617
Views
0
CrossRef citations to date
0
Altmetric
Invited Reviews

Beyond the amyloid hypothesis: how current research implicates autoimmunity in Alzheimer’s disease pathogenesis

ORCID Icon, , &
Pages 398-426 | Received 18 Jul 2022, Accepted 01 Mar 2023, Published online: 20 Mar 2023

References

  • McComb S, Thiriot A, Akache B, et al. Introduction to the immune system. Methods Mol Biol. 2019;2024:1–24.
  • Sabatino JJ, Pröbstel A-K, Zamvil SS. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat Rev Neurosci. 2019;20:728–745.
  • Khan U, Ghazanfar H. T lymphocytes and autoimmunity. Int Rev Cell Mol Biol. 2018;341:125–168.
  • Amoriello R, Mariottini A, Ballerini C. Immunosenescence and autoimmunity: exploiting the T-cell receptor repertoire to investigate the impact of aging on multiple sclerosis. Front Immunol. 2021;12:799380.
  • Wyss-Coray T. Ageing, neurodegeneration and brain rejuvenation. Nature. 2016;539(7628):180–186.
  • Ruiz-Argüelles A. T lymphocytes in autoimmunity. In: Autoimmunity: from bench to bedside [internet]. Bogota (Colombia): El Rosario University Press; 2013 [cited 2022 Oct 26]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459477/.
  • Yin J, Ibrahim S, Petersen F, et al. Autoimmunomic signatures of aging and age-related neurodegenerative diseases are associated with brain function and ribosomal proteins. Front Aging Neurosci. 2021;13:679688.
  • Natri H, Garcia AR, Buetow KH, et al. The pregnancy pickle: evolved immune compensation due to pregnancy underlies sex differences in human diseases. Trends Genet. 2019;35:478–488.
  • Laffont S, Guéry J-C. Deconstructing the sex bias in allergy and autoimmunity: from sex hormones and beyond. Adv Immunol. 2019;142:35–64.
  • Tukiainen T, Villani A-C, Yen A, et al. Landscape of X chromosome inactivation across human tissues. Nature. 2017;550(7675):244–248.
  • Hanamsagar R, Bilbo SD. Sex differences in neurodevelopmental and neurodegenerative disorders: focus on microglial function and neuroinflammation during development. J Steroid Biochem Mol Biol. 2016;160:127–133.
  • Irvine K, Laws KR, Gale TM, et al. Greater cognitive deterioration in women than men with Alzheimer’s disease: a meta-analysis. J Clin Exp Neuropsychol. 2012;34:989–998.
  • Plassman BL, Langa KM, McCammon RJ, et al. Incidence of dementia and cognitive impairment, not dementia in the United States. Ann Neurol. 2011;70:418–426.
  • Voskuhl RR, Gold SM. Sex-related factors in multiple sclerosis susceptibility and progression. Nat Rev Neurol. 2012;8:255–263.
  • Xu H, Liu M, Cao J, et al. The dynamic interplay between the gut microbiota and autoimmune diseases. J Immunol Res. 2019;2019:7546047.
  • Dehner C, Fine R, Kriegel MA. The microbiome in systemic autoimmune disease: mechanistic insights from recent studies. Curr Opin Rheumatol. 2019;31:201–207.
  • Albert LJ, Inman RD. Molecular mimicry and autoimmunity. N Engl J Med. 1999;341(27):2068–2074.
  • Arstila TP, Casrouge A, Baron V, et al. A direct estimate of the human alphabeta T cell receptor diversity. Science. 1999;286:958–961.
  • Sprouse ML, Bates NA, Felix KM, et al. Impact of gut microbiota on gut‐distal autoimmunity: a focus on T cells. Immunology. 2019;156:305–318.
  • Greiling TM, Dehner C, Chen X, et al. Commensal orthologs of the human autoantigen Ro60 as triggers of autoimmunity in lupus. Sci Transl Med. 2018;10:eaan2306.
  • Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol. 2017;595(2):489–503.
  • Brea D, Veiga-Fernandes H. Inflammation in the gut is encoded by neurons in the brain. Nature. 2022;602(7896):217–218.
  • Koren T, Yifa R, Amer M, et al. Insular cortex neurons encode and retrieve specific immune responses. Cell. 2021;184:5902–5915.e17.
  • Kowalski K, Mulak A. Brain-gut-microbiota axis in Alzheimer’s disease. J Neurogastroenterol Motil. 2019;25:48–60.
  • Wall R, Cryan JF, Ross RP, et al. Bacterial neuroactive compounds produced by psychobiotics. Adv Exp Med Biol. 2014;817:221–239.
  • Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6:263ra158.
  • Kelly JR, Kennedy PJ, Cryan JF, et al. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci. 2015;9:392.
  • Montagne A, Barnes SR, Sweeney MD, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85:296–302.
  • Hosang L, Canals RC, van der Flier FJ, et al. The lung microbiome regulates brain autoimmunity. Nature. 2022;603(7899):138–144.
  • Schonhoff AM, Mazmanian SK. Lung microbes mediate spinal-cord autoimmunity. Nature. 2022;603(7899):38–40.
  • Odoardi F, Sie C, Streyl K, et al. T cells become licensed in the lung to enter the central nervous system. Nature. 2012;488(7413):675–679.
  • Khan MF, Wang H. Environmental exposures and autoimmune diseases: contribution of gut microbiome. Front Immunol. 2019;10:3094.
  • Calderón-Garcidueñas L, Vojdani A, Blaurock-Busch E, et al. Air pollution and children: neural and tight junction antibodies and combustion metals, the role of barrier breakdown and brain immunity in neurodegeneration. J Alzheimers Dis. 2015;43:1039–1058.
  • Abou-Donia MB, Lieberman A, Curtis L. Neural autoantibodies in patients with neurological symptoms and histories of chemical/mold exposures. Toxicol Ind Health. 2018;34:44–53.
  • Jin Y, Liu L, Zhang S, et al. Cadmium exposure to murine macrophages decreases their inflammatory responses and increases their oxidative stress. Chemosphere. 2016;144:168–175.
  • Valko M, Rhodes CJ, Moncol J, et al. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40.
  • Lu K, Abo RP, Schlieper KA, et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect. 2014;122:284–291.
  • Van de Wiele T, Vanhaecke L, Boeckaert C, et al. Human Colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites. Environ Health Perspect. 2005;113:6–10.
  • Lefever DE, Xu J, Chen Y, et al. TCDD modulation of gut microbiome correlated with liver and immune toxicity in streptozotocin (STZ)-induced hyperglycemic mice. Toxicol Appl Pharmacol. 2016;304:48–58.
  • Nasuti C, Fattoretti P, Carloni M, et al. Neonatal exposure to permethrin pesticide causes lifelong fear and spatial learning deficits and alters hippocampal morphology of synapses. J Neurodev Disord. 2014;6:7.
  • Kan H, Zhao F, Zhang X-X, et al. Correlations of gut microbial community shift with hepatic damage and growth inhibition of Carassius auratus induced by pentachlorophenol exposure. Environ Sci Technol. 2015;49:11894–11902.
  • Watad A, Bragazzi NL, Adawi M, et al. Autoimmunity in the elderly: insights from basic science and clinics – a mini-review. Gerontology. 2017;63:515–523.
  • Foley JF. Aging and autoimmunity. Sci Signal. 2021;14:eabj0430.
  • GBD 2019 Dementia Forecasting Collaborators. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for the global burden of disease study 2019. Lancet Public Health. 2022;7:e105–e125.
  • Lambert MP, Barlow AK, Chromy BA, et al. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA. 1998;95(11):6448–6453.
