367
Views
10
CrossRef citations to date
0
Altmetric
Review Articles

A Review on Conducting Polymers for Colorimetric and Fluorescent Detection of Noble Metal Ions (Ag+, Pd2+, Pt2+/4+, and Au3+)

ORCID Icon
Pages 389-400 | Published online: 02 Jun 2022

References

  • Liu, H.; Feng, J.; Jie, W. A Review of Noble Metal (Pd, Ag, Pt, Au)–Zinc Oxide Nanocomposites: Synthesis, Structures and Applications. J. Mater. Sci: Mater. Electron. 2017, 28, 16585–16597. DOI: 10.1007/s10854-017-7612-0.
  • Iwamoto, M.; Akiyama, M.; Aihara, K.; Deguchi, T. Ammonia Synthesis on Wool-like Au, Pt, Pd, Ag, or Cu Electrode Catalysts in Nonthermal Atmospheric-Pressure Plasma of N2 and H2. ACS Catal. 2017, 7, 6924–6929. DOI: 10.1021/acscatal.7b01624.
  • Palo, E.; Salladini, A.; Morico, B.; Palma, V.; Ricca, A.; Iaquaniello, G. Application of Pd-Based Membrane Reactors: An Industrial Perspective. Membranes (Basel) 2018, 8, 101. DOI: 10.3390/membranes8040101.
  • Zhang, F.; Zhu, Y.; Lin, Q.; Zhang, L.; Zhang, X.; Wang, H. Noble-Metal Single-Atoms in Thermocatalysis, Electrocatalysis, and Photocatalysis. Energy Environ. Sci. 2021, 14, 2954–3009. DOI: 10.1039/D1EE00247C.
  • Tian, L.; Li, Z.; Song, M.; Li, J. Recent Progress in Water-Splitting Electrocatalysis Mediated by 2D Noble Metal Materials. Nanoscale 2021, 13, 12088–12101. DOI: 10.1039/d1nr02232f.
  • Nouri, A.; Wen, C. Noble Metal Alloys for Load-Bearing Implant Applications. Struct. Biomater 2021, 5, 127–156. DOI: 10.1016/B978-0-12-818831-6.00003-3.
  • Shimizu, H.; Takeuchi, Y. Bonding Behavior and Chemical and Mechanical Properties of Silver-Based Dental Alloys. Jpn. Dent. Sci. Rev. 2021, 57, 97–100. DOI: 10.1016/j.jdsr.2021.05.005.
  • Aikens, C. M. Electronic and Geometric Structure, Optical Properties, and Excited State Behavior in Atomically Precise Thiolate-Stabilized Noble Metal Nanoclusters. Acc. Chem. Res. 2018, 51, 3065–3073. DOI: 10.1021/ACS.ACCOUNTS.8B00364/ASSET/IMAGES/ACS.ACCOUNTS.8B00364.SOCIAL.JPEG_V03.
  • Hu, X.; Zhang, Z.; Zhang, Y.; Sun, L.; Tian, H.; Yang, X. Synthesis of a Highly Active and Stable Pt/Co3O4 Catalyst and Its Application for the Catalytic Combustion of Toluene. Eur. J. Inorg. Chem. 2019, 2019, 2933–2939. DOI: 10.1002/ejic.201900372.
  • Ren, X.; Lv, Q.; Liu, L.; Liu, B.; Wang, Y.; Liu, A.; Wu, G. Current Progress of Pt and Pt-Based Electrocatalysts Used for Fuel Cells. Sustainable Energy Fuels 2020, 4, 15–30. DOI: 10.1039/C9SE00460B.
  • Yaqoob, S. B.; Adnan, R.; Rameez Khan, R. M.; Rashid, M. Gold, Silver, and Palladium Nanoparticles: A Chemical Tool for Biomedical Applications. Front. Chem. 2020, 8, 376. DOI: 10.3389/FCHEM.2020.00376/BIBTEX.
  • Nasrollahzadeh, M.; Mahmoudi-Gom Yek, S.; Motahharifar, N.; Ghafori Gorab, M. Recent Developments in the Plant-Mediated Green Synthesis of Ag-Based Nanoparticles for Environmental and Catalytic Applications. Chem. Rec. 2019, 19, 2436–2479. DOI: 10.1002/tcr.201800202.
