1,004
Views
2
CrossRef citations to date
0
Altmetric
Invited Reviews

Metabolomics of asthma, COPD, and asthma-COPD overlap: an overview

, , , & ORCID Icon
Pages 153-170 | Received 12 May 2022, Accepted 20 Oct 2022, Published online: 24 Nov 2022

References

  • Howard EJ, Vesper SJ, Guthrie BJ, et al. Asthma prevalence and mold levels in US northeastern schools. J Allergy Clin Immunol Pract. 2021;9(3):1312–1318.
  • Dharmage SC, Perret JL, Custovic A. Epidemiology of asthma in children and adults. Front Pediatr. 2019;7:246.
  • Devine JF. Chronic obstructive pulmonary disease: an overview. Am Heal Drug Benefits. 378 2008;1(7):34–42
  • Hikichi M, Hashimoto S, Gon Y. Asthma and COPD overlap pathophysiology of ACO. Allergol Int. 2018;67(2):179–186.
  • Freiler JF. The asthma-COPD overlap syndrome. Fed Pract. 2015;32(10):19S–23S.
  • Tu X, Donovan C, Kim RY, et al. Asthma-COPD overlap: current understanding and the utility of experimental models. Eur Respir Rev. 2021;30(159):190185.
  • Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics. 2001;2(3):155–168.
  • Nicholson JK, Lindon JC, Holmes E. “Metabonomics”: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999;29(11):1181–1189.
  • Zhang A, Sun H, Wang P, et al. Modern analytical techniques in metabolomics analysis. Analyst. 2012;137(2):293–300.
  • Amberg A, Riefke B, Schlotterbeck G, et al. NMR and MS methods for metabolomics. Methods Mol Biol. 2017;1641:229–258.
  • Fan TWM, Lane AN. Applications of NMR spectroscopy to systems biochemistry. Prog Nucl Magn Reson Spectrosc. 2016;92–93:18–53.
  • Bingol K, Bruschweiler-Li L, Yu C, et al. Metabolomics beyond spectroscopic databases: a combined MS/NMR strategy for the rapid identification of new metabolites in complex mixtures. Anal Chem. 2015;87(7):3864–3870.
  • Hautbergue GM, Golovanov AP. Increasing the sensitivity of cryoprobe protein NMR experiments by using the sole low-conductivity arginine glutamate salt. J Magn Reson. 2008;191(2):335–339.
  • Emwas A-HM. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol Biol. 2015;1277:161–193.
  • Perez ER, Knapp JA, Horn CK, et al. Comparison of LC-MS-MS and GC-MS analysis of benzodiazepine compounds included in the drug demand reduction urinalysis program. J Anal Toxicol. 2016;40(3):201–207.
  • Mittal RD. Tandem mass spectroscopy in diagnosis and clinical research. Indian J Clin Biochem. 2015;30(2):121–123.
  • Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016;17(7):451–459.
  • Di Minno A, Gelzo M, Stornaiuolo M, et al. The evolving landscape of untargeted metabolomics. Nutr Metab Cardiovasc Dis. 2021;31(6):1645–1652.
  • Saito R, Sugimoto M, Hirayama A, et al. Quality assessment of untargeted analytical data in a large-scale metabolomic study. J Clin Med. 2021;10(9):1826.
  • Gertsman I, Barshop BA. Promises and pitfalls of untargeted metabolomics. J Inherit Metab Dis. 2018;41(3):355–366.
  • Cao G, Song Z, Hong Y, et al. Large-scale targeted metabolomics method for metabolite profiling of human samples. Anal Chim Acta. 2020;1125:144–151.
  • Bingol K. Recent advances in targeted and untargeted metabolomics by NMR and MS/NMR methods. High-throughput. 2018;7(2):9.
  • Klupczyńska A, Dereziński P, Kokot ZJ. Metabolomics in medical sciences–trends, challenges and perspectives. Acta Pol Pharm. 2015;72(4):629–641.
