585
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Recent Progress on Toxicity and Detection Methods of Polychlorinated Biphenyls in Environment and Foodstuffs

, , , , , & ORCID Icon show all
Pages 928-953 | Published online: 28 Jan 2022

References

  • Bartlett, P. W.; Isaksson, E.; Hermanson, M. H. New’ Unintentionally Produced PCBs in the Arctic. Emerg. Contaminants 2019, 5, 9–14. DOI: 10.1016/j.emcon.2018.12.004.
  • C. Annex of the Stockholm Convention on Persistent Organic Pollutants. United Nations Environmental Programme, Geneva, vol. 29; 2008.
  • Pokhrel, B.; Gong, P.; Wang, X.; Khanal, S. N.; Ren, J.; Wang, C.; Gao, S.; Yao, T. Atmospheric Organochlorine Pesticides and Polychlorinated Biphenyls in Urban Areas of Nepal: spatial Variation, Sources, Temporal Trends, and Long-Range Transport Potential. Atmos. Chem. Phys. 2018, 18, 1325–1336. DOI: 10.5194/acp-18-1325-2018.
  • Liu, Y.; Richardson, E. S.; Derocher, A. E.; Lunn, N. J.; Lehmler, H. J.; Li, X.; Zhang, Y.; Cui, J. Y.; Cheng, L.; Martin, J. W. Hundreds of Unrecognized Halogenated Contaminants Discovered in Polar Bear Serum. Angew. Chem. Int. Ed. Engl. 2018, 57, 16401–16406. DOI: 10.1002/anie.201809906.
  • Routti, H.; Jenssen, B. M.; Tartu, S. Ecotoxicologic Stress in Arctic Marine Mammals, with Particular Focus on Polar Bears. In Marine Mammal Ecotoxicology, Elsevier: Amsterdam, 2018; p 345.
  • Strémy, M.; Šutová, Z.; Murínová, ĽP.; Richterová, D.; Wimmerová, S.; Čonka, K.; Drobná, B.; Fábelová, L.; Jurečková, D.; Jusko, T. A.; et al. The Spatial Distribution of Congener-Specific Human PCB Concentrations in a PCB-Polluted Region. Sci. Total Environ. 2019, 651, 2292–2303. DOI: 10.1016/j.scitotenv.2018.10.123.
  • Jones, K. C.; Voogt, P. D. Persistent Organic Pollutants (POPs): State of the Science. Environ. Pollut. 1999, 100, 209–221. DOI: 10.1016/S0269-7491(99)00098-6.
  • Nizzetto, L.; Macleod, M.; Borgå, K.; Cabrerizo, A.; Dachs, J.; Guardo, A. D.; Ghirardello, D.; Hansen, K. M.; Jarvis, A.; Lindroth, A. Past, Present, and Future Controls on Levels of Persistent Organic Pollutants in the Global Environment. ACS Publications, Washington, 2010.
  • Zhao, S.; Breivik, K.; Liu, G.; Zheng, M.; Jones, K. C.; Sweetman, A. J. Long-Term Temporal Trends of Polychlorinated Biphenyls and Their Controlling Sources in China. Environ. Sci. Technol. 2017, 51, 2838–2845. DOI: 10.1021/acs.est.6b05341.
  • Bergkvist, C.; Berglund, M.; Glynn, A.; Wolk, A.; Åkesson, A. Dietary Exposure to Polychlorinated Biphenyls and Risk of Myocardial Infarction - a Population-Based Prospective Cohort Study . Int. J. Cardiol. 2015, 183, 242–248. DOI: 10.1016/j.ijcard.2015.01.055.
  • Dominguez, I.; Arrebola, F. J.; Gavara, R.; Vidal, J. L. M.; Frenich, A. G. Automated and Simultaneous Determination of Priority Substances and Polychlorinated Biphenyls in Wastewater Using Headspace Solid Phase Microextraction and High Resolution Mass Spectrometry. Anal. Chim. Acta 2018, 1002, 39–49. DOI: 10.1016/j.aca.2017.11.056.
  • Ahmed, F. E. Analysis of Polychlorinated Biphenyls in Food Products. Trac, Trends Anal. Chem. 2003, 22, 170–185. DOI: 10.1016/S0165-9936(03)00305-4.
  • Reddy, A. V. B.; Moniruzzaman, M.; Aminabhavi, T. M. Polychlorinated Biphenyls (PCBs) in the Environment: Recent Updates on Sampling, Pretreatment, Cleanup Technologies and Their Analysis. Chem. Engin. J. 2019, 358, 1186–1207. DOI: 10.1016/j.cej.2018.09.205.
  • Carpenter, D. O. Polychlorinated Biphenyls (PCBs): Routes of Exposure and Effects on Human Health. Rev. Environ. Health. 2006, 21, 1–23. DOI: 10.1515/reveh.2006.21.1.1.
  • Wiegel, J.; Wu, Q. Microbial Reductive Dehalogenation of Polychlorinated Biphenyls. FEMS Microbiol. Ecol. 2000, 32, 1–15. DOI: 10.1111/j.1574-6941.2000.tb00693.x.
  • Cui, S.; Qi, H.; Liu, L.-Y.; Song, W.-W.; Ma, W.-L.; Jia, H.-L.; Ding, Y.-S.; Li, Y.-F. Emission of Unintentionally Produced Polychlorinated Biphenyls (up-PCBs) in China: Has This Become the Major Source of PCBs in Chinese Air? Atmos. Environ. 2013, 67, 73–79. DOI: 10.1016/j.atmosenv.2012.10.028.
  • Cui, S.; Fu, Q.; Ma, W.-L.; Song, W.-W.; Liu, L.-Y.; Li, Y.-F. A Preliminary Compilation and Evaluation of a Comprehensive Emission Inventory for Polychlorinated Biphenyls in China. Sci. Total Environ. 2015, 533, 247–255. DOI: 10.1016/j.scitotenv.2015.06.144.
  • Hogarh, J. N.; Seike, N.; Kobara, Y.; Habib, A.; Nam, J.-J.; Lee, J.-S.; Li, Q.; Liu, X.; Li, J.; Zhang, G.; Masunaga, S. Passive Air Monitoring of PCBs and PCNs across East Asia: A Comprehensive Congener Evaluation for Source Characterization. Chemosphere 2012, 86, 718–726. DOI: 10.1016/j.chemosphere.2011.10.046.
  • Lohmann, R.; Breivik, K.; Dachs, J.; Muir, D. Global Fate of POPs: Current and Future Research Directions. Environ. Pollut. 2007, 150, 150–165. DOI: 10.1016/j.envpol.2007.06.051.
  • Batang, Z. B.; Alikunhi, N.; Gochfeld, M.; Burger, J.; Al-Jahdali, R.; Al-Jahdali, H.; Aziz, M. A. M.; Al-Jebreen, D.; Al-Suwailem, A. Congener-Specific Levels and Patterns of Polychlorinated Biphenyls in Edible Fish Tissue from the Central Red Sea Coast of Saudi Arabia. Sci. Total Environ. 2016, 572, 915–925. DOI: 10.1016/j.scitotenv.2016.07.207.
  • Borja, J.; Taleon, D. M.; Auresenia, J.; Gallardo, S. Polychlorinated Biphenyls and Their Biodegradation. Process Biochem. 2005, 40, 1999–2013. DOI: 10.1016/j.procbio.2004.08.006.
  • Shang, X.; Dong, G.; Zhang, H.; Zhang, L.; Yu, X.; Li, J.; Wang, X.; Yue, B.; Zhao, Y.; Wu, Y. Polybrominated Diphenyl Ethers (PBDEs) and Indicator Polychlorinated Biphenyls (PCBs) in Various Marine Fish from Zhoushan Fishery, China. Food Control 2016, 67, 240–246. DOI: 10.1016/j.foodcont.2016.03.008.
  • Faroon, O.; Olson, J. N. Toxicological Profile for Polychlorinated Biphenyls (PCBs), 2000. http://www.atsdr.cdc.gov/toxprofiles/tp17-p.pdf
  • Yaktine, A. L.; Harrison, G. G.; Lawrence, R. S. Reducing Exposure to Dioxins and Related Compounds through Foods in the Next Generation. Nutr. Rev. 2006, 64, 403–409. DOI: 10.1111/j.1753-4887.2006.tb00225.x.