  • Huynh, K. H.; Pham, X. H.; Kim, J.; Lee, S. H.; Chang, H.; Rho, W. Y.; Jun, B. H. Synthesis, Properties, and Biological Applications of Metallic Alloy Nanoparticles. IJMS. 2020, 21, 5174. DOI: 10.3390/ijms21145174.
  • Vega-Cartagena, M.; Flores-Vélez, E. M.; Colón-Quintana, G. S.; Blasini Pérez, D. A.; De Jesús, M. A.; Cabrera, C. R. Silver-Palladium Electrodeposition on Unsupported Vulcan XC-72R for Oxygen Reduction Reaction in Alkaline Media. ACS Appl. Energy Mater. 2019, 2, 4664–4673. DOI: 10.1021/ACSAEM.9B00038/SUPPL_FILE/AE9B00038_SI_001.PDF.
  • Kim, H.; Mondal, S.; Jang, B.; Manivasagan, P.; Moorthy, M. S.; Oh, J. Biomimetic Synthesis of Metal–Hydroxyapatite (Au-HAp, Ag-HAp, Au-Ag-HAp): Structural Analysis, Spectroscopic Characterization and Biomedical Application. Ceram. Int. 2018, 44, 20490–20500. DOI: 10.1016/j.ceramint.2018.08.045.
  • Vardhan, K. H.; Kumar, P. S.; Panda, R. C. A Review on Heavy Metal Pollution, Toxicity and Remedial Measures: Current Trends and Future Perspectives. J. Mol. Liq. 2019, 290, 111197. DOI: 10.1016/j.molliq.2019.111197.
  • Kalavrouziotis, I. K.; Koukoulakis, P. H. The Environmental Impact of the Platinum Group Elements (Pt, Pd, Rh) Emitted by the Automobile Catalyst Converters. Water. Air. Soil Pollut. 2009, 196, 393–402. DOI: 10.1007/s11270-008-9786-9.
  • Wiseman, C. L. S. Palladium from Catalytic Converters: Exposure Levels and Human Risk. Palladium Emiss. Environ. Anal. Methods, Environ. Assess. Heal. Eff. 2006, 778, 565–574. DOI: 10.1007/3-540-29220-9_38.
  • Kielhorn, J.; Melber, C.; Keller, D.; Mangelsdorf, I. Palladium-A Review of Exposure and Effects to Human Health. Int. J. Hyg. Environ. Health. 2002, 205, 417–432. DOI: 10.1078/1438-4639-00180.
  • De Silva, S.; Ball, A. S.; Indrapala, D. V.; Reichman, S. M. Review of the Interactions between Vehicular Emitted Potentially Toxic Elements, Roadside Soils, and Associated Biota. Chemosphere 2021, 263, 128135. DOI: 10.1016/j.chemosphere.2020.128135.
  • Sures, B. Accumulation of Heavy Metals by Intestinal Helminths in Fish: An Overview and Perspective. Parasitology 2003, 126, S53–S60. DOI: 10.1017/S003118200300372X.
  • Khan, S.; Chen, X.; Almahri, A.; Allehyani, E. S.; Alhumaydhi, F. A.; Ibrahim, M. M.; Ali, S. Recent Developments in Fluorescent and Colorimetric Chemosensors Based on Schiff Bases for Metallic Cations Detection: A Review. J. Environ. Chem. Eng. 2021, 9, 106381. DOI: 10.1016/j.jece.2021.106381.
  • Chemistry, K. A.-C. R. in A.; A Review on Organic Colorimetric and Fluorescent Chemosensors for the Detection of Zn (II) Ions. 2022. undefined Taylor Fr
  • Tan, D.; Jiang, C.; Li, Q.; Bi, S.; Song, J. Silver Nanowire Networks with Preparations and Applications: A Review. J. Mater. Sci: Mater. Electron. 2020, 31, 15669–15696. DOI: 10.1007/s10854-020-04131-x.
  • Tomiyama, T.; Tomiyama, T.; Tomiyama, T.; Mukai, I.; Yamazaki, H.; Takeda, Y.; Takeda, Y.; Takeda, Y. Optical Properties of Silver Nanowire/Polymer Composite Films: Absorption, Scattering, and Color Difference. Opt. Mater. Express 2020, 10, 3202–3214. DOI: 10.1364/OME.412015.
