302
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Determination of Asenapine Maleate in Pharmaceutical and Biological Matrices: A Critical Review of Analytical Techniques over the Past Decade

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1755-1771 | Published online: 01 Jun 2021

References

  • Shahid, M.; Walker, G. B.; Zorn, S. H.; Wong, E. H. Asenapine: A Novel Psychopharmacologic Agent with a Unique Human Receptor Signature. J. Psychopharmacol. 2009, 23, 65–73. DOI: 10.1177/0269881107082944.
  • Rowley, M.; Bristow, L. J.; Hutson, P. H. Current and Novel Approaches to the Drug Treatment of Schizophrenia. J. Med. Chem. 2001, 44, 477–501. DOI: 10.1021/jm0002432.
  • Roth, B. L.; Sheffler, D.; Potkin, S. G. Atypical Antipsychotic Drug Actions: Unitary or Multiple Mechanisms for ‘Atypicality’? Clin. Neurosci. Res. 2003, 3, 108–117. DOI: 10.1016/S1566-2772(03)00021-5.
  • Weber, J.; McCormack, P. L. Asenapine. CNS Drugs 2009, 23, 781.
  • Robuck, P. R.; Wurzelmann, J. I. Understanding the Drug Development Process. Inflamm. Bowel. Dis. 2005, 11, S13.
  • Frare, R. G.; Singh, A. K. A Critical Review of Physicochemical Properties and Analytical Methods Applied to Quantitative Determination of Ebastine. Crit. Rev. Anal. Chem. 2018, 48, 102–109. DOI: 10.1080/10408347.2017.1412816.
  • Gaikwad, J.; Sharma, S.; Hatware, K. V. Review on Characteristics and Analytical Methods of Tazarotene: An Update. Crit. Rev. Anal. Chem. 2020, 50, 90–96. DOI: 10.1080/10408347.2019.1586519.
  • Hanck-Silva, G.; Fatori Trevizan, L. N.; Petrilli, R.; de Lima, F. T.; Eloy, J. O.; Chorilli, M. A Critical Review of Properties and Analytical/Bioanalytical Methods for Characterization of Cetuximab. Crit. Rev. Anal. Chem. 2020, 50, 125–135. DOI: 10.1080/10408347.2019.1581984.
  • Kokilambigai, K. S.; Lakshmi, K. S.; Sai Susmitha, A.; Seetharaman, R.; Kavitha, J. Linezolid-A Review of Analytical Methods in Pharmaceuticals and Biological Matrices. Crit. Rev. Anal. Chem. 2020, 50, 179–188. DOI: 10.1080/10408347.2019.1599709.
  • Menezes, M. N.; de Marco, B. A.; Fiorentino, F. A. M.; Zimmermann, A.; Kogawa, A. C.; Salgado, H. R. N. Flucloxacillin: A Review of Characteristics, Properties and Analytical Methods. Crit. Rev. Anal. Chem. 2019, 49, 67–77. DOI: 10.1080/10408347.2018.1468728.
  • Saka, C. Chromatographic Methods for Determination of Drugs Used in Prostate Cancer in Biological and Pharmacological Samples. Crit. Rev. Anal. Chem. 2019, 49, 78–99. DOI: 10.1080/10408347.2018.1487776.
  • Reçber, T.; Haznedaroğlu, İ. C.; Çelebier, M. Review on Characteristics and Analytical Methods of Rivaroxaban. Crit Rev Anal Chem. 2020. DOI:10.1080/10408347.2020.1839735
  • Roda, A. Analytical Chemistry for Drug Discovery and Development. Anal. Bioanal. Chem. 2010, 398, 27–28. DOI: 10.1007/s00216-010-3971-6.
  • Halima, O. A.; Aneesh, T.; Ghosh, R.; Thomas, N. R. Development and Validation of UV Spectrophotometric Method for the Estimation of Asenapine Maleate in Bulk and Pharmaceutical Formulation. Der. Pharma Chemica 2012, 4, 644.
  • Mrudulesh, Y.; Shankar, P. R.; Devadasu, C. H.; Srinivasa, P. Development of a Validated UV Spectrophotometric Method for the Quantitative Estimation of Asenapine Maleate in Bulk Drug. J. Chem. Pharm. Sci. 2013, 6, 227–230.
  • Avasarala, H.; Jayanthi, V. The Development and Validation of a Spectrophotometric Method for a Novel anti Psychotic Drug Asenapine Maleate. Int. J. Chemtech. Res. 2015, 8, 549.
  • Maradiya, J. K.; Goswami, S. S.; Suhagia, B. N. A Simple and Reproducible Estimation of Some Novel Atypical Antipsychotics by Colorimetric Method Using Bromocresol Green as Chromogen. Der Pharm Lett. 2015, 7, 218.