  • Casey, A. C.; Berger, D. F.; Lombardo, J. P.; Hunt, A.; Quimby, F. Aroclor 1242 Inhalation and Ingestion by Sprague-Dawley Rats. J. Toxicol. Environ. Health. A. 1999, 56, 311–342. DOI: 10.1080/009841099158033.
  • Cariou, R.; Marchand, P.; Vénisseau, A.; Brosseaud, A.; Bertrand, D.; Qannari, E. M.; Antignac, J.-P.; Bizec, B. L. Prediction of the PCDD/F and dl-PCB 2005-WHO-TEQ Content Based on the Contribution of Six Congeners: Toward a New Screening Approach for Fish Samples? Environ. Pollut. 2010, 158, 941–947. DOI: 10.1016/j.envpol.2009.09.010.
  • Safe, S. Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Critical reviews in toxicology, 1994, 24, 87–149. DOI: 10.3109/10408449409049308
  • Park, H.-Y.; Hertz-Picciotto, I.; Sovcikova, E.; Kocan, A.; Drobna, B.; Trnovec, T. Neurodevelopmental Toxicity of Prenatal Polychlorinated Biphenyls (PCBs) by Chemical Structure and Activity: A Birth Cohort Study. Environ Health. 2010, 9, 51. DOI: 10.1186/1476-069X-9-51.
  • Zani, C.; Ceretti, E.; Covolo, L.; Donato, F. Do Polychlorinated Biphenyls Cause Cancer? A Systematic Review and Meta-Analysis of Epidemiological Studies on Risk of Cutaneous Melanoma and non-Hodgkin Lymphoma. Chemosphere 2017, 183, 97–106. DOI: 10.1016/j.chemosphere.2017.05.053.
  • Bahn, A. K.; Rosenwaike, I.; Hermann, N.; Grover, P.; Stellman, J.; O'Leary, K. Melanoma after Exposure to PCB's. N. Engl. J. Med. 1976, 295, 450.
  • Oakley, G. G.; Devanaboyina, U-s.; Robertson, L. W.; Gupta, R. C. Oxidative DNA Damage Induced by Activation of Polychlorinated Biphenyls (PCBs): Implications for PCB-Induced Oxidative Stress in Breast Cancer. Chem. Res. Toxicol. 1996, 9, 1285–1292. DOI: 10.1021/tx960103o.
  • Su, P.-H.; Huang, P.-C.; Lin, C.-Y.; Ying, T.-H.; Chen, J.-Y.; Wang, S.-L. The Effect of in Utero Exposure to Dioxins and Polychlorinated Biphenyls on Reproductive Development in Eight Year-Old Children. Environ. Int. 2012, 39, 181–187. DOI: 10.1016/j.envint.2011.09.009.
  • Cohn, B. A.; Cirillo, P. M.; Sholtz, R. I.; Ferrara, A.; Park, J.-S.; Schwingl, P. J. Polychlorinated Biphenyl (PCB) Exposure in Mothers and Time to Pregnancy in Daughters. Reprod. Toxicol. 2011, 31, 290–296. DOI: 10.1016/j.reprotox.2011.01.004.
  • Davis, D.; Safe, S. Interactions of 2, 3, 7, 8-TCDD and PCB Mixtures/Congeners: immunotoxicity Studies. Chemosphere 1990, 20, 1141–1146. DOI: 10.1016/0045-6535(90)90234-K.
  • Silkworth, J. B.; Grabstein, E. M. Polychlorinated Biphenyl Immunotoxicity: Dependence on Isomer Planarity and the Ah Gene Complex. Toxicol. Appl. Pharmacol. 1982, 65, 109–115. DOI: 10.1016/0041-008X(82)90368-4.
  • Safe, S.; Hutzinger, O.; Jones, D. The Mechanism of Chlorobiphenyl Metabolism. J. Agric. Food Chem. 1975, 23, 851–853. DOI: 10.1021/jf60201a039.
  • Wahlang, B.; Perkins, J. T.; Petriello, M. C.; Hoffman, J. B.; Stromberg, A. J.; Hennig, B. A Compromised Liver Alters Polychlorinated Biphenyl-Mediated Toxicity. Toxicology 2017, 380, 11–22. DOI: 10.1016/j.tox.2017.02.001.
  • Perkins, J. T.; Petriello, M. C.; Newsome, B. J.; Hennig, B. Polychlorinated Biphenyls and Links to Cardiovascular Disease. Environ. Sci. Pollut. Res. Int. 2016, 23, 2160–2172. DOI: 10.1007/s11356-015-4479-6.
  • Grimm, F. A.; Hu, D.; Kania-Korwel, I.; Lehmler, H.-J.; Ludewig, G.; Hornbuckle, K. C.; Duffel, M. W.; Bergman, Å.; Robertson, L. W. Metabolism and Metabolites of Polychlorinated Biphenyls. Crit. Rev. Toxicol. 2015, 45, 245–272. DOI: 10.3109/10408444.2014.999365.
  • Sun, J.; Pan, L.; Su, Z.; Zhan, Y.; Zhu, L. Interconversion between Methoxylated and Hydroxylated Polychlorinated Biphenyls in Rice Plants: An Important but Overlooked Metabolic Pathway. Environ. Sci. Technol. 2016, 50, 3668–3675. DOI: 10.1021/acs.est.6b00266.
  • Oziolor, E. M.; Bigorgne, E.; Aguilar, L.; Usenko, S.; Matson, C. W. Evolved Resistance to PCB- and PAH-Induced Cardiac Teratogenesis, and Reduced CYP1A Activity in Gulf Killifish (Fundulus grandis) Populations from the Houston Ship Channel, Texas. Aquat. Toxicol. 2014, 150, 210–219. DOI: 10.1016/j.aquatox.2014.03.012.
  • Vorrink, S. U.; Hudachek, D. R.; Domann, F. E. Epigenetic Determinants of CYP1A1 Induction by the Aryl Hydrocarbon Receptor Agonist 3,3',4,4',5-Pentachlorobiphenyl (PCB 126). Int. J. Mol. Sci. 2014, 15, 13916–13931. DOI: 10.3390/ijms150813916.
  • Jeong, S.-Y.; Seol, D.-W. The Role of Mitochondria in Apoptosis. BMB Rep. 2008, 41, 11–22. DOI: 10.5483/bmbrep.2008.41.1.011.
  • Narasimhan, T.; Kim, H.; Safe, S. Effects of Hydroxylated Polychlorinated Biphenyls on Mouse Liver Mitochondrial Oxidative Phosphorylation. J. Biochem. Toxicol. 1991, 6, 229–236. DOI: 10.1002/jbt.2570060309.
  • Dreiem, A.; Rykken, S.; Lehmler, H.-J.; Robertson, L. W.; Fonnum, F. Hydroxylated Polychlorinated Biphenyls Increase Reactive Oxygen Species Formation and Induce Cell Death in Cultured Cerebellar Granule Cells. Toxicol. Appl. Pharmacol. 2009, 240, 306–313. DOI: 10.1016/j.taap.2009.07.016.
  • Liao, G.; Song, X.; Wang, X.; Zhang, W.; Zhang, L.; Qiu, J.; Hou, R. Cytotoxicity of 2,2',3,5',6-Pentachlorobiphenyl (PCB95) and its Metabolites in the Chicken Embryo Liver Cells of Laying Hens. Ecotoxicol. Environ. Saf. 2020, 194, 110338. DOI: 10.1016/j.ecoenv.2020.110338.
  • Dutta, S. K.; Ghosh, S.; De, S.; Hoffman, E. P. CYP1A1 and MT1K Are Congener Specific Biomarker Genes for Liver Diseases Induced by PCBs. Environ. Toxicol. Pharmacol. 2008, 25, 218–221. DOI: 10.1016/j.etap.2007.10.018.
  • Liu, H.; Gooneratne, R.; Huang, X.; Lai, R.; Wei, J.; Wang, W. A Rapid in Vivo Zebrafish Model to Elucidate Oxidative Stress-Mediated PCB126-Induced Apoptosis and Developmental Toxicity. Free Radic. Biol. Med. 2015, 84, 91–102. DOI: 10.1016/j.freeradbiomed.2015.03.002.
  • Zhang, X.; Hong, Q.; Yang, L.; Zhang, M.; Guo, X.; Chi, X.; Tong, M. PCB1254 Exposure Contributes to the Abnormalities of Optomotor Responses and Influence of the Photoreceptor Cell Development in Zebrafish Larvae. Ecotoxicol. Environ. Safety 2015, 118, 133–138. DOI: 10.1016/j.ecoenv.2015.04.026.
