874
Views
2
CrossRef citations to date
0
Altmetric
Invited Reviews

Personalized reference intervals: from theory to practice

ORCID Icon, , , &
Pages 501-516 | Received 31 Dec 2021, Accepted 24 Apr 2022, Published online: 17 May 2022

References

  • Ziegelstein RC. Personomics: the missing link in the evolution from precision medicine to personalized medicine. JPM. 2017;7(4):11.
  • Kirsner RS, Federman DG. The ethical dilemma of population-based medical decision making. Am J Manag Care. 1998;4(11):1571–1576.
  • Jain KK. Role of proteomics in the development of personalized medicine. Adv Protein Chem Struct Biol. 2016;102:41–52.
  • Ginsburg GS, Willard HF. Genomic and personalized medicine: foundations and applications. Transl Res. 2009;154(6):277–287.
  • Jacob M, Lopata AL, Dasouki M, et al. Metabolomics toward personalized medicine. Mass Spectrom Rev. 2019;38(3):221–238.
  • Li S, Todor A, Luo R. Blood transcriptomics and metabolomics for personalized medicine. Comput Struct Biotechnol J. 2016;14:1–7.
  • Topić E. 5. Pharmacogenomics and personalized medicine. EJIFCC. 2008;19:31–41.
  • Kronfol MM, Dozmorov MG, Huang R, et al. The role of epigenomics in personalized medicine. Expert Rev Precis Med Drug Dev. 2017;2(1):33–45.
  • Goetz LH, Schork NJ. Personalized medicine: motivation, challenges, and progress. Fertil Steril. 2018;109(6):952–963.
  • Lattanzi W, Ripoli C, Greco V, et al. Basic and preclinical research for personalized medicine. JPM. 2021;11(5):354.
  • Schork NJ. Artificial intelligence and personalized medicine. Cancer Treat Res. 2019;178:265–283.
  • Ziegelstein RC. Personomics. JAMA Intern Med. 2015;175(6):888–889.
  • Shindo Y, Hazama S, Tsunedomi R, et al. Novel biomarkers for personalized cancer immunotherapy. Cancers. 2019;11(9):1223.
  • Stintzing S, Stremitzer S, Sebio A, et al. Predictive and prognostic markers in the treatment of metastatic colorectal cancer (mCRC): personalized medicine at work. Hematol Oncol Clin North Am. 2015;29(1):43–60.
  • Henny J. Interpretation of laboratory results: the reference intervals, a necessary evil? Clin Chem Lab Med 2007;45:939–941.
  • Ceriotti F, Henny J. “Are my laboratory results normal?” considerations to be made concerning reference intervals and decision limits. EJIFCC. 2008;19:106–114.
  • Makary MA, Daniel M. Medical error - the third leading cause of death in the US. BMJ. 2016;353:i2139.
  • Institute of Medicine (US) Committee on Quality of Health Care in America. To err is human: building a safer health system. In: Kohn LT, Corrigan JM, Donaldson MS, editors. Washington (D.C.): National Academies Press; 2000.
  • Prodan Žitnik I, Černe D, Mancini I, et al., on behalf of EFLM/ESPT Working Group of Personalised Laboratory Medicine. Personalized laboratory medicine: a patient-centered future approach. Clin Chem Lab Med. 2018;56(12):1981–1991.
  • Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.
  • Fraser CG. Biological variation: from principles to practice. Washington (DC): AACC Press; 2001.
  • Sikaris KA. Enhancing the clinical value of medical laboratory testing. Clin Biochem Rev. 2017;38(3):107–114.
  • Flatman R. Terminology, units and reporting - how harmonized do we need to be? Clin Chem Lab Med. 2018;57(1):1–11.
  • CLSI. Defining, establishing and verifying reference intervals in the clinical laboratory: approved guideline-third edition. CLSI document EP28-A3C. Wayne (PA): Clinical and Laboratory Standard Institute; 2008.
  • Gräsbeck R, Saris NE. Establishment and use of normal values. Scand J Clin Lab Invest. 1969;110:62–63.