  • Ragaa, E.; Ahlam Abd, E. E.; Esraa, A.; Ayman, G. Development and Validation of New Spectrophotometric Methods for Estimation of Antipsychotic Drug Asenapine Maleate in Pure and Dosage Forms. Int. J. App. Pharm. 2020, 12, 62–69.
  • Gandhimathi, R.; Vijayaraj, S.; Jyothirmaie, M. P. Method Development and Validation of UV Spectroscopic Method for Estimation of Asenapine Maleate in Bulk and Tablet Formulation. Int. J. Med. Chem. Anal. 2012, 2, 85.
  • Surekha, M.; Swapna, M.; Kumara Swamy, G. New Validated Visible Spectrophotometric Methods for the Estimation of Triptans and Asenapine Maleate in Bulk and in Pharmaceutical Dosage Forms. Indo Am. J. Pharm. 2013, 3, 4637.
  • Borkar, A. A.; Gaikwad, N. J. UV Spectrophotometric and RP-HPLC Estimation of Drug Asenapine in Tablet Dosage Form. Int. J. Pharm. Sci. Res. 2016, 7, 3080.
  • Tejaswi, J. K. D. Determination of Asenapine Maleate by UV Method. Int. J. Pharm. Pharm. Res. 2020, 18, 697.
  • Chhalotiya, U. K.; Bhatt, K. K.; Shah, D. A.; Patel, J. R. Stability-Indicating Liquid Chromatographic Method for the Quantification of the New Antipsychotic Agent Asenapine in Bulk and in Pharmaceutical Formulation. Sci. Pharm. 2012, 80, 407–417. DOI: 10.3797/scipharm.1112-07.
  • Parthasarathi, T.; Srinivas, T. S.; Sri, M. V. Quantitative Determination of Asenapine Maleate Using Reverse Phase-High Performance Liquid Chromatography. Int. J. Pharma. Bio. Sci. 2012, 3, 360.
  • Aneesh, T. P.; Rajasekaran, A. Stress Degradation Studies and Development and Validation of RP-HPLC Method for the Estimation of Asenapine Maleate. Int. J. Pharm. Pharmaceut. Sci. 2012, 4, 448.
  • Pansuriya, K.; Parejiya, P.; Suthar, D.; Shelat, P.; Vekariya, A.; Patel, H. Development and Validation of RP-HPLC Method for Quantitative Determination and Estimation of Asenapine Maleate in Bulk and Buccal (Effervescent) Dosage Form. J. Pharm. Innov. 2019, 8, 304.
  • Ramadan, N. K.; Mohamed, T. A.; Fouad, R. M.; Moustafa, A. A. Stability-Indicating High-Performance Liquid Chromatography and Thin-Layer Chromatography Methods for the Determination of Cyclobenzaprine Hydrochloride and Asenapine Maleate. J. Chromatogr. Sci. 2017, 30, 313–322. DOI: 10.1556/1006.2017.30.4.12.
  • Managuli, R. S.; Kumar, L.; Chonkar, A. D.; Shirodkar, R. K.; Lewis, S.; Koteshwara, K. B.; Reddy, M. S.; Mutalik, S. Development and Validation of a Stability-Indicating RP-HPLC Method by a Statistical Optimization Process for the Quantification of Asenapine Maleate in Lipidic Nanoformulations. J. Chromatogr. Sci. 2016, 54, 1290–1300. DOI: 10.1093/chromsci/bmw062.
  • Patel, K.; Joshi, D.; Kumbhani, J.; Prajapati, V. HPLC Method Development for Estimation of Dissolution of Antipsychotic Drug as Sublingual Film Dosage Form. J. Chem. Sci. 2018, 7, 420.
  • Chander, P.; Mehta, T. N. HPLC-UV Method for the Determination of Asenapine Maleate Impurities Using a Solid Core C8 Column; Thermo Fisher Scientific: Waltham, MA, 2013; p. 1.
  • Reddy, S. C. N.; Babu, V.; Katari, N. Method Development and Validation of Related Substances in Asenapine Tablets by Reverse Phase HPLC. World J. Pharm. Res. 2016, 5, 1653.
  • Kalpana, G. L.; Devalarao, G.; Raju, M. B.; Praveenkumar, T. Validated Stability Indicating High Performance Liquid Chromatographic Method for the Quantification of Asenapine Maleate. Int. J. Pharm. Pharm. Sci. 2015, 7, 61.
  • Govindarajan, N.; Koulagari, S.; Methuku, A.; Podhuturi, S. Method Development and Validation of RP-HPLC Method for Determination of New Antipsychotic Agent Asenapine Maleate in Bulk and Pharmaceutical Formulation. Eurasian J. Anal. Chem. 2014, 9, 58.