  • Zhang, S.; Tang, Y.; Vlahovic, B. A Review on Preparation and Applications of Silver-Containing Nanofibers. Nanoscale Res. Lett. 2016, 11, 1–8. DOI: 10.1186/S11671-016-1286-Z/TABLES/2.
  • Givan, D. A. Precious Metal Alloys for Dental Applications. Precious Met. Biomed. Appl. 2014, 5, 109–129. DOI: 10.1533/9780857099051.2.109.
  • Hadrup, N.; Sharma, A. K.; Loeschner, K.; Jacobsen, N. R. Pulmonary Toxicity of Silver Vapours, Nanoparticles and Fine Dusts: A Review. Regul. Toxicol. Pharmacol. 2020, 115, 104690. DOI: 10.1016/j.yrtph.2020.104690.
  • Hadrup, N.; Sharma, A. K.; Loeschner, K. Toxicity of Silver Ions, Metallic Silver, and Silver Nanoparticle Materials after in Vivo Dermal and Mucosal Surface Exposure: A Review. Regul. Toxicol. Pharmacol. 2018, 98, 257–267. DOI: 10.1016/j.yrtph.2018.08.007.
  • Leino, V.; Airaksinen, R.; Viluksela, M.; Vähäkangas, K. Toxicity of Colloidal Silver Products and Their Marketing Claims in Finland. Toxicol. Rep. 2021, 8, 106–113. DOI: 10.1016/j.toxrep.2020.12.021.
  • Hadrup, N.; Sharma, A. K.; Loeschner, K. Toxicity of Silver Ions, Metallic Silver, and Silver Nanoparticle Materials after in Vivo Dermal and Mucosal Surface Exposure: A Review. Regul. Toxicol. Pharm. 2018, 98, 257–267. DOI: 10.1016/j.yrtph.2018.08.007.
  • Umemura, T.; Sato, K.; Kusaka, Y.; Satoh, H. Palladium. Handb. Toxicol. Met. Fourth Ed 2015, 1, 1113–1123. DOI: 10.1016/B978-0-444-59453-2.00049-4.
  • Ahmad, H. Celluloses as Green Support of Palladium Nanoparticles for Application in Heterogeneous Catalysis: A Brief Review. J. Clust. Sci. 2021, 33, 421–438. DOI: 10.1007/S10876-021-02000-Z.
  • Wu, X. F.; Neumann, H.; Beller, M. Synthesis of Heterocycles via Palladium-Catalyzed Carbonylations. Chem. Rev. 2013, 113, 1–35. DOI: 10.1021/CR300100S/ASSET/IMAGES/CR300100S.SOCIAL.JPEG_V03.
  • Zhou, T.; Ji, C. L.; Hong, X.; Szostak, M. Palladium-Catalyzed Decarbonylative Suzuki-Miyaura Cross-coupling of Amides by Carbon-nitrogen Bond activation . Chem. Sci. 2019, 10, 9865–9871. DOI: 10.1039/c9sc03169c.
  • Yang, Z.; Gu, X.; Han, L. B.; Wang, J. Palladium-Catalyzed Asymmetric Hydrophosphorylation of Alkynes: Facile Access to P-stereogenic phosphinates. Chem. Sci. 2020, 11, 7451–7455. DOI: 10.1039/d0sc01049a.
  • Phan, T. T. V.; Huynh, T. C.; Manivasagan, P.; Mondal, S.; Oh, J. An up-to-Date Review on Biomedical Applications of Palladium Nanoparticles. Nanomater 2019, 10, 66. DOI: 10.3390/nano10010066.
  • Wataha, J. C.; Hanks, C. T. Biological Effects of Palladium and Risk of Using Palladium in Dental Casting Alloys. J. Oral Rehabil. . 1996, 23, 309–320. DOI: 10.1111/j.1365-2842.1996.tb00858.x.
  • Iavicoli, I.; Fontana, L.; Bergamaschi, A. Palladium: Exposure, Uses, and Human Health Effects. Encycl. Environ. Heal 2011, 205, 307–314. DOI: 10.1016/B978-0-444-52272-6.00575-4.
  • Lüderwald, S.; Seitz, F.; Seisenbaeva, G. A.; Kessler, V. G.; Schulz, R.; Bundschuh, M. Palladium Nanoparticles: Is There a Risk for Aquatic Ecosystems? Bull. Environ. Contam. Toxicol. 2016, 97, 153–158. DOI: 10.1007/s00128-016-1803-x.