  • Roher AE, Chaney MO, Kuo Y-M, et al. Morphology and toxicity of Aβ-(1–42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer’s disease. J Biol Chem. 1996;271(34):20631–20635.
  • Ashe KH. The biogenesis and biology of amyloid β oligomers in the brain. Alzheimers Dement. 2020;16:1561–1567.
  • Paglia G, Stocchero M, Cacciatore S, et al. Unbiased metabolomic investigation of Alzheimer’s disease brain points to dysregulation of mitochondrial aspartate metabolism. J Proteome Res. 2016;15:608–618.
  • Swerdlow RH, Khan SM. A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med Hypotheses. 2004;63:8–20.
  • Duyckaerts C, Clavaguera F, Potier M-C. The prion-like propagation hypothesis in Alzheimer’s and Parkinson’s disease. Curr Opin Neurol. 2019;32:266–271.
  • Scheffer S, Hermkens DMA, van der Weerd L, et al. Vascular hypothesis of Alzheimer disease. Arterioscler Thromb Vasc Biol. 2021;41:1265–1283.
  • Everett J, Lermyte F, Brooks J, et al. Biogenic metallic elements in the human brain? Sci Adv. 2021;7:eabf6707.
  • Lim B, Prassas I, Diamandis EP. Alzheimer disease pathogenesis: the role of autoimmunity. J Appl Lab Med. 2021;6:756–764.
  • Ristori E, Donnini S, Ziche M. New insights into blood-brain barrier maintenance: the homeostatic role of β-amyloid precursor protein in cerebral vasculature. Front Physiol. 2020;11:1056.
  • O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci. 2011;34:185–204.
  • Trinczek B, Biernat J, Baumann K, et al. Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules. Mol Biol Cell. 1995;6:1887–1902.
  • Barbier P, Zejneli O, Martinho M, et al. Role of tau as a microtubule-associated protein: structural and functional aspects. Front Aging Neurosci. 2019;11:1–14.
  • Tam JHK, Pasternak SH. Amyloid and Alzheimer’s disease: inside and out. Can J Neurol Sci. 2012;39:286–298.
  • Ellis WG, McCulloch JR, Corley CL. Presenile dementia in down’s syndrome: ultrastructural identity with Alzheimer’s disease. Neurology. 1974;24:101–101.
  • Makin S. The amyloid hypothesis on trial. Nature. 2018;559(7715):S4–S7.
  • Ballatore C, Lee VM-Y, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci. 2007;8:663–672.
  • Lue LF, Kuo YM, Roher AE, et al. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol. 1999;155:853–862.
  • D'Andrea MR, Nagele RG, Wang HY, et al. Evidence that neurons accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer’s disease. Histopathology. 2001;38(2):120–134.
  • D'Andrea MR, Nagele RG, Wang H-Y, et al. Consistent immunohistochemical detection of intracellular beta-amyloid42 in pyramidal neurons of Alzheimer’s disease entorhinal cortex. Neurosci Lett. 2002;333(3):163–166.
  • Aho L, Pikkarainen M, Hiltunen M, et al. Immunohistochemical visualization of amyloid-beta protein precursor and amyloid-beta in extra- and intracellular compartments in the human brain. J Alzheimers Dis. 2010;20:1015–1028.
  • Pasternak SH, Bagshaw RD, Guiral M, et al. Presenilin-1, nicastrin, amyloid precursor protein, and γ-secretase activity are co-localized in the lysosomal membrane. J Biol Chem. 2003;278(29):26687–26694.
  • Glabe CG. Structural classification of toxic amyloid oligomers. J Biol Chem. 2008;283:29639–29643.
  • Gómez-Isla T, Hollister R, West H, et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol. 1997;41(1):17–24.
  • Cataldo AM, Peterhoff CM, Troncoso JC, et al. Endocytic pathway abnormalities precede amyloid β deposition in sporadic Alzheimer’s disease and down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol. 2000;157(1):277–286.
