumn Derivatization with O-Phtaldialdehyde and Fluorescence Detection. J. Chromatogr. B. 2004, 810, 297–303. DOI: 10.1016/S1570-0232(04)00662-2.
  • Attia, T. Z.; Elnady, M.; Derayea, S. M. A Highly Sensitive Fluorimetric Protocol Based on Isoindole Formation for Determination of Gabapentin. RSC Adv. 2019, 9, 29942–29948. DOI: 10.1039/C9RA06164A.
  • Petroff, O. A.; Rothman, D. L.; Behar, K. L.; Lamoureux, D.; Mattson, R. H. The Effect of Gabapentin on Brain Gamma‐Aminobutyric Acid in Patients with Epilepsy. Ann. Neurol. 1996, 39, 95–99. DOI: 10.1002/ana.410390114.
  • Goa, K. L.; Sorkin, E. M. Gabapentin. Drugs 1993, 46, 409–427. DOI: 10.2165/00003495-199346030-00007.
  • Clarke, H.; Bonin, R. P.; Orser, B. A.; Englesakis, M.; Wijeysundera, D. N.; Katz, J. The Prevention of Chronic Postsurgical Pain Using Gabapentin and Pregabalin: A Combined Systematic Review and Meta-Analysis. Anesth. Analg. 2012, 115, 428–442. [Database] DOI: 10.1213/ANE.0b013e318249d36e.
  • Behnam, B.; Semnani, V.; Saghafi, N.; Ghorbani, R.; Shori, M. D.; Choobmasjedi, S. G. Gabapentin Effect on Pain Associated with Heroin Withdrawal in Iranian Crack: A Randomized Double-Blind Clinical Trial. IJPR 2012, 11, 979.
  • Sandhya, S.; Jyothisree, G.; Babu, G. Analysis of Gabapentin by Hptlc with Densitometric Measurement after Derivatization. Int. J. Pharm. Pharm. Sci. 2014, 6, 707–710.
  • Jalalizadeh, H.; Souri, E.; Tehrani, M. B.; Jahangiri, A. Validated Hplc Method for the Determination of Gabapentin in Human Plasma Using Pre-Column Derivatization with 1-Fluoro-2, 4-Dinitrobenzene and Its Application to a Pharmacokinetic Study. J. Chromatogr. B 2007, 854, 43–47. DOI: 10.1016/j.jchromb.2007.03.039.
  • Sivenius, J.; Kälviäinen, R.; Ylinen, A.; Riekkinen, P. Double‐Blind Study of Gabapentin in the Treatment of Partial Seizures. Epilepsia 1991, 32, 539–542. DOI: 10.1111/j.1528-1157.1991.tb04689.x.
  • Ebrahimzadeh, H.; Yamini, Y.; Firozjaei, H. A.; Kamarei, F.; Tavassoli, N.; Rouini, M. R. Hollow Fiber-Based Liquid Phase Microextraction Combined with High-Performance Liquid Chromatography for the Analysis of Gabapentin in Biological Samples. Anal. Chim. Acta 2010, 665, 221–226. DOI: 10.1016/j.aca.2010.03.028.
  • Gidal, B. E.; Radulovic, L.; Kruger, S.; Rutecki, P.; Pitterle, M.; Bockbrader, H. N. Inter-and Intra-Subject Variability in Gabapentin Absorption and Absolute Bioavailability. Epilepsy Res. 2000, 40, 123–127. DOI: 10.1016/S0920-1211(00)00117-0.
  • Preece, N.; Jackson, G.; Houseman, J.; Duncan, J.; Williams, S. Nuclear Magnetic Resonance Detection of Increased Cortical Gaba in Vigabatrin‐Treated Rats in Vivo. Epilepsia 1994, 35, 431–436. DOI: 10.1111/j.1528-1157.1994.tb02456.x.
  • Rey, E.; Pons, G.; Olive, G. Vigabatrin. Clin. Pharmacokinet. 1992, 23, 267–278. DOI: 10.2165/00003088-199223040-00003.
  • Kostić, N.; Dotsikas, Y.; Jović, N.; Stevanović, G.; Malenović, A.; Medenica, M. Vigabatrin in Dried Plasma Spots: Validation of a Novel Lc–Ms/Ms Method and Application to Clinical Practice. J. Chromatogr. B 2014, 962, 102–108. DOI: 10.1016/j.jchromb.2014.05.037.
  • Fejerman, N.; Cersósimo, R.; Caraballo, R.; Grippo, J.; Corral, S.; Martino, R. H.; Martino, G.; Aldao, M.; Caccia, P.; Retamero, M.; et al. Vigabatrin as a First-Choice Drug in the Treatment of West Syndrome. J. Child Neurol. 2000, 15, 161–165. DOI: 10.1177/088307380001500304.
  • Hsieh, C.-Y.; Wang, S.-Y.; Kwan, A.-L.; Wu, H.-L. Fluorescent High-Performance Liquid Chromatographic Analysis of Vigabatrin Enantiomers after Derivatizing with Naproxen Acyl Chloride. J. Chromatogr. A 2008, 1178, 166–170. DOI: 10.1016/j.chroma.2007.11.096.
  • Grant, S. M.; Heel, R. C. Vigabatrin. Drugs 1991, 41, 889–926. DOI: 10.2165/00003495-199141060-00007.
  • Erturk, S.; Aktas, E. S.; Atmaca, S. Determination of Vigabatrin in Human Plasma and Urine by High-Performance Liquid Chromatography with Fluorescence Detection. J. Chromatogr.B 2001, 760, 207–212. DOI: 10.1016/S0378-4347(01)00268-7.
  • Lawden, M.; Eke, T.; Degg, C.; Harding, G.; Wild, J. Visual Field Defects Associated with Vigabatrin Therapy. J. Neurol. Neurosurg. Psychiatry 1999, 67, 716–722. DOI: 10.1136/jnnp.67.6.716.
  • Sweetman, S. C. Martindale: The Complete Drug Reference. London: Pharmaceutical Press , 2009.
  • Froestl, W. Chemistry and Pharmacology of Gabab Receptor Ligands. In Advances in Pharmacology. Elsevier: London, UK, 2010; pp. 19–62.
  • Yogeeswari, P.; Ragavendran, J. V.; Sriram, D. An Update on Gaba Analogs for Cns Drug Discovery. RPCN. 2006, 1, 113–118. DOI: 10.2174/157488906775245291.
  • Knutsson, E.; Lindblom, U.; Mårtensson, A. Plasma and Cerebrospinal Fluid Levels of Baclofen (Lioresal®) at Optimal Therapeutic Responses in Spastic Paresis. J. Neurol. Sci. 1974, 23, 473–484. DOI: 10.1016/0022-510X(74)90163-4.
  • Kroin, J. S. Intrathecal Drug Administration. Clin. Pharmacokinet. 1992, 22, 319–326. DOI: 10.2165/00003088-199222050-00001.
  • Sawynok, J.; Dickson, C. D-Baclofen: Is It an Antagonist at Baclofen Receptors? Prog. Neuropsychopharmacol. Biol. Psychiatry 1984, 8, 729–731. DOI: 10.1016/0278-5846(84)90047-2.