  • Patel, M. M.; Patel, P. C. Analytical Method Development and Validation of RP-HPLC for Estimation of Asenapine Maleate in Bulk Drug and Tablet Dosage Form. Int. J. Pharm. Res. Scholars 2016, 5, 15.
  • Kumbhar, S. A.; Kokare, C. R.; Shrivastava, B.; Gorain, B. Screening of Nanoemulsion Components for Asenapine Maleate Using Validated RP-HPLC Method. Ann. Pharm. Fr. 2020, 78, 379–387. DOI: 10.1016/j.pharma.2020.04.005.
  • Yan, Q.; Tong, Y.; Wang, C.; Wang, D.; Song, W. Determination of Related Substances in Asenapine Maleate by HPLC. China Pharm. 2014, 10, 1655.
  • Karaca, S.; Ugur, D. A Stability Indicating Ion-Pair LC Method for the Determination of Asenapine in Pharmaceuticals. J. Chil. Chem. Soc. 2017, 62, 3325–3329. DOI: 10.4067/S0717-97072017000100004.
  • Shyamala, A. S.; Anitha, P. Validated Stability Indicating RP-HPLC Method for Determination of Asenapine. Indo Am. J. Pharm. 2018, 5, 4107.
  • Shreya, A. B.; Managuli, R. S.; Menon, J.; Kondapalli, L.; Hegde, A. R.; Avadhani, K.; Shetty, P. K.; Amirthalingam, M.; Kalthur, G.; Mutalik, S. Nano-Transfersomal Formulations for Transdermal Delivery of Asenapine Maleate: In Vitro and in Vivo Performance Evaluations. J. Liposome Res. 2016, 26, 221–232. DOI: 10.3109/08982104.2015.1098659.
  • Manikkath, J.; Shenoy, G. G.; Pandey, S.; Mutalik, S. Response Surface Methodology for Optimization of Ultrasound-Assisted Transdermal Delivery and Skin Retention of Asenapine Maleate. J. Pharm. Innov. 2019, 14, 391–399. DOI: 10.1007/s12247-019-09386-4.
  • Singh, S.; Dadhania, P.; Vuddanda, P. R.; Jain, A.; Velaga, S.; Singh, S. Intranasal Delivery of Asenapine Loaded Nanostructured Lipid Carriers: Formulation, Characterization, Pharmacokinetic and Behavioural Assessment. RSC Adv. 2016, 6, 2032–2045. DOI: 10.1039/C5RA19793G.
  • Singh, S. K.; Hidau, M. K.; Gautam, S.; Gupta, K.; Singh, K. P.; Singh, S. K.; Singh, S. Glycol Chitosan Functionalized Asenapine Nanostructured Lipid Carriers for Targeted Brain Delivery: Pharmacokinetic and Teratogenic Assessment. Int. J. Biol. Macromol. 2018, 108, 1092–1100. DOI: 10.1016/j.ijbiomac.2017.11.031.
  • Avachat, A. M.; Kapure, S. S. Asenapine Maleate in Situ Forming Biodegradable Implant: An Approach to Enhance Bioavailability. Int. J. Pharm. 2014, 477, 64–72. DOI: 10.1016/j.ijpharm.2014.10.006.
  • Zhai, J.; Wang, Y. E.; Zhou, X.; Ma, Y.; Guan, S. Long-Term Sustained Release Poly(Lactic-co-Glycolic Acid) Microspheres of Asenapine Maleate with Improved Bioavailability for Chronic Neuropsychiatric Diseases. Drug Deliv. 2020, 27, 1283–1291. DOI: 10.1080/10717544.2020.1815896.
  • Kulkarni, J. A.; Avachat, A. M. Pharmacodynamic and Pharmacokinetic Investigation of Cyclodextrin-Mediated Asenapine Maleate in Situ Nasal Gel for Improved Bioavailability. Drug Dev. Ind. Pharm. 2017, 43, 234–245. DOI: 10.1080/03639045.2016.1236808.
  • Patel, M.; Mundada, V.; Sawant, K. Enhanced Intestinal Absorption of Asenapine Maleate by Fabricating Solid Lipid Nanoparticles Using TPGS: Elucidation of Transport Mechanism, Permeability across Caco-2 Cell Line and in Vivo Pharmacokinetic Studies. Artif. Cells Nanomed. Biotechnol. 2019, 47, 144–153. DOI: 10.1080/21691401.2018.1546186.
  • Kumar, N.; Sangeetha, D.; Kalyanraman, L. Determination of Degradation Products and Process Related Impurities of Asenapine Maleate in Asenapine Sublingual Tablets by UPLC. IOP Conf. Ser: Mater. Sci. Eng. 2017, 263, 022029. DOI: 10.1088/1757-899X/263/2/022029.