  • Bennett DA, Schneider JA, Arvanitakis Z, et al. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology. 2006;66:1837–1844.
  • Yuen SC, Liang X, Zhu H, et al. Prediction of differentially expressed microRNAs in blood as potential biomarkers for Alzheimer’s disease by meta-analysis and adaptive boosting ensemble learning. Alzheimers Res Ther. 2021;13:126.
  • Selkoe DJ. Treatments for Alzheimer’s disease emerge. Science. 2021;373:624–626.
  • Seaks CE, Wilcock DM. Infectious hypothesis of Alzheimer disease. PLOS Pathog. 2020;16:e1008596.
  • Gong G, O’Bryant SE. The arsenic exposure hypothesis for Alzheimer disease. Alzheimer Dis Assoc Disord. 2010;24:311–316.
  • Cline EN, Bicca MA, Viola KL, et al. The amyloid-β oligomer hypothesis: beginning of the third decade. J Alzheimers Dis. 2018;64(s1):S567–S610.
  • Gate D, Tapp E, Leventhal O, et al. CD4+ T cells contribute to neurodegeneration in Lewy body dementia. Science. 2021;374:868–874.
  • Franceschi M, Comola M, Nemni R, et al. Neuron-binding antibodies in Alzheimer’s disease and Down’s syndrome. J Gerontol. 1989;44(4):M128–M130.
  • Relkin N. Clinical trials of intravenous immunoglobulin for Alzheimer’s disease. J Clin Immunol. 2014;34:74–79.
  • Relkin NR, Thomas RG, Rissman RA, et al. A phase 3 trial of IV immunoglobulin for Alzheimer disease. Neurology. 2017;88:1768–1775.
  • Regenhardt RW, Thon JM, Das AS, et al. Association between immunosuppressive treatment and outcomes of cerebral amyloid angiopathy–related inflammation. JAMA Neurol. 2020;77:1261–1269.
  • Biogen. A phase 3 multicenter, randomized, double-blind, placebo-controlled, parallel-group study to evaluate the efficacy and safety of Aducanumab (BIIB037) in subjects with early Alzheimer’s disease [Internet]. Report No.: NCT02477800. Clinicaltrials.gov; 2021 [cited 2022 Oct 26]. Available from: https://clinicaltrials.gov/ct2/show/NCT02477800
  • Song C, Shi J, Zhang P, et al. Immunotherapy for Alzheimer’s disease: targeting β-amyloid and beyond. Transl Neurodegener. 2022;11:18.
  • Prillaman M. Alzheimer’s drug slows mental decline in trial—but is it a breakthrough? Nature. 2022;610(7930):15–16.
  • Soeda Y, Takashima A. New insights into drug discovery targeting tau protein. Front Mol Neurosci. 2020;13:1–24.
  • AADvac1 [Internet]. ALZFORUM Netw Cure [cited 2022 May 5]. Available from: https://www.alzforum.org/therapeutics/aadvac1
  • Colasanti T, Barbati C, Rosano G, et al. Autoantibodies in patients with Alzheimer’s disease: pathogenetic role and potential use as biomarkers of disease progression. Autoimmun Rev. 2010;9:807–811.
  • Talwar P, Kushwaha S, Gupta R, et al. Systemic immune dyshomeostasis model and pathways in Alzheimer’s disease. Front Aging Neurosci. 2019;11:290.
  • Yin W, Stover CM, Yin W, et al. The potential of circulating autoantibodies in the early diagnosis of Alzheimer’s disease. AIMS Allergy Immunol. 2017;1:62–70.
  • Wu J, Li L. Autoantibodies in Alzheimer’s disease: potential biomarkers, pathogenic roles, and therapeutic implications. J Biomed Res. 2016;30:361–372.
  • Counts SE, Ikonomovic MD, Mercado N, et al. Biomarkers for the early detection and progression of Alzheimer’s disease. Neurotherapeutics. 2017;14:35–53.