  • Hong, Y.; Henry, J. L. Cardiovascular Responses to Intrathecal Administration of L-and D-Baclofen in the Rat. Eur. J. Pharmacol. 1991, 192, 55–62. DOI: 10.1016/0014-2999(91)90068-2.
  • Batra, S.; Bhushan, R. Synthesis of Three Strong Uv-Absorbing Naproxen-Based Chiral Derivatizing Agents and Their Application for Enantioseparation of Baclofen by Rp-Hplc. Acta Chromatogr. 2015, 27, 267–280. DOI: 10.1556/AChrom.27.2015.2.5.
  • Peterson, G. M.; McLean, S.; Millingen, K. S. Food Does Not Affect the Bioavailability of Baclofen. Med. J. Aust. 1985, 142, 689–690. DOI: 10.5694/j.1326-5377.1985.tb113595.x.
  • Balcar, V.; Johnston, G. The Structural Specificity of the High Affinity Uptake of L‐Glutamate and L‐Aspartate by Rat Brain Slices. J. Neurochem. 1972, 19, 2657–2666. DOI: 10.1111/j.1471-4159.1972.tb01325.x.
  • Wuis, E. W.; Dirks, R. J.; Vree, T. B.; van der Kleyn, E. High-Performance Liquid Chromatographic Analysis of Baclofen in Plasma and Urine of Man after Precolumn Extraction and Derivatization with O-Phthaldialdehyde. J. Chromatogr. B 1985, 337, 341–350. DOI: 10.1016/0378-4347(85)80047-5.
  • Husek, P.; Simek, P. Alkyl Chloroformates in Sample Derivatization Strategies for Gc Analysis. Review on a Decade Use of the Reagents as Esterifying Agents. CPA. 2006, 2, 23–43. DOI: 10.2174/157341206775474007.
  • Ikeda, K.; Ikawa, K.; Yokoshige, S.; Yoshikawa, S.; Morikawa, N. Gas Chromatography–Electron Ionization–Mass Spectrometry Quantitation of Valproic Acid and Gabapentin, Using Dried Plasma Spots, for Therapeutic Drug Monitoring in in‐Home Medical Care. Biomed. Chromatogr. 2014, 28, 1756–1762. DOI: 10.1002/bmc.3217.
  • Segura, J.; Ventura, R.; Jurado, C. Derivatization Procedures for Gas Chromatographic–Mass Spectrometric Determination of Xenobiotics in Biological Samples, with Special Attention to Drugs of Abuse and Doping Agents. J. Chromatogr. B 1998, 713, 61–90. DOI: 10.1016/S0378-4347(98)00089-9.
  • Tsikas, D. Pentafluorobenzyl Bromide—a Versatile Derivatization Agent in Chromatography and Mass Spectrometry: I. Analysis of Inorganic Anions and Organophosphates. J. Chromatogr. B 2017, 1043, 187–201. DOI: 10.1016/j.jchromb.2016.08.015.
  • Wolf, J.; Korf, J. 4-Bromomethyl-7-Methoxycoumarin and Analogues as Derivatization Agents for High-Performance Liquid Chromatography Determinations: A Review. J. Pharm. Biomed. Anal. 1992, 10, 99–107. DOI: 10.1016/0731-7085(92)80018-I.
  • Belal, F.; Abdine, H.; Al-Majed, A.; Khalil, N. Spectrofluorimetric Determination of Vigabatrin and Gabapentin in Urine and Dosage Forms through Derivatization with Fluorescamine. J. Pharm. Biomed. Anal. 2002, 27, 253–260. DOI: 10.1016/S0731-7085(01)00503-9.
  • Kazemipour, M.; Fakhari, I.; Ansari, M. Gabapentin Determination in Human Plasma and Capsule by Coupling of Solid Phase Extraction Derivatization Reaction, and Uv-Vis Spectrophotometry. IJPR 2013, 12, 247.
  • Olgun, N.; Erturk, S.; Atmaca, S. Spectrofluorimetric and Spectrophotometric Methods for the Determination of Vigabatrin in Tablets. J Pharm Biomed Anal. 2002, 29, 1–5. DOI: 10.1016/S0731-7085(02)00055-9.
  • Hassan, E. M.; Belal, F.; Al-Deeb, O. A.; Khalil, N. Y. Spectrofluorimetric Determination of Vigabatrin and Gabapentin in Dosage Forms and Spiked Plasma Samples through Derivatization with 4-Chloro-7-Nitrobenzo-2-Oxa-1, 3-Diazole. J. AOAC Int. 2001, 84, 1017–1024. DOI: 10.1093/jaoac/84.4.1017.
  • Abdellatef, H. E.; Khalil, H. M. Colorimetric Determination of Gabapentin in Pharmaceutical Formulation. J. Pharm. Biomed. 2003, 31, 209–214. DOI: 10.1016/S0731-7085(02)00572-1.
  • Önal, A.; Sagirli, O. Spectrophotometric and Spectrofluorimetric Methods for the Determination of Pregabalin in Bulk and Pharmaceutical Preparation. Spectrochim. Acta A 2009, 72, 68–71. DOI: 10.1016/j.saa.2008.08.009.
  • Hammad, S. F.; Abdallah, O. M. Optimized and Validated Spectrophotometric Methods for the Determination of Pregabalin in Pharmaceutical Formulation Using Ascorbic Acid and Salicylaldehyde. J. Am. Sci. 2012, 8, 118–124.
  • Abdulrahman, S. A.; Basavaiah, K. Highly Sensitive Spectrophotometric Method for the Determination of Gabapentin in Capsules Using Sodium Hypochloride. Turk. J. Pharm. Sci. 2012, 9, 113–126.
  • Omar, F. K.; Mahmoud, H. A.; Ahmad, N. R. Indirect Spectrophotometric Method for Estimation of Pregabalin in Pharmaceutical Preparations. Sys. Rev. Pharm. 2020, 11, 32–35.
  • Almasri, I. M.; Ramadan, M.; Algharably, E. Development and Validation of Spectrophotometric Method for Determination of Gabapentin in Bulk and Pharmaceutical Dosage Forms Based on Schiff Base Formation with Salicylaldehyde. J. Appl. Pharm. Sci. 2019, 9, 021–026.
  • Abd Algharably, E. H. Development and Validation of Spectrophotometric Method for Determination of Gabapentin and Gentamicin in Bulk and Pharmaceutical Dosage Forms. Al-Azhar University-Gaza: Egypt, 2018.
  • Abdulrahman, S. A.; Basavaiah, K. Sensitive and Selective Spectrophotometric Assay of Gabapentin in Capsules Using Sodium 1, 2‐Naphthoquinone‐4‐Sulfonate. Drug Test. Anal. 2011, 3, 748–754. DOI: 10.1002/dta.242.
  • Al-Zehouri, J.; Al-Madi, S.; Belal, F. Determination of the Antiepileptics Vigabatrin and Gabapentin in Dosage Forms and Biological Fluids Using Hantzsch Reaction. Arzneimittelforschung 2001, 51, 97–103.
  • Bali, A.; Gaur, P. A Novel Method for Spectrophotometric Determination of Pregabalin in Pure Form and in Capsules. Chem. Cent. J. 2011, 5, 59.