  • Kiilunen, M.; Aitio, A.; Santonen, T. Platinum. Handb. Toxicol. Met. Fourth Ed 2015, 1, 1125–1141. DOI: 10.1016/B978-0-444-59453-2.00050-0.
  • Barefoot, R. R. Speciation of Platinum Compounds: A Review of Recent Applications in Studies of Platinum Anticancer Drugs. J. Chromatogr. B Biomed. Sci. Appl. 2001, 751, 205–211. DOI: 10.1016/S0378-4347(00)00498-9.
  • Abu-Surrah, A.; Kettunen, M. Platinum Group Antitumor Chemistry: Design and Development of New Anticancer Drugs Complementary to Cisplatin. Curr. Med. Chem. 2006, 13, 1337–1357. DOI: 10.2174/092986706776872970.
  • Fang, X.; Shang, Q.; Wang, Y.; Jiao, L.; Yao, T.; Li, Y.; Zhang, Q.; Luo, Y.; Jiang, H. L. Single Pt Atoms Confined into a Metal–Organic Framework for Efficient Photocatalysis. Adv. Mater. 2018, 30, 1705112. DOI: 10.1002/adma.201705112.
  • Su, L.; Wang, P.; Wang, J.; Zhang, D.; Wang, H.; Li, Y.; Zhan, S.; Gong, J. Pt–Cu Interaction Induced Construction of Single Pt Sites for Synchronous Electron Capture and Transfer in Photocatalysis. Adv. Funct. Mater. 2021, 31, 2104343. DOI: 10.1002/adfm.202104343.
  • Wiseman, C. L. S.; Zereini, F. Airborne Particulate Matter, Platinum Group Elements and Human Health: A Review of Recent Evidence. Sci. Total Environ. . 2009, 407, 2493–2500. DOI: 10.1016/j.scitotenv.2008.12.057.
  • Kim, H.; Lee, S.; Lee, J.; Tae, J. Rhodamine Triazole-Based Fluorescent Probe for the Detection of Pt 2+. Org. Lett. 2010, 12, 5342–5345. DOI: 10.1021/OL102397N/SUPPL_FILE/OL102397N_SI_001.PDF.
  • Hutchings, G. J.; Brust, M.; Schmidbaur, H. Gold-An Introductory Perspective. Chem. Soc. Rev. 2008, 37, 1759–1765. DOI: 10.1039/b810747p.
  • Wittstock, A.; Bäumer, M. Catalysis by Unsupported Skeletal Gold Catalysts. Acc. Chem. Res. 2014, 47, 731–739. DOI: 10.1021/ar400202p.
  • Hussaini, S. Y.; Haque, R. A.; Razali, M. R. Recent Progress in Silver(I)-, Gold(I)/(III)- and Palladium(II)-N-Heterocyclic Carbene Complexes: A Review towards Biological Perspectives. J. Organomet. Chem. 2019, 882, 96–111. DOI: 10.1016/j.jorganchem.2019.01.003.
  • Do, J. H.; Kim, H. N.; Yoon, J.; Kim, J. S.; Kim, H. J. A Rationally Designed Fluorescence Turn-on Probe for the Gold(III) Ion. Org. Lett. 2010, 12, 932–934. DOI: 10.1021/OL902860F/SUPPL_FILE/OL902860F_SI_001.PDF.
  • Johnston, H. J.; Hutchison, G.; Christensen, F. M.; Peters, S.; Hankin, S.; Stone, V. A Review of the in Vivo and in Vitro Toxicity of Silver and Gold Particulates: Particle Attributes and Biological Mechanisms Responsible for the Observed Toxicity. Crit. Rev. Toxicol. 2010, 40, 328–346. DOI: 10.3109/10408440903453074.
  • Shih, T. T.; Hsu, I. H.; Chen, S. N.; Chen, P. H.; Deng, M. J.; Chen, Y.; Lin, Y. W.; Sun, Y. C. A Dipole-Assisted Solid-Phase Extraction Microchip Combined with Inductively Coupled Plasma-Mass Spectrometry for Online Determination of Trace Heavy Metals in Natural Water. Analyst 2015, 140, 600–608. DOI: 10.1039/c4an01421a.