  • Gupta M, Weaver DF. COVID-19 as a trigger of brain autoimmunity. ACS Chem Neurosci. 2021;12:2558–2561.
  • Lee MH, Perl DP, Steiner J, et al. Neurovascular injury with complement activation and inflammation in COVID-19. Brain. 2022;145(7):2555–2568.
  • Bjornevik K, Cortese M, Healy BC, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375(6578):296–301.
  • Lanz TV, Brewer RC, Ho PP, et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature. 2022;603(7900):321–327.
  • Li H, Liu C-C, Zheng H, et al. Amyloid, tau, pathogen infection and antimicrobial protection in Alzheimer’s disease–conformist, nonconformist, and realistic prospects for AD pathogenesis. Transl Neurodegener. 2018;7:34.
  • Readhead B, Haure-Mirande J-V, Funk CC, et al. Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron. 2018;99:64–82.e7.
  • Harris SA, Harris EA. Herpes simplex virus type 1 and other pathogens are key causative factors in sporadic Alzheimer’s disease. J Alzheimers Dis. 2015;48:319–353.
  • Demarco S. An infective spark for Alzheimer’s disease [Internet]. Drug Discovery News [cited 2022 Jul 18]. Available from: https://www.drugdiscoverynews.com/an-infective-spark-for-alzheimer-s-disease-15432
  • Moir RD, Lathe R, Tanzi RE. The antimicrobial protection hypothesis of Alzheimer’s disease. Alzheimers Dement. 2018;14:1602–1614.
  • Carter CJ. Alzheimer’s disease: a pathogenetic autoimmune disorder caused by herpes simplex in a gene-dependent manner. Int J Alzheimers Dis. 2010;2010:140539.
  • Laugisch O, Johnen A, Maldonado A, et al. Periodontal pathogens and associated intrathecal antibodies in early stages of Alzheimer’s disease. J Alzheimers Dis. 2018;66:105–114.
  • Park A-M, Omura S, Fujita M, et al. Helicobacter pylori and gut microbiota in multiple sclerosis versus Alzheimer’s disease: 10 pitfalls of microbiome studies. Clin Exp Neuroimmunol. 2017;8(3):215–232.
  • Tsolaki F, Kountouras J, Topouzis F, et al. Helicobacter pylori infection, dementia and primary open-angle glaucoma: are they connected? BMC Ophthalmol. 2015;15:24.
  • Shiota S, Murakami K, Yoshiiwa A, et al. The relationship between Helicobacter pylori infection and Alzheimer’s disease in Japan. J Neurol. 2011;258(8):1460–1463.
  • Itzhaki RF. Herpes simplex virus type 1 and Alzheimer’s disease: possible mechanisms and signposts. FASEB J. 2017;31(8):3216–3226.
  • Shipley SJ, Parkin ET, Itzhaki RF, et al. Herpes simplex virus interferes with amyloid precursor protein processing. BMC Microbiol. 2005;5:48.
  • Satpute-Krishnan P, DeGiorgis JA, Bearer EL. Fast anterograde transport of herpes simplex virus: role for the amyloid precursor protein of Alzheimer’s disease. Aging Cell. 2003;2(6):305–318.
  • Wozniak MA, Mee AP, Itzhaki RF. Herpes simplex virus type 1 DNA is located within Alzheimer’s disease amyloid plaques. J Pathol. 2009;217(1):131–138.
  • Jacob RS, George E, Singh PK, et al. Cell adhesion on amyloid fibrils lacking integrin recognition motif. J Biol Chem. 2016;291(10):5278–5298.
  • Delaère P, Duyckaerts C, He Y, et al. Subtypes and differential laminar distributions of beta A4 deposits in Alzheimer’s disease: relationship with the intellectual status of 26 cases. Acta Neuropathol. 1991;81(3):328–335.
  • Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer’s disease. Neurobiol Aging. 2000;21(3):383–421.
