488
Views
1
CrossRef citations to date
0
Altmetric
Invited Reviews

Preterm labor tests: current status and future directions

, &
Pages 278-296 | Received 07 Jun 2021, Accepted 07 Jan 2022, Published online: 25 Jan 2022

References

  • Practice Bulletin No. Management of preterm labor. Obstet Gynecol. 2016;171(4):e155–e164.
  • Kramer MS, Papageorghiou A, Culhane J, et al. Challenges in defining and classifying the preterm birth syndrome. Am J Obstet Gynecol. 2012;206(2):108–112.
  • Goldenberg RL, Culhane JF, Iams JD, et al. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84.
  • Moutquin JM. Classification and heterogeneity of preterm birth. BJOG. 2003;110(Suppl 20):30–33.
  • WHO. Preterm birth. [cited 2018 Feb 19]. Available from: https://www.who.int/news-room/fact-sheets/detail/preterm-birth
  • Walani SR. Global burden of preterm birth. Int J Gynecol Obstet. 2020;150(1):31–33.
  • Harrison MS, Goldenberg RL. Global burden of prematurity. Semin Fetal Neonatal Med. 2016;21(2):74–79.
  • Griggs KM, Hrelic DA, Williams N, et al. Preterm labor and birth: a clinical review. MCN Am J Matern Child Nurs. 2020;45(6):328–337.
  • Martin JA, Kung H-C, Mathews TJ, et al. Annual summary of vital statistics: 2006. Pediatrics. 2008;121(4):788–801.
  • Martin JA, Hamilton BE, Osterman MJK. Births in the United States, 2019. NCHS Data Brief. 2020;387:1–8.
  • Farnsworth C, Schuler EE, Woodworth A, et al. AACC guidance document on laboratory testing for the assessment of preterm delivery. J Appl Lab Med. 2021;6(4):1032–1044.
  • Simhan HN. Preterm birth is the leading cause of neonatal mortality and is responsible for roughly one-half of long-term neurologic sequelae. Am J Obstet Gynecol. 2010;202(5):407–408.
  • Platt MJ. Outcomes in preterm infants. Public Health. 2014;128(5):399–403.
  • Howson CP, Kinney MV, McDougall L, et al.; the Born Too Soon Preterm Birth Action Group. Born too soon: preterm birth matters. Reprod Health. 2013;10(S1):S1. 2013/11/15
  • Hug L, Alexander M, You D, et al.; UN Inter-agency Group for Child Mortality Estimation. National, regional, and global levels and trends in neonatal mortality between 1990 and 2017, with scenario-based projections to 2030: a systematic analysis. Lancet Glob Health. 2019;7(6):e710–e720.
  • Glover AV, Manuck TA. Screening for spontaneous preterm birth and resultant therapies to reduce neonatal morbidity and mortality: a review. Semin Fetal Neonatal Med. 2018;23(2):126–132.
  • Rysavy MA, Marlow N, Doyle LW, et al. Reporting outcomes of extremely preterm births. Pediatrics. 2016;138(3):e20160689.
  • The United Nations Inter-agency Group for Child Mortality Estimation (UN IGME). Levels and trends in child mortality. New York: United Nations Children's Fund; 2020.
  • Kelly MM, Griffith PB. The influence of preterm birth beyond infancy: umbrella review of outcomes of adolescents and adults born preterm. J Am Assoc Nurse Pract. 2020;32(8):555–562.
  • Raju TNK, Pemberton VL, Saigal S, et al.; Adults Born Preterm Conference Speakers and Discussants. Long-term healthcare outcomes of preterm birth: an executive summary of a conference sponsored by the national institutes of health. J Pediatr. 2017;181:309–318.e1.
  • Reddy UM, Rice MM, Grobman WA, et al.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Serious maternal complications after early preterm delivery (24-33 weeks’ gestation). Am J Obstet Gynecol. 2015 2015;213(4):538.e1-538–538.e9.
  • Kawakita T, Reddy UM, Grantz KL, et al. Maternal outcomes associated with early preterm cesarean delivery. Am J Obstet Gynecol. 2017;216(3):312.e1–e9.
  • Kuper SG, Sievert RA, Steele R, et al. Maternal and neonatal outcomes in indicated preterm births based on the intended mode of delivery. Obstet Gynecol. 2017;130(5):1143–1151.
  • Hanko C, Bittner A, Junge-Hoffmeister J, et al. Course of mental health and mother-infant bonding in hospitalized women with threatened preterm birth. Arch Gynecol Obstet. 2020;301(1):119–128.
  • Hodek JM, von der Schulenburg JM, Mittendorf T. Measuring economic consequences of preterm birth – methodological recommendations for the evaluation of personal burden on children and their caregivers. Health Econ Rev. 2011;1(1):6.
  • Grosse SD, Waitzman NJ, Yang N, et al. Employer-sponsored plan expenditures for infants born preterm. Pediatrics. 2017;140(4):e20171078.
  • Clements KM, Barfield WD, Ayadi MF, et al. Preterm birth-associated cost of early intervention services: an analysis by gestational age. Pediatrics. 2007;119(4):e866–e874.
  • Richard EB, editor. Preterm birth: Causes, consequences, and prevention. Washington (DC): The National Academies Press; 2007.