  • Gräsbeck R, Fellman J. Normal values and statistics. Scand J Clin Lab Invest. 1968;21(3):193–195.
  • Gräsbeck R. The evolution of the reference value concept. Clin Chem Lab Med. 2004;42(7):692–697.
  • Dybkaer R, Gräsbeck R. Editorial: theory of reference values. Scand J Clin Lab Invest. 1973;32(1):1–7.
  • Haeckel R, Wosniok W, Streichert T. The difference between reference interval and reference range. J Lab Med. 2020;44(3):173–173.
  • Sunderman FW. Current concepts of normal values, reference values, and discrimination values in clinical chemistry. Clin Chem. 1975;21(13):1873–1877.
  • Coşkun A, Sandberg S, Unsal I, et al. Personalized reference intervals in laboratory medicine: a new model based on within-subject biological Variation. Clin Chem. 2021;67(2):374–384.
  • Delanry MP, Price CP, Lamb EJ. Kidney disease. In: Burtis CA, Ashwood ER, Bruns DE, editors. Tietz textbook of clinical chemistry and molecular diagnostics. 5th edition. St. Louis: Elsevier; 2012. p. 523–608.
  • Risteli J, Winter WE, Kleerekoper MRL. Bone and mineral metabolism. In: Burtis CA, Ashwood ER, Bruns DE, editors. Tietz textbook of clinical chemistry and molecular diagnostics. 5th edition. St. Louis: Elsevier; 2012. p. 1733–1801.
  • Sacks DB. Carbohydrates. In: Burtis CA, Ashwood ER, Bruns DE, eds. Tietz textbook of clinical chemistry and molecular diagnostics. 5th edition. St. Louis: Elsevier; 2012. p. 709–730.
  • Röder PV, Wu B, Liu Y, et al. Pancreatic regulation of glucose homeostasis. Exp Mol Med. 2016;48:e219.
  • Arens MA. Normal hemoglobin values for young women. Am J Med Technol. 1945;11:249–255.
  • Siest G, Henny J, Gräsbeck R, et al. The theory of reference values: an unfinished symphony. Clin Chem Lab Med. 2013;51(1):47–64.
  • Horn PS, Pesce AJ. Reference intervals: an update. Clin Chim Acta. 2003;334(1–2):5–23.
  • Rustad P, Felding P, Lahti A, Nordic Reference Interval Project 2000. Proposal for guidelines to establish common biological reference intervals in large geographical areas for biochemical quantities measured frequently in serum and plasma. Clin Chem Lab Med. 2004;42(7):783–791.
  • Young DS. Determination and validation of reference intervals. Arch Pathol Lab Med. 1992;116(7):704–709.
  • Coskun A, Ceyhan E, Inal TC, et al. The comparison of parametric and nonparametric bootstrap methods for reference interval computation in small sample size groups. Accred Qual Assur. 2013;18(1):51–60.
  • Horn PS, Pesce AJ. Effect of ethnicity on reference intervals. Clin Chem. 2002;48(10):1802–1804.
  • Rappoport N, Paik H, Oskotsky B, et al. Comparing ethnicity-specific reference intervals for clinical laboratory tests from EHR Data. J Appl Lab Med. 2018;3(3):366–377.
  • La'ulu SL, Roberts WL. Second-trimester reference intervals for thyroid tests: the role of ethnicity. Clin Chem. 2007;53(9):1658–1664.
  • Bright M, Wagman E, Shastri S, et al. Race-related differences in reference intervals for creatine kinase. Clin Chem. 1980;26(13):1928–1928.
  • Lim EM, Cembrowski G, Cembrowski M, et al. Race-specific WBC and neutrophil count reference intervals. Int J Lab Hematol. 2010;32(6p2):590–597.
  • Schini M, Nicklin P, Eastell R. Establishing race-, gender- and age-specific reference intervals for pyridoxal 5’-phosphate in the NHANES population to better identify adult hypophosphatasia. Bone. 2020;141:115577.