  • Gauglitz JM, West KA, Bittremieux W, et al. Enhancing untargeted metabolomics using metadata-based source annotation. Nat Biotechnol. 2022. https://doi.org/10.1038/s41587-022-01368-1
  • Zhou Z, Luo M, Chen X, et al. Ion mobility collision cross-section atlas for known and unknown metabolite annotation in untargeted metabolomics. Nat Commun. 2020;11(1):4334.
  • Horai H, Arita M, Kanaya S, et al. MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom. 2010;45(7):703–714.
  • Smith CA, O’Maille G, Want EJ, et al. METLIN: a metabolite mass spectral database. Ther Drug Monit. 2005;27(6):747–751.
  • Kirwan JA, Weber RJM, Broadhurst DI, et al. Direct infusion mass spectrometry metabolomics dataset: a benchmark for data processing and quality control. Sci Data. 2014;1:140012.
  • Wolahan SM, Hirt D, Glenn TC. Translational metabolomics of head injury: exploring dysfunctional cerebral metabolism with ex vivo NMR spectroscopy-based metabolite quantification. In: Kobeissy FH, editor. Brain neurotrauma: molecular, neuropsychological, and rehabilitation aspects. Boca Raton (FL) CRC Press; 2015:371–378.
  • Korthauer K, Kimes PK, Duvallet C, et al. A practical guide to methods controlling false discoveries in computational biology. Genome Biol. 2019;20(1):118.
  • Mukaka MM. Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med J. 2012;24(3):69–71.
  • Meinicke P, Lingner T, Kaever A, et al. Metabolite-based clustering and visualization of mass spectrometry data using one-dimensional self-organizing maps. Algorithms Mol Biol. 2008;3:9.
  • Wieder C, Frainay C, Poupin N, et al. Pathway analysis in metabolomics: recommendations for the use of over-representation analysis. PLoS Comput Biol. 2021;17(9):e1009105.
  • Mitrea C, Taghavi Z, Bokanizad B, et al. Methods and approaches in the topology-based analysis of biological pathways. Front Physiol. 2013;4:278.
  • Picart-Armada S, Fernández-Albert F, Vinaixa M, et al. FELLA: an R package to enrich metabolomics data. BMC Bioinformatics. 2018;19(1):538.
  • Debik J, Sangermani M, Wang F, et al. Multivariate analysis of NMR-based metabolomic data. NMR Biomed. 2022;35(2):e4638.
  • Pomyen Y, Wanichthanarak K, Poungsombat P, et al. Deep metabolome: applications of deep learning in metabolomics. Comput Struct Biotechnol J. 2020;18:2818–2825.
  • Chiu CY, Lin G, Cheng ML, et al. Longitudinal urinary metabolomic profiling reveals metabolites for asthma development in early childhood. Pediatr Allergy Immunol. 2018;29(5):496–503.
  • Chiu CY, Cheng ML, Chiang MH, et al. Metabolomic analysis reveals distinct profiles in the plasma and urine associated with IgE reactions in childhood asthma. J Clin Med. 2020;9(3):887.
  • Khamis MM, Holt T, Awad H, et al. Comparative analysis of creatinine and osmolality as urine normalization strategies in targeted metabolomics for the differential diagnosis of asthma and COPD. Metabolomics. 2018;14(9):115.
  • Chiu CY, Cheng ML, Chiang MH, et al. Gut microbial-derived butyrate is inversely associated with IgE responses to allergens in childhood asthma. Pediatr Allergy Immunol. 2019;30(7):689–697.
  • Zheng P, Zhang K, Lv X, et al. Gut microbiome and metabolomics profiles of allergic and non-allergic childhood asthma. J Asthma Allergy. 2022;15:419–435.
  • Chiu CY, Cheng ML, Chiang MH, et al. Integrated metabolic and microbial analysis reveals host-microbial interactions in IgE-mediated childhood asthma. Sci Rep. 2021;11(1):23407.
  • Sinha A, Desiraju K, Aggarwal K, et al. Exhaled breath condensate metabolome clusters for endotype discovery in asthma. J Transl Med. 2017;15(1):262.