  • Choi, S. H.; Kim, J. Y.; Mi Choi, E.; Lee, M. Y.; Yang, J. Y.; Ho Lee, G.; Su Kim, K.; Yang, J. S.; Russo, R. E.; Yoo, J. H.; et al. Heavy Metal Determination by Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) and Direct Mercury Analysis (DMA) and Arsenic Mapping by Femtosecond (Fs) – Laser Ablation (LA) ICP-MS in Cereals. Anal. Lett. 2019, 52, 496–510. . DOI: 10.1080/00032719.2018.1471484.
  • Ervin, A. M.; Panayappan, R.; Cooper, J. C. Indirect Determination of Cations by Ion Chromatography and Anions by Atomic Emission Spectroscopy. Anal. Lett. 1988, 21, 2117–2126. DOI: 10.1080/00032718808059895.
  • Colim, A. N.; do Nascimento, P. C.; Wiethan, B. A.; Adolfo, F. R.; Dresch, L. C.; de Carvalho, L. M.; Bohrer, D.; da Rosa, M. B. Reversed-Phase High-Performance Liquid Chromatography for the Determination of 15 Rare Earth Elements in Surface Water Sample Collected in a Mining Area from Lavras Do Sul/RS, Brazil. Chromatographia 2019, 82, 843–856. DOI: 10.1007/s10337-019-03709-w.
  • Menzinger, F.; Schmitt-Kopplin, P.; Freitag, D.; Kettrup, A. Analysis of Agrochemicals by Capillary Electrophoresis. J. Chromatogr. A 2000, 891, 45–67. DOI: 10.1016/S0021-9673(00)00567-7.
  • Bi, J.; Li, T.; Ren, H.; Ling, R.; Wu, Z.; Qin, W. Capillary Electrophoretic Determination of Heavy-Metal Ions Using 11-Mercaptoundecanoic Acid and 6-Mercapto-1-Hexanol Co-Functionalized Gold Nanoparticle as Colorimetric Probe. J. Chromatogr. A 2019, 1594, 208–215. DOI: 10.1016/j.chroma.2019.02.010.
  • Song, X.; Zhang, R.; Wang, Y.; Feng, M.; Zhang, H.; Wang, S.; Cao, J.; Xie, T. Simultaneous Determination of Five Metal Ions by on-Line Complexion Combined with Micelle to Solvent Stacking in Capillary Electrophoresis. Talanta 2020, 209, 120578. DOI: 10.1016/j.talanta.2019.120578.
  • Fung, K.; Grosjean, D. Determination of Nanogram Amounts of Carbonyls as 2,4-Dinitrophenylhydrazones by High-Performance Liquid Chromatography. Anal. Chem. 1981, 53, 168–171. DOI: 10.1021/ac00225a009.
  • Tu, C.; Dai, Y.; Xu, K.; Qi, M.; Wang, W.; Wu, L.; Wang, A. Determination of Tetracycline in Water and Honey by Iron(II, III)/Aptamer-Based Magnetic Solid-Phase Extraction with High-Performance Liquid Chromatography Analysis. Anal. Lett. 2019, 52, 1653–1669. . DOI: 10.1080/00032719.2018.1560458.
  • Zinoubi, K.; Majdoub, H.; Barhoumi, H.; Boufi, S.; Jaffrezic-Renault, N. Determination of Trace Heavy Metal Ions by Anodic Stripping Voltammetry Using Nanofibrillated Cellulose Modified Electrode. J. Electroanal. Chem. 2017, 799, 70–77. DOI: 10.1016/j.jelechem.2017.05.039.
  • Tamiji, T.; Nezamzadeh-Ejhieh, A. A Comprehensive Study on the Kinetic Aspects and Experimental Design for the Voltammetric Response of a Sn(IV)-Clinoptilolite Carbon Paste Electrode towards Hg(II). J. Electroanal. Chem. 2018, 829, 95–105. DOI: 10.1016/j.jelechem.2018.10.011.
  • Bansod, B. K.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A Review on Various Electrochemical Techniques for Heavy Metal Ions Detection with Different Sensing Platforms. Biosens. Bioelectron. 2017, 94, 443–455. DOI: 10.1016/j.bios.2017.03.031.
  • Wang, S.; Chen, H.; Xie, H.; Wei, L.; Xu, L.; Zhang, L.; Lan, W.; Zhou, C.; She, Y.; Fu, H. A Novel Thioctic Acid-Carbon Dots Fluorescence Sensor for the Detection of Hg2+ and Thiophanate Methyl via S-Hg Affinity. Food Chem. 2021, 346, 128923. DOI: 10.1016/j.foodchem.2020.128923.