  • Singh, B.; Kumar, A.; Malik, A. K. Recent Advances in Sample Preparation Methods for Analysis of Endocrine Disruptors from Various Matrices. Crit. Rev. Anal. Chem. 2014, 44, 255–269. DOI: 10.1080/10408347.2013.859981.
  • Yin, S.-J.; Zhao, J.; Yang, F.-Q. Recent Applications of Magnetic Solid Phase Extraction in Sample Preparation for Phytochemical Analysis. J. Pharm. Biomed. Anal. 2021, 192, 113675. DOI: 10.1016/j.jpba.2020.113675.
  • Halfadji, A.; Touabet, A.; Badjah-Hadj-Ahmed, A.-Y. Comparison of Soxhlet Extraction, Microwave-Assisted Extraction and Ultrasonic Extraction for the Determination of PCBs Congeners in Spiked Soils by Transformer Oil (Askarel). Int. J. Adv. Engin. Technol. 2013, 5, 63.
  • Toledo, C.; Valle, L.; Narváez, J.; Richter, P. Screening Method for Rapid Determination of Polychlorinated Biphenyls in Transformer Oil by Liquid-Liquid Extraction and Gas Chromatography-Mass Spectrometry. J. Braz. Chem. Soc. 2007, 18, 937–942. DOI: 10.1590/S0103-50532007000500010.
  • Sporring, S.; Bøwadt, S.; Svensmark, B.; Björklund, E. Comprehensive Comparison of Classic Soxhlet Extraction with Soxtec Extraction, Ultrasonication Extraction, Supercritical Fluid Extraction, Microwave Assisted Extraction and Accelerated Solvent Extraction for the Determination of Polychlorinated Biphenyls in Soil. J. Chromatogr. A. 2005, 1090, 1–9. DOI: 10.1016/j.chroma.2005.07.008.
  • Piramoon, S.; Aberoomand Azar, P.; Saber Tehrani, M.; Mohammadiazar, S.; Tavassoli, A. Solid-Phase Nanoextraction of Polychlorinated Biphenyls in Water and Their Determination by Gas Chromatography with Electron Capture Detector. J. Sep. Sci. 2017, 40, 449–457. DOI: 10.1002/jssc.201600720.
  • Fu, M.; Xing, H.; Chen, X.; Chen, F.; Wu, C.-M. L.; Zhao, R.; Cheng, C. Ultrathin-shell boron nitride hollow spheres as sorbent for dispersive solid-phase extraction of polychlorinated biphenyls from environmental water samples. Journal of Chromatography A, 2014, 1369, 181–185. DOI: 10.1016/j.chroma.2014.10.001
  • Guo, J.-X.; Qian, H.-L.; Zhao, X.; Yang, C.; Yan, X.-P. In Situ Room-Temperature Fabrication of a Covalent Organic Framework and Its Bonded Fiber for Solid-Phase Microextraction of Polychlorinated Biphenyls in Aquatic Products. J. Mater. Chem. A. 2019, 7, 13249–13255. DOI: 10.1039/C9TA02974E.
  • Gallart-Mateu, D.; Pastor, A.; de la Guardia, M.; Armenta, S.; Esteve-Turrillas, F. A. Hard Cap Espresso Extraction-Stir Bar Preconcentration of Polychlorinated Biphenyls in Soil and Sediments. Anal. Chim. Acta. 2017, 952, 41–49. DOI: 10.1016/j.aca.2016.11.051.
  • Mahindrakar, A.; Chandra, S.; Shinde, L. Comparison of Solvent Extraction and Solid-Phase Extraction for the Determination of Polychlorinated Biphenyls in Transformer Oil. Chemosphere 2014, 94, 199–202. DOI: 10.1016/j.chemosphere.2013.09.006.
  • Nardelli, V.; D’Amico, V.; Casamassima, F.; Gesualdo, G.; Li, D.; Marchesiello, W. M.; Nardiello, D.; Quinto, M. Development of a Screening Analytical Method for the Determination of Non-Dioxin-like Polychlorinated Biphenyls in Chicken Eggs by Gas Chromatography and Electron Capture Detection. Food Additives & Contaminants: Part A 2019, 36, 1393–1403. DOI: 10.1080/19440049.2019.1627002.
  • Sun, X.; Hu, H.; Zhong, Z.; Jin, Y.; Zhang, X.; Guo, Y. Ultrasound‐Assisted Extraction and Solid‐Phase Extraction as a Cleanup Procedure for Organochlorinated Pesticides and Polychlorinated Biphenyls Determination in Aquatic Samples by Gas Chromatography with Electron Capture Detection. J. Sep. Sci. 2015, 38, 626–633. DOI: 10.1002/jssc.201400880.
  • Zhang, L.; Na, G.-S.; He, C.-X.; Li, R.-J.; Gao, H.; Ge, L.-K.; Wang, Y.-J.; Yao, Y. A Novel Method through Solid Phase Extraction Combined with Gradient Elution for Concentration and Separation of 66 (Ultra) Trace Persistent Toxic Pollutants in Antarctic Waters. Chin. Chem. Lett. 2016, 27, 405–411. DOI: 10.1016/j.cclet.2015.12.001.
  • Krzemień-Konieczka, I. M.; Buszewski, B. Determining Polychlorinated Biphenyls in Soil Using Accelerated Solvent Extraction (ASE). Pol. J. Environ. Stud. 2015, 24, 2029–2033. DOI: 10.15244/pjoes/41589.
  • Liška, I. Fifty Years of Solid-Phase Extraction in Water Analysis – Historical Development and Overview. J. Chromatogr. A. 2000, 885, 3–16. DOI: 10.1016/S0021-9673(99)01144-9.
  • Li, F.; Jin, J.; Tan, D.; Xu, J.; Ni, Y.; Zhang, H.; Chen, J. High Performance Solid-Phase Extraction Cleanup Method Coupled with Gas Chromatography-Triple Quadrupole Mass Spectrometry for Analysis of Polychlorinated Naphthalenes and Dioxin-like Polychlorinated Biphenyls in Complex Samples. J. Chromatogr. A 2016, 1448, 1. DOI: 10.1016/j.chroma.2016.04.037.
  • Wang, L.; Wang, X.; Zhou, J.-B.; Zhao, R.-S. Carbon Nanotube Sponges as a Solid-Phase Extraction Adsorbent for the Enrichment and Determination of Polychlorinated Biphenyls at Trace Levels in Environmental Water Samples. Talanta 2016, 160, 79–85. DOI: 10.1016/j.talanta.2016.07.005.
  • Belenguer-Sapiña, C.; Pellicer-Castell, E.; Amorós, P.; Simó-Alfonso, E. F.; Mauri-Aucejo, A. R. A New Proposal for the Determination of Polychlorinated Biphenyls in Environmental Water by Using Host-Guest Adsorption. Sci. Total Environ. 2020, 724, 138266. DOI: 10.1016/j.scitotenv.2020.138266.
  • Liang, R.; Zhao, Y.; Su, Y.; Qin, W. Determination of Hydroxylated Polychlorinated Biphenyls by Offline Solid-Phase Extraction-Liquid Chromatography-Tandem Mass Spectrometry Using a Molecularly Imprinted Polymer as a Sorbent for Sample Preconcentration. Talanta 2015, 144, 115–121. DOI: 10.1016/j.talanta.2015.05.064.
  • Du, X.; Lin, S.; Gan, N.; Chen, X.; Cao, Y.; Li, T.; Zhan, P. Multi-Walled Carbon Nanotube Modified Dummy-Template Magnetic Molecularly Imprinted Microspheres as Solid-Phase Extraction Material for the Determination of Polychlorinated Biphenyls in Fish. J. Sep. Sci. 2014, 37, 1591–1600. DOI: 10.1002/jssc.201400146.
  • Jia, S.; Wang, Z.; Ding, N.; Wong, Y.-L. E.; Chen, X.; Qiu, G.; Chan, T.-W. D. Hexagonal Boron Nitride Nanosheets as Adsorbents for Solid-Phase Extraction of Polychlorinated Biphenyls from Water Samples. Anal. Chim. Acta 2016, 936, 123–129. DOI: 10.1016/j.aca.2016.07.019.