  • Maniscalco M, Paris D, Melck DJ, et al. Differential diagnosis between newly diagnosed asthma and COPD using exhaled breath condensate metabolomics: a pilot study. Eur Respir J. 2018;51(3):1701825.
  • Maniscalco M, Motta A. Clinical and inflammatory phenotyping: can electronic nose and NMR-based metabolomics work at the bedside? Arch Med Res. 2018;49(1):74–76.
  • Ntontsi P, Ntzoumanika V, Loukides S, et al. EBC metabolomics for asthma severity. J Breath Res. 2020;14(3):36007.
  • Tao JL, Chen YZ, Dai QG, et al. Urine metabolic profiles in paediatric asthma. Respirology. 2019;24(6):572–581.
  • Li S, Liu J, Zhou J, et al. Urinary metabolomic profiling reveals biological pathways and predictive signatures associated with childhood asthma. J Asthma Allergy. 2020;13:713–724.
  • Papamichael MM, Katsardis C, Erbas B, et al. Urinary organic acids as biomarkers in the assessment of pulmonary function in children with asthma. Nutr Res. 2019;61:31–40.
  • Papamichael MM, Katsardis C, Tsoukalas D, et al. Plasma lipid biomarkers in relation to BMI, lung function, and airway inflammation in pediatric asthma. Metabolomics. 2021;17(7):63.
  • Liao SY, Linderholm A, Showalter MR, et al. L-arginine as a potential GLP-1-mediated immunomodulator of Th17-related cytokines in people with obesity and asthma. Obes Sci Pract. 2021;7(3):339–345.
  • Liu Y, Zheng J, Zhang HP, et al. Obesity-associated metabolic signatures correlate to clinical and inflammatory profiles of asthma: a pilot study. Allergy Asthma Immunol Res. 2018;10(6):628–647.
  • Schleich FN, Zanella D, Stefanuto PH, et al. Exhaled volatile organic compounds are able to discriminate between neutrophilic and eosinophilic asthma. Am J Respir Crit Care Med. 2019;200(4):444–453.
  • Sola-Martínez RA, Lozano-Terol G, Gallego-Jara J, et al. Exhaled volatilome analysis as a useful tool to discriminate asthma with other coexisting atopic diseases in women of childbearing age. Sci Rep. 2021;11(1):13823.
  • Chawes BL, Giordano G, Pirillo P, et al. Neonatal urine metabolic profiling and development of childhood asthma. Metabolites. 2019;9(9):185.
  • Kolmert J, Gómez C, Balgoma D, et al. Urinary leukotriene E4 and prostaglandin D2 metabolites increase in adult and childhood severe asthma characterized by type 2 inflammation. Am J Respir Crit Care Med. 2021;203(1):37–53.
  • Reinke SN, Naz S, Chaleckis R, et al. Urinary metabotype of severe asthma evidences decreased carnitine metabolism independent of oral corticosteroid treatment in the U-BIOPRED study. Eur Respir J. 2022;59(6):2101733.
  • Carraro S, Bozzetto S, Giordano G, et al. Wheezing preschool children with early-onset asthma reveal a specific metabolomic profile. Pediatr Allergy Immunol. 2018;29(4):375–382.
  • Li J, Li X, Liu X, et al. Untargeted metabolomic study of acute exacerbation of pediatric asthma via HPLC-Q-Orbitrap-MS. J Pharm Biomed Anal. 2022;215:114737.
  • Khamis MM, Adamko DJ, Purves RW, et al. Quantitative determination of potential urine biomarkers of respiratory illnesses using new targeted metabolomic approach. Anal Chim Acta. 2019;1047:81–92.
  • Khamis MM, Adamko DJ, El-Aneed A. Development of a validated LC-MS/MS method for the quantification of 19 endogenous asthma/COPD potential urinary biomarkers. Anal Chim Acta. 2017;989:45–58.
  • Teoh ST, Leimanis-Laurens ML, Comstock SS, et al. Combined plasma and urinary metabolomics uncover metabolic perturbations associated with severe respiratory syncytial viral infection and future development of asthma in infant patients. Metabolites. 2022;12(2):178.