  • Trawiński, J.; Skibiński, R. Photolytic and Photocatalytic Transformation of an Antipsychotic Drug Asenapine: Comparison of Kinetics, Identification of Transformation Products, and in Silico Estimation of Their Properties. Ecotoxicol. Environ. Saf. 2018, 162, 272–286. DOI: 10.1016/j.ecoenv.2018.07.010.
  • Ansermot, N.; Brawand-Amey, M.; Kottelat, A.; Eap, C. B. Fast Quantification of Ten Psychotropic Drugs and Metabolites in Human Plasma by Ultra-High Performance Liquid Chromatography Tandem Mass Spectrometry for Therapeutic Drug Monitoring. J. Chromatogr. A 2013, 1292, 160–172. DOI: 10.1016/j.chroma.2012.12.071.
  • Panda, S.; Kumar, R.; Dash, R.; Patro, C. Simple RP-UFLC Method for Analysis of Asenapine Maleate. Int. J. Pharm. Sci. Nanotechnol. 2015, 8, 2843.
  • Yadav, B. K.; Sathish, N. K.; Lamichhane, M.; Acharya, A. A Newer RP-UFLC Method Development and Validation of an anti-Psychotic Drug Asenapine Maleate in Bulk Drug and Pharmaceutical Formulation. Pharm. Lett. 2015, 7, 214.
  • Managuli, R. S.; Gourishetti, K.; Shenoy, R. R.; Koteshwara, K. B.; Reddy, M. S.; Mutalik, S. Preclinical Pharmacokinetics and Biodistribution Studies of Asenapine Maleate Using Novel and Sensitive RP-HPLC Method. Bioanalysis 2017, 9, 1037–1047. DOI: 10.4155/bio-2017-0069.
  • Narke, R.; Mandlik, S.; Kapure, S. Bioanalytical Development and Validation of Stabilityindicating RP-HPLC Method for the Estimation of Asenapine Maleate in Plasma. Inventi Impact Biomed. Anal. 2015, 1, 5.
  • Kumbhar, S. A.; Kokare, C. R.; Shrivastava, B.; Gorain, B.; Choudhury, H. Preparation, Characterization, and Optimization of Asenapine Maleate Mucoadhesive Nanoemulsion Using Box-Behnken Design: In Vitro and in Vivo Studies for Brain Targeting. Int. J. Pharm. 2020, 586, 119499.
  • Singh, R.; Narke, R. M.; Jadhav, P. V. Formulation and Evaluation of Asenapine Maleate Loaded Niosomes for the Treatment of Schizophrenia. Indian J. Pharm. Educ. Res. 2020, 54, S139–S148.
  • Patel, M. H.; Mundada, V. P.; Sawant, K. K. Novel Drug Delivery Approach via Self-Microemulsifying Drug Delivery System for Enhancing Oral Bioavailability of Asenapine Maleate: Optimization, Characterization, Cell Uptake, and in Vivo Pharmacokinetic Studies. AAPS PharmSciTech 2019, 20, 44. DOI: 10.1208/s12249-018-1212-z.
  • Kovatsi, L.; Titopoulou, A.; Tsakalof, A.; Samanidou, V. HPLC Analysis of Antipsychotic Asenapine in Alternative Biomatrices: Hair and Nail Clippings. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 1666–1670. DOI: 10.1080/10826076.2015.1089894.
  • Protti, M.; Vignali, A.; Sanchez Blanco, T.; Rudge, J.; Bugamelli, F.; Ferranti, A.; Mandrioli, R.; Mercolini, L. Enantioseparation and Determination of Asenapine in Biological Fluid Micromatrices by HPLC with Diode Array Detection. J. Sep. Sci. 2018, 41, 1257–1265. DOI: 10.1002/jssc.201701315.
  • Bhatt, N. M.; Chavada, V. D.; Sanyal, M.; Shrivastav, P. S. Densitometry and Indirect Normal-Phase HPTLC-ESI-MS for Separation and Quantitation of Drugs and Their Glucuronide Metabolites from Plasma. Biomed. Chromatogr. 2019, 33, e4602.
  • Reddy, A. V. B.; Venugopal, N.; Madhavi, G. Simultaneous Determination of Asenapine and Valproic Acid in Human Plasma Using LC-MS/MS: Application of the Method to Support Pharmacokinetic Study. J. Pharm. Anal. 2013, 3, 394–401. DOI: 10.1016/j.jpha.2013.04.008.
  • Mohanam, V. Development and Validation of Asenapine and Its Metabolite by Bioanalytical Methods Using Liquid Chromatography-Tandem Mass Spectroscopy (LC-MS/MS. Pharmaceutical Analysis. Tamil Nadu: Edayathangudy GS Pillay College of Pharmacy, Nagapattinam, 2014.