  • Pérez, R. A.; Albero, B.; Tadeo, J. L.; Sánchez-Brunete, C. Oleate Functionalized Magnetic Nanoparticles as Sorbent for the Analysis of Polychlorinated Biphenyls in Juices. Microchim. Acta 2016, 183, 157–165. DOI: 10.1007/s00604-015-1617-2.
  • Buszewski, B.; Szultka, M. Past, Present, and Future of Solid Phase Extraction: A Review. Crit. Rev. Anal. Chem. 2012, 42, 198–213. DOI: 10.1080/07373937.2011.645413.
  • Li, N.; Wu, D.; Hu, N.; Fan, G.; Li, X.; Sun, J.; Chen, X.; Suo, Y.; Li, G.; Wu, Y. Effective Enrichment and Detection of Trace Polycyclic Aromatic Hydrocarbons in Food Samples Based on Magnetic Covalent Organic Framework Hybrid Microspheres. J. Agric. Food Chem. 2018, 66, 3572–3580. DOI: 10.1021/acs.jafc.8b00869.
  • Liao, Q. G.; Wang, D. G.; Luo, L. G. Chitosan-Poly(m-Phenylenediamine)@Fe3O4 Nanocomposite for Magnetic Solid-Phase Extraction of Polychlorinated Biphenyls from Water Samples. Anal. Bioanal. Chem. 2014, 406, 7571–7579. DOI: 10.1007/s00216-014-8215-8.
  • Li, Q.-L.; Wang, L.-L.; Wang, X.; Wang, M.-L.; Zhao, R.-S. Magnetic Metal-Organic Nanotubes: An Adsorbent for Magnetic Solid-Phase Extraction of Polychlorinated Biphenyls from Environmental and Biological Samples. J. Chromatogr. A. 2016, 1449, 39–47. DOI: 10.1016/j.chroma.2016.04.060.
  • Jiang, D.; Hu, T.; Zheng, H.; Xu, G.; Jia, Q. Aptamer-Functionalized Magnetic Conjugated Organic Framework for Selective Extraction of Traces of Hydroxylated Polychlorinated Biphenyls in Human Serum. Chemistry 2018, 24, 10390–10396. DOI: 10.1002/chem.201800092.
  • Lin, S.; Gan, N.; Zhang, J.; Chen, X.; Cao, Y.; Li, T. A Novel Reductive Graphene Oxide-Based Magnetic Molecularly Imprinted Poly(Ethylene-co-Vinyl Alcohol) Polymers for the Enrichment and Determination of Polychlorinated Biphenyls in Fish Samples. J. Mol. Recognit. 2015, 28, 359–368. DOI: 10.1002/jmr.2450.
  • Anastassiades, M.; Lehotay, S. J.; Štajnbaher, D.; Schenck, F. J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. DOI: 10.1093/jaoac/86.2.412.
  • Morrison, S. A.; Sieve, K. K.; Ratajczak, R. E.; Bringolf, R. B.; Belden, J. B. Simultaneous Extraction and Cleanup of High-Lipid Organs from White Sturgeon (Acipenser Transmontanus) for Multiple Legacy and Emerging Organic Contaminants Using QuEChERS Sample Preparation. Talanta 2016, 146, 16–22. DOI: 10.1016/j.talanta.2015.08.021.
  • Cloutier, P.-L.; Fortin, F.; Groleau, P. E.; Brousseau, P.; Fournier, M.; Desrosiers, M. QuEChERS Extraction for Multi-Residue Analysis of PCBs, PAHs, PBDEs and PCDD/Fs in Biological Samples. Talanta 2017, 165, 332–338. DOI: 10.1016/j.talanta.2016.12.080.
  • Ma, S.; Han, P.; Li, A.; Wang, J.; Feng, X.; Wang, M. Simultaneous Determination of Trace Levels of 12 Steroid Hormones in Soil Using Modified QuEChERS Extraction Followed by Ultra Performance Liquid Chromatography–Tandem Mass Spectrometry (UPLC–MS/MS). Chromatographia 2018, 81, 435–445. DOI: 10.1007/s10337-017-3464-2.
  • Paz, M.; Correia-Sá, L.; Becker, H.; Longhinotti, E.; Domingues, V. F.; Delerue-Matos, C. Validation of QuEChERS Method for Organochlorine Pesticides Analysis in Tamarind (Tamarindus Indica) Products: Peel, Fruit and Commercial Pulp. Food Control 2015, 54, 374–382. DOI: 10.1016/j.foodcont.2015.02.005.
  • Qian, M.; Yang, H.; Li, Z.; Liu, Y.; Wang, J.; Wu, H.; Ji, X.; Xu, J. Detection of 13 Mycotoxins in Feed Using Modified QuEChERS with Dispersive Magnetic Materials and UHPLC-MS/MS. J. Sep. Sci. 2018, 41, 756–764. DOI: 10.1002/jssc.201700882.
  • Wang, Y-l.; Liu, Z-m.; Ren, J.; Guo, B-h. Development of a Method for the Analysis of Multiclass Antibiotic Residues in Milk Using QuEChERS and Liquid Chromatography-Tandem Mass Spectrometry. Foodborne Pathog Dis 2015, 12, 693–703. DOI: 10.1089/fpd.2014.1916.
  • Li, W.; Zhang, Z-m.; Zhang, R-r.; Jiao, H-f.; Sun, A-l.; Shi, X-z.; Chen, J. Effective Removal Matrix Interferences by a Modified QuEChERS Based on the Molecularly Imprinted Polymers for Determination of 84 Polychlorinated Biphenyls and Organochlorine Pesticides in Shellfish Samples. J. Hazard. Mater. 2020, 384, 121241. DOI: 10.1016/j.jhazmat.2019.121241.
  • Arthur, C. L.; Pawliszyn, J. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal. Chem. 1990, 62, 2145–2148. DOI: 10.1021/ac00218a019.
  • Rocío-Bautista, P.; Pacheco-Fernández, I.; Pasán, J.; Pino, V. Are Metal-Organic Frameworks Able to Provide a New Generation of Solid-Phase Microextraction Coatings? - A Review. Anal. Chim. Acta. 2016, 939, 26–41. DOI: 10.1016/j.aca.2016.07.047.
  • Hashemi, B.; Zohrabi, P.; Shamsipur, M. Recent Developments and Applications of Different Sorbents for SPE and SPME from Biological Samples. Talanta 2018, 187, 337–347. DOI: 10.1016/j.talanta.2018.05.053.
  • Ge, D.; Lee, H. K. Polypropylene Membrane Coated with Carbon Nanotubes Functionalized with Chitosan: Application in the Microextraction of Polychlorinated Biphenyls and Polybrominated Diphenyl Ethers from Environmental Water Samples. J. Chromatogr. A. 2015, 1408, 56–62. DOI: 10.1016/j.chroma.2015.07.029.
  • Lv, F.; Gan, N.; Cao, Y.; Zhou, Y.; Zuo, R.; Dong, Y. A Molybdenum Disulfide/Reduced Graphene Oxide Fiber Coating Coupled with Gas Chromatography-Mass Spectrometry for the Saponification-Headspace Solid-Phase Microextraction of Polychlorinated Biphenyls in Food. J. Chromatogr. A. 2017, 1525, 42–50. DOI: 10.1016/j.chroma.2017.10.026.
  • Wu, Y.-Y.; Yang, C.-X.; Yan, X.-P. Fabrication of Metal-Organic Framework MIL-88B Films on Stainless Steel Fibers for Solid-Phase Microextraction of Polychlorinated Biphenyls. J. Chromatogr. A. 2014, 1334, 1–8. DOI: 10.1016/j.chroma.2014.01.079.
  • Lv, F.; Gan, N.; Huang, J.; Hu, F.; Cao, Y.; Zhou, Y.; Dong, Y.; Zhang, L.; Jiang, S. A Poly-Dopamine Based Metal-Organic Framework Coating of the Type PDA-MIL-53 (Fe) for Ultrasound-Assisted Solid-Phase Microextraction of Polychlorinated Biphenyls Prior to Their Determination by GC-MS. Microchim. Acta 2017, 184, 2561–2568. DOI: 10.1007/s00604-017-2208-1.