  • Bai-Tong SS, Thoemmes MS, Weldon KC, et al. The impact of maternal asthma on the preterm infants’ gut metabolome and microbiome (MAP study). Sci Rep. 2022;12(1):6437.
  • Lee-Sarwar K, Dedrick S, Momeni B, et al. Association of the gut microbiome and metabolome with wheeze frequency in childhood asthma. J Allergy Clin Immunol. 2022;150(2):325–336.
  • Kelly RS, Virkud Y, Giorgio R, et al. Metabolomic profiling of lung function in Costa-Rican children with asthma. Biochim Biophys Acta Mol Basis Dis. 2017;1863(6):1590–1595.
  • Rago D, Rasmussen MA, Lee-Sarwar KA, et al. Fish-oil supplementation in pregnancy, child metabolomics and asthma risk. EBioMedicine. 2019;46:399–410.
  • Lee-Sarwar K, Kelly RS, Lasky-Su J, et al. Dietary and plasma polyunsaturated fatty acids are inversely associated with asthma and atopy in early childhood. J Allergy Clin Immunol Pract. 2019;7(2):529–538.e8.
  • Jiang T, Dai L, Li P, et al. Lipid metabolism and identification of biomarkers in asthma by lipidomic analysis. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(2):158853.
  • Wang S, Tang K, Lu Y, et al. Revealing the role of glycerophospholipid metabolism in asthma through plasma lipidomics. Clin Chim Acta. 2021;513:34–42.
  • Freeman A, Cellura D, Minnion M, et al. Exercise training induces a shift in extracellular redox status with alterations in the pulmonary and systemic redox landscape in asthma. Antioxidants (Basel). 2021;10(12):1926.
  • Song Z, Yan W, Abulikemu M, et al. Sphingolipid profiles and their relationship with inflammatory factors in asthmatic patients of different sexes. Chronic Dis Transl Med. 2021;7(3):199–205.
  • Kelly RS, Sordillo JE, Lasky-Su J, et al. Plasma metabolite profiles in children with current asthma. Clin Exp Allergy. 2018;48(10):1297–1304.
  • Reinke SN, Gallart-Ayala H, Gómez C, et al. Metabolomics analysis identifies different metabotypes of asthma severity. Eur Respir J. 2017;49(3):1601740.
  • Gai XY, Zhang LJ, Chang C, et al. Metabolomic analysis of serum glycerophospholipid levels in eosinophilic and neutrophilic asthma. Biomed Environ Sci. 2019;32(2):96–106.
  • Bian X, Sun B, Zheng P, et al. Derivatization enhanced separation and sensitivity of long chain-free fatty acids: application to asthma using targeted and non-targeted liquid chromatography-mass spectrometry approach. Anal Chim Acta. 2017;989:59–70.
  • Crestani E, Harb H, Charbonnier LM, et al. Untargeted metabolomic profiling identifies disease-specific signatures in food allergy and asthma. J Allergy Clin Immunol. 2020;145(3):897–906.
  • Zheng P, Bian X, Zhai Y, et al. Metabolomics reveals a correlation between hydroxyeicosatetraenoic acids and allergic asthma: evidence from three years’ immunotherapy. Pediatr Allergy Immunol. 2021;32(8):1654–1662.
  • Liang Y, Gai XY, Chang C, et al. Metabolomic profiling differences among asthma, COPD, and healthy subjects: a LC-MS-based metabolomic analysis. Biomed Environ Sci. 2019;32(9):659–672.
  • Guo C, Sun L, Zhang L, et al. Serum sphingolipid profile in asthma. J Leukoc Biol. 2021;110(1):53–59.
  • Matysiak J, Klupczynska A, Packi K, et al. Alterations in serum-free amino acid profiles in childhood asthma. Int J Environ Res Public Health. 2020;17(13):4758.
  • Zhou B, Jiang GT, Liu H, et al. Dysregulated arginine metabolism in young patients with chronic persistent asthma and in human bronchial epithelial cells. Nutrients. 2021;13(11):4116.