  • Patel, N. P.; Sanyal, M.; Sharma, N.; Patel, D. S.; Shrivastav, P. S.; Patel, B. N. Determination of Asenapine in Presence of Its Inactive Metabolites in Human Plasma by LC-MS/MS. J. Pharm. Anal. 2018, 8, 341–347. DOI: 10.1016/j.jpha.2018.06.002.
  • Boer, T.; Meulman, E.; Meijering, H.; Wieling, J.; Dogterom, P.; Lass, H. Quantification of Asenapine and Three Metabolites in Human Plasma Using Liquid Chromatography-Tandem Mass Spectrometry with Automated Solid-Phase Extraction: Application to a Phase I Clinical Trial with Asenapine in Healthy Male Subjects. Biomed. Chromatogr. 2012, 26, 156–165. DOI: 10.1002/bmc.1640.
  • de Boer, T.; Meulman, E.; Meijering, H.; Wieling, J.; Dogterom, P.; Lass, H. Development and Validation of Automated SPE-HPLC-MS/MS Methods for the Quantification of Asenapine, a New Antipsychotic Agent, and Its Two Major Metabolites in Human Urine. Biomed. Chromatogr. 2012, 26, 1461–1463. DOI: 10.1002/bmc.2722.
  • Miller, C.; Pleitez, O.; Anderson, D.; Mertens-Maxham, D.; Wade, N. Asenapine (Saphris®): GC-MS Method Validation and the Postmortem Distribution of a New Atypical Antipsychotic Medication. J. Anal. Toxicol. 2013, 37, 559–564. DOI: 10.1093/jat/bkt076.
  • Patel, R. B.; Naregalkar, N. S.; Patel, M. R. Stability-Indicating HPTLC Method for Quantitative Estimation of Asenapine Maleate in Pharmaceutical Formulations, Equilibrium Solubility, and Ex Vivo Diffusion Studies. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 1731–1739. DOI: 10.1080/10826076.2015.1092448.
  • Avasarala, H.; Jayanthi, V. R.; Dinakaran, S. K. Fast and Sensitive Quantification of Asenapine Maleate by High-Performance Thin Layer Chromatography. Lat. Am. J. Pharm. 2018, 37, 330.
  • Szabó, Z. I.; Tóth, G.; Völgyi, G.; Komjáti, B.; Hancu, G.; Szente, L.; Sohajda, T.; Béni, S.; Muntean, D. L.; Noszál, B. Chiral Separation of Asenapine Enantiomers by Capillary Electrophoresis and Characterization of Cyclodextrin Complexes by NMR Spectroscopy, Mass Spectrometry and Molecular Modeling. J. Pharm. Biomed. Anal. 2016, 117, 398–404. DOI: 10.1016/j.jpba.2015.09.022.
  • Aliyeva, S.; Atila Karaca, S.; Uğur, A.; Dal Poçan, A.; Uğur, D. Y. A Novel Capillary Electrophoresis Method for the Quantification of Asenapine in Pharmaceuticals Using Box-Behnken Design. Chem. Pap. 2020, 74, 4443–4451. DOI: 10.1007/s11696-020-01256-5.
  • Aarelly, K.; Thimmaraju, M.; Nerella, R. Quantitative Determination of Asenapine in Both Bulk and Formulations Using Neutralization Titrations. J. Appl. Pharm. Sci. 2012, 2, 141.
  • Citrome, L. Asenapine Review. Part I: Chemistry, Receptor Affinity Profile, Pharmacokinetics and Metabolism. Expert Opin. Drug Metabol. Toxicol. 2014, 10, 893–903. DOI: 10.1517/17425255.2014.908185.
  • Asenapine maleate. in PubChem Compound Summary for CID 57354691: National Center for Biotechnology Information, 2020.
  • Citrome, L. Role of Sublingual Asenapine in Treatment of Schizophrenia. Neuropsychiatr. Dis. Treat. 2011, 7, 325.
  • Gerrits, M.; de Greef, R.; Peeters, P. Effect of Absorption Site on the Pharmacokinetics of Sublingual Asenapine in Healthy Male Subjects. Biopharm. Drug Dispos. 2010, 31, 351–357. DOI: 10.1002/bdd.718.
  • Stoner, S. C.; Pace, H. A. Asenapine: A Clinical Review of a Second-Generation Antipsychotic. Clin. Ther. 2012, 34, 1023–1040. DOI: 10.1016/j.clinthera.2012.03.002.
  • Vieta, E.; Montes, J. M. A Review of Asenapine in the Treatment of Bipolar Disorder. Clin. Drug Investig. 2018, 38, 87–99. DOI: 10.1007/s40261-017-0592-2.