  • Meda L, Baron P, Scarlato G. Glial activation in Alzheimer’s disease: the role of Aβ and its associated proteins. Neurobiol Aging. 2001;22(6):885–893.
  • Namba Y, Tomonaga M, Kawasaki H, et al. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res. 1991;541(1):163–166.
  • Nielsen HM, Mulder SD, Beliën JAM, et al. Astrocytic Aβ1-42 uptake is determined by Aβ-aggregation state and the presence of amyloid-associated proteins. Glia. 2010;58(10):1235–1246.
  • Veerhuis R, Boshuizen RS, Familian A. Amyloid associated proteins in Alzheimer’s and prion disease. Curr Drug Targets CNS Neurol Disord. 2005;4(3):235–248.
  • Barger SW, Harmon AD. Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature. 1997;388(6645):878–881.
  • Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–172.
  • Abraham CR, McGraw WT, Slot F, et al. Alpha 1-antichymotrypsin inhibits a beta degradation in vitro and in vivo. Ann N Y Acad Sci. 2000;920:245–248.
  • Familian A, Eikelenboom P, Veerhuis R. Minocycline does not affect amyloid beta phagocytosis by human microglial cells. Neurosci Lett. 2007;416(1):87–91.
  • Veerhuis R, Van Breemen MJ, Hoozemans JM, et al. Amyloid beta plaque-associated proteins C1q and SAP enhance the Abeta1-42 peptide-induced cytokine secretion by adult human microglia in vitro. Acta Neuropathol. 2003;105(2):135–144.
  • Cribbs DH, Azizeh BY, Cotman CW, et al. Fibril formation and neurotoxicity by a herpes simplex virus glycoprotein B fragment with homology to the Alzheimer’s A beta peptide. Biochemistry. 2000;39(20):5988–5994.
  • Dominy SS, Lynch C, Ermini F, et al. Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019;5:eaau3333.
  • Ide M, Harris M, Stevens A, et al. Periodontitis and cognitive decline in Alzheimer’s disease. PLoS One. 2016;11(3):e0151081.
  • Detke M. An update and baseline data from the phase 2/3 GAIN trial of COR388 (atuzaginstat), a novel bacterial virulence factor inhibitor for the treatment of Alzheimer’s disease. Alzheimers Dement. 2021;17:e050624.
  • Kamer AR, Craig RG, Pirraglia E, et al. TNF-α and antibodies to periodontal bacteria discriminate between Alzheimer’s disease patients and normal subjects. J Neuroimmunol. 2009;216(1–2):92–97.
  • Gil-Montoya JA, Barrios R, Santana S, et al. Association between periodontitis and amyloid β peptide in elderly people with and without cognitive impairment. J Periodontol. 2017;88(10):1051–1058.
  • Ryder MI. Porphyromonas gingivalis and Alzheimer disease: recent findings and potential therapies. J Periodontol. 2020;91:S45–S49.
  • Daneman R, Prat A. The blood–brain barrier. Cold Spring Harb Perspect Biol. 2015;7:a020412.
  • Zhao Z, Nelson AR, Betsholtz C, et al. Establishment and dysfunction of the blood-brain barrier. Cell. 2015;163:1064–1078.
  • Pardridge WM. Targeted delivery of protein and gene medicines through the blood-brain barrier. Clin Pharmacol Ther. 2015;97(4):347–361.
  • Sweeney MD, Sagare AP, Zlokovic BV. Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14:133–150.
  • Wang H, Golob EJ, Su M-Y. Vascular volume and blood-brain barrier permeability measured by dynamic contrast enhanced MRI in hippocampus and cerebellum of patients with MCI and normal controls. J Magn Reson Imaging. 2006;24:695–700.
  • Bell RD, Winkler EA, Sagare AP. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. 2010;68:409–427.
  • Goos JDC, Kester MI, Barkhof F, et al. Patients with Alzheimer disease with multiple microbleeds: relation with cerebrospinal fluid biomarkers and cognition. Stroke. 2009;40:3455–3460.