  • FIGO Working Group on Good Clinical Practice in Maternal-Fetal Medicine. Good clinical practice advice: Prediction of preterm labor and preterm premature rupture of membranes. Int J Gynecol Obstet. 2019;144(3):340–346.
  • Romero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014;345(6198):760–765.
  • Romero R, Espinoza J, Kusanovic JP, et al. The preterm parturition syndrome. BJOG. 2006;113(Suppl 3):17–42.
  • Cobo T, Kacerovsky M, Jacobsson B. Risk factors for spontaneous preterm delivery. Int J Gynaecol Obstet. 2020;150(1):17–23.
  • Denney JM, Culhane JF, Goldenberg RL. Prevention of preterm birth. Womens Health. 2008;4(6):625–638.
  • Muglia LJ, Katz M. The enigma of spontaneous preterm birth. N Engl J Med. 2010;362(6):529–535.
  • Simmons LE, Rubens CE, Darmstadt GL, et al. Preventing preterm birth and neonatal mortality: exploring the epidemiology, causes, and interventions. Semin Perinatol. 2010;34(6):408–415.
  • Parry S, Strauss JF. Premature rupture of the fetal membranes. N Engl J Med. 1998;338(10):663–670.
  • Wax JR, Cartin A, Pinette MG. Cervical evaluation in pregnancy: proper measurement, evaluation, and management. Clin Obstet Gynecol. 2017;60(3):608–620.
  • Fuchs IB, Henrich W, Osthues K, et al. Sonographic cervical length in singleton pregnancies with intact membranes presenting with threatened preterm labor. Ultrasound Obstet Gynecol. 2004;24(5):554–557.
  • Chiossi G, Saade GR, Sibai B, et al. Using cervical length measurement for lower spontaneous preterm birth rates among women with threatened preterm labor. Obstet Gynecol. 2018;132(1):102–106.
  • Iams JD, Goldenberg RL, Meis PJ, et al. The length of the cervix and the risk of spontaneous premature delivery. N Engl J Med. 1996;334(9):567–572.
  • Thain S, Yeo GSH, Kwek K, et al. Spontaneous preterm birth and cervical length in a pregnant Asian population. PLoS One. 2020;15(4):e0230125.
  • Lockwood CJ. Preterm labor: clinical findings, diagnostic evaluation, and initial treatment. 2021 [cited 2022 Jan 15]. Available from: https://www.uptodate.com/contents/preterm-labor-clinical-findings-diagnostic-evaluation-and-initial-treatment
  • Ville Y, Rozenberg P. Predictors of preterm birth. Best Pract Res Clin Obstet Gynaecol. 2018;52:23–32.
  • Caughey AB, Robinson JN, Norwitz ER. Contemporary diagnosis and management of preterm premature rupture of membranes. Rev Obstet Gynecol. 2008;1(1):11–22.
  • Waters TP, Mercer B. Preterm PROM: prediction, prevention, principles. Clin Obstet Gynecol. 2011;54(2):307–312.
  • Helmer H. Continuing challenges in treating preterm labour: preterm prelabour rupture of the membranes. BJOG. 2006;113 Suppl 3(Suppl 3):111–112.
  • Maxwell GL. Preterm premature rupture of membranes. Obstet Gynecol Surv. 1993;48(8):576–583.
  • Merenstein GB, Weisman LE. Premature rupture of the membranes: neonatal consequences. Semin Perinatol. 1996;20(5):375–380.
  • Rundell K, Panchal B. Preterm labor: prevention and management. Am Fam Physician. 2017;95(6):366–372.
  • Cousins LM, Smok DP, Lovett SM, et al. AmniSure placental alpha microglobulin-1 rapid immunoassay versus standard diagnostic methods for detection of rupture of membranes. Am J Perinatol. 2005;22(6):317–320.
  • Prelabor rupture of membranes: ACOG practice bulletin, number 217. Obstet Gynecol. 2020;135(3):e80–e97.
  • Chandramouli J. Indigo carmine injection. [cited 2018 Jan 22]. Available from: https://www.ashp.org/drug-shortages/current-shortages/drug-shortage-detail.aspx?id=175&loginreturnUrl=SSOCheckOnly
  • Lockwood CJ, Senyei AE, Dische MR, et al. Fetal fibronectin in cervical and vaginal secretions as a predictor of preterm delivery. N Engl J Med. 1991;325(10):669–674.
  • Matsuura H, Hakomori S. The oncofetal domain of fibronectin defined by monoclonal antibody FDC-6: its presence in fibronectins from fetal and tumor tissues and its absence in those from normal adult tissues and plasma. Proc Natl Acad Sci U S A. 1985;82(19):6517–6521.
  • Matsuura H, Takio K, Titani K, et al. The oncofetal structure of human fibronectin defined by monoclonal antibody FDC-6. Unique structural requirement for the antigenic specificity provided by a glycosylhexapeptide. J Biol Chem. 1988;263(7):3314–3322.
  • Iwaki T, Sandoval-Cooper MJ, Paiva M, et al. Fibrinogen stabilizes placental-maternal attachment during embryonic development in the mouse. Am J Pathol. 2002;160(3):1021–1034.
  • Feinberg RF, Kliman HJ, Lockwood CJ. Is oncofetal fibronectin a trophoblast glue for human implantation? Am J Pathol. 1991;138(3):537–543.