  • Coates S, Wang D, Pierscionek T, et al. Time- and race-specific haematological reference intervals for healthy volunteer trials: a retrospective analysis of pooled data from multiple phase I Trials. Front Pharmacol. 2020;11:314.
  • Sinton TJ, Cowley DM, Bryant SJ. Reference intervals for calcium, phosphate, and alkaline phosphatase as derived on the basis of multichannel-analyzer profiles. Clin Chem. 1986;32(1 Pt 1):76–79.
  • Harris EK, Wong ET, Shaw ST. Jr. Statistical criteria for separate reference intervals: race and gender groups in creatine kinase. Clin Chem. 1991;37(9):1580–1582.
  • Lahti A. Are the common reference intervals truly common? Case studies on stratifying biochemical reference data by countries using two partitioning methods. Scand J Clin Lab Invest. 2004;64(4):407–430.
  • Lahti A, Petersen PH, Boyd JC, et al. Partitioning of nongaussian-distributed biochemical reference data into subgroups. Clin Chem. 2004;50(5):891–900.
  • Lahti A. Partitioning biochemical reference data into subgroups: comparison of existing methods. Clin Chem Lab Med. 2004;42(7):725–733.
  • Harris EK, Boyd JC. On dividing reference data into subgroups to produce separate reference ranges. Clin Chem. 1990;36(2):265–270.
  • Bevilacqua V, Chan MK, Chen Y, et al. Pediatric population reference value distributions for cancer biomarkers and covariate-stratified reference intervals in the CALIPER cohort. Clin Chem. 2014;60(12):1532–1542.
  • Lundberg GD. Critical (panic) value notification: an established laboratory practice policy (parameter). JAMA. 1990;263(5):709.
  • Hortin GL, Csako G. Critical values, panic values, or alert values? Am J Clin Pathol. 1998;109(4):496–498.
  • Piva E, Plebani M. From “panic” to “critical” values: which path toward harmonization? Clin Chem Lab Med. 2013;51(11):2069–2071.
  • White GH, Campbell CA, Horvath AR. Is this a critical, panic, alarm, urgent, or markedly abnormal result? Clin Chem. 2014;60(12):1569–1570.
  • Ozarda Y, Sikaris K, Streichert T, IFCC Committee on Reference Intervals and Decision Limits (C-RIDL), et al. Distinguishing reference intervals and clinical decision limits – a review by the IFCC Committee on Reference Intervals and Decision Limits. Crit Rev Clin Lab Sci. 2018;55(6):420–431.
  • Bittl JA, He Y. Bayesian analysis: a practical approach to interpret clinical trials and create clinical practice guidelines. Circ Cardiovasc Qual Outcomes. 2017;10(8):e003563.
  • Kallner A. Bayes' theorem, the ROC diagram and reference values: definition and use in clinical diagnosis. Biochem Med (Zagreb). 2018;28(1):010101.
  • Ceriotti F. Prerequisites for use of common reference intervals. Clin Biochem Rev. 2007;28(3):115–121.
  • Aarsand AK, Fernandez-Calle P, Webster C, et al. The EFLM biological variation database. 2020 [cited 2021 Dec 27]. Available from: https://biologicalvariation.eu.
  • Boyd JC. Cautions in the adoption of common reference intervals. Clin Chem. 2008;54(2):238–239.
  • Keys A. Biochemical individuality – the basis for the genetotrophic concept. Am J Public Health Nations Health. 1957;47(6):767.
  • Cotlove E, Harris EK, Williams GZ. Biological and analytic components of variation in long-term studies of serum constituents in normal subjects. 3. Physiological and medical implications. Clin Chem. 1970;16(12):1028–1032.
  • Young DS, Harris EK, Cotlove E. Biological and analytic components of variation in long-term studies of serum constituents in normal subjects. IV. Results of a study designed to eliminate long-term analytic deviations. Clin Chem. 1971;17(5):403–410.