  • Guo, Y.; He, X.; Huang, C.; Chen, H.; Lu, Q.; Zhang, L. Metal–Organic Framework-Derived Nitrogen-Doped Carbon Nanotube Cages as Efficient Adsorbents for Solid-Phase Microextraction of Polychlorinated Biphenyls. Anal. Chim. Acta 2020, 1095, 99–108. DOI: 10.1016/j.aca.2019.10.023.
  • Joshi, M. D.; Ho, T. D.; Cole, W. T.; Anderson, J. L. Determination of Polychlorinated Biphenyls in Ocean Water and Bovine Milk Using Crosslinked Polymeric Ionic Liquid Sorbent Coatings by Solid-Phase Microextraction. Talanta 2014, 118, 172–179. DOI: 10.1016/j.talanta.2013.10.014.
  • Wang, X.; Kou, H.; Wang, J.; Du, T.; Teng, R.; Du, X.; Lu, X. Mesostructured Cellular Foams Solid Phase Microextraction Coating for Highly Sensitive Recognition of Polychlorinated Biphenyls in Water Samples. J. Sep. Sci. 2019, 42, 2851–2857. DOI: 10.1002/jssc.201900480.
  • Farajzadeh, M. A.; Khoshmarram, L.; Sheykhizadeh, S. A Review on Application of Microextraction Techniques for Analysis of Chemical Compounds and Metal Ions in Foodstuffs. Anal. Bioanal. Chemistr. Res. 2014, 1, 1.
  • Baltussen, E.; Sandra, P.; David, F.; Cramers, C. Stir Bar Sorptive Extraction (SBSE), a Novel Extraction Technique for Aqueous Samples: Theory and Principles. J. Micro. Sep. 1999, 11, 737–747. DOI: 10.1002/(SICI)1520-667X(1999)11:10<737::AID-MCS7>3.0.CO;2-4.
  • Hu, C.; He, M.; Chen, B.; Hu, B. Determination of Estrogens in Pork and Chicken Samples by Stir Bar Sorptive Extraction Combined with High-Performance Liquid Chromatography-Ultraviolet Detection. J. Agric. Food Chem. 2012, 60, 10494–10500. DOI: 10.1021/jf303269c.
  • Abujaber, F.; Bernardo, F. J. G.; Martín-Doimeadios, R. C. R. Magnetic Cellulose Nanoparticles as Sorbents for Stir Bar-Sorptive Dispersive Microextraction of Polychlorinated Biphenyls in Juice Samples. Talanta 2019, 201, 266–270. DOI: 10.1016/j.talanta.2019.04.005.
  • Scherer, N.; Marcseková, K.; Posset, T.; Winter, G. New Studies on Leachables in Commercial Scale Protein Drug Filling Lines Using Stir Bar Sorptive Extraction Coupled with TD-GC–MS and UPLC/QTOF-MS/MS Analytics. Int. J. Pharm. 2019, 555, 404–419. DOI: 10.1016/j.ijpharm.2018.11.033.
  • Lin, S.; Gan, N.; Zhang, J.; Qiao, L.; Chen, Y.; Cao, Y. Aptamer-Functionalized Stir Bar Sorptive Extraction Coupled with Gas Chromatography-Mass Spectrometry for Selective Enrichment and Determination of Polychlorinated Biphenyls in Fish Samples. Talanta 2016, 149, 266–274. DOI: 10.1016/j.talanta.2015.11.062.
  • Neng, N.; Pinto, M.; Pires, J.; Marcos, P.; Nogueira, J. Development, Optimisation and Application of Polyurethane Foams as New Polymeric Phases for Stir Bar Sorptive Extraction. J. Chromatogr. A. 2007, 1171, 8–14. DOI: 10.1016/j.chroma.2007.09.033.
  • Huang, X.; Lin, J.; Yuan, D. A New Anionic Exchange Stir Bar Sorptive Extraction Coating Based on Monolithic Material for the Extraction of Inorganic Anion. J. Chromatogr. A. 2010, 1217, 4898–4903. DOI: 10.1016/j.chroma.2010.05.063.
  • Guan, W.; Xu, F.; Liu, W.; Zhao, J.; Guan, Y. A New Poly(Phthalazine Ether Sulfone Ketone)-Coated Fiber for Solid-Phase Microextraction to Determine Nitroaromatic Explosives in Aqueous Samples . J. Chromatogr. A. 2007, 1147, 59–65. DOI: 10.1016/j.chroma.2007.01.132.
  • Yu, C.; Yao, Z.; Hu, B. Preparation of Polydimethylsiloxane/Beta-Cyclodextrin/Divinylbenzene Coated "Dumbbell-Shaped" Stir Bar and its Application to the Analysis of Polycyclic Aromatic Hydrocarbons and Polycyclic Aromatic Sulfur Heterocycles Compounds in Lake Water and Soil by High Performance Liquid Chromatography. Anal. Chim. Acta. 2009, 641, 75–82. DOI: 10.1016/j.aca.2009.03.031.
  • Zhang, Y.; Li, G.; Wu, D.; Li, X.; Yu, Y.; Luo, P.; Chen, J.; Dai, C.; Wu, Y. Recent Advances in Emerging Nanomaterials Based Food Sample Pretreatment Methods for Food Safety Screening. Trac, Trends Anal. Chem. 2019, 121, 115669. DOI: 10.1016/j.trac.2019.115669.
  • Zeng, J.; Wang, Q.; Gao, J.; Wang, W.; Shen, H.; Cao, Y.; Hu, M.; Bi, W.; Gan, N. Magnetic Stir Bars with Hyperbranched Aptamer as Coating for Selective, Effective Headspace Extraction of Trace Polychlorinated Biphenyls in Soils. J. Chromatogr. A. 2020, 1614, 460715. DOI: 10.1016/j.chroma.2019.460715.
  • Lin, S.; Gan, N.; Qiao, L.; Zhang, J.; Cao, Y.; Chen, Y. Magnetic Metal-Organic Frameworks Coated Stir Bar Sorptive Extraction Coupled with GC-MS for Determination of Polychlorinated Biphenyls in Fish Samples. Talanta 2015, 144, 1139–1145. DOI: 10.1016/j.talanta.2015.07.084.
  • Sajid, M.; Basheer, C. Stir-Bar Supported Micro-Solid-Phase Extraction for the Determination of Polychlorinated Biphenyl Congeners in Serum Samples. J. Chromatogr. A. 2016, 1455, 37–44. DOI: 10.1016/j.chroma.2016.05.084.
  • Yurdakok-Dikmen, B.; Kuzukiran, O.; Filazi, A.; Kara, E. Measurement of Selected Polychlorinated Biphenyls (PCBs) in Water via Ultrasound Assisted Emulsification-Microextraction (USAEME) Using Low-Density Organic Solvents. J. Water Health. 2016, 14, 214–222. DOI: 10.2166/wh.2015.177.
  • Rezaee, M.; Assadi, Y.; Hosseini, M.-R. M.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of Organic Compounds in Water Using Dispersive Liquid-Liquid Microextraction. J. Chromatogr. A. 2006, 1116, 1–9. DOI: 10.1016/j.chroma.2006.03.007.
  • Zhang, C.; Cagliero, C.; Pierson, S. A.; Anderson, J. L. Rapid and Sensitive Analysis of Polychlorinated Biphenyls and Acrylamide in Food Samples Using Ionic Liquid-Based in Situ Dispersive Liquid-Liquid Microextraction Coupled to Headspace Gas Chromatography. J. Chromatogr. A. 2017, 1481, 1–11. DOI: 10.1016/j.chroma.2016.12.013.
  • Darvishnejad, M.; Ebrahimzadeh, H. Phenyl Propyl Functionalized Hybrid Sol-Gel Reinforced Aluminum Strip as a Thin Film Microextraction Device for the Trace Quantitation of Eight PCBs in Liquid Foodstuffs. Talanta 2019, 199, 547–555. DOI: 10.1016/j.talanta.2019.02.095.
  • Diao, C.; Li, C.; Yang, X.; Sun, A.; Liu, R. Magnetic Matrix Solid Phase Dispersion Assisted Dispersive Liquid Liquid Microextraction of Ultra Trace Polychlorinated Biphenyls in Water Prior to GC-ECD Determination. Microchim. Acta 2016, 183, 1261–1268. DOI: 10.1007/s00604-016-1761-3.
  • Chanel, I.; Chang, I. Analysis of Organochlorine Pesticides and PCB Congeners with the Agilent 6890 micro-ECD. In Gas Chromatography Agilent Publication Number; 1997.