  • Liu, B.; Zhuang, J.; Wei, G. Recent Advances in the Design of Colorimetric Sensors for Environmental Monitoring. Environ. Sci: Nano 2020, 7, 2195–2213. DOI: 10.1039/D0EN00449A.
  • Aydin, Z. A Novel Phenanthroline-Based Colorimetric Turn-off Optical Sensor for Zn2+. Inorganica Chim. Acta 2021, 517, 120200. DOI: 10.1016/j.ica.2020.120200.
  • Muhammad, M.; Khan, S.; Fayaz, H. Charge-Transfer Complex–Based Spectrophotometric Method for the Determination of Mesotrione in Environmental Samples. Environ. Monit. Assess 2021, 193, 1–7. DOI: 10.1007/S10661-021-09432-0.
  • Keleş, E.; Aydıner, B.; Nural, Y.; Seferoğlu, N.; Şahin, E.; Seferoğlu, Z. Cover Feature: A New Mechanism for Selective Recognition of Cyanide in Organic and Aqueous Solution. Eur. J. Org. Chem. 2020, 2020, 4640–4640. DOI: 10.1002/ejoc.202001038.
  • Nural, Y.; Keleş, E.; Aydıner, B.; Seferoğlu, N.; Atabey, H.; Seferoğlu, Z. New Naphthoquinone-Imidazole Hybrids: Synthesis, Anion Recognition Properties, DFT Studies and Acid Dissociation Constants. J. Mol. Liq. 2021, 327, 114855. DOI: 10.1016/j.molliq.2020.114855.
  • Sadaphal, Y. R.; Gholap, S. S. A Highly Selective Colorimetric Chemosensor for Copper(II) Based on N-Phenyl-N’-(Pyridin-2-yl)Thiourea(HPyPT). Sens. Actuat., B Chem. 2017, 253, 173–179. DOI: 10.1016/j.snb.2017.05.187.
  • Chowdhury, B.; Karar, M.; Paul, S.; Joshi, M.; Choudhury, A. R.; Biswas, B. Salen Type Ligand as a Selective and Sensitive Nickel(II) Ion Chemosensor: A Combined Investigation with Experimental and Theoretical Modelling. Sens. Actuat., B Chem. 2018, 276, 560–566. DOI: 10.1016/j.snb.2018.08.141.
  • Han, J.; Tang, X.; Wang, Y.; Liu, R.; Wang, L.; Ni, L. A Quinoline-Based Fluorescence “on-off-on” Probe for Relay Identification of Cu2+ and Cd2+ ions. Spectrochim. Acta A Mol. Biomol. Spectrosc. . 2018, 205, 597–602. DOI: 10.1016/j.saa.2018.07.081.
  • Alharbi, K. H. A Review on Organic Colorimetric and Fluorescent Chemosensors for the Detection of Zn(II) Ions. Crit. Rev. Anal. Chem. 2022, 52, 1–17. DOI: 10.1080/10408347.2022.2033611.
  • Bhanja, A. K.; Mishra, S.; Das Saha, K.; Sinha, C. A Fluorescence “ 'turn-on' Chemodosimeter for the Specific Detection of Pd2+ by a Rhodamine Appended Schiff Base and its Application in Live Cell Imaging” . Dalton Trans. 2017, 46, 9245–9252. DOI: 10.1039/c7dt01288h.
  • Upadhyay, S.; Singh, A.; Sinha, R.; Omer, S.; Negi, K. Colorimetric Chemosensors for D-Metal Ions: A Review in the past, Present and Future Prospect. J. Mol. Struct. 2019, 1193, 89–102. DOI: 10.1016/j.molstruc.2019.05.007.
  • Singh, N.; Kaur, N.; Ni Choitir, C.; Callan, J. F. A Dual Detecting Polymeric Sensor: Chromogenic Naked Eye Detection of Silver and Ratiometric Fluorescent Detection of Manganese. Tetrahedron Lett. 2009, 50, 4201–4204. DOI: 10.1016/j.tetlet.2009.04.108.
  • Berhanu, A. L.; Gaurav; Mohiuddin, I.; Malik, A. K.; Aulakh, J. S.; Kumar, V.; Kim, K. H. A Review of the Applications of Schiff Bases as Optical Chemical Sensors. TrAC Trends Anal. Chem. 2019, 116, 74–91. DOI: 10.1016/j.trac.2019.04.025.