  • Harris EK, Kanofsky P, Shakarji G, et al. Biological and analytic components of variation in long-term studies of serum constituents in normal subjects. II. Estimating biological components of variation. Clin Chem. 1970;16(12):1022–1027.
  • Williams GZ, Young DS, Stein MR, et al. Biological and analytic components of variation in long-term studies of serum constituents in normal subjects. I. Objectives, subject selection, laboratory procedures, and estimation of analytic deviation. Clin Chem. 1970;16(12):1016–1021.
  • Harris EK. Some theory of reference values. II. Comparison of some statistical models of intraindividual variation in blood constituents. Clin Chem. 1976;22(8):1343–1350.
  • Harris EK. Some theory of reference values. I. Stratified (categorized) normal ranges and a method for following an individual’s clinical laboratory values. Clin Chem. 1975;21(10):1457–1464.
  • Harris EK. Effects of intra- and interindividual variation on the appropriate use of normal ranges. Clin Chem. 1974;20(12):1535–1542.
  • Queraltó JM. Intraindividual reference values. Clin Chem Lab Med. 2004;42(7):765–777.
  • Coskun A, Sandberg S, Unsal I, et al. Personalized reference intervals - statistical approaches and considerations. Clin Chem Lab Med. 2022;60(4):629–635.
  • d’Hauterive SP, Close R, Gridelet V, et al. Human chorionic gonadotropin and early embryogenesis: review. IJMS. 2022;23(3):1380.
  • Causton HC. Metabolic rhythms: a framework for coordinating cellular function. Eur J Neurosci. 2020;51(1):1–12.
  • Prendergast BJ, Zucker I. Ultradian rhythms in mammalian physiology and behavior. Curr Opin Neurobiol. 2016;40:150–154.
  • Kumar Jha P, Challet E, Kalsbeek A. Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals. Mol Cell Endocrinol. 2015;418:74–88.
  • Feriel J, Tchipeva D, Depasse F. Effects of circadian variation, lifestyle and environment on hematological parameters: a narrative review. Int J Lab Hematol. 2021;43(5):917–926.
  • Laerum OD, Smaaland R. Circadian and infradian aspects of the cell cycle: from past to future. Chronobiologia. 1989;16(4):441–453.
  • Carobene A. Reliability of biological variation data available in an online database: need for improvement. Clin Chem Lab Med. 2015;53:871–877.
  • Aarsand AK, Røraas T, Sandberg S. Biological variation – reliable data is essential. Clin Chem Lab Med. 2015;53(2):153–154.
  • Carobene A, Strollo M, Jonker N, et al. Sample collections from healthy volunteers for biological variation estimates’ update: a new project undertaken by the working group on biological variation established by the European Federation of Clinical Chemistry and Laboratory Medicine. Clin Chem Lab Med. 2016;54:1599–1608.
  • Carobene A, Aarsand AK, Bartlett WA, et al. The European Biological Variation Study (EuBIVAS): a summary report. Clin Chem Lab Med. 2022;60(4):505–517.
  • Aarsand AK, Røraas T, Fernandez-Calle P, European Federation of Clinical Chemistry and Laboratory Medicine Working Group on Biological Variation and Task and Finish Group for the Biological Variation Database, et al. The biological variation data critical appraisal checklist: a standard for evaluating studies on biological variation. Clin Chem. 2018;64(3):501–514.
  • Aarsand AK, Røraas T, Bartlett WA, European Federation of Clinical Chemistry and Laboratory Medicine (EFLM) Working Group on Biological Variation, et al. Harmonization initiatives in the generation, reporting and application of biological variation data. Clin Chem Lab Med. 2018;56(10):1629–1636.
  • Røraas T, Sandberg S, Aarsand AK, et al. A Bayesian approach to biological variation analysis. Clin Chem. 2019;65(8):995–1005.
  • Røraas T, Petersen PH, Sandberg S. Confidence intervals and power calculations for within-person biological variation: effect of analytical imprecision, number of replicates, number of samples, and number of individuals. Clin Chem. 2012;58(9):1306–1313.