  • Wang, S.; Huang, X.; Wang, M.; Tian, L.; Li, X.; Kong, C.; Han, F.; Lou, X.; Ye, H.; Shi, Y. Simultaneous Determination of Polychlorinated Biphenyl 101 (PCB101) and Its Hydroxylated, Methoxylated and Methyl Sulfonated Metabolites in Aquatic Organisms by Solid-Phase Extraction (SPE) and Gas Chromatography–Microelectron Capture Detection (GC-μECD). Anal. Lett. 2021, 1–12. DOI: 10.1080/00032719.2021.1967369.
  • Salem, F. B.; Said, O. B.; Duran, R.; Monperrus, M. Validation of an Adapted QuEChERS Method for the Simultaneous Analysis of Polycyclic Aromatic Hydrocarbons, Polychlorinated Biphenyls and Organochlorine Pesticides in Sediment by Gas Chromatography-Mass Spectrometry. Bull. Environ. Contam. Toxicol. 2016, 96, 678–684. DOI: 10.1007/s00128-016-1770-2.
  • Gao, G.; Chen, H.; Dai, J.; Jin, L.; Chai, Y.; Zhu, L.; Liu, X.; Lu, C. Determination of Polychlorinated Biphenyls in Tea Using Gas Chromatography-Tandem Mass Spectrometry Combined with Dispersive Solid Phase Extraction. Food Chem. 2020, 316, 126290. DOI: 10.1016/j.foodchem.2020.126290.
  • Lin, Y.; Feng, C.; Xu, Q.; Lu, D.; Qiu, X.; Jin, Y.; Wang, G.; Wang, D.; She, J.; Zhou, Z. A Validated Method for Rapid Determination of Dibenzo-p-Dioxins/Furans (PCDD/Fs), Polybrominated Diphenyl Ethers (PBDEs) and Polychlorinated Biphenyls (PCBs) in Human Milk: focus on Utility of Tandem Solid Phase Extraction (SPE) Cleanup. Anal. Bioanal. Chem. 2016, 408, 4897–4906. DOI: 10.1007/s00216-016-9576-y.
  • Crucello, J.; Pierone, D. V.; Hantao, L. W. Simple and Cost-Effective Determination of Polychlorinated Biphenyls in Insulating Oils Using an Ionic Liquid-Based Stationary Phase and Flow Modulated Comprehensive Two-Dimensional Gas Chromatography with Electron Capture Detection. J. Chromatogr. A. 2020, 1610, 460530. DOI: 10.1016/j.chroma.2019.460530.
  • Ji, D.; Zhang, M.; Geng, X.; Zha, Z.; Li, Y.; Yang, J.; Cui, S. Magnetic Solid-Phase Extraction Based on Fe3O4/g-C3N4 Nanocomposite for the Determination of Polychlorinated Biphenyls and Polychlorinated Diphenyl Ethers in Environmental Waters. J. Nanosci. Nanotechnol. 2020, 20, 7469–7479. DOI: 10.1166/jnn.2020.18868.
  • Quinete, N.; Kraus, T.; Belov, V. N.; Aretz, C.; Esser, A.; Schettgen, T. Fast Determination of Hydroxylated Polychlorinated Biphenyls in Human Plasma by Online Solid Phase Extraction Coupled to Liquid Chromatography-Tandem Mass Spectrometry. Anal. Chim. Acta. 2015, 888, 94–102. DOI: 10.1016/j.aca.2015.06.041.
  • Chen, W.; Qi, F.; Li, C.; Cao, J.; Li, Z.; Dou, J.; Bei, Y.; Zhan, J.; Zhu, Q. Functionalized Polysilsesquioxane Film Fluorescent Sensors for Sensitive Detection of Polychlorinated Biphenyls. J. Organomet. Chem. 2014, 749, 296–301. DOI: 10.1016/j.jorganchem.2013.10.028.
  • Ahmad, I.; Weng, J.; Stromberg, A.; Hilt, J.; Dziubla, T. Fluorescence Based Detection of Polychlorinated Biphenyls (PCBs) in Water Using Hydrophobic Interactions. Analyst 2019, 144, 677–684. DOI: 10.1039/c8an00867a.
  • Zheng, X.; Li, H.; Xia, F.; Tian, D.; Hua, X.; Qiao, X.; Zhou, C. An Electrochemical Sensor for Ultrasensitive Determination the Polychlorinated Biphenyls. Electrochim. Acta 2016, 194, 413–421. DOI: 10.1016/j.electacta.2016.02.115.
  • Arockia Jency, D.; Umadevi, M.; Sathe, G. SERS Detection of Polychlorinated Biphenyls Using β‐Cyclodextrin Functionalized Gold Nanoparticles on Agriculture Land Soil. J. Raman Spectrosc. 2015, 46, 377–383. DOI: 10.1002/jrs.4654.
  • Fu, C.; Wang, Y.; Chen, G.; Yang, L.; Xu, S.; Xu, W. Aptamer-Based Surface-Enhanced Raman Scattering-Microfluidic Sensor for Sensitive and Selective Polychlorinated Biphenyls Detection. Anal. Chem. 2015, 87, 9555–9558. DOI: 10.1021/acs.analchem.5b02508.
  • Huang, J.-J.; Yu, J.-H.; Bai, F.-Q.; Xu, J.-Q. White-Light-Emitting Materials and Highly Sensitive Detection of Fe3+ and Polychlorinated Benzenes Based on Ln-Metal–Organic Frameworks. Crystal Growth & Design 2018, 18, 5353–5364. DOI: 10.1021/acs.cgd.8b00773.
  • Wang, Y.; Bai, J.; Huo, B.; Yuan, S.; Zhang, M.; Sun, X.; Peng, Y.; Li, S.; Wang, J.; Ning, B.; Gao, Z. Upconversion Fluorescent Aptasensor for Polychlorinated Biphenyls Detection Based on Nicking Endonuclease and Hybridization Chain Reaction Dual-Amplification Strategy. Anal. Chem. 2018, 90, 9936–9942. DOI: 10.1021/acs.analchem.8b02159.
  • Zhang, X.; Wu, D.; Zhou, X.; Yu, Y.; Liu, J.; Hu, N.; Wang, H.; Li, G.; Wu, Y. Recent Progress in the Construction of Nanozyme-Based Biosensors and Their Applications to Food Safety Assay. Trac, Trends Anal. Chem. 2019, 121, 115668. DOI: 10.1016/j.trac.2019.115668.
  • Han, T.; Wang, S.; Sheng, F.; Wang, S.; Dai, T.; Zhang, X.; Wang, G. Target Triggered Ultrasensitive Electrochemical Polychlorinated Biphenyl Aptasensor Based on DNA Microcapsules and Nonlinear Hybridization Chain Reaction. Analyst 2020, 145, 3598–3604. DOI: 10.1039/d0an00065e.
  • Chai, X.; Zhou, X.; Zhu, A.; Zhang, L.; Qin, Y.; Shi, G.; andTian, Y.; Two, A. A Two-Channel Ratiometric Electrochemical Biosensor for in vivo Monitoring of Copper Ions in a Rat Brain Using Gold Truncated Octahedral Microcages. Angew. Chem. Int. Ed. Engl. 2013, 52, 8129–8133. DOI: 10.1002/anie.201302958.
  • Zhang, X.; Li, G.; Chen, G.; Wu, D.; Zhou, X.; Wu, Y. Single-Atom Nanozymes: A Rising Star for Biosensing and Biomedicine. Coord. Chem. Rev. 2020, 418, 213376. DOI: 10.1016/j.ccr.2020.213376.
  • Su, Y.; Wu, D.; Chen, J.; Chen, G.; Hu, N.; Wang, H.; Wang, P.; Han, H.; Li, G.; Wu, Y. Ratiometric Surface Enhanced Raman Scattering Immunosorbent Assay of Allergenic Proteins via Covalent Organic Framework Composite Material Based Nanozyme Tag Triggered Raman Signal “Turn-on” and Amplification. Anal. Chem. 2019, 91, 11687–11695. DOI: 10.1021/acs.analchem.9b02233.
  • Zhang, X.; Li, G.; Wu, D.; Li, X.; Hu, N.; Chen, J.; Chen, G.; Wu, Y. Recent Progress in the Design Fabrication of Metal-Organic Frameworks-Based Nanozymes and Their Applications to Sensing and Cancer Therapy. Biosens. Bioelectron. 2019, 137, 178–198. DOI: 10.1016/j.bios.2019.04.061.