  • Kowser, Z.; Rayhan, U.; Akther, T.; Redshaw, C.; Yamato, T. A Brief Review on Novel Pyrene Based Fluorometric and Colorimetric Chemosensors for the Detection of Cu2+. Mater. Chem. Front. 2021, 5, 2173–2200. DOI: 10.1039/D0QM01008A.
  • Udhayakumari, D.; Naha, S.; Velmathi, S. Colorimetric and Fluorescent Chemosensors for Cu2+. A Comprehensive Review from the Years 2013–15. Anal. Methods 2017, 9, 552–578. DOI: 10.1039/C6AY02416E.
  • Priyadarshini, E.; Pradhan, N. Gold Nanoparticles as Efficient Sensors in Colorimetric Detection of Toxic Metal Ions: A Review. Sens. Actuat. B Chem. 2017, 238, 888–902. DOI: 10.1016/j.snb.2016.06.081.
  • AbhijnaKrishna, R.; Velmathi, S. A Review on Fluorimetric and Colorimetric Detection of Metal Ions by Chemodosimetric Approach 2013–2021. Coord. Chem. Rev. 2022, 459, 214401. DOI: 10.1016/j.ccr.2021.214401.
  • Al-Saidi, H. M.; Khan, S. Recent Advances in Thiourea Based Colorimetric and Fluorescent Chemosensors for Detection of Anions and Neutral Analytes: A Review. Crit. Rev. Anal. Chem. 2022, 52, 1–17. DOI: 10.1080/10408347.2022.2063017.
  • Ayranci, R.; Demirkol, D. O.; Timur, S.; Ak, M. Rhodamine-Based Conjugated Polymers: Potentiometric, Colorimetric and Voltammetric Sensing of Mercury Ions in Aqueous Medium. Analyst 2017, 142, 3407–3415. DOI: 10.1039/c7an00606c.
  • Nambiar, S.; Yeow, J. T. W. Conductive Polymer-Based Sensors for Biomedical Applications. Biosens. Bioelectron. 2011, 26, 1825–1832. DOI: 10.1016/j.bios.2010.09.046.
  • Qin, C.; Wong, W. Y.; Wang, L. A Water-Soluble Organometallic Conjugated Polyelectrolyte for the Direct Colorimetric Detection of Silver Ion in Aqueous Media with High Selectivity and Sensitivity. Macromolecules 2011, 44, 483–489. DOI: 10.1021/ma102373y.
  • Li, F.; Meng, F.; Wang, Y.; Zhu, C.; Cheng, Y. Polymer-Based Fluorescence Sensor Incorporating Thiazole Moiety for Direct and Visual Detection of Hg2+ and Ag+. Tetrahedron 2015, 71, 1700–1704. DOI: 10.1016/j.tet.2015.01.052.
  • Xiang, G.; Cui, W.; Lin, S.; Wang, L.; Meier, H.; Li, L.; Cao, D. A Conjugated Polymer with Ethyl 2-(2-(Pyridin-2-Yl)-1H-Benzo[d]Imidazol-1-Yl) Acetate Units as a Novel Fluorescent Chemosensor for Silver(I) Detection. Sens. Actuat. B Chem. 2013, 186, 741–749. DOI: 10.1016/j.snb.2013.06.061.
  • Cui, W.; Wang, L.; Xiang, G.; Zhou, L.; An, X.; Cao, D. A Colorimetric and Fluorescence “turn-Off” Chemosensor for the Detection of Silver Ion Based on a Conjugated Polymer Containing 2,3-Di(Pyridin-2-Yl)Quinoxaline. Sens. Actuat. B Chem. 2015, 207, 281–290. DOI: 10.1016/j.snb.2014.10.072.
  • Balamurugan, A.; Lee, H. Il. Aldoxime-Derived Water-Soluble Polymer for the Multiple Analyte Sensing: Consecutive and Selective Detection of Hg2+, Ag+, ClO-, and Cysteine in Aqueous Media. Macromolecules 2015, 48, 3934–3940. DOI: 10.1021/ACS.MACROMOL.5B00731/SUPPL_FILE/MA5B00731_SI_001.PDF.