  • Lee Y, Chen H, Chen W, et al. Metabolomic associations of asthma in the hispanic community health study/study of Latinos. Metabolites. 2022;12(4):359.
  • Pang Z, Wang G, Wang C, et al. Serum metabolomics analysis of asthma in different inflammatory phenotypes: a cross-sectional study in northeast China. Biomed Res Int. 2018;2018:2860521.
  • Johnson RK, Brunetti T, Quinn K, et al. Discovering metabolite quantitative trait loci in asthma using an isolated population. J Allergy Clin Immunol. 2022;149(5):1807–1811.e16.
  • Liao J, Gheissari R, Thomas DC, et al. Transcriptomic and metabolomic associations with exposures to air pollutants among young adults with childhood asthma history. Environ Pollut. 2022;299:118903.
  • Fujiogi M, Camargo CAJ, Raita Y, et al. Integrated associations of nasopharyngeal and serum metabolome with bronchiolitis severity and asthma: a multicenter prospective cohort study. Pediatr Allergy Immunol. 2021;32(5):905–916.
  • Liu A, Ma T, Xu NJ, et al. Adjunctive probiotics alleviates asthmatic symptoms via modulating the gut microbiome and serum metabolome. Microbiol Spectr. 2021;9(2):e0085921.
  • Gürdeniz G, Ernst M, Rago D, et al. Neonatal metabolome of caesarean section and risk of childhood asthma. Eur Respir J. 2022;59(6):2102406.
  • Cruickshank-Quinn C, Armstrong M, Powell R, et al. Determining the presence of asthma-related molecules and salivary contamination in exhaled breath condensate. Respir Res. 2017;18(1):57.
  • Schmidt AJ, Borras E, Nguyen AP, et al. Portable exhaled breath condensate metabolomics for daily monitoring of adolescent asthma. J Breath Res. 2020;14(2):26001.
  • Tian M, Chen M, Bao YL, et al. Sputum metabolomic profiling of bronchial asthma based on quadruple time-of-flight mass spectrometry. Int J Clin Exp Pathol. 2017;10(10):10363–10373.
  • Zhu Z, Camargo CAJ, Raita Y, et al. Metabolome subtyping of severe bronchiolitis in infancy and risk of childhood asthma. J Allergy Clin Immunol. 2022;149(1):102–112.
  • Ravi A, Goorsenberg AWM, Dijkhuis A, et al. Metabolic differences between bronchial epithelium from healthy individuals and patients with asthma and the effect of bronchial thermoplasty. J Allergy Clin Immunol. 2021;148(5):1236–1248.
  • Fortis S, Lusczek ER, Weinert CR, et al. Metabolomics in COPD acute respiratory failure requiring noninvasive positive pressure ventilation. Can Respir J. 2017;2017:9480346.
  • Prokić I, Lahousse L, de Vries M, et al. A cross-omics integrative study of metabolic signatures of chronic obstructive pulmonary disease. BMC Pulm Med. 2020;20(1):193.
  • Diao W, Labaki WW, Han MK, et al. Disruption of histidine and energy homeostasis in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2019;14:2015–2025.
  • Labaki WW, Gu T, Murray S, et al. Serum amino acid concentrations and clinical outcomes in smokers: SPIROMICS metabolomics study. Sci Rep. 2019;9(1):11367.
  • Zheng H, Hu Y, Dong L, et al. Predictive diagnosis of chronic obstructive pulmonary disease using serum metabolic biomarkers and least-squares support vector machine. J Clin Lab Anal. 2021;35(2):e23641.
  • Choudhury P, Bhattacharya A, Dasgupta S, et al. Identification of novel metabolic signatures potentially involved in the pathogenesis of COPD associated pulmonary hypertension. Metabolomics. 2021;17(10):94.
  • Maniscalco M, Paris D, Cuomo P, et al. Metabolomics of COPD pulmonary rehabilitation outcomes via exhaled breath condensate. Cells. 2022;11(3):344.