  • Zhang, X.; Li, G.; Liu, J.; Su, Z. Bio-Inspired Nanoenzyme Synthesis and Its Application in a Portable Immunoassay for Food Allergy Proteins. J. Agric. Food Chem. 2021.
  • Zhang, C.-Y.; Zhao, B.-C.; Hao, R.; Wang, Z.; Hao, Y.-W.; Zhao, B.; Liu, Y.-Q. Graphene Oxide-Highly Anisotropic Noble Metal Hybrid Systems for Intensified Surface Enhanced Raman Scattering and Direct Capture and Sensitive Discrimination in PCBs Monitoring. J. Hazard. Mater. 2020, 385, 121510. DOI: 10.1016/j.jhazmat.2019.121510.
  • Cheng, R.; Liu, S.; Shi, H.; Zhao, G. A Highly Sensitive and Selective Aptamer-Based Colorimetric Sensor for the Rapid Detection of PCB 77. J. Hazard. Mater. 2018, 341, 373–380. DOI: 10.1016/j.jhazmat.2017.07.057.
  • Shi, H.; Zhao, J.; Wang, Y.; Zhao, G. A Highly Selective and Picomolar Level Photoelectrochemical Sensor for PCB 101 Detection in Environmental Water Samples. Biosens. Bioelectron. 2016, 81, 503–509. DOI: 10.1016/j.bios.2016.03.023.
  • Sun, M.; Li, R.; Zhang, J.; Yan, K.; Liu, M. One-Pot Synthesis of a CdS-Reduced Graphene Oxide-Carbon Nitride Composite for Self-Powered Photoelectrochemical Aptasensing of PCB72. Nanoscale 2019, 11, 5982–5988. DOI: 10.1039/c9nr00966c.
  • Zhang, X.; Li, G.; Wu, D.; Yu, Y.; Hu, N.; Wang, H.; Li, X.; Wu, Y. Emerging Strategies for the Activity Assay and Inhibitor Screening of Alpha-Glucosidase. Food Funct. 2020, 11, 66–82. DOI: 10.1039/c9fo01590f.
  • Xia, T.; Ma, Q.; Hu, T.; Su, X. A Novel Magnetic/Photoluminescence Bifunctional Nanohybrid for the Determination of Trypsin. Talanta 2017, 170, 286–290. DOI: 10.1016/j.talanta.2017.03.081.
  • Igbinosa, E. O.; Okoh, A. I. Emerging Vibrio Species: An Unending Threat to Public Health in Developing Countries. Res. Microbiol. 2008, 159, 495–506. DOI: 10.1016/j.resmic.2008.07.001.
  • Lei, Y.; He, M.; Chen, B.; Hu, B. Polyaniline/Cyclodextrin Composite Coated Stir Bar Sorptive Extraction Combined with High Performance Liquid Chromatography-Ultraviolet Detection for the Analysis of Trace Polychlorinated Biphenyls in Environmental Waters. Talanta 2016, 150, 310–318. DOI: 10.1016/j.talanta.2015.12.025.
  • Maia, M. R.; Arcanjo, A. L. P.; Pinho, G. P.; Silvério, F. O. Solid-Liquid Extraction with Low Temperature Purification Coupled with Gas Chromatography and Mass Spectrometry for Determination of Polychlorinated Biphenyls in Sewage Sludge. J. Brazilian Chem. Soc. 2016, 28, 179. DOI: 10.5935/0103-5053.20160161.
  • Ottonello, G.; Ferrari, A.; Magi, E. Determination of Polychlorinated Biphenyls in Fish: optimisation and Validation of a Method Based on Accelerated Solvent Extraction and Gas Chromatography-Mass Spectrometry. Food Chem. 2014, 142, 327–333. DOI: 10.1016/j.foodchem.2013.07.048.
  • Wang, Z.; Xu, H.; Wang, W.; Wang, Y.; Yu, T.; Zhenhai, E. M. S. Determination of 15 Polychlorinated Biphenyls in Sediment by Accelerated Solvent Extraction-Gas Chromatography. J. Anal. Sci. 2014, 1, 44.
  • Tian, L.; Han, F.; Cai, Y.; Kong, C.; Shi, Y.; Wang, Y.; Yang, G.; Zhan, Q.; Huang, D. Determination of 7 Indictor Polychlorinated Biphenyls (PCBs) Residues in Porphyra by Ultrasonic Extraction and Gas Chromatography (GC). JACEN. 2016, 5, 1–5. DOI: 10.4236/jacen.2016.51B001.
  • Ai, L-f.; Li, W.; Wang, J.; Ma, Y-s.; Chen, R-c.; Guo, C-h.; Hebei, E.-E. I.; Quarantine, B. Determination of Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons in Milk by Gas Chromatography-Tandem Mass Spectrometry. J. Instrumental Anal. 2015, 13.
  • Wittsiepe, J.; Nestola, M.; Kohne, M.; Zinn, P.; Wilhelm, M. Determination of Polychlorinated Biphenyls and Organochlorine Pesticides in Small Volumes of Human Blood by High-Throughput on-Line SPE-LVI-GC-HRMS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 945–946, 217–224. DOI: 10.1016/j.jchromb.2013.11.059.
  • Lu, D.; Lin, Y.; Feng, C.; Wang, D.; Qiu, X.; Jin, Y.; Xiong, L.; Jin, Y.; Wang, G. Determination of Polybrominated Diphenyl Ethers and Polychlorinated Biphenyls in Fishery and Aquaculture Products Using Sequential Solid Phase Extraction and Large Volume Injection Gas Chromatography/Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014, 945–946, 75–83. DOI: 10.1016/j.jchromb.2013.11.026.
  • Simsek, I.; Kuzukiran, O.; Yurdakok-Dikmen, B.; Snoj, T.; Filazi, A. Determination of Persistent Organic Pollutants (POPs) in Propolis by Solid-Phase Extraction (SPE) and Gas Chromatography–Mass Spectrometry (GC-MS). Anal. Lett. 2021, 54, 1668–1682. DOI: 10.1080/00032719.2020.1821208.
  • Sheng, Z.-H.; Zhan, P.-P.; Ye, M.-L.; Lu, Y.; Zhang, Y.; Lin, Q.; Zhu, Y.; Zhao, Y.-G. Reusable Ionic Liquid Functionalized Magnetic Graphene Oxide Nanocomposite as Magnetic Dispersive Solid Phase Extraction Sorbent to Preconcentrate Polychlorinated Biphenyls in Seafood. Chem. Pap. 2021, 75, 5463–5470. DOI: 10.1007/s11696-021-01739-z.
  • Liu, T.; Yang, D.; Mao, J.; Zhang, X.; Dong, M. Carboxylated Multiwalled Carbon Nanotubes as Dispersive Solid-Phase Extraction Sorbent to Determine Eighteen Polychlorinated Biphenyls in Vegetable Samples by Gas Chromatography-Mass Spectrometry. J. Anal. Methods Chem. 2019, 2019, 4264738. DOI: 10.1155/2019/4264738.
  • Wang, X.; Li, C.; Wu, D.; Shen, J.; Wei, Y.; Wang, C. Enrichment of Polychlorinated Biphenyls in River Water by Using Magnetic Adsorbents with High Selectivity to Nonplanar Aromatic Compounds and Their Analysis with Gas Chromatography–Mass Spectrometry. J. Chin. Chem. Soc. 2021, 68, 1731–1738.
  • Peng, X.-T.; Jiang, L.; Gong, Y.; Hu, X.-Z.; Peng, L.-J.; Feng, Y.-Q. Preparation of Mesoporous ZrO2-Coated Magnetic Microsphere and its Application in the Multi-Residue Analysis of Pesticides and PCBs in Fish by GC-MS/MS. Talanta 2015, 132, 118–125. DOI: 10.1016/j.talanta.2014.08.069.
  • Kuzukiran, O.; Filazi, A. Determination of Selected Polychlorinated Biphenyl Residues in Meat Products by QuEChERS Method Coupled with Gas Chromatography–Mass Spectrometry. Food Anal. Methods 2016, 9, 1867–1875. DOI: 10.1007/s12161-015-0367-4.