  • Saleh, M. S.; Youssef, A. K.; Hashem, E. Y.; Abdel-Kader, D. A. A Novel Spectrophotometric Method for Determination of Gabapentin in Pharmaceutical Formulations Using 2, 5-Dihydroxybenzaldehyde. J. Comput. Chem. 2014, 2, 22–30. DOI:10.4236/cc.2014.22004.
  • Derayea, S. M.; Attia, T. Z.; Elnady, M. Development of Spectrofluorimetric Method for Determination of Certain Antiepileptic Drugs through Condensation with Ninhydrin and Phenyl Acetaldehyde. Spectrochim. Acta A 2018, 204, 48–54. DOI: 10.1016/j.saa.2018.06.027.
  • Rizk, M.; Elshahed, M. S.; Attiab, A. K.; Farag, A. S. Spectrophotometric Determination of Pregabalin Using N-(1-Naphthyl) Ethylenediamine, as Uv Labeling Reagent. IJPBS 2015, 5, 152–162.
  • Derayea, S. M.; Attia, T. Z.; El Nady, M. The Utility of Acetylbutyrolactone for Spectrofluorimetric Determination of Two Gamma-Aminobutyric Acid Analogues. JABPS 2018, 1, 6–12.
  • Najam, R.; Shah, G. M.; Andrabi, S. M. A. Kinetic Spectrophotometric Determination of an Important Pharmaceutical Compound, Pregabalin. J. Anal. Sci. Technol. 2013, 4, 22. DOI: 10.1186/2093-3371-4-22.
  • Bkhaitan, M. M.; Mirza, A. Z. A Novel Quantitative Spectrophotometric Method for the Analysis of Vigabatrin in Pure Form and in Pharmaceutical Formulation. Curr. Pharm. Anal. 2016, 12, 365–370.
  • Saleh, H. M.; El-Henawee, M. M.; Ragab, G. H.; Mohamed, O. F. Spectrophotometric and Spectrofluorimetric Determination of Pregabalin via Condensation Reactions in Pure Form and in Capsules. Int. J. Pharm. Chem. Biologic. Sci. 2014, 4, 738–747.
  • Siddiqui, F. A.; Sher, N.; Shafi, N.; Shamshad, H.; Zubair, A. Kinetic and Thermodynamic Spectrophotometric Technique to Estimate Gabapentin in Pharmaceutical Formulations Using Ninhydrin. Anal. Sci. Technol. 2013, 4, 17.
  • Mohammed, T. A.; Mohamed, M. A. Spectrophotometric Determination of Certain Antiepileptic's in Tablets Using Vanillin Reagent. J. Adv. Chem. 2015, 11, 3540–3550.
  • Themelis, D. G.; Tzanavaras, P. D.; Boulimari, E. A. Generic Automated Fluorimetric Assay for the Quality Control of Gamma Aminobutyric Acid-Analogue anti-Epileptic Drugs Using Sequential Injection. Anal. Lett. 2010, 43, 905–918. DOI: 10.1080/00032710903491146.
  • Walash, M. I.; Belal, F. F.; El-Enany, N. M.; El-Maghrabey, M. H. Utility of Certain Nucleophilic Aromatic Substitution Reactions for the Assay of Pregabalin in Capsules. Chem. Cent. J. 2011, 5, 36.
  • Siddiqui, F. A.; Arayne, M. S.; Sultana, N.; Qureshi, F.; Mirza, A. Z.; Zuberi, M. H.; Bahadur, S. S.; Afridi, N. S.; Shamshad, H.; Rehman, N. Spectrophotometric Determination of Gabapentin in Pharmaceutical Formulations Using Ninhydrin and Π-Acceptors. Eur. J. Med. Chem. 2010, 45, 2761–2767. DOI: 10.1016/j.ejmech.2010.02.058.
  • Yoshikawa, N.; Naito, T.; Yagi, T.; Kawakami, J. A Validated Fluorometric Method for the Rapid Determination of Pregabalin in Human Plasma Applied to Patients with Pain. Ther. Drug Monit. 2016, 38, 628–633. DOI: 10.1097/FTD.0000000000000325.
  • Amini, M.; Rouini, M.-R.; Asad-Paskeh, A.; Shafiee, A. A New Pre-Column Derivatization Method for Determination of Gabapentin in Human Serum by Hplc Using Uv Detection. J. Chromatogr. Sci. 2010, 48, 358–361. DOI: 10.1093/chromsci/48.5.358.
  • Cao, L.-W.; Li, C. Rapid and Sensitive Analysis of Baclofen by High-Performance Liquid Chromatography with Uv-Vis and Fd Detection. Acta Chromatogr. 2012, 24, 383–397. DOI: 10.1556/AChrom.24.2012.3.4.
  • Juergens, U. H.; May, T. W.; Rambeck, B. Simultaneous Hplc Determination of Vigabatrin and Gabapentin in Serum with Automated Pre-Injection Derivatization. J. Liq. Chrom. Relat. Tech. 1996, 19, 1459–1471. DOI: 10.1080/10826079608007195.
  • Chollet, D. F.; Goumaz, L.; Juliano, C.; Anderegg, G. Fast Isocratic High-Performance Liquid Chromatographic Assay Method for the Simultaneous Determination of Gabapentin and Vigabatrin in Human Serum. J. Chromatogr. B 2000, 746, 311–314. DOI: 10.1016/S0378-4347(00)00327-3.
  • Souri, E.; Eskandari, M.; Tehrani, M. B.; Adib, N.; Ahmadkhaniha, R. Hplc Determination of Pregabalin in Bulk and Pharmaceutical Dosage Forms after Derivatization with 1-Fluoro-2, 4-Dinitrobenzene. Asian J. Chem. 2013, 25, 7332–7336.
  • Cao, L.-W.; Hu, Y.; Meng, J.-X.; Li, C. Sensitive Determination of Gabapentin in Human Urine by High-Performance Liquid Chromatography with Uv–Vis and Fluorescent Detection. J. Liq. Chromatogr. Relat. Technol. 2010, 33, 1487–1501. DOI: 10.1080/10826076.2010.489018.
  • Juenke, J. M.; Brown, P. I.; McMillin, G. A.; Urry, F. M. Procedure for the Monitoring of Gabapentin with 2, 4, 6-Trinitrobenzene Sulfonic Acid Derivatization Followed by Hplc with Ultraviolet Detection. Clin. Chem. 2003, 49, 1198–1201. DOI: 10.1373/49.7.1198.
  • Yagi, T.; Naito, T.; Mino, Y.; Takashina, Y.; Umemura, K.; Kawakami, J. Rapid and Validated Fluorometric Hplc Method for Determination of Gabapentin in Human Plasma and Urine for Clinical Application. J. Clin. Pharm. Ther. 2012, 37, 89–94. DOI: 10.1111/j.1365-2710.2010.01243.x.
  • Al‐Majed, A. A. A Derivatization Reagent for Vigabatrin and Gabapentin in Hplc with Fluorescence Detection. J. Liq. Chrom. Relat. Tech. 2005, 28, 3119–3129.
  • Krivanek, P.; Koppatz, K.; Turnheim, K. Simultaneous Isocratic Hplc Determination of Vigabatrin and Gabapentin in Human Plasma by Dansyl Derivatization. Ther. Drug Monit. 2003, 25, 374–377.