  • Muñoz-Lucas MÁ, Jareño-Esteban J, Gutiérrez-Ortega C, et al. Influence of chronic obstructive pulmonary disease on volatile organic compounds in patients with non-small cell lung cancer. Arch Bronconeumol. 2020;56(12):801–805.
  • Rodríguez-Aguilar M, Ramírez-García S, Ilizaliturri-Hernández C, et al. Ultrafast gas chromatography coupled to electronic nose to identify volatile biomarkers in exhaled breath from chronic obstructive pulmonary disease patients: a pilot study. Biomed Chromatogr. 2019;33(12):e4684.
  • Bregy L, Nussbaumer-Ochsner Y, Martinez-Lozano Sinues P, et al. Real-time mass spectrometric identification of metabolites characteristic of chronic obstructive pulmonary disease in exhaled breath. Clin Mass Spectrom. 2018;7:29–35.
  • Kamal F, Kumar S, Edwards MR, et al. Virus-induced volatile organic compounds are detectable in exhaled breath during pulmonary infection. Am J Respir Crit Care Med. 2021;204(9):1075–1085.
  • Celejewska-Wójcik N, Kania A, Górka K, et al. Eicosanoids and eosinophilic inflammation of airways in stable COPD. Int J Chron Obstruct Pulmon Dis. 2021;16:1415–1424.
  • Shih Y-M, Cooke MS, Pan C-H, et al. Clinical relevance of guanine-derived urinary biomarkers of oxidative stress, determined by LC-MS/MS. Redox Biol. 2019;20:556–565.
  • Kim DJ, Oh JY, Rhee CK, et al. Metabolic fingerprinting uncovers the distinction between the phenotypes of tuberculosis associated COPD and smoking-induced COPD. Front Med (Lausanne). 2021;8:619077.
  • Huang Q, Hu D, Wang X, et al. The modification of indoor PM(2.5) exposure to chronic obstructive pulmonary disease in Chinese elderly people: a meet-in-metabolite analysis. Environ Int. 2018;121(Pt 2):1243–1252.
  • Bowerman KL, Rehman SF, Vaughan A, et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat Commun. 2020;11(1):5886.
  • Gillenwater LA, Kechris KJ, Pratte KA, et al. Metabolomic profiling reveals sex specific associations with chronic obstructive pulmonary disease and emphysema. Metabolites. 2021;11(3):161.
  • Zhou J, Li Q, Liu C, et al. Plasma metabolomics and lipidomics reveal perturbed metabolites in different disease stages of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2020;15:553–565.
  • Mastej E, Gillenwater L, Zhuang Y, et al. Identifying protein-metabolite networks associated with COPD phenotypes. Metabolites. 2020;10(4):124.
  • Gillenwater LA, Pratte KA, Hobbs BD, et al. Plasma metabolomic signatures of chronic obstructive pulmonary disease and the impact of genetic variants on phenotype-driven modules. Netw Syst Med. 2020;3(1):159–181.
  • Cruickshank-Quinn CI, Jacobson S, Hughes G, et al. Metabolomics and transcriptomics pathway approach reveals outcome-specific perturbations in COPD. Sci Rep. 2018;8(1):17132.
  • Pinto-Plata V, Casanova C, Divo M, et al. Plasma metabolomics and clinical predictors of survival differences in COPD patients. Respir Res. 2019;20(1):219.
  • Hodgson S, Griffin TJ, Reilly C, et al. Plasma sphingolipids in HIV-associated chronic obstructive pulmonary disease. BMJ Open Respir Res. 2017;4(1):e000180.
  • Halper-Stromberg E, Gillenwater L, Cruickshank-Quinn C, et al. Bronchoalveolar lavage fluid from COPD patients reveals more compounds associated with disease than matched plasma. Metabolites. 2019;9(8):157.
  • Yu B, Flexeder C, McGarrah RW, 3rd, et al. Metabolomics identifies novel blood biomarkers of pulmonary function and COPD in the general population. Metabolites. 2019;9(4):61.