  • Lukes AS, Thorp JM Jr, Eucker B, et al. Predictors of positivity for fetal fibronectin in patients with symptoms of preterm labor. Am J Obstet Gynecol. 1997;176(3):639–641.
  • Iams JD, Casal D, McGregor JA, et al. Fetal fibronectin improves the accuracy of diagnosis of preterm labor. Am J Obstet Gynecol. 1995;173(1):141–145.
  • Peaceman AM, Andrews WW, Thorp JM, et al. Fetal fibronectin as a predictor of preterm birth in patients with symptoms: a multicenter trial. Am J Obstet Gynecol. 1997;177(1):13–18.
  • Lopez RL, Francis JA, Garite TJ, et al. Fetal fibronectin detection as a predictor of preterm birth in actual clinical practice. Am J Obstet Gynecol. 2000;182(5):1103–1106.
  • Riboni F, Vitulo A, Dell’avanzo M, et al. Biochemical markers predicting pre-term delivery in symptomatic patients: phosphorylated insulin-like growth factor binding protein-1 and fetal fibronectin. Arch Gynecol Obstet. 2011;284(6):1325–1329.
  • Hellemans P, Gerris J, Verdonk P. Fetal fibronectin detection for prediction of preterm birth in low risk women. BJOG. 1995;102(3):207–212.
  • Bartnicki J, Casal D, Kreaden US, et al. Fetal fibronectin in vaginal specimens predicts preterm delivery and very-low-birth-weight infants. Am J Obstet Gynecol. 1996;174(3):971–974.
  • Morrison JC, Allbert JR, McLaughlin BN, et al. Oncofetal fibronectin in patients with false labor as a predictor of preterm delivery. Am J Obstet Gynecol. 1993;168(2):538–542.
  • Sunagawa S, Takagi K, Ono K, et al. Comparison of biochemical markers and cervical length for predicting preterm delivery. J Obstet Gynaecol Res. 2008;34(5):812–819.
  • Vis JY, Wilms FF, Oudijk MA, et al. Why were the results of randomized trials on the clinical utility of fetal fibronectin negative? A systematic review of their study designs. Am J Perinatol. 2011;28(2):145–150.
  • Sanchez-Ramos L, Delke I, Zamora J, et al. Fetal fibronectin as a short-term predictor of preterm birth in symptomatic patients: a meta-analysis. Obstet Gynecol. 2009;114(3):631–640.
  • Abbott DS, Radford SK, Seed PT, et al. Evaluation of a quantitative fetal fibronectin test for spontaneous preterm birth in symptomatic women. Am J Obstet Gynecol. 2013;208(2):122.e1-6.
  • Dos Santos F, Daru J, Rogozińska E, et al. Accuracy of fetal fibronectin for assessing preterm birth risk in asymptomatic pregnant women: a systematic review and meta-analysis. Acta Obstet Gynecol Scand. 2018;97(6):657–667.
  • Honest H, Bachmann LM, Gupta JK, et al. Accuracy of cervicovaginal fetal fibronectin test in predicting risk of spontaneous preterm birth: systematic review. BMJ. 2002;325(7359):301.
  • Berghella V, Saccone G. Fetal fibronectin testing for prevention of preterm birth in singleton pregnancies with threatened preterm labor: a systematic review and metaanalysis of randomized controlled trials. Am J Obstet Gynecol. 2016;215(4):431–438.
  • Macones GA. Fetal fibronectin testing in threatened preterm labor: time to stop. Am J Obstet Gynecol. 2016;215(4):405.
  • Berghella V, Saccone G. Fetal fibronectin testing for reducing the risk of preterm birth. Cochrane Database Syst Rev. 2019;7(7):CD006843.
  • Faron G, Balepa L, Parra J, et al. The fetal fibronectin test: 25 years after its development, what is the evidence regarding its clinical utility? A systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2020;33(3):493–523.
  • Plaut MM, Smith W, Kennedy K. Fetal fibronectin: the impact of a rapid test on the treatment of women with preterm labor symptoms. Am J Obstet Gynecol. 2003;188(6):1588–1593, discussion 1593–1595.
  • Petrunin DD, Gryaznova IM, Petrunina YA, et al. Immunochemical identification of organ-specific human placentalαin2-globulin and its content in the amniotic fluid. Bull Exp Biol Med. 1976;82(1):994–996.
  • Berggård T, Enghild JJ, Badve S, et al. Histologic distribution and biochemical properties of alpha 1-microglobulin in human placenta. Am J Reprod Immunol. 1999;41(1):52–60.
  • Boltovskaya MN, Zaraiskii EI, Fuks BB, et al. Histochemical and clinical-diagnostic study of placental α1-microglobulin using monoclonal antibodies. Bull Exp Biol Med. 1991;112(4):1457–1461.
  • Tagore S, Kwek K. Comparative analysis of insulin-like growth factor binding protein-1 (IGFBP-1), placental alpha-microglobulin-1 (PAMG-1) and nitrazine test to diagnose premature rupture of membranes in pregnancy. J Perinat Med. 2010;38(6):609–612.
  • Wing DA, Haeri S, Silber AC, et al. Placental alpha microglobulin-1 compared with fetal fibronectin to predict preterm delivery in symptomatic women. Obstet Gynecol. 2017;130(6):1183–1191.
  • Melchor JC, Navas H, Marcos M, et al. Predictive performance of PAMG-1 vs fFN test for risk of spontaneous preterm birth in symptomatic women attending an emergency obstetric unit: retrospective cohort study. Ultrasound Obstet Gynecol. 2018;51(5):644–649.