  • Mercolini, L.; Mandrioli, R.; Amore, M.; Raggi, M. A. Simultaneous Hplc-F Analysis of Three Recent Antiepileptic Drugs in Human Plasma. Ther. Drug Monit. 2010, 53, 62–67.
  • Souri, E.; Jalalizadeh, H.; Shafiee, A. Optimization of an Hplc Method for Determination of Gabapentin in Dosage Forms through Derivatization with 1-Fluoro-2, 4-Dinitrobenzene. Chem. Pharm. Bull. 2007, 55, 1427–1430. DOI: 10.1248/cpb.55.1427.
  • Ulu, S. T.; Kel, E. Highly Sensitive Determination and Validation of Gabapentin in Pharmaceutical Preparations by Hplc with 4-Fluoro-7-Nitrobenzofurazan Derivatization and Fluorescence Detection. J. Chromatogr. Sci. 2011, 49, 417–421. DOI: 10.1093/chrsci/49.6.417.
  • Vermeij, T.; Edelbroek, P. High-Performance Liquid Chromatographic Analysis of Vigabatrin Enantiomers in Human Serum by Precolumn Derivatization with O-Phthaldialdehyde–N-Acetyl-L-Cysteine and Fluorescence Detection. J. Chromatogr. B 1998, 716, 233–238. DOI: 10.1016/S0378-4347(98)00269-2.
  • Zhao, J.; Shin, Y.; Jin, Y.; Jeong, K. M.; Lee, J. Determination of Enantiomeric Vigabatrin by Derivatization with Diacetyl-L-Tartaric Anhydride Followed by Ultra-High Performance Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry. J. Chromatogr. B 2017, 1040, 199–207. DOI: 10.1016/j.jchromb.2016.11.016.
  • Jadhav, A.; Pathare, D.; Shingare, M. Validated Enantioselective Lc Method, with Precolumn Derivatization with Marfey’s Reagent, for Analysis of the Antiepileptic Drug Pregabalin in Bulk Drug Samples. Chroma. 2007, 65, 253–256. DOI: 10.1365/s10337-006-0152-z.
  • Duhamel, P.; Ounissi, M.; Le Saux, T.; Bienayme, H.; Chiron, C.; Jullien, V. Determination of the R (−) and S (+)-Enantiomers of Vigabatrin in Human Plasma by Ultra-High-Performance Liquid Chromatography and Tandem Mass-Spectrometry. J. Chromatogr. B 2017, 1070, 31–36. DOI: 10.1016/j.jchromb.2017.10.037.
  • Tosunoǧlu, S.; Ersoy, L. Determination of Baclofen in Human Plasma and Urine by High-Performance Liquid Chromatography with Fluorescence Detection. Analyst 1995, 120, 373–375. DOI: 10.1039/AN9952000373.
  • Bahrami, G.; Kiani, A. Sensitive High-Performance Liquid Chromatographic Quantitation of Gabapentin in Human Serum Using Liquid–Liquid Extraction and Pre-Column Derivatization with 9-Fluorenylmethyl Chloroformate. J. Chromatogr. B 2006, 835, 123–126. DOI: 10.1016/j.jchromb.2006.03.011.
  • Zhu, Z.; Neirinck, L. High-Performance Liquid Chromatographic Method for the Determination of Gabapentin in Human Plasma. J. Chromatogr. B 2002, 779, 307–312. DOI: 10.1016/S1570-0232(02)00399-9.
  • Pourghobadi, Z.; Heydari, R.; Pourghobadi, R.; Rashidipour, M. Determination of Gabapentin in Human Plasma Using Simultaneous Cloud Point Extraction and Precolumn Derivatization by Hplc. Monatsh. Chem. 2013, 144, 773–779. DOI: 10.1007/s00706-012-0879-1.
  • Wall, G. M.; Baker, J. K. Determination of Baclofen and Α-Baclofen in Rat Liver Homogenate and Human Urine Using Solid-Phase Extraction, O-Phthalaldehyde-Tert.-Butyl Thiol Derivatization and High-Performance Liquid Chromatography with Amperometric Detection. J. Chromatogr. B 1989, 491, 151–162. DOI: 10.1016/S0378-4347(00)82828-5.
  • Millerioux, L.; Brault, M.; Gualano, V.; Mignot, A. High-Performance Liquid Chromatographic Determination of Baclofen in Human Plasma. J. Chromatogr. A 1996, 729, 309–314. DOI: 10.1016/0021-9673(95)00944-2.
  • Kostić, N.; Dotsikas, Y.; Malenović, A.; Stojanović, B. J.; Rakić, T.; Ivanović, D.; Medenica, M. Stepwise Optimization Approach for Improving Lc‐Ms/Ms Analysis of Zwitterionic Antiepileptic Drugs with Implementation of Experimental Design. J. Mass Spectrom. 2013, 48, 875–884. DOI: 10.1002/jms.3236.
  • Borrey, D. C.; Godderis, K. O.; Engelrelst, V. I.; Bernard, D. R.; Langlois, M. R. Quantitative Determination of Vigabatrin and Gabapentin in Human Serum by Gas Chromatography–Mass Spectrometry. Clin. Chim. Acta 2005, 354, 147–151. DOI: 10.1016/j.cccn.2004.11.023.
  • Hložek, T.; Bursová, M.; Coufal, P.; Čabala, R. Gabapentin, Pregabalin and Vigabatrin Quantification in Human Serum by Gc–Ms after Hexyl Chloroformate Derivatization. J. Anal. Toxicol. 2016, 40, 749–753.
  • Tafesse, T. B.; Mazdeh, F. Z.; Chalipour, A.; Tavakoli, M.; Hajimahmoodi, M.; Amini, M. Gas Chromatography–Mass Spectrometry Determination of Pregabalin in Human Plasma Using Derivatization Method. Chromatographia 2018, 81, 501–508. DOI: 10.1007/s10337-017-3458-0.
  • Kushnir, M. M.; Crossett, J.; Brown, P.; Urry, F. Analysis of Gabapentin in Serum and Plasma by Solid-Phase Extraction and Gas Chromatography-Mass Spectrometry for Therapeutic Drug Monitoring. J. Anal. Toxicol. 1999, 23, 1–6. DOI: 10.1093/jat/23.1.1.
  • Wolf, C. E.; Saady, J. I.; Poklis, A. Determination of Gabapentin in Serum Using Solid-Phase Extraction and Gas-Liquid Chromatography. J. Anal. Toxicol. 1996, 20, 498–501. DOI: 10.1093/jat/20.6.498.
  • Sowjanya, K.; Thejaswini, J.; Gurupadayya, B.; Raja, P. Quantitative Determination of Pregabalin by Gas Chromatography Using Ethyl Chloroformate as a Derivatizing Reagent in Pure and Pharmaceutical Preparation. Ind. Drugs 2011, 48, 43–47.
  • Chang, S. Y.; Lin, W.-C. Determination of Vigabatrin by Capillary Electrophoresis with Laser-Induced Fluorescence Detection. J. Chromatogr. B 2003, 794, 17–22. DOI: 10.1016/S1570-0232(03)00396-9.
  • Chang, S.; Yang, H. Determination of Baclofen by Derivatization with Anthracene-2, 3-Dicarboxaldehyde Followed by Capillary Electrophoresis with Laser-Induced Fluorescence Detection. Chromatographia 2003, 57, 825–829. DOI: 10.1007/BF02491772.