  • Reynolds, G. P. Receptor Mechanisms of Antipsychotic Drug Action in Bipolar Disorder - Focus on Asenapine. Ther. Adv. Psychopharmacol. 2011, 1, 197–204. DOI: 10.1177/2045125311430112.
  • Tarazi, F. I.; Shahid, M. Asenapine Maleate: A New Drug for the Treatment of Schizophrenia and Bipolar Mania. Drugs Today 2009, 45, 865. DOI: 10.1358/dot.2009.45.12.1421561.
  • Singh, S.; Kosuru, R.; Dewangan, H.; Singh, S. An Overview on Asenapine Maleate:PK-PD, Preclinical and Clinical Update. The Pharmstudent. 2015, 26, 110.
  • Wójcikowski, J.; Danek, P. J.; Basińska-Ziobroń, A.; Pukło, R.; Daniel, W. A. In Vitro Inhibition of Human Cytochrome P450 Enzymes by the Novel Atypical Antipsychotic Drug Asenapine: A Prediction of Possible Drug–Drug Interactions. Pharmacol. Rep. 2020, 72, 612–621. DOI: 10.1007/s43440-020-00089-z.
  • Patel, R. B.; Patel, M. R.; Shankar, M. B.; Bhatt, K. K. Development and Validation of Second-Derivative Spectrophotometry Method for Simultaneous Estimation of Alprazolam and Fluoxetine Hydrochloride in Pure Powder and Tablet Formulation and Its Comparison with HPLC Method. Eurasian J. Anal. Chem. 2009, 4, 76.
  • Patel, R. B.; Patel, A. B.; Patel, M. R.; Shankar, M. B.; Bhatt, K. K. Estimation of Alprazolam and Sertraline in Pure Powder and Tablet Formulations by High-Performance Liquid Chromatography and High-Performance Thin-Layer Chromatography. Anal. Lett. 2009, 42, 1588–1602. DOI: 10.1080/00032710902994165.
  • Patel, R. B.; Patel, M. R.; Mehta, J. B. Validation of Stability Indicating High Performance Liquid Chromatographic Method for Estimation of Desloratadine in Tablet Formulation. Arab. J. Chem. 2017, 10, S644–S650. DOI: 10.1016/j.arabjc.2012.10.026.
  • Patel, B.; Gopani, M.; Vikani, K.; Patel, R.; Patel, M. Stability Indicating Liquid Chromatographic Method for Estimation of Trihexyphenidyl Hydrochloride and Risperidone in Tablet Formulation: Development and Validation Consideration. Chromatogr. Res. Int. 2014, 2014, 523184.
  • Patel, R. B.; Shankar, M. B.; Patel, M. R.; Bhatt, K. K. Simultaneous Estimation of Acetylsalicylic Acid and Clopidogrel Bisulfate in Pure Powder and Tablet Formulations by High-Performance Column Liquid Chromatography and High-Performance Thin-Layer Chromatography. J. AOAC. Int. 2008, 91, 750–755. DOI: 10.1093/jaoac/91.4.750.
  • Patel, R. B.; Patel, N. M.; Patel, M. R.; Solanki, A. B. Optimization of Robust HPLC Method for Quantitation of Ambroxol Hydrochloride and Roxithromycin Using a DoE Approach. J. Chromatogr. Sci. 2017, 55, 275–283. DOI: 10.1093/chromsci/bmw182.
  • Patel, R. B.; Patel, M. R.; Chaudhari, M. D. Stability Indicating High Performance Liquid Chromatographic Method for Estimation of Adapalene in Tablet Formulation. J. Liq. Chromatogr. Relat. Technol. 2014, 37, 379–390. DOI: 10.1080/10826076.2012.745142.
  • Khatri, R. H.; Patel, R. B.; Patel, M. R. A New RP-HPLC Method for Estimation of Clindamycin and Adapalene in Gel Formulation: Development and Validation Consideration. Thai J. Pharm. Sci. 2014, 38, 44.
  • Agrawal, V.; Patel, R.; Patel, M.; Mishra, S.; Thanki, K. RP-HPLC Method for Quantitative Estimation of Efinaconazole in Topical Microemulsion and Microemulsion-Based-Gel Formulations and in Presence of Its Degradation Products. Microchem J. 2020, 155, 104753.
  • Patani, N.; Patel, M.; Patel, R. Development and Validation of HPLC Methodology for Quantitative Estimation of Efinaconazole in Topical Pharmaceutical Formulation Prepared in-House for the Treatment of Onychomycosis. Sep. Sci. Plus 2020, 3, 375–383. DOI: 10.1002/sscp.202000019.
  • Patel, R.; Patel, M.; Goswami, T. S. Stability Indicating RP-HPLC Method for Estimation of Bamifylline Hydrochloride in Tablet Formulation: Development and Validation Consideration. Thai J. Pharm. Sci. 2014, 38, 168.