  • Liu D, Meister M, Zhang S, et al. Identification of lipid biomarker from serum in patients with chronic obstructive pulmonary disease. Respir Res. 2020;21(1):242.
  • Callejón-Leblic B, Pereira-Vega A, Vázquez-Gandullo E, et al. Study of the metabolomic relationship between lung cancer and chronic obstructive pulmonary disease based on direct infusion mass spectrometry. Biochimie. 2019;157:111–122.
  • Kilk K, Aug A, Ottas A, et al. Phenotyping of chronic obstructive pulmonary disease based on the integration of metabolomes and clinical characteristics. Int J Mol Sci. 2018;19(3):666.
  • Naz S, Kolmert J, Yang M, et al. Metabolomics analysis identifies sex-associated metabotypes of oxidative stress and the autotaxin-lysoPA axis in COPD. Eur Respir J. 2017;49(6):1602322.
  • Hoang QTM, Nguyen VK, Oberacher H, et al. Serum concentration of the phytohormone abscisic acid is associated with immune-regulatory mediators and is a potential biomarker of disease severity in chronic obstructive pulmonary disease. Front Med (Lausanne). 2021;8:676058.
  • Xue M, Zeng Y, Lin R, et al. Metabolomic profiling of anaerobic and aerobic energy metabolic pathways in chronic obstructive pulmonary disease. Exp Biol Med (Maywood). 2021;246(14):1586–1596.
  • Novotna B, Abdel-Hamid M, Koblizek V, et al. A pilot data analysis of a metabolomic HPLC-MS/MS study of patients with COPD. Adv Clin Exp Med. 2018;27(4):531–539.
  • van der Does AM, Heijink M, Mayboroda OA, et al. Dynamic differences in dietary polyunsaturated fatty acid metabolism in sputum of COPD patients and controls. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(3):224–233.
  • Zhu T, Li S, Wang J, et al. Induced sputum metabolomic profiles and oxidative stress are associated with chronic obstructive pulmonary disease (COPD) severity: potential use for predictive, preventive, and personalized medicine. EPMA J. 2020;11(4):645–659.
  • Esther CR, O’Neal WK, Anderson WH, et al. Identification of sputum biomarkers predictive of pulmonary exacerbations in COPD. Chest. 2022;161(5):1239–1249.
  • Berdyshev EV, Serban KA, Schweitzer KS, et al. Ceramide and sphingosine-1 phosphate in COPD lungs. Thorax. 2021;76(8):821–825.
  • Huang Q, Wu X, Gu Y, et al. Detection of the disorders of glycerophospholipids and amino acids metabolism in lung tissue from male COPD patients. Front Mol Biosci. 2022;9:839259.
  • Ghosh N, Choudhury P, Subramani E, et al. Metabolomic signatures of asthma-COPD overlap (ACO) are different from asthma and COPD. Metabolomics. 2019;15(6):87.
  • Ghosh N, Choudhury P, Joshi M, et al. Global metabolome profiling of exhaled breath condensates in male smokers with asthma COPD overlap and prediction of the disease. Sci Rep. 2021;11(1):16664.
  • Ghosh N, Choudhury P, Kaushik SR, et al. Metabolomic fingerprinting and systemic inflammatory profiling of asthma COPD overlap (ACO). Respir Res. 2020;21(1):126.
  • Oh JY, Lee YS, Min KH, et al. Increased urinary L-histidine in patients with asthma-COPD overlap: a pilot study. Int J Chron Obstruct Pulmon Dis. 2018;13:1809–1818.
  • Cai C, Bian X, Xue M, et al. Eicosanoids metabolized through LOX distinguish asthma-COPD overlap from COPD by metabolomics study. Int J Chron Obstruct Pulmon Dis. 2019;14:1769–1778.
  • Asher I, Pearce N. Global burden of asthma among children. Int J Tuberc Lung Dis. 2014;18(11):1269–1278.
  • Li WJ, Zhao Y, Gao Y, et al. Lipid metabolism in asthma: immune regulation and potential therapeutic target. Cell Immunol. 2021;364:104341.