  • Zhao, S.; Zhang, R.; Wang, H.; Tang, L.; Pan, Y. Capillary Electrophoresis Enantioselective Separation of Vigabatrin Enantiomers by Precolumn Derivatization with Dehydroabietylisothiocyante and Uv–Vis Detection. J. Chromatogr. B 2006, 833, 186–190. DOI: 10.1016/j.jchromb.2006.01.018.
  • Lin, F.-M.; Kou, H.-S.; Wu, S.-M.; Chen, S.-H.; Wu, H.-L. Capillary Electrophoresis Analysis of Gabapentin and Vigabatrin in Pharmaceutical Preparations as Ofloxacin Derivatives. Anal. Chim. Acta 2004, 523, 9–14. DOI: 10.1016/j.aca.2004.07.022.
  • Gu, Y.-S.; Whang, C.-W. Capillary Electrophoresis of Baclofen with Argon-Ion Laser-Induced Fluorescence Detection. J. Chromatogr. A 2002, 972, 289–293. DOI: 10.1016/S0021-9673(02)01083-X.
  • Musenga, A.; Mandrioli, R.; Comin, I.; Kenndler, E.; Raggi, M. A. Determination of vigabatrin in human Plasma by Means of Ce with Lif Detection. Electrophoresis. 2007, 28, 3535–3541. DOI: 10.1002/elps.200700139.
  • Zeid, A. M.; Kaji, N.; Nasr, J. J. M.; Belal, F.; Walash, M. I.; Baba, Y. Determination of Baclofen and Vigabatrin by Microchip Electrophoresis with Fluorescence Detection: Application of Field-Enhanced Sample Stacking and Dynamic Ph Junction. New J. Chem. 2018, 42, 9965–9974. DOI: 10.1039/C8NJ00829A.
  • Harnisch, H.; Chien, Y-h.; Scriba, G. K. Capillary Electrophoresis Method for the Chiral Purity Determination of Pregabalin Derivatized with Dansyl Chloride. Chromatographia 2018, 81, 719–725. DOI: 10.1007/s10337-018-3495-3.
  • Cao, L.-W.; Tan, X.-F.; Li, C.; Wu, C.; Zhang, Z.-D.; Deng, T.; Meng, J.-X. Capillary Electrophoresis-Laser Induced Fluorescence Detection of Gaba and Its Analogs in Human Serum with Solid-Phase Extraction and Fluorescein-Based Probes. Anal. Methods 2013, 5, 6000–6008. DOI: 10.1039/c3ay40942b.
  • Chang, S. Y.; Wang, F.-Y. Determination of Gabapentin in Human Plasma by Capillary Electrophoresis with Laser-Induced Fluorescence Detection and Acetonitrile Stacking Technique. J. Chromatogr. B 2004, 799, 265–270. DOI: 10.1016/j.jchromb.2003.10.052.
  • Chiang, M.-T.; Chang, S. Y.; Whang, C.-W. Analysis of Baclofen by Capillary Electrophoresis with Laser-Induced Fluorescence Detection. J. Chromatogr. A 2000, 877, 233–237. DOI: 10.1016/S0021-9673(00)00168-0.
  • Cai, Y.; Yang, J.; Wang, Y.; Bai, K.; Li, H. Determination of Gabapentin Using Capillary Electrophoresis with Laser-Induced Fluorescence Detection. Chin. J. Chromatogr. 2010, 28, 1179–1184.
  • Martinc, B.; Roškar, R.; Grabnar, I.; Vovk, T. Simultaneous Determination of Gabapentin, Pregabalin, Vigabatrin, and Topiramate in Plasma by Hplc with Fluorescence Detection. J. Chromatogr. B 2014, 962, 82–88. DOI: 10.1016/j.jchromb.2014.05.030.
  • Einarsson, S.; Josefsson, B.; Moeller, P.; Sanchez, D. Separation of Amino Acid Enantiomers and Chiral Amines Using Precolumn Derivatization with (+)-1-(9-Fluorenyl) Ethyl Chloroformate and Reversed-Phase Liquid Chromatography. Anal. Chem. 1987, 59, 1191–1195. DOI: 10.1021/ac00135a025.
  • Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis: Cengage learning: Australia, 2017.
  • Pourkarim, F.; Rahimpour, E.; Jouyban, A. Analytical Techniques for the Determination of Verapamil in Biological Samples and Dosage Forms: An Overview. Bioanalysis 2019, 11, 2189–2205. DOI: 10.4155/bio-2019-0083.
  • Mohammadian, E.; Rahimpour, E.; Alizadeh-Sani, M.; Foroumadi, A.; Jouyban, A. An Overview on Terbium Sensitized Based-Optical Sensors/Nanosensors for Determination of Pharmaceuticals. Appl. Spectrosc. Rev. 2020, 1–38. https://doi.org/10.1080/05704928.2020.1843174.
  • Aydoğmuş, Z. Simple and Sensitive Spectrofluorimetric Method for the Determination of Oseltamivir Phosphate in Capsules through Derivatization with Fluorescamine. J. Fluoresc. 2009, 19, 673–679. DOI: 10.1007/s10895-009-0461-3.
  • Suliman, F. E. O.; Al-Lawati, Z. H.; Al-Kindy, S. M. A Spectrofluorimetric Sequential Injection Method for the Determination of Penicillamine Using Fluorescamine in the Presence of Β-Cyclodextrins. J. Fluoresc. 2008, 18, 1131–1138. DOI: 10.1007/s10895-008-0363-9.
  • Soto-Chinchilla, J. J.; Gámiz-Gracia, L.; García-Campaña, A. M.; Imai, K.; García-Ayuso, L. E. High Performance Liquid Chromatography Post-Column Chemiluminescence Determination of Sulfonamide Residues in Milk at Low Concentration Levels Using Bis [4-Nitro-2-(3, 6, 9-Trioxadecyloxycarbonyl) Phenyl] Oxalate as Chemiluminescent Reagent. J. Chromatogr. A 2005, 1095, 60–67. DOI: 10.1016/j.chroma.2005.07.123.
  • Maudens, K. E.; Zhang, G.-F.; Lambert, W. E. Quantitative Analysis of Twelve Sulfonamides in Honey after Acidic Hydrolysis by High-Performance Liquid Chromatography with Post-Column Derivatization and Fluorescence Detection. J. Chromatogr. A 2004, 1047, 85–92. DOI: 10.1016/j.chroma.2004.07.007.
  • Sagirli, O.; Ersoy, L. An Hplc Method for the Determination of Lisinopril in Human Plasma and Urine with Fluorescence Detection. J. Chromatogr. B 2004, 809, 159–165. DOI: 10.1016/j.jchromb.2004.06.014.
  • Sabry, S. M.; Abdel-Hady, M.; Elsayed, M.; Fahmy, O. T.; Maher, H. M. Study of Stability of Methotrexate in Acidic Solution Spectrofluorimetric Determination of Methotrexate in Pharmaceutical Preparations through Acid-Catalyzed Degradation Reaction. J. Pharm. Biomed. Anal. 2003, 32, 409–423. DOI: 10.1016/S0731-7085(03)00239-5.