  • Røraas T, Støve B, Petersen PH, et al. Biological variation: the effect of different distributions on estimated within-person variation and reference change values. Clin Chem. 2016;62(5):725–736.
  • Ma C, Cheng X, Xue F, et al. Validation of an approach using only patient big data from clinical laboratories to establish reference intervals for thyroid hormones based on data mining. Clin Biochem. 2020;80:25–30.
  • den Elzen WPJ, Brouwer N, Thelen MH, et al. NUMBER: standardized reference intervals in The Netherlands using a “ 'big data' approach”. Clin Chem Lab Med. 2018;57(1):42–56.
  • Ma C, Xia L, Chen X, et al. Establishment of variation source and age-related reference interval models for 22 common biochemical analytes in older people using real-world big data mining. Age Ageing. 2020;49(6):1062–1070.
  • Arzideh F, Wosniok W, Gurr E, et al. A plea for intra-laboratory reference limits. Part 2. A bimodal retrospective concept for determining reference limits from intra-laboratory databases demonstrated by catalytic activity concentrations of enzymes. Clin Chem Lab Med. 2007;45(8):1043–1057.
  • Haeckel R, Wosniok W, Arzideh F. A plea for intra-laboratory reference limits. Part 1. General considerations and concepts for determination. Clin Chem Lab Med. 2007;45(8):1033–1042.
  • Jones GRD. Estimates of within-subject biological variation derived from pathology databases: an approach to allow assessment of the effects of age, sex, time between sample collections, and analyte concentration on reference change values. Clin Chem. 2019;65(4):579–588.
  • Adeli K, Higgins V, Seccombe D, CSCC Reference Interval Harmonization (hRI) Working Group, et al. National survey of adult and pediatric reference intervals in clinical laboratories across Canada: a report of the CSCC working group on reference interval Harmonization. Clin Biochem. 2017;50(16-17):925–935.
  • Chan MK, Seiden-Long I, Aytekin M, et al. Canadian laboratory initiative on pediatric reference interval database (CALIPER): pediatric reference intervals for an integrated clinical chemistry and immunoassay analyzer, Abbott ARCHITECT ci8200. Clin Biochem. 2009;42(9):885–891.
  • Loh TP, Metz MP. Indirect estimation of pediatric between-individual biological variation data for 22 common serum biochemistries. Am J Clin Pathol. 2015;143(5):683–693.
  • Loh TP, Ranieri E, Metz MP. Derivation of pediatric within-individual biological variation by indirect sampling method: an LMS approach. Am J Clin Pathol. 2014;142(5):657–663.
  • Baadenhuijsen H, Smit JC. Indirect estimation of clinical chemical reference intervals from total hospital patient data: application of a modified Bhattacharya procedure. Clin Chem Lab Med. 1985;23:829–840.
  • Ma X, Yan H, Zhang H, et al. Progress in the seasonal variations of blood lipids: a mini-review. Lipids Health Dis. 2020;19(1):108.
  • Brouwer-Brolsma EM, Vaes AMM, van der Zwaluw NL, et al. Relative importance of summer sun exposure, vitamin D intake, and genes to vitamin D status in Dutch older adults: the B-PROOF study. J Steroid Biochem Mol Biol. 2016;164:168–176.
  • Saeidlou SN, Vahabzadeh D, Babaei F, et al. Seasonal variations of vitamin D and its relation to lipid profile in iranian children and adults. J Health Popul Nutr. 2017;36(1):21.
  • Dean RB, Dixon WJ. Simplified statistics for small numbers of observations. Anal. Chem. 1951;23(4):636–638.
  • Efstathiou CE. Estimation of type I error probability from experimental ze data sets“Q” parameter on testing for outliers within small size data. Talanta. 2006;69(5):1068–1071.
  • Xu J, Lin Y, Yang M, et al. Statistics and pitfalls of trend analysis in cancer research: a review focused on statistical packages. J Cancer. 2020;11(10):2957–2961.
  • Eberly LE. Correlation and simple linear regression. Methods Mol Biol. 2007;404:143–164.