  • Indian Pharmacopoeia (Ghaziabad, India: Indian Pharamcopoeial Commission, 2018), 1272.
  • Patel, R. B.; Patel, M. R.; Patel, N. M. Box-Behnken Experimental Design Aided Optimization of Stability Indicating HPTLC-Based Assay Method: Application in Pharmaceutical Dosage Form Containing Model Drugs-Roxithromycin and Ambroxol Hydrochloride. Anal. Chem. Lett. 2019, 9, 816–834. DOI: 10.1080/22297928.2019.1700158.
  • Patel, M. R.; Patel, R. B.; Parikh, J. R.; Patel, B. G. HPTLC Method for Estimation of Tazarotene in Topical Gel Formulations and in Vitro Study. Anal. Methods 2010, 2, 275. DOI: 10.1039/b9ay00240e.
  • Patel, R. B.; Patel, M. R.; Bhatt, K. K.; Patel, B. G. HPTLC Method Development and Validation: Quantification of Paliperidone in Formulations and in Vitro Release Study. Anal. Methods 2010, 2, 525. DOI: 10.1039/b9ay00276f.
  • Patel, R. B.; Patel, M. R.; Patni, N. R.; Agrawal, V. Efinaconazole: DoE-Supported Development and Validation of a Quantitative HPTLC Method and Its Application for the Assay of Drugs in Solution and Microemulsion-Based Formulations. Anal. Methods 2020, 12, 1380–1388. DOI: 10.1039/C9AY02599E.
  • Patel, R. B.; Patel, M. R.; Bhatt, K. K.; Patel, B. G. Development and Validation of HPTLC Method for Estimation of Carbamazepine in Formulations and Its in Vitro Release Study. Chromatogr. Res. Int. 2011, 2011, 1–8. DOI: 10.4061/2011/684369.
  • Patel, R. B.; Patel, M. R.; and B. G. Patel, Experimental Aspects and Implementation of HPTLC. In High-Performance Thin-Layer Chromatography (HPTLC), Srivastava, M., Eds.; Springer: Berlin Heidelberg, 2011; p. 41.
  • Patel, R. B.; Patel, B. G.; Patel, M. R.; Bhatt, K. K. HPTLC Method Development and Validation for Analysis of Risperidone in Formulations, and in-Vitro Release Study. Acta Chromatogr. 2010, 22, 549–567. DOI: 10.1556/AChrom.22.2010.4.5.
  • Patel, R. B.; Patel, M. R.; Bhatt, K. K.; Patel, B. G. Development and Validation of an HPTLC Method for Determination of Olanzapine in Formulations. J. AOAC. Int. 2010, 93, 811–819. DOI: 10.1093/jaoac/93.3.811.
  • Patel, R. B.; Patel, M. R.; Shankar, M. B.; Bhatt, K. K. Simultaneous Determination of Alprazolam and Fluoxetine Hydrochloride in Tablet Formulations by High-Performance Column Liquid Chromatography and High-Performance Thin-Layer Chromatography. J. AOAC. Int. 2009, 92, 1082–1088. DOI: 10.1093/jaoac/92.4.1082.
  • Patel, R.; Patel, M.; Dubey, N.; Dubey, N.; Patel, B. HPTLC Method Development and Validation: Strategy to Minimize Methodological Failures. J. Food Drug Anal. 2012, 20, 794.
  • Patel, R. B.; Patel, M. R.; Goswami, T. P. A New HPTLC Method for Estimation of Bamifylline: Development and Validation Consideration. Int. J. Adv. Pharm. Anal. 2012, 2, 83.
  • Gopani, M.; Patel, R. B.; Patel, M. R.; Solanki, A. B. Development of a New High-Performance Thin Layer Chromatographic Method for Quantitative Estimation of Lamivudine and Zidovudine in Combined Tablet Dosage Form Using Quality by Design Approach. J. Liq. Chromatogr. Relat. Technol. 2014, 37, 2420–2432. DOI: 10.1080/10826076.2013.836714.
  • Patel, M. R.; Patel, R. B.; Parikh, J. R.; Patel, B. G. HPTLC Method for Estimation of ISsotretinoin in Topical Formulations, Equilibrium Solubility Screening, and in Vitro Permiation Study. J. Liq. Chromatogr. Relat. Technol. 2011, 34, 1783–1799. DOI: 10.1080/10826076.2011.579218.
  • Patel, R.; Patel, N.; Patel, M. Design, Development and Optimization of New High Performance Thin-Layer Chromatography Method for Quantitation of Retapamulin in Pharmaceutical Formulation: Application of Design of Experiment. Sep. Sci. Plus. 2020, 3, 121–128. DOI: 10.1002/sscp.201900107.