  • Monga N, Sethi GS, Kondepudi KK, et al. Lipid mediators and asthma: scope of therapeutics. Biochem Pharmacol. 2020;179:113925.
  • George L, Brightling CE. Eosinophilic airway inflammation: role in asthma and chronic obstructive pulmonary disease. Ther Adv Chronic Dis. 2016;7(1):34–51.
  • Backman H, Räisänen P, Hedman L, et al. Increased prevalence of allergic asthma from 1996 to 2006 and further to 2016-results from three population surveys. Clin Exp Allergy. 2017;47(11):1426–1435.
  • Peters U, Dixon AE, Forno E. Obesity and asthma. J Allergy Clin Immunol. 2018;141(4):1169–1179.
  • Zein JG, Erzurum SC. Asthma is different in women. Curr Allergy Asthma Rep. 2015;15(6):28.
  • Hunt J. Exhaled breath condensate: an overview. Immunol Allergy Clin North Am. 2007;27(4):587–596.
  • Thomsen SF. Genetics of asthma: an introduction for the clinician. Eur Clin Respir J. 2015;2(1):24643.
  • Laniado-Laborín R. Smoking and chronic obstructive pulmonary disease (COPD). parallel epidemics of the 21 century. Int J Environ Res Public Health. 2009;6(1):209–224.
  • Gaude GS, Rajesh BP, Chaudhury A, et al. Outcomes associated with acute exacerbations of chronic obstructive pulmonary disorder requiring hospitalization. Lung India. 2015;32(5):465–472.
  • Takiguchi Y, Sekine I, Iwasawa S, et al. Chronic obstructive pulmonary disease as a risk factor for lung cancer. World J Clin Oncol. 2014;5(4):660–666.
  • Xia Y, Cao Y, Xia L, et al. Severe asthma and asthma-COPD overlap: a double agent or identical twins? J Thorac Dis. 2017;9(12):4798–4805.
  • Mishra V, Banga J, Silveyra P. Oxidative stress and cellular pathways of asthma and inflammation: therapeutic strategies and pharmacological targets. Pharmacol Ther. 2018;181:169–182.
  • Wood LG, Gibson PG, Garg ML. Biomarkers of lipid peroxidation, airway inflammation and asthma. Eur Respir J. 2003;21(1):177–186.
  • Bhatt SP, Balte PP, Schwartz JE, et al. Discriminative accuracy of FEV1: FVC thresholds for COPD-related hospitalization and mortality. JAMA. 2019;321(24):2438–2447.
  • Corcoran SE, O’Neill LAJ. HIF1α and metabolic reprogramming in inflammation. J Clin Invest. 2016;126(10):3699–3707.
  • Engelen MP, Wouters EF, Deutz NE, et al. Effects of exercise on amino acid metabolism in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001;163(4):859–864.
  • Gibson PG, McDonald VM. Asthma-COPD overlap 2015: now we are six. Thorax. 2015;70(7):683–691.
  • Portelli MA, Hodge E, Sayers I. Genetic risk factors for the development of allergic disease identified by genome-wide association. Clin Exp Allergy. 2015;45(1):21–31.
  • Toncheva AA, Potaczek DP, Schedel M, et al. Childhood asthma is associated with mutations and gene expression differences of ORMDL genes that can interact. Allergy. 2015;70(10):1288–1299.
  • Denden S, Khelil AH, Knani J, et al. Alpha-1 antitrypsin gene polymorphism in chronic obstructive pulmonary disease (COPD). Genet Mol Biol. 2010;33(1):23–26.
  • Silverman EK. Genetics of COPD. Annu Rev Physiol. 2020;82:413–431.
  • Odimba U, Senthilselvan A, Farrell J, et al. Current knowledge of asthma-COPD overlap (ACO) genetic risk factors, characteristics, and prognosis. COPD. 2021;18(5):585–595.
  • Yadav CB, Srivastava RK, Gangashetty PI, et al. Metabolite diversity and metabolic genome-wide marker association studies (MGWAS) for health benefiting nutritional traits in pearl millet grains. Cells. 2021;10(11):3076.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.