  • Leatherbarrow RJ. Using linear and non-linear regression to fit biochemical data. Trends Biochem Sci. 1990;15(12):455–458.
  • Drescher CW, Shah C, Thorpe J, et al. Longitudinal screening algorithm that incorporates change over time in CA125 levels identifies ovarian cancer earlier than a single-threshold rule. J Clin Oncol. 2013;31(3):387–392.
  • Taylor BN, Kuyatt CE. NIST Technical Note 1297. Guidelines for evaluation and expressing the uncertainty of NIST measurement results. Gaithersburg (MD); National Institute of Standards and Technology; 1994.
  • Spence JR, Stanley DJ. Prediction interval: what to expect when you're expecting … a replication. PLOS One. 2016;11(9):e0162874.
  • Hahn GJ, Meeker WQ, Escobar LA. Statistical intervals: a guide for practitioners and researchers. 2nd edition. Hoboken (NJ): Wiley; 2016; p. 47–99.
  • Raqab MZ, Balakrishnan N. Prediction intervals for future records. Stat Probab Lett. 2008;78(13):1955–1963.
  • Hall IJ, Prairie RR, Motlagh CK. Non-parametric prediction intervals. J Qual Technol. 1975;7(3):109–114.
  • Nandram B, Yin J. A nonparametric bayesian prediction interval for a finite population mean. J Stat Comput Simul. 2016;86(16):3141–3157.
  • Coskun A, Sandberg S, Unsal I, et al. Personalized reference intervals: Using estimates of within-subject or within-person biological variation requires different statistical approaches. Clin Chim Acta. 2022;524:201–202.
  • Gkisser S. Predictive inference: an introduction. London, UK: Chapman and Hall; 1993. p. 6–46.
  • Petersen PH, Fraser CG, Sandberg S, et al. The index of individuality is often a misinterpreted quantity characteristic. Clin Chem Lab Med. 1999;37(6):655–661.
  • Petersen PH, Sandberg S, Fraser CG, et al. Influence of index of individuality on false positives in repeated sampling from healthy individuals. Clin Chem Lab Med. 2001;39(2):160–165.
  • Wang S, Zhao M, Su Z, et al. Annual biological variation and personalized reference intervals of clinical chemistry and hematology analytes. Clin Chem Lab Med. 2022;1560(4):606–617.
  • Bulliard JL, Chiolero A. Screening and overdiagnosis: public health implications. Public Health Rev. 2015;36:8.
  • Fraser CG. Age-related changes in laboratory test results. Drugs Aging. 1993;33:246–257.
  • Chia CW, Egan JM, Ferrucci L. Age-related changes in glucose metabolism, hyperglycemia, and cardiovascular risk. Circ Res. 2018;123(7):886–904.
  • Noordam R, Gunn DA, Tomlin CC, Leiden Longevity Study Group, et al. High serum glucose levels are associated with a higher perceived age. Age. 2013;35(1):189–195.
  • Ko GTC, Wai HPS, Tang JSF. Effects of age on plasma glucose levels in non-diabetic Hong Kong Chinese. Croat Med J. 2006;47:709–713.
  • Elahi D, Muller DC. Carbohydrate metabolism in the elderly. Eur J Clin Nutr. 2000;54(S3):S112–S120.
  • Rabah DM, Farhat KH, Al-Atawi MA, et al. Age-specific reference ranges of prostate-specific antigen among Saudi men as a representation of the Arab population. Med Princ Pract. 2019;28(3):242–246.
  • Morgan TO, Jacobsen SJ, McCarthy WF, et al. Age-specific reference ranges for serum prostate-specific antigen in black men. N Engl J Med. 1996;335(5):304–310.
  • Marcus R, Madvig P, Young G. Age-related changes in parathyroid hormone and parathyroid hormone action in normal humans. J Clin Endocrinol Metab. 1984;58(2):223–230.