  • Melchor JC, Khalil A, Wing D, et al. Prediction of preterm delivery in symptomatic women using PAMG-1, fetal fibronectin and phIGFBP-1 tests: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2018;52(4):442–451.
  • Ravi M, Beljorie M, El Masry K. Evaluation of the quantitative fetal fibronectin test and PAMG-1 test for the prediction of spontaneous preterm birth in patients with signs and symptoms suggestive of preterm labor. J Matern Fetal Neonatal Med. 2019;32(23):3909–3914.
  • Klopper A, Genazzani AR, Crosignani PG. The human placenta: proteins and hormones. Vol. 35. London, New York: Academic Press; 1980.
  • Lee SM, Lee J, Seong HS, et al. The clinical significance of a positive Amnisure test in women with term labor with intact membranes. J Matern Fetal Neonatal Med. 2009;22(4):305–310.
  • Lee SM, Romero R, Park JW, et al. The clinical significance of a positive Amnisure test in women with preterm labor and intact membranes. J Matern Fetal Neonatal Med. 2012;25(9):1690–1698.
  • Hellström A, Ley D, Hansen-Pupp I, et al. Role of insulinlike growth factor 1 in fetal development and in the early postnatal life of premature infants. Am J Perinatol. 2016;33(11):1067–1071.
  • Agrogiannis GD, Sifakis S, Patsouris ES, et al. Insulin-like growth factors in embryonic and fetal growth and skeletal development (review). Mol Med Rep. 2014;10(2):579–584.
  • Nuutila M, Halmesmäki E, Hiilesmaa V, et al. Women's anticipations of and experiences with induction of labor. Acta Obstet Gynecol Scand. 1999;78(8):704–709.
  • Murphy VE, Smith R, Giles WB, et al. Endocrine regulation of human fetal growth: the role of the mother, placenta, and fetus. Endocr Rev. 2006;27(2):141–169.
  • Rutanen EM, Bohn H, Seppälä M. Radioimmunoassay of placental protein 12: levels in amniotic fluid, cord blood, and serum of healthy adults, pregnant women, and patients with trophoblastic disease. Am J Obstet Gynecol. 1982;144(4):460–463.
  • Rutanen EM, Pekonen F, Kärkkäinen T. Measurement of insulin-like growth factor binding protein-1 in cervical/vaginal secretions: comparison with the ROM-check membrane immunoassay in the diagnosis of ruptured fetal membranes. Clin Chim Acta. 1993;214(1):73–81.
  • Rutanen EM, Kärkkäinen TH, Lehtovirta J, et al. Evaluation of a rapid strip test for insulin-like growth factor binding protein-1 in the diagnosis of ruptured fetal membranes. Clin Chim Acta. 1996;253(1-2):91–101.
  • Ramsauer B, Vidaeff AC, Hösli I, et al. The diagnosis of rupture of fetal membranes (ROM): a meta-analysis. J Perinat Med. 2013;41(3):233–240.
  • Erdemoglu E, Mungan T. Significance of detecting insulin-like growth factor binding protein-1 in cervicovaginal secretions: comparison with nitrazine test and amniotic fluid volume assessment. Acta Obstet Gynecol Scand. 2004;83(7):622–626.
  • Kubota T, Takeuchi H. Evaluation of insulin-like growth factor binding protein-1 as a diagnostic tool for rupture of the membranes. J Obstet Gynaecol Res. 1998;24(6):411–417.
  • Kallioniemi H, Rahkonen L, Heikinheimo O, et al. Usefulness of the insulin-like growth factor binding protein-1 bedside test for ruptured fetal membranes. Acta Obstet Gynecol Scand. 2014;93(12):1282–1289.
  • Deckmyn B, Chieux V, Ammeux F, et al. [Comparison of immunochromatographic tests Actim(®) prom and Amnioquick(®) duo for the rapid detection of premature rupture of membranes]. Ann Biol Clin (Paris). 2015;73(4):407–411.
  • Nuutila M, Hiilesmaa V, Kärkkäinen T, et al. Phosphorylated isoforms of insulin-like growth factor binding protein-1 in the cervix as a predictor of cervical ripeness. Obstet Gynecol. 1999;94(2):243–249.
  • Kosinska-Kaczynska K, Bomba-Opon D, Bobrowska K, et al. Phosphorylated IGFBP-1 in predicting successful vaginal delivery in post-term pregnancy. Arch Gynecol Obstet. 2015;292(1):45–52.
  • Kekki M, Kurki T, Kärkkäinen T, et al. Insulin-like growth factor-binding protein-1 in cervical secretion as a predictor of preterm delivery. Acta Obstet Gynecol Scand. 2001;80(6):546–551.
  • Altinkaya O, Gungor T, Ozat M, et al. Cervical phosphorylated insulin-like growth factor binding protein-1 in prediction of preterm delivery. Arch Gynecol Obstet. 2009;279(3):279–283.
  • Cooper S, Lange I, Wood S, et al. Diagnostic accuracy of rapid phIGFBP-I assay for predicting preterm labor in symptomatic patients. J Perinatol. 2012;32(6):460–465.
  • Conde-Agudelo A, Romero R. Cervical phosphorylated insulin-like growth factor binding protein-1 test for the prediction of preterm birth: a systematic review and metaanalysis. Am J Obstet Gynecol. 2016;214(1):57–73.