  • Sørensen, L. K.; Hasselstrøm, J. B. Determination of Therapeutic Γ-Aminobutyric Acid Analogs in Forensic Whole Blood by Hydrophilic Interaction Liquid Chromatography–Electrospray Tandem Mass Spectrometry. J. Anal. Toxicol. 2014, 38, 177–183. DOI: 10.1093/jat/bku010.
  • Liu, Y.; Uboh, C. E.; Soma, L. R.; Li, X.; Guan, F.; You, Y.; Rudy, J. A.; Chen, J.-W. Analysis of Gabapentin in Equine Plasma with Measurement Uncertainty Estimation by Liquid Chromatography-Tandem Mass Spectrometry. J. Anal. Toxicol. 2011, 35, 75–84. DOI: 10.1093/anatox/35.2.75.
  • Carlsson, K.; Reubsaet, J. Sample Preparation and Determination of Gabapentin in Venous and Capillary Blood Using Liquid Chromatography–Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2004, 34, 415–423. DOI: 10.1016/S0731-7085(03)00572-7.
  • Kim, T. H.; Shin, S.; Shin, J. C.; Choi, J. H.; Seo, W. S.; Park, G.-Y.; Kwon, D. R.; Yoo, S. D.; Lee, A.-R.; Joo, S. H.; et al. Liquid Chromatography–Tandem Mass Spectrometry Determination of Baclofen in Various Biological Samples and Application to a Pharmacokinetic Study. J. Chromatogr. B 2013, 938, 43–50. DOI: 10.1016/j.jchromb.2013.08.030.
  • Flärdh, M.; Jacobson, B.-M. Sensitive Method for the determination of Baclofen in Plasma by Means of Solid-Phase Extraction and Liquid Chromatography–Tandem Mass Spectrometry. J. Chromatogr. A 1999, 846, 169–173. DOI: 10.1016/S0021-9673(99)00013-8.
  • Matar, K. M.; Abdel-Hamid, M. Rapid Tandem Mass Spectrometric Method for Determination of Gabapentin in Human Plasma. Chroma. 2005, 61, 499–504. DOI: 10.1365/s10337-005-0542-7.
  • Matar, K. M.; Abdel‐Hamid, M. E. Quantification of Vigabatrin in Human Plasma by Liquid Chromatography–Electrospray Tandem Mass Spectrometry. J. Liq. Chrom. Relat. Tech. 2005, 28, 395–406. DOI: 10.1081/JLC-200044519.
  • Kim, K.-B.; Seo, K.-A.; Kim, S.-E.; Bae, S. K.; Kim, D.-H.; Shin, J.-G. Simple and Accurate Quantitative Analysis of Ten Antiepileptic Drugs in Human Plasma by Liquid Chromatography/Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2011, 56, 771–777. DOI: 10.1016/j.jpba.2011.07.019.
  • Zabihollahpoor, A.; Rahimnejad, M.; Najafpour-Darzi, G.; Moghadamnia, A. A. Biomedical Application of a Novel Nanostructured-Based Electrochemical Platform for Therapeutic Monitoring of an Antiepileptic Drug. Gabapentin. Anal. Bioanal. Electrochem. 2020, 12, 536–552.
  • Chahbouni, A.; Sinjewel, A.; den Burger, J. C.; Vos, R. M.; Wilhelm, A. J.; Veldkamp, A. I.; Swart, E. L. Rapid Quantification of Gabapentin, Pregabalin, and Vigabatrin in Human Serum by Ultraperformance Liquid Chromatography with Mass-Spectrometric Detection. Ther. Drug Monit. 2013, 35, 48–53. DOI: 10.1097/FTD.0b013e31827788c0.
  • Collins, J. A.; Janis, G. C. Analysis of Selected Anticonvulsants by High Performance Liquid Chromatography-Tandem Mass Spectrometry. In LC-MS in Drug Analysis. Springer: Totowa, NJ, 2012; pp. 201–209.
  • Dwivedi, J.; Namdev, K. K.; Chilkoti, D. C.; Verma, S.; Sharma, S. An Improved Lc-Esi-Ms/Ms Method to Quantify Pregabalin in Human Plasma and Dry Plasma Spot for Therapeutic Monitoring and Pharmacokinetic Applications. Ther. Drug Monit. 2018, 40, 610–619. DOI: 10.1097/FTD.0000000000000541.
  • Dayyih, W. A.; Hamad, M.; Mallah, E.; Dayyih, A. A.; Mansoor, K.; Zakarya, Z.; Awad, R.; Arafat, T. Establishment and Validation of a Sensitive Method for the Detection of Pregabalin in Pharmacological Formulation by GC/MS Spectrometry. CPA. 2019, 15, 165–171. DOI: 10.2174/1573412914666171228160833.
  • Manera, M.; Miro, M.; Ribeiro, M. F.; Estela, J. M.; Cerda, V.; Santos, J. L.; Lima, J. L. Rapid Chemiluminometric Determination of Gabapentin in Pharmaceutical Formulations Exploiting Pulsed‐Flow Analysis. Luminescence 2009, 24, 10–14. DOI: 10.1002/bio.1055.
  • Mohammadi, P.; Masrournia, M.; Es' Haghi, Z.; Pordel, M. Determination of Four Antiepileptic Drugs with Solvent Assisted Dispersive Solid Phase Microextraction–Gas Chromatography–Mass Spectrometry in Human Urine Samples. Microchem. J. 2020, 159, 105542. DOI: 10.1016/j.microc.2020.105542.
  • Palte, M. J.; Basu, S. S.; Dahlin, J. L.; Gencheva, R.; Mason, D.; Jarolim, P.; Petrides, A. K. Development and Validation of a U-HPLC-MS/MS Method for the Concurrent Measurement of Gabapentin, Lamotrigine, Levetiracetam, Monohydroxy Derivative (Mhd) of Oxcarbazepine, and Zonisamide Concentrations in Serum in a Clinical Setting. Ther. Drug Monit. 2018, 40, 469–476. DOI: 10.1097/FTD.0000000000000516.
  • Pauly, C.; Yegles, M.; Schneider, S. Pregabalin Determination in Hair by Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Anal. Toxicol. 2013, 37, 676–679. DOI: 10.1093/jat/bkt081.
  • Ramakrishna, N.; Vishwottam, K.; Koteshwara, M.; Manoj, S.; Santosh, M.; Chidambara, J.; Sumatha, B.; Varma, D. Rapid Quantification of Gabapentin in Human Plasma by Liquid Chromatography/Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2006, 40, 360–368. DOI: 10.1016/j.jpba.2005.07.012.
  • Hampel, D.; York, E. R.; Allen, L. H. Ultra-Performance Liquid Chromatography Tandem Mass-Spectrometry (Uplc–Ms/Ms) for the Rapid, Simultaneous Analysis of Thiamin, Riboflavin, Flavin Adenine Dinucleotide, Nicotinamide and Pyridoxal in Human Milk. J. Chromatogr. B 2012, 903, 7–13. DOI: 10.1016/j.jchromb.2012.06.024.
  • Zabihollahpoor, A.; Rahimnejad, M.; Najafpour, G.; Moghadamnia, A. A. Gold Nanoparticle Prepared by Electrochemical Deposition for Electrochemical Determination of Gabapentin as an Antiepileptic Drug. J. Electroanal. Chem. 2019, 835, 281–286. DOI: 10.1016/j.jelechem.2019.01.039.