  • Need AG, O’Loughlin PD, Morris HA, et al. The effects of age and other variables on serum parathyroid hormone in postmenopausal women attending an osteoporosis center. J Clin Endocrinol Metab. 2004;89(4):1646–1649.
  • Yamashita N, Oba K, Nakano H, et al. Age-related changes in concentrations of ferritin, glyeosylated ferritin, and non-glycosylated ferritin. Jpn J Geriat. 1996;33(10):754–760.
  • Kuzuya M, Ando F, Iguchi A, et al. Effect of aging on serum uric acid levels: longitudinal changes in a large Japanese population group. J Gerontol. 2002;57:660–664.
  • Baudry J, Kopp JF, Boeing H, et al. Changes of trace element status during aging: results of the EPIC-Potsdam cohort study. Eur J Nutr. 2020;59(7):3045–3058.
  • Felicetta JV. Age-related changes in calcium metabolism. Why they occur and what can be done. Postgrad Med. 1989;85(4):85–94.
  • Veldurthy V, Wei R, Oz L, et al. Vitamin D, calcium homeostasis and aging. Bone Res. 2016;4(1):1–7.
  • Barbagallo M, Belvedere M, Dominguez LJ. Magnesium homeostasis and aging. Magnes Res. 2009;22(4):235–246.
  • Ashpole NM, Sanders JE, Hodges EL, et al. Growth hormone, insulin-like growth factor-1 and the aging brain. Exp Gerontol. 2015;68:76–81.
  • Liu PY, Beilin J, Meier C, et al. Age-related changes in serum testosterone and sex hormone binding globulin in australian men: Longitudinal analyses of two geographically separate regional cohorts. J Clin Endocrinol Metab. 2007;92(9):3599–3603.
  • McEwen BS. Allostasis and allostatic load: Implications for neuropsychopharmacology. Neuropsychopharmacology. 2000;22(2):108–124.
  • Leow MK, Goede SL. The homeostatic set point of the hypothalamus-pituitary-thyroid axis-maximum curvature theory for personalized euthyroid targets. Theor Biol Med Model. 2014;11:35.
  • Selye H. Homeostasis and heterostasis. Perspect Biol Med. 1973;16(3):441–445.
  • Carobene A, Banfi G, Locatelli M, et al. Personalized reference intervals: from the statistical significance to the clinical usefulness. Clin Chim Acta. 2022;524:203–204.
  • Carobene A, Banfi G, Locatelli M, et al. Within-person biological variation estimates from the European Biological Variation Study (EuBIVAS) for serum potassium and creatinine used to obtain personalized reference intervals. Clin Chim Acta. 2021;523:205–207.
  • Yang Q, Lew HY, Peh RH, et al. An automated and objective method for age partitioning of reference intervals based on continuous centile curves. Pathology. 2016;48(6):581–585.
  • Shirts BH, Wilson AR, Jackson BR. Partitioning reference intervals by use of genetic information. Clin Chem. 2011;57(3):475–481.
  • Adeli K, Higgins V, Nieuwesteeg M, et al. Complex reference values for endocrine and special chemistry biomarkers across pediatric, adult, and geriatric ages: establishment of robust pediatric and adult reference intervals on the basis of the Canadian Health Measures Survey. Clin Chem. 2015;61(8):1063–1074.
  • Ma C, Wang X, Xia L, et al. Effect of sample size and the traditional parametric, nonparametric, and robust methods on the establishment of reference intervals: evidence from real world data. Clin Biochem. 2021;92:67–70.
  • Adeli K, Higgins V, Nieuwesteeg M, et al. Biochemical marker reference values across pediatric, adult, and geriatric ages: establishment of robust pediatric and adult reference intervals on the basis of the Canadian Health Measures Survey. Clin Chem. 2015;61(8):1049–1062.
  • Adeli K, Raizman JE, Chen Y, et al. Complex biological profile of hematologic markers across pediatric, adult, and geriatric ages: establishment of robust pediatric and adult reference intervals on the basis of the Canadian Health Measures Survey. Clin Chem. 2015;61(8):1075–1086.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.