  • Rahkonen L, Unkila-Kallio L, Rutanen EM, et al. Factors affecting decidual IGFBP-1 levels in the vagina and cervix in the first and mid-second trimester of pregnancy. BJOG. 2009;116(1):45–54.
  • Hills FA, Iles RK, Sullivan MH. Differential proteolysis of insulin-like growth factor binding protein-1 (IGFBP-1) in pregnancy. J Perinat Med. 2013;41(3):241–249.
  • Lee J, Lee SM, Oh KJ, et al. Fragmented forms of insulin-like growth factor binding protein-1 in amniotic fluid of patients with preterm labor and intact membranes. Reprod Sci. 2011;18(9):842–849.
  • Crandall BF. Alpha-fetoprotein: a review. Crit Rev Clin Lab Sci. 1981;15(2):127–185.
  • Weiss PA, Pürstner P, Lichtenegger W, et al. Alpha-fetoprotein content of amniotic fluid in normal and abnormal pregnancies. Obstet Gynecol. 1978;51(5):582–585.
  • Brumfield CG, Cloud GA, Davis RO, et al. The relationship between maternal serum and amniotic fluid alpha-fetoprotein in women undergoing early amniocentesis. Am J Obstet Gynecol. 1990;163(3):903–906.
  • Mor A, Tal R, Haberman S, et al. Alpha-fetoprotein as a tool to distinguish amniotic fluid from urine, vaginal discharge, and semen. Obstet Gynecol. 2015;125(2):448–452.
  • Huber JF, Bischof P, Extermann P, et al. Are vaginal fluid concentrations of prolactin, alpha-fetoprotein and human placental lactogen useful for diagnosing ruptured membranes? Br J Obstet Gynaecol. 1983;90(12):1183–1185.
  • Rochelson BL, Richardson DA, Macri JN. Rapid assay – possible application in the diagnosis of premature rupture of the membranes. Obstet Gynecol. 1983;62(4):414–418.
  • Rochelson BL, Rodke G, White R, et al. A rapid colorimetric AFP monoclonal antibody test for the diagnosis of preterm rupture of the membranes. Obstet Gynecol. 1987;69(2):163–166.
  • Kishida T, Yamada H, Negishi H, et al. Diagnosis of preterm premature rupture of the membranes using a newly developed AFP monoclonal antibody test kit. Eur J Obstet Gynecol Reprod Biol. 1995;58(1):67–72.
  • Kishida T, Yamada H, Negishi H, et al. Diagnosis of premature rupture of the membranes in preterm patients, using an improved AFP kit: comparison with ROM-check and/or nitrazine test. Eur J Obstet Gynecol Reprod Biol. 1996;69(2):77–82.
  • Eriksen NL, Parisi VM, Daoust S, et al. Fetal fibronectin: a method for detecting the presence of amniotic fluid. Obstet Gynecol. 1992;80(3 Pt 1):451–454.
  • Romero R, Espinoza J, Gonçalves LF, et al. Inflammation in preterm and term labour and delivery. Semin Fetal Neonatal Med. 2006;11(5):317–326.
  • Romero R, Gómez R, Chaiworapongsa T, et al. The role of infection in preterm labour and delivery. Paediatr Perinat Epidemiol. 2001;15 Suppl 2(Suppl 2):41–56.
  • Yoon BH, Romero R, Park JY, et al. Antibiotic administration can eradicate intra-amniotic infection or intra-amniotic inflammation in a subset of patients with preterm labor and intact membranes. Am J Obstet Gynecol. 2019;221(2):142.e1–e22.
  • Kim CJ, Romero R, Chaemsaithong P, et al. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol. 2015;213(4 Suppl):S29–S52.
  • Chalupska M, Kacerovsky M, Stranik J, et al. Intra-amniotic infection and sterile intra-amniotic inflammation in cervical insufficiency with prolapsed fetal membranes: clinical implications. Fetal Diagn Ther. 2021;48(1):58–69.
  • Chaiyasit N, Romero R, Chaemsaithong P, et al. Clinical chorioamnionitis at term VIII: a rapid MMP-8 test for the identification of intra-amniotic inflammation. J Perinat Med. 2017;45(5):539–550.
  • Romero R, Miranda J, Chaiworapongsa T, et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol. 2014;72(5):458–474.
  • Velez DR, Fortunato SJ, Morgan N, et al. Patterns of cytokine profiles differ with pregnancy outcome and ethnicity. Hum Reprod. 2008;23(8):1902–1909.
  • Barata H, Thompson M, Zielinska W, et al. The role of cyclic-ADP-ribose-signaling pathway in oxytocin-induced Ca2+ transients in human myometrium cells. Endocrinology. 2004;145(2):881–889.
  • Tribe RM, Moriarty P, Dalrymple A, et al. Interleukin-1beta induces calcium transients and enhances basal and store operated calcium entry in human myometrial smooth muscle. Biol Reprod. 2003;68(5):1842–1849.
  • Osman I, Young A, Ledingham MA, et al. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol Hum Reprod. 2003;9(1):41–45.
  • McEwan M, Lins RJ, Munro SK, et al. Cytokine regulation during the formation of the fetal-maternal interface: focus on cell-cell adhesion and remodelling of the extra-cellular matrix. Cytokine Growth Factor Rev. 2009;20(3):241–249.