  • Qian, J.; Wu, D.; Cai, P.; Xia, J. Nitrogen Atom Free Polythiophene Derivative as an Efficient Chemosensor for Highly Selective and Sensitive Cu2+ and Ag + Detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. . 2019, 218, 76–84. DOI: 10.1016/j.saa.2019.03.093.
  • Chebny, V. J.; Banerjee, M.; Rathore, R. Preparation of a Polymer-Supported Fluorene-Based Receptor for Quantitative and Efficient Binding of Silver Cations. Chemistry 2007, 13, 6508–6513. DOI: 10.1002/chem.200601776.
  • Wang, T.; Zhang, N.; Li, Q.; Li, Z.; Bao, Y.; Bai, R. A Branched 2,2′-Biimidazole-Based Polymer with Multiple Sensing Properties. Sens. Actuat. B Chem. 2016, 225, 81–89. DOI: 10.1016/j.snb.2015.11.014.
  • Liu, B.; Bao, Y.; Wang, H.; Du, F.; Tian, J.; Li, Q.; Wang, T.; Bai, R. An Efficient Conjugated Polymer Sensor Based on the Aggregation-Induced Fluorescence Quenching Mechanism for the Specific Detection of Palladium and Platinum Ions. J. Mater. Chem. 2012, 22, 3555–3561. DOI: 10.1039/c2jm15651b.
  • Zhang, G.; Wen, Y.; Guo, C.; Xu, J.; Lu, B.; Duan, X.; He, H.; Yang, J. A Cost-Effective and Practical Polybenzanthrone-Based Fluorescent Sensor for Efficient Determination of Palladium (II) Ion and Its Application in Agricultural Crops and Environment. Anal. Chim. Acta. 2013, 805, 87–94. DOI: 10.1016/j.aca.2013.10.054.
  • Huang, H.; Wang, K.; Tan, W.; An, D.; Yang, X.; Huang, S.; Zhai, Q.; Zhou, L.; Jin, Y. Design of a Modular-Based Fluorescent Conjugated Polymer for Selective Sensing. Angew. Chem. Int. Ed. Engl. 2004, 43, 5635–5638. DOI: 10.1002/anie.200460371.
  • Zhang, Y.; Zhao, Y.; Shi, L.; Zhang, L.; Du, H.; Huang, H.; Xiao, Y.; Zhang, Y.; He, X.; Wang, K. Novel Pyrene-Pyridine Oligomer Nanorods for Super-sensitive Fluorescent Detection of Pd2 +. Analyst 2020, 145, 5631–5637. DOI: 10.1039/d0an00049c.
  • Liu, B.; Dai, H.; Bao, Y.; Du, F.; Tian, J.; Bai, R. 2,6-Substituted Pyridine Derivative-Containing Conjugated Polymers: Synthesis, Photoluminescence and Ion-Sensing Properties. Polym. Chem. 2011, 2, 1699–1705. DOI: 10.1039/c1py00149c.
  • Jiang, J.; Li, S.; Yan, Y.; Fang, M.; Chen, M.; Peng, K.; Nie, L.; Feng, Y.; Wang, X. Pendant Structure Governed the Selectivity of Pd2+ Using Disubstituted Polyacetylenes with Sulfur Functions and the Application of Thiophanate-Methyl Detection. Sens. Actuat. B Chem. 2017, 247, 36–45. DOI: 10.1016/j.snb.2017.03.008.
  • Chansri, P.; Wanno, B.; Keawwangchai, S.; Tuntulani, T.; Pulpoka, B.; Kaewtong, C. Spray Coating Thin Polymeric Sensor Films for Au3+. J. Appl. Polym. Sci. 2020, 137, 48273. DOI: 10.1002/app.48273.
  • Kaewtong, C.; Kampaengsri, S.; Singhana, B.; Pulpoka, B. Highly Selective Detection of Au3+ Using Rhodamine-Based Modified Polyacrylic Acid (PAA)-Coated ITO. Dye. Pigment 2017, 141, 277–285. DOI: 10.1016/j.dyepig.2017.02.033.
  • Liu, J.; Liu, W.; Xu, M.; Wang, B.; Zhou, Z.; Wang, L. Sensitive Detection of Au(III) Using Regenerative Rhodamine B–Functionalized Chitosan Nanoparticles. Sens. Actuat. B Chem. 2016, 233, 361–368. DOI: 10.1016/j.snb.2016.04.086.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.