  • Castiglioni, M.; Onida, B.; Rivoira, L.; Del Bubba, M.; Ronchetti, S.; Bruzzoniti, M. C. Amino Groups Modified SBA-15 for Dispersive-Solid Phase Extraction in the Analysis of Micropollutants by QuEchERS Approach. J. Chromatogr. A. 2021, 1645, 462107. DOI: 10.1016/j.chroma.2021.462107.
  • Tzatzarakis, M. N.; Barbounis, E. G.; Kavvalakis, M. P.; Vakonaki, E.; Renieri, E.; Vardavas, A. I.; Tsatsakis, A. M. Rapid Method for the Simultaneous Determination of DDTs and PCBs in Hair of Children by Headspace Solid Phase Microextraction and Gas Chromatography‐Mass Spectrometry (HSSPME/GC‐MS). Drug Test. Analysis 2014, 6, 85–92. DOI: 10.1002/dta.1631.
  • Sheng, W.-R.; Chen, Y.; Wang, S.-S.; Wang, X.-L.; Wang, M.-L.; Zhao, R.-S. Cadmium(II)-Based Metal-Organic Nanotubes as Solid-Phase Microextraction Coating for Ultratrace-Level Analysis of Polychlorinated Biphenyls in Seawater Samples . Anal. Bioanal. Chem. 2016, 408, 8289–8297. DOI: 10.1007/s00216-016-9939-4.
  • Zhang, N.; Huang, C.; Feng, Z.; Chen, H.; Tong, P.; Wu, X.; Zhang, L. Metal-Organic Framework-Coated Stainless Steel Fiber for Solid-Phase Microextraction of Polychlorinated Biphenyls. J. Chromatogr. A. 2018, 1570, 10–18. DOI: 10.1016/j.chroma.2018.07.065.
  • Jiao, Z.; Jiang, Z.; Zhang, N. Determination of Polychlorinated Biphenyls in Food Samples by Selective Pressurized Liquid Extraction Using Copper (II) Isonicotinate as Online Cleanup Adsorbent. Food Anal. Methods 2016, 9, 88–94. DOI: 10.1007/s12161-015-0179-6.
  • Wang, G.; Lei, Y.; Song, H. Exploration of Metal-Organic Framework MOF-177 Coated Fibers for Headspace Solid-Phase Microextraction of Polychlorinated Biphenyls and Polycyclic Aromatic Hydrocarbons. Talanta 2015, 144, 369–374. DOI: 10.1016/j.talanta.2015.06.058.
  • Nieto-García, A. J.; Domínguez, I.; Romero-González, R.; Arrebola, F. J.; Vidal, J. L. M.; Frenich, A. G. Automated Determination of Xenobiotics (Pesticides, PCBs, PAHs, and PBDEs) in Sediment Samples Applying HS-SPME-GC-HRMS. J. Aoac Int. 2019, 102, 38–45. DOI: 10.5740/jaoacint.18-0295.
  • Diao, C. p.; Yu, X.; Li, C.; Yang, X.; Sun, A.; Liu, R. Evaluation of Magnetic Matrix Solid-Phase Dispersion for the Determination of Polychlorinated Biphenyls in Water Samples by Gas Chromatography with Electron Capture Detection. J. Sep. Sci. 2016, 39, 1926–1934. DOI: 10.1002/jssc.201501140.
  • Li, J.; Liu, D.; Wu, T.; Zhao, W.; Zhou, Z.; Wang, P. A Simplified Procedure for the Determination of Organochlorine Pesticides and Polychlorobiphenyls in Edible Vegetable Oils. Food Chem. 2014, 151, 47–52. DOI: 10.1016/j.foodchem.2013.11.047.
  • Nardelli, V.; D'Amico, V.; Casamassima, F.; Gesualdo, G.; Li, D.; Marchesiello, W. M. V.; Nardiello, D.; Quinto, M. Development of a Screening Analytical Method for the Determination of Non-Dioxin-like Polychlorinated Biphenyls in Chicken Eggs by Gaschromatography and Electron Capture Detection. Food Addit. Contam. Part A. Chem. Anal. Control Expo. Risk Assess. 2019, 36, 1393–1403. DOI: 10.1080/19440049.2019.1627002.
  • Tian, L.; Shi, Y.; Huang, D.; Yu, H.; Wang, S.; Cai, Y. 2020 Analysis and Evaluation of 7 Indictor Polychlorinated Biphenyls (PCBs) Residues in Dried Kelp by Gas Chromatography (GC). In E3S Web of Conferences: EDP Sciences, 03044. DOI: 10.1051/e3sconf/202016503044.
  • Yazdanfar, N.; Shamsipur, M.; Ghambarian, M. Simultaneous Extraction of 32 Polychlorinated Biphenyls by Using Magnetic Carbon Nanocomposite Based Dispersive Microextraction, Subsequent Dispersive Liquid-Liquid Microextraction with Two Miscible Stripping Solvents, and Quantitation by GC-μECD. Mikrochim. Acta. 2019, 186, 178. DOI: 10.1007/s00604-019-3235-x.
  • Tan, S. C.; Lee, H. K. Fully Automated Graphitic Carbon Nitride-Based Disposable Pipette Extraction-Gas Chromatography-Mass Spectrometric Analysis of Six Polychlorinated Biphenyls in Environmental Waters. J. Chromatogr. A. 2021, 1637, 461824. DOI: 10.1016/j.chroma.2020.461824.
  • Fan, Y.-H.; Zhang, S.-W.; Qin, S.-B.; Li, X.-S.; Zhang, Y.; Qi, S.-H. Facile Preparation of Hexadecyl-Functionalized Magnetic Core-Shell Microsphere for the Extraction of Polychlorinated Biphenyls in Environmental Waters. Anal. Bioanal. Chem. 2017, 409, 3337–3346. DOI: 10.1007/s00216-017-0278-x.
  • de Boer, J.; Blok, D.; Ballesteros-Gómez, A. Assessment of Ionic Liquid Stationary Phases for the Determination of Polychlorinated Biphenyls, Organochlorine Pesticides and Polybrominated Diphenyl Ethers. J. Chromatogr. A. 2014, 1348, 158–163. DOI: 10.1016/j.chroma.2014.05.001.
  • Wang, X.; Kou, H.; Wang, J.; Du, T.; Teng, R.; Du, X.; Lu, X. Mesostructured Cellular Foam Solid-Phase Microextraction Coating for the Highly Sensitive Recognition of Polychlorinated Biphenyls in Water Samples. J. Sep. Sci. 2019, 42, 2851–2857. DOI: 10.1002/jssc.201900480.
  • Andrade-Eiroa, A.; Canle, M.; Leroy-Cancellieri, V.; Cerdà, V. Solid-Phase Extraction of Organic Compounds: A Critical Review (Part I). Trac, Trends Anal. Chem. 2016, 80, 641–654. DOI: 10.1016/j.trac.2015.08.015.
  • Capriotti, A. L.; Cavaliere, C.; La Barbera, G.; Montone, C. M.; Piovesana, S.; Laganà, A. Recent Applications of Magnetic Solid-Phase Extraction for Sample Preparation. Chromatographia 2019, 82, 1251–1274. DOI: 10.1007/s10337-019-03721-0.
  • Jiang, H.-L.; Li, N.; Cui, L.; Wang, X.; Zhao, R.-S. Recent Application of Magnetic Solid Phase Extraction for Food Safety Analysis. Trac, Trends Anal. Chem. 2019, 120, 115632. DOI: 10.1016/j.trac.2019.115632.
  • Perestrelo, R.; Silva, P.; Porto-Figueira, P.; Pereira, J. A.; Silva, C.; Medina, S.; Câmara, J. S. QuEChERS - Fundamentals, Relevant Improvements, Applications and Future Trends. Anal. Chim. Acta. 2019, 1070, 1–28. DOI: 10.1016/j.aca.2019.02.036.
  • He, M.; Chen, B.; Hu, B. Recent Developments in Stir Bar Sorptive Extraction. Anal. Bioanal. Chem. 2014, 406, 2001–2026. DOI: 10.1007/s00216-013-7395-y.
  • Prieto, A.; Basauri, O.; Rodil, R.; Usobiaga, A.; Fernández, L.; Etxebarria, N.; Zuloaga, O. Stir-Bar Sorptive Extraction: A View on Method Optimisation, Novel Applications, Limitations and Potential Solutions. J. Chromatogr. A. 2010, 1217, 2642–2666. DOI: 10.1016/j.chroma.2009.12.051.]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.