  • Mitchell MD, Dudley DJ, Edwin SS, et al. Interleukin-6 stimulates prostaglandin production by human amnion and decidual cells. Eur J Pharmacol. 1991;192(1):189–191.
  • Törnblom SA, Klimaviciute A, Byström B, et al. Non-infected preterm parturition is related to increased concentrations of IL-6, IL-8 and MCP-1 in human cervix. Reprod Biol Endocrinol. 2005;3:39.
  • Boyle AK, Rinaldi SF, Norman JE, et al. Preterm birth: Inflammation, fetal injury and treatment strategies. J Reprod Immunol. 2017;119:62–66.
  • Myatt L, Sun K. Role of fetal membranes in signaling of fetal maturation and parturition. Int J Dev Biol. 2010;54(2-3):545–553.
  • Romero R, Avila C, Santhanam U, et al. Amniotic fluid interleukin 6 in preterm labor. Association with infection. J Clin Invest. 1990;85(5):1392–1400.
  • El-Bastawissi AY, Williams MA, Riley DE, et al. Amniotic fluid interleukin-6 and preterm delivery: a review. Obstet Gynecol. 2000;95(6 Pt 2):1056–1064.
  • Wei SQ, Fraser W, Luo ZC. Inflammatory cytokines and spontaneous preterm birth in asymptomatic women: a systematic review. Obstet Gynecol. 2010;116(2 Pt 1):393–401.
  • Rauk PN, Friebe-Hoffmann U, Winebrenner LD, et al. Interleukin-6 up-regulates the oxytocin receptor in cultured uterine smooth muscle cells. Am J Reprod Immunol. 2001;45(3):148–153.
  • Farina L, Winkelman C. A review of the role of proinflammatory cytokines in labor and noninfectious preterm labor. Biol Res Nurs. 2005;6(3):230–238.
  • Chaemsaithong P, Romero R, Korzeniewski SJ, et al. A point of care test for the determination of amniotic fluid interleukin-6 and the chemokine CXCL-10/IP-10. J Matern Fetal Neonatal Med. 2015;28(13):1510–1519.
  • Chaemsaithong P, Romero R, Korzeniewski SJ, et al. A point of care test for interleukin-6 in amniotic fluid in preterm prelabor rupture of membranes: a step toward the early treatment of acute intra-amniotic inflammation/infection. J Matern Fetal Neonatal Med. 2016;29(3):360–367.
  • Chaemsaithong P, Romero R, Korzeniewski SJ, et al. A rapid interleukin-6 bedside test for the identification of intra-amniotic inflammation in preterm labor with intact membranes. J Matern Fetal Neonatal Med. 2016;29(3):349–359.
  • Romero R, Yoon BH, Kenney JS, et al. Amniotic fluid interleukin-6 determinations are of diagnostic and prognostic value in preterm labor. Am J Reprod Immunol. 1993;30(2-3):167–183.
  • Garite TJ, Freeman RK, Linzey EM, et al. The use of amniocentesis in patients with premature rupture of membranes. Obstet Gynecol. 1979;54(2):226–230.
  • Romero R, Quintero R, Oyarzun E, et al. Intraamniotic infection and the onset of labor in preterm premature rupture of the membranes. Am J Obstet Gynecol. 1988;159(3):661–666.
  • Combs CA, Garite TJ, Lapidus JA, Obstetrix Collaborative Research Network, et al. Detection of microbial invasion of the amniotic cavity by analysis of cervicovaginal proteins in women with preterm labor and intact membranes. Am J Obstet Gynecol. 2015;212(4):482.e1–482.e12.
  • Torbé A, Czajka R. Proinflammatory cytokines and other indications of inflammation in cervico-vaginal secretions and preterm delivery. Int J Gynaecol Obstet. 2004;87(2):125–130.
  • Amabebe E, Chapman DR, Stern VL, et al. Mid-gestational changes in cervicovaginal fluid cytokine levels in asymptomatic pregnant women are predictive markers of inflammation-associated spontaneous preterm birth. J Reprod Immunol. 2018;126:1–10.
  • Jung EY, Park JW, Ryu A, et al. Prediction of impending preterm delivery based on sonographic cervical length and different cytokine levels in cervicovaginal fluid in preterm labor. J Obstet Gynaecol Res. 2016;42(2):158–165.
  • Goepfert AR, Goldenberg RL, Andrews WW, et al. The preterm prediction study: association between cervical interleukin 6 concentration and spontaneous preterm birth. National institute of child health and human development maternal-fetal medicine units network. Am J Obstet Gynecol. 2001;184(3):483–488.
  • Taylor BD, Holzman CB, Fichorova RN, et al. Inflammation biomarkers in vaginal fluid and preterm delivery. Hum Reprod. 2013;28(4):942–952.
  • Woodworth A, Moore J, G’Sell C, et al. Diagnostic accuracy of cervicovaginal interleukin-6 and interleukin-6:albumin ratio as markers of preterm delivery. Clin Chem. 2007;53(8):1534–1540.
  • Liong S, Di Quinzio MK, Fleming G, et al. New biomarkers for the prediction of spontaneous preterm labour in symptomatic pregnant women: a comparison with fetal fibronectin. BJOG. 2015;122(3):370–379.