  • Ragham, P. K.; Chandrasekhar, K. B. Development and Validation of a Stability-Indicating Rp-Hpl C-Cad Method for Gabapentin and Its Related Impurities in Presence of Degradation Products. J. Pharm. Biomed. Anal. 2016, 125, 122–129. DOI: 10.1016/j.jpba.2016.03.035.
  • Binaya, D. Estimation of Gabapentin in Human Plasma Using LC-MS/MS Method. Asian J. Pharma Clin. Res. 2013, 6, 213–216.
  • Rodríguez, J.; Castañeda, G.; Muñoz, L. Direct Determination of Pregabalin in Human Urine by Nonaqueous Ce‐Tof‐Ms. Electrophoresis 2013, 34, 1429–1436. DOI: 10.1002/elps.201200564.
  • D’Orazio, G.; Fanali, C.; Gentili, A.; Tagliaro, F.; Fanali, S. Nano-Liquid Chromatography for Enantiomers Separation of Baclofen by Using Vancomycin Silica Stationary Phase. J. Chromatogr. A 2019, 1605, 360358. DOI: 10.1016/j.chroma.2019.07.012.
  • Gómez-Canela, C.; Sala-Comorera, T.; Pueyo, V.; Barata, C.; Lacorte, S. Analysis of 44 Pharmaceuticals Consumed by Elderly Using Liquid Chromatography Coupled to Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2019, 168, 55–63. DOI: 10.1016/j.jpba.2019.02.016.
  • Al-Asmari, A. I. Method for the Identification and Quantification of Sixty Drugs and Their Metabolites in Postmortem Whole Blood Using Liquid Chromatography Tandem Mass Spectrometry. Foren. Sci. Int. 2020, 309, 110193. DOI: 10.1016/j.forsciint.2020.110193.
  • Dahl, S. R.; Olsen, K. M.; Strand, D. H. Determination of Gamma-Hydroxybutyrate (GHB), Beta-Hydroxybutyrate (BHB), Pregabalin, 1, 4-Butane-Diol (1, 4bd) and Gamma-Butyrolactone (GBL) in Whole Blood and Urine Samples by UPLC–MSMS. J. Chromatogr. B 2012, 885, 37–42.
  • Desiderio, C.; Rossetti, D. V.; Perri, F.; Giardina, B.; Messana, I.; Castagnola, M. Enantiomeric Separation of Baclofen by Capillary Electrophoresis Tandem Mass Spectrometry with Sulfobutylether-Β-Cyclodextrin as Chiral Selector in Partial Filling Mode. J. Chromatogr. B 2008, 875, 280–287. DOI: 10.1016/j.jchromb.2008.07.001.
  • Liu, G.; Jia, J.; Liu, H.; Lu, C.; Zhang, M.; Yu, C. Determination of Gabapentin in Human Serum by Liquid Chromatography-Tandem Mass Spectrometry Analysis. Pharm. Care Res. 2011, 2011, 42–44.
  • Hess, C.; Zeidler, S.; Roehrich, J. Forensic Application and Evaluation of a Commercially Available Pregabalin Immunoassay Test in Serum on an Olympus Au480. Drug Test. Anal. 2020. DOI: 10.1002/dta.2994.
  • Furugen, A.; Kobayashi, M.; Nishimura, A.; Takamura, S.; Narumi, K.; Yamada, T.; Iseki, K. Quantification of New Antiepileptic Drugs by Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry and Its Application to Cellular Uptake Experiment Using Human Placental Choriocarcinoma Bewo Cells. J. Chromatogr. B 2015, 1002, 228–233. DOI: 10.1016/j.jchromb.2015.08.031.
  • Abib Jr, E.; Duarte, L.; Pereira, R.; Pozzebon, J.; Tosetti, D.; Custodio, J. Gabapentin Bioequivalence Study: Quantification by Liquid Chromatography Coupled to Mass Spectrometry. J. Bioequivalence Bioavailab. 2011, 3, 187–190.
  • Ianni, F.; Aroni, K.; Gili, A.; Sardella, R.; Bacci, M.; Lancia, M.; Natalini, B.; Gambelunghe, C. GC‐MS/MS Detects Potential Pregabalin Abuse in Susceptible Subjects’ Hair. Drug Test. Anal. 2018, 10, 968–976. DOI: 10.1002/dta.2347.
  • Oertel, R.; Arenz, N.; Pietsch, J.; Kirch, W. Simultaneous Determination of Three Anticon‐Vulsants Using Hydrophilic Interaction LC‐MS. J. Sep. Sci. 2009, 32, 238–243. DOI: 10.1002/jssc.200800461.
  • Karavadi, T. M.; Challa, B. Bioanalytical Method Development and Validation of Pregabalin in Rat Plasma by Solid Phase Extraction with HPLC-MS/MS: Application to a Pharmacokinetic Study. J. Liq. Chromatogr. Relat. Technol. 2014, 37, 130–144. DOI: 10.1080/10826076.2012.738617.
  • Karinen, R.; Vindenes, V.; Hasvold, I.; Olsen, K. M.; Christophersen, A. S.; Øiestad, E. Determination of a Selection of anti‐Epileptic Drugs and Two Active Metabolites in Whole Blood by Reversed Phase UPLC‐MS/MS and Some Examples of Application of the Method in Forensic Toxicology Cases. Drug Test. Anal. 2015, 7, 634–644. DOI: 10.1002/dta.1733.
  • Kintz, P.; Ameline, A.; Raul, J.-S. Assessment of Pregabalin Use by Hair Testing. Subst. Use Misuse 2018, 53, 2093–2098. DOI: 10.1080/10826084.2018.1451893.
  • Kolocouri, F.; Dotsikas, Y.; Loukas, Y. L. Dried Plasma Spots as an Alternative Sample Collection Technique for the Quantitative LC-MS/MS Determination of Gabapentin. Anal. Bioanal. Chem. 2010, 398, 1339–1347. DOI: 10.1007/s00216-010-4048-2.
  • Labat, L.; Goncalves, A.; Marques, A. Liquid Chromatography Mass Spectrometry High Resolution for the Determination of Baclofen and Its Metabolites in Plasma. Application to Therapeutic Drug Monitoring. Biomed. Chromatogr. 2017. DOI: 10.1002/bmc.3936.
  • Larabi, I.; Fabresse, N.; Knapp, A.; Forcet, M.; Baud, F.; Lorin de la Grandmaison, G.; Alvarez, J. LC–MS/MS Method for Quantification of Baclofen in Hair: A Useful Tool to Assess Compliance in Alcohol Dependent Patients? Drug Test. Anal. 2018, 10, 694–700. DOI: 10.1002/dta.2308.
  • Nagaraju, P.; Kodali, B.; Datla, P. V.; Kovvasu, S. P. Lc-Ms/Ms Quantification of Tramadol and Gabapentin Utilizing Solid Phase Extraction. Int. J Anal. Chem. 2018, 2018, 1–9. DOI: 10.1155/2018/1605950.