  • Parmar, D. A.; Thakkar, D. V.; Patel, R. B.; Patel, M. R. HPTLC Method for Simultaneous Estimation of Ramipril and Losartan Potassium in Pharmaceutical Dosage Form: development and Validation Consideration. Thai J. Pharm. Sci. 2015, 39, 83.
  • Patel, R. B.; Vekaria, K. B.; Patel, M. R. TLC-Densitometric Method for Quantitation of Lurasidone Hydrochloride in Nanoemulsion, Microemulsion, for Equilibrium Solubility and Ex Vivo Diffusion Studies. Thai J. Pharm. Sci. 2016, 40, 32.
  • Luo, Z.; Fang, C.; Liu, Q. China Patent, No., 2014.
  • Patel, M. R. US Patent, No., 2018.
  • Blatter, F.; Reichenbächer, K. United States Patent, No., 2012.
  • Albayrak, C. Unites States Patent, No., 2014.
  • Bigus, P.; Tsakovski, S.; Simeonov, V.; Namieśnik, J.; Tobiszewski, M. Hasse Diagram as a Green Analytical Metrics Tool: ranking of Methods for Benzo[a]Pyrene Determination in Sediments. Anal. Bioanal. Chem. 2016, 408, 3833–3841. DOI: 10.1007/s00216-016-9473-4.
  • Tobiszewski, M. Metrics for Green Analytical Chemistry. Anal. Methods 2016, 8, 2993–2999. DOI: 10.1039/C6AY00478D.
  • Ibrahim, A. E.; Saraya, R. E.; Saleh, H.; Elhenawee, M. Development and Validation of Eco-Friendly micellar-HPLC and HPTLC-Densitometry Methods for the Simultaneous Determination of Paritaprevir, Ritonavir and Ombitasvir in Pharmaceutical Dosage Forms. Heliyon 2019, 5, e01518. DOI: 10.1016/j.heliyon.2019.e01518.
  • El-Masry, A. A.; Hammouda, M. E. A.; El-Wasseef, D. R.; El-Ashry, S. M. Eco-Friendly Green Liquid Chromatographic Determination of Azelastine in the Presence of Its Degradation Products: Applications to Degradation Kinetics. J. AOAC. Int. 2018, 102, 81.
  • Goncalves, B. R.; Machado, A.; Oliveira, P. R.; Barth, T.; Sangoi, M. S.; Todeschini, V. Delapril and Indapamide: Development and Validation of a Stability-Indicating Core-Shell LC Method and Its Application for Simultaneous Tablets Assay. J. AOAC. Int. 2018, 102, 91.
  • Mohamed, H. M.; Lamie, N. T. Analytical Eco-Scale for Assessing the Greenness of a Developed RP-HPLC Method Used for Simultaneous Analysis of Combined Antihypertensive Medications. J. AOAC. Int. 2016, 99, 1260–1265. DOI: 10.5740/jaoacint.16-0124.
  • Shaaban, H.; Mostafa, A. Sustainable Eco-Friendly Ultra-High-Performance Liquid Chromatographic Method for Simultaneous Determination of Caffeine and Theobromine in Commercial Teas: Evaluation of Greenness Profile Using NEMI and Eco-Scale Assessment Tools. J. AOAC. Int. 2018, 101, 1781–1787. DOI: 10.5740/jaoacint.18-0084.
  • Keith, L. H.; Gron, L. U.; Young, J. L. Green Analytical Methodologies. Chem. Rev. 2007, 107, 2695–2708. DOI: 10.1021/cr068359e.
  • Funari, C. S.; Carneiro, R. L.; Khandagale, M. M.; Cavalheiro, A. J.; Hilder, E. F. Acetone as a Greener Alternative to Acetonitrile in Liquid Chromatographic Fingerprinting. J. Sep. Science 2015, 38, 1458–1465. DOI: 10.1002/jssc.201401324.
  • Tobiszewski, M.; Marć, M.; Gałuszka, A.; Namieśnik, J. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry. Molecules 2015, 20, 10928–10946. DOI: 10.3390/molecules200610928.
  • Yabre, M.; Ferey, L.; Some, I. T.; Gaudin, K. Greening Reversed-Phase Liquid Chromatography Methods Using Alternative Solvents for Pharmaceutical Analysis. Molecules 2018, 23, 1065. DOI: 10.3390/molecules23051065.
  • Plotka-Wasylka, J. A New Tool for the Evaluation of the Analytical Procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204.
  • Gałuszka, A.; Migaszewski, Z. M.; Konieczka, P.; Namieśnik, J. Analytical Eco-Scale for Assessing the Greenness of Analytical Procedures. Trends Anal. Chem. 2012, 37, 61–72. DOI: 10.1016/j.trac.2012.03.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.