  • Asiegbu AC, Eleje GU, Ibeneme EM, et al. Combined insulin-like growth factor binding protein-1/interleukin-6 (Premaquick) versus fetal fibronectin for predicting preterm delivery among women with preterm contractions. Int J Gynaecol Obstet. 2020;149(2):171–177.
  • Diagnostic Tests in the Context of Threatened Preterm Labour (PREMAQUICK). 2018 [cited 2022 Jan 11]. Available from: https://clinicaltrials.gov/ct2/show/NCT03608995
  • Eleje GU, Ezugwu EC, Eke AC, et al. Accuracy of a combined insulin-like growth factor-binding protein-1/interleukin-6 test (premaquick) in predicting delivery in women with threatened preterm labor. J Perinat Med. 2017;45(8):915–924.
  • McQuivey RW, Block JE. ROM plus(®): accurate point-of-care detection of ruptured fetal membranes. Med Devices. 2016;9:69–74.
  • Rogers LC, Scott L, Block JE. Accurate point-of-care detection of ruptured fetal membranes: Improved diagnostic performance characteristics with a monoclonal/polyclonal immunoassay. Clin Med Insights Reprod Health. 2016;10:15–18.
  • Biosynex. AMNIOQUICK®DUO+. 2014 [cited 2022 Jan 11]. Available from: https://alofoqmena.files.wordpress.com/2014/01/amnioquick_duo.pdf
  • Eleje GU, Ezugwu EC, Eke AC, et al. Comparison of the duo of insulin-like growth factor binding protein-1/alpha fetoprotein (Amnioquick duo+(R)) and traditional clinical assessment for diagnosing premature rupture of fetal membranes. J Perinat Med. 2017;45(1):105–112.
  • Eleje GU, Ezugwu EC, Eke AC, et al. Accuracy and response time of dual biomarker model of insulin-like growth factor binding protein-1/alpha fetoprotein (Amnioquick duo+) in comparison to placental alpha-microglobulin-1 test in diagnosis of premature rupture of membranes. J Obstet Gynaecol Res. 2017;43(5):825–833.
  • Eleje GU, Ezugwu EC, Ezebialu IU, et al. Performance indices of AmnioQuick duo + versus placental α-microglobulin-1 tests for women with prolonged premature rupture of membranes. Int J Gynaecol Obstet. 2019;144(2):180–186.
  • Abdelazim IA, Shikanova S, Karimova B, et al. Diagnostic accuracy of insulin-like growth factor-binding protein-1/alpha-fetoprotein (AmnioQuick duo) in ruptured fetal membranes. SN Compr Clin Med. 2020;2(12):2834–2839.
  • Igbinosa I, Moore FA 3rd, Johnson C, et al. Comparison of rapid immunoassays for rupture of fetal membranes. BMC Pregnancy Childbirth. 2017;17(1):128.
  • Society for Maternal-Fetal Medicine’s (SMFM’s) Publications Committee. PPROM; 2016 [cited 2022 Jan 15]. Available from: https://www.smfm.org/publications/231-smfm-preterm-birth-toolkit
  • Society for Maternal-Fetal Medicine’s (SMFM’s) Publications Committee. Preterm Labor; 2016 [cited 2022 Jan 15]. Available from: https://www.smfm.org/publications/231-smfm-preterm-birth-toolkit
  • Lee SE, Park JS, Norwitz ER, et al. Measurement of placental alpha-microglobulin-1 in cervicovaginal discharge to diagnose rupture of membranes. Obstet Gynecol. 2007;109(3):634–640.
  • Ramsauer B, Duwe W, Schlehe B, et al. Effect of blood on ROM diagnosis accuracy of PAMG-1 and IGFBP-1 detecting rapid tests. J Perinat Med. 2015;43(4):417–422.
  • Practice bulletin no. 172: Premature rupture of membranes. Obstet Gynecol. 2016;128(4):e165–e177.
  • Preterm labour and birth: National Institute for Health and Care Excellence; 2019 [cited 2022 Jan 11]. Available from: https://www.nice.org.uk/guidance/NG25
  • Preterm labour and birth overview: National Institute for Health and Care Excellence (NICE); 2020 [cited 2022 Jan 11]. Available from: https://pathways.nice.org.uk/pathways/preterm-labour-and-birth
  • Biomarker tests to help diagnose preterm labour in women with intact membranes: National Institute for Health and Care Excellence (NICE). 2018 [cited 2022 Jan 11]. Available from: https://www.nice.org.uk/guidance/dg33/resources/biomarker-tests-to-help-diagnose-preterm-labour-in-women-with-intact-membranes-pdf-1053749042629
  • Diagnosing and managing preterm prelabour rupture of membranes: National Institute for Care and Excellence (NICE); 2021 [cited 2022 Jan 11]. Available from: https://pathways.nice.org.uk/pathways/preterm-labour-and-birth/diagnosing-and-managing-preterm-prelabour-rupture-of-membranes
  • Buhimschi CS, Weiner CP, Buhimschi IA. Clinical proteomics: a novel diagnostic tool for the new biology of preterm labor, part I: proteomics tools. Obstet Gynecol Surv. 2006;61(7):481–486.
  • Parry S, Leite R, Esplin MS, et al. Cervicovaginal fluid proteomic analysis to identify potential biomarkers for preterm birth. Am J Obstet Gynecol. 2020;222(5):493.e1–493.e13.