  • Nahar, L.; Smith, A.; Patel, R.; Andrews, R.; Paterson, S. Validated Method for the Screening and Quantification of Baclofen, Gabapentin and Pregabalin in Human Post-Mortem Whole Blood Using Protein Precipitation and Liquid Chromatography–Tandem Mass Spectrometry. J. Anal. Toxicol. 2017, 41, 441–450. DOI: 10.1093/jat/bkx019.
  • Nirogi, R.; Kandikere, V.; Mudigonda, K.; Komarneni, P.; Aleti, R. Liquid Chromatography Atmospheric Pressure Chemical Ionization Tandem Mass Spectrometry Method for the Quantification of Pregabalin in Human Plasma. J. Chromatogr. B 2009, 877, 3899–3906. DOI: 10.1016/j.jchromb.2009.10.004.
  • Park, J. H.; Jhee, O. H.; Park, S. H.; Lee, J. S.; Lee, M. H.; Shaw, L. M.; Kim, K. H.; Lee, J. H.; Kim, Y. S.; Kang, J. S. Validated LC‐MS/MS Method for Quantification of Gabapentin in Human Plasma: Application to Pharmacokinetic and Bioequivalence Studies in Korean Volunteers. Biomed. Chromatogr. 2007, 21, 829–835. DOI: 10.1002/bmc.826.
  • Park, D.; Choi, H.; Jang, M.; Chang, H.; Woo, S.; Yang, W. Simultaneous Determination of 18 Psychoactive Agents and 6 Metabolites in Plasma Using LC–MS/MS and Application to Actual Plasma Samples from Conscription Candidates. Foren. Sci. Int. 2018, 288, 283–290. DOI: 10.1016/j.forsciint.2018.04.024.
  • Schlatt, L.; Costa, A. C. C.; Barz, V.; Ciarimboli, G.; Karst, U. Fast Simultaneous Quantification of gabapentin and cetirizine in Cell Lysates by Means of Hplc-Ms/Ms. J. Pharm. Biomed. Anal. 2020, 184, 113172. DOI: 10.1016/j.jpba.2020.113172.
  • Vaidya, V. V.; Yetal, S. M.; Roy, S. M.; Gomes, N. A.; Joshi, S. S. Lc-Ms–Ms Determination of Pregabalin in Human Plasma. Chroma. 2007, 66, 925–928. DOI: 10.1365/s10337-007-0430-4.
  • Sethi, P. D. Hptlc: High Performance Thin-Layer Chromatography; Quantitative Analysis of Pharmaceutical Formulations. CBS publishers & distributors: New Delhi, India, 1996.
  • Meena, S.; Sandhya, S. Validated Hptlc Method for Simultaneous Analysis of Pyrimethamine and Sulphadoxine in Pharmaceutical Dosage Forms. J. Chem. 2012, 2013, 698490. https://doi.org/10.1155/2013/698490.
  • Ilango, K.; Shiji Kumar, P. S. Development and Validation of Stability Indicating Hptlc and Hplc Methods for Simultaneous Determination of Telmisartan and Atorvastatin in Their Formulations. J. Chem. 2013, 2013, 1–9. DOI: 10.1155/2013/725385.
  • Souri, E.; Eskandari, M.; Tehrani, M. B.; Adib, N.; Ahmadkhaniha, R. Hplc Determination of Pregabalin in Bulk and Pharmaceutical Dosage Forms after Derivatization with 1-Fluoro-2, 4-Dinitrobenzene. Asian J. Chem. 2013, 25, 7332–7336. DOI: 10.14233/ajchem.2013.14624.
  • Al-Majed, A. A. A Direct Hplc Method for the Resolution and Quantitation of the R-(−)-and S-(+)-Enantiomers of Vigabatrin (Γ-Vinyl-Gaba) in Pharmaceutical Dosage Forms Using Teicoplanin Aglycone Chiral Stationary Phase. J. Pharm. Biomed. Anal 2009, 50, 96–99. DOI: 10.1016/j.jpba.2009.03.030.
  • Lee, S. J.; Cho, H. S.; Choi, H. J.; Hyun, M. H. Liquid Chromatographic Resolution of Vigabatrin and Its Analogue Γ-Amino Acids on Chiral Stationary Phases Based on (+)-(18-Crown-6)-2, 3, 11, 12-Tetracarboxylic Acid. J. Chromatogr. A 2008, 1188, 318–321. DOI: 10.1016/j.chroma.2008.02.102.
  • Rezaee, M.; Khalilian, F.; Pourjavid, M. R.; Seidi, S.; Chisvert, A.; Abdel-Rehim, M. Abdel-Rehim, M. Extraction and Sample Preparation. Int. J. Anal. Chem. 2015, 2015, 1–2. 2015. DOI: 10.1155/2015/397275.
  • Ajila, C.; Brar, S.; Verma, M.; Tyagi, R.; Godbout, S.; Valero, J. Extraction and Analysis of Polyphenols: Recent Trends. Crit. Rev. Biotechnol. 2011, 31, 227–249. DOI: 10.3109/07388551.2010.513677.
  • Shibata, M.; Hashi, S.; Nakanishi, H.; Masuda, S.; Katsura, T.; Yano, I. Detection of 22 Antiepileptic Drugs by Ultra‐Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry Applicable to Routine Therapeutic Drug Monitoring. Biomed. Chromatogr. 2012, 26, 1519–1528. DOI: 10.1002/bmc.2726.
  • Kostić, N.; Dotsikas, Y.; Malenović, A.; Medenica, M. Effects of Derivatization Reagents Consisting of N-Alkyl Chloroformate/N-Alcohol Combinations in Lc–Esi-Ms/Ms Analysis of Zwitterionic Antiepileptic Drugs. Talanta 2013, 116, 91–99. DOI: 10.1016/j.talanta.2013.04.082.
  • Hengy, H.; Kölle, E.-U. Determination of Gabapentin in Plasma and Urine by High-Performance Liquid Chromatography and Pre-Column Labelling for Ultraviolet Detection. J. Chromatogr. B 1985, 341, 473–478. DOI: 10.1016/S0378-4347(00)84064-5.
  • Lensmeyer, G. L.; Kempf, T.; Gidal, B. E.; Wiebe, D. A. Optimized Method for Determination of Gabapentin in Serum by High-Performance Liquid Chromatography. Ther. Drug Monit. 1995, 17, 251–258.
  • Al-Bukhaiti, W. Q.; Noman, A.; Qasim, A. S.; Al-Farga, A. Gas Chromatography: Principles, Advantages and Applications in Food Analysis. Int. J. Agric. Innov. Res. 2017, 6, 123–128.
  • Sierra-Rodero, M.; Fernández-Romero, J. M.; Gómez-Hens, A. Gómez-Hens, A. Determination of Fluoroquinolone Antibiotics by Microchip Capillary Electrophoresis along with Time-Resolved Sensitized Luminescence of Their Terbium (Iii) Complexes. Microchim. Acta 2014, 181, 1897–1904. DOI: 10.1007/s00604-014-1266-x.
  • Cheng, S.; Wang, Z.; Ge, S.; Wang, H.; He, P.; Fang, Y.; Wang, Q. Rapid Separation of Four Probiotic Bacteria in Mixed Samples Using Microchip Electrophoresis with Laser-Induced Fluorescence Detection. Microchim. Acta 2012, 176, 295–301. DOI: 10.1007/s00604-011-0728-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.