  • D'Silva AM, Hyett JA, Coorssen JR. Proteomic analysis of first trimester maternal serum to identify candidate biomarkers potentially predictive of spontaneous preterm birth. J Proteomics. 2018;178:31–42.
  • Lee J, Lee JE, Choi JW, et al. Proteomic analysis of amniotic fluid proteins for predicting the outcome of emergency cerclage in women with cervical insufficiency. Reprod Sci. 2020;27(6):1318–1329.
  • Markley JL, Brüschweiler R, Edison AS, et al. The future of NMR-based metabolomics. Curr Opin Biotechnol. 2017;43:34–40.
  • Romero R, Mazaki-Tovi S, Vaisbuch E, et al. Metabolomics in premature labor: a novel approach to identify patients at risk for preterm delivery. J Matern Fetal Neonatal Med. 2010;23(12):1344–1359.
  • Peng B, Li H, Peng XX. Functional metabolomics: from biomarker discovery to metabolome reprogramming. Protein Cell. 2015;6(9):628–637.
  • Gil AM, Duarte D. Biofluid metabolomics in preterm birth research. Reprod Sci. 2018;25(7):967–977.
  • Virgiliou C, Gika HG, Witting M, et al. Amniotic fluid and maternal serum metabolic signatures in the second trimester associated with preterm delivery. J Proteome Res. 2017;16(2):898–910.
  • Ansari A, Lee H, You Y-A, et al. Identification of potential biomarkers in the cervicovaginal fluid by metabolic profiling for preterm birth. Metabolites. 2020;10(9):349.
  • Carter RA, Pan K, Harville EW, et al. Metabolomics to reveal biomarkers and pathways of preterm birth: a systematic review and epidemiologic perspective. Metabolomics. 2019;15(9):124.
  • Menon R, Shahin H. Extracellular vesicles in spontaneous preterm birth. Am J Reprod Immunol. 2021;85(2):e13353.
  • Lee MJ, Park DH, Kang JH. Exosomes as the source of biomarkers of metabolic diseases. Ann Pediatr Endocrinol Metab. 2016;21(3):119–125.
  • Maia J, Caja S, Strano Moraes MC, et al. Exosome-based cell-cell communication in the tumor microenvironment [review]. Front Cell Dev Biol. 2018;6:18.
  • Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–289.
  • Saadeldin IM, Oh HJ, Lee BC. Embryonic-maternal cross-talk via exosomes: potential implications. Stem Cells Cloning. 2015;8:103–107.
  • Gross N, Kropp J, Khatib H. MicroRNA signaling in embryo development. Biology. 2017;6(4):34.
  • Andronico F, Battaglia R, Ragusa M, et al. Extracellular vesicles in human oogenesis and implantation. Int J Mol Sci. 2019;20(9):2162.
  • Zhang J, Li H, Fan B, et al. Extracellular vesicles in normal pregnancy and pregnancy-related diseases. J Cell Mol Med. 2020;24(8):4377–4388.
  • Rice GE, Scholz-Romero K, Sweeney E, et al. The effect of glucose on the release and bioactivity of exosomes from first trimester trophoblast cells. J Clin Endocrinol Metab. 2015;100(10):E1280–8.
  • Salomon C, Guanzon D, Scholz-Romero K, et al. Placental exosomes as early biomarker of preeclampsia: potential role of exosomal microRNAs across gestation. J Clin Endocrinol Metab. 2017;102(9):3182–3194.
  • Menon R, Behnia F, Polettini J, et al. Placental membrane aging and HMGB1 signaling associated with human parturition. Aging (Albany NY). 2016;8(2):216–230.
  • Menon R. Human fetal membranes at term: dead tissue or signalers of parturition? Placenta. 2016;44:1–5.
  • Behnia F, Taylor BD, Woodson M, et al. Chorioamniotic membrane senescence: a signal for parturition? Am J Obstet Gynecol. 2015;213(3):359.e1–359.16.
  • Monsivais LA, Sheller-Miller S, Russell W, et al. Fetal membrane extracellular vesicle profiling reveals distinct pathways induced by infection and inflammation in vitro. Am J Reprod Immunol. 2020;84(3):e13282.
  • Cantonwine DE, Zhang Z, Rosenblatt K, et al. Evaluation of proteomic biomarkers associated with circulating microparticles as an effective means to stratify the risk of spontaneous preterm birth. Am J Obstet Gynecol. 2016;214(5):631.e1–631.e11.
  • McElrath TF, Cantonwine DE, Jeyabalan A, et al. Circulating microparticle proteins obtained in the late first trimester predict spontaneous preterm birth at less than 35 weeks' gestation: a panel validation with specific characterization by parity. Am J Obstet Gynecol. 2019;220(5):488.e1–488.e11.
  • Dixon CL, Sheller-Miller S, Saade GR, et al. Amniotic fluid exosome proteomic profile exhibits unique pathways of term and preterm labor. Endocrinology. 2018;159(5):2229–2240.
  • Menon R, Debnath C, Lai A, et al. Protein profile changes in circulating placental extracellular vesicles in term and preterm births: a longitudinal study. Endocrinology. 2020;161(4):bqaa009.
  • Zhao Q, Ma Z, Wang X, et al. Lipidomic biomarkers of extracellular vesicles for the prediction of preterm birth in the early second trimester. J Proteome Res. 2020;19(10):4104–4113.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.