  • Uetani H, Hirai T, Hashimoto M, et al. Prevalence and topography of small hypointense foci suggesting microbleeds on 3T susceptibility-weighted imaging in various types of dementia. Am J Neuroradiol. 2013;34:984–989.
  • Olazarán J, Ramos A, Boyano I, et al. Pattern of and risk factors for brain microbleeds in neurodegenerative dementia. Am J Alzheimers Dis Other Dement. 2014;29:263–269.
  • Heringa SM, Reijmer YD, Leemans A, et al. Multiple microbleeds are related to cerebral network disruptions in patients with early Alzheimer’s disease. J Alzheimers Dis. 2014;38:211–221.
  • Yates PA, Desmond PM, Phal PM, et al. Incidence of cerebral microbleeds in preclinical Alzheimer disease. Neurology. 2014;82:1266–1273.
  • Kaplanski J, Ronen J. Effect of neonatal pinealectomy on circadian periodicity of adrenocortical activity. J Neural Transm. 1986;66:59–67.
  • Ryu JK, McLarnon JG. A leaky blood–brain barrier, fibrinogen infiltration and microglial reactivity in inflamed Alzheimer’s disease brain. J Cell Mol Med. 2009;13:2911–2925.
  • Zenaro E, Pietronigro E, Bianca D, et al. Neutrophils promote Alzheimer’s disease-like pathology and cognitive decline via LFA-1 integrin. Nat Med. 2015;21:880–886.
  • Levin EC, Acharya NK, Han M, et al. Brain-reactive autoantibodies are nearly ubiquitous in human sera and may be linked to pathology in the context of blood-brain barrier breakdown. Brain Res. 2010;1345:221–232.
  • Anthony IC, Crawford DH, Bell JE. B lymphocytes in the normal brain: contrasts with HIV-associated lymphoid infiltrates and lymphomas. Brain J Neurol. 2003;126:1058–1067.
  • Machado-Santos J, Saji E, Tröscher AR, et al. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain J Neurol. 2018;141:2066–2082.
  • Kowarik MC, Grummel V, Wemlinger S, et al. Immune cell subtyping in the cerebrospinal fluid of patients with neurological diseases. J Neurol. 2014;261:130–143.
  • Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12:723–738.
  • Alonso R, Pisa D, Fernández-Fernández AM, et al. Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer’s disease. Front Aging Neurosci. 2018;10:159.
  • Link CD. Is there a brain microbiome? Neurosci Insights. 2021;16:26331055211018708.
  • Hoyles L, Pontifex MG, Rodriguez-Ramiro I, et al. Regulation of blood–brain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide. Microbiome. 2021;9:235.
  • Kelley DH. Brain cerebrospinal fluid flow. Phys Rev Fluids. 2021;6:1–17.
  • Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4:147ra111.
  • Silva I, Silva J, Ferreira R, et al. Glymphatic system, AQP4, and their implications in Alzheimer’s disease. Neurol Res Pract. 2021;3:5.
  • Cserr HF, Harling-Berg CJ, Knopf PM. Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol. 1992;2:269–276.
  • Louveau A, Plog BA, Antila S, et al. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest. 2017;127:3210–3219.
  • Pappolla M, Sambamurti K, Vidal R, et al. Evidence for lymphatic Aβ clearance in Alzheimer’s transgenic mice. Neurobiol Dis. 2014;71:215–219.
  • van Zwam M, Huizinga R, Melief M-J, et al. Brain antigens in functionally distinct antigen-presenting cell populations in cervical lymph nodes in MS and EAE. J Mol Med Berl Ger. 2009;87:273–286.
  • Shibata M, Yamada S, Kumar SR, et al. Clearance of Alzheimer’s amyloid-β1–40 peptide from brain by LDL receptor–related protein-1 at the blood-brain barrier. J Clin Invest. 2000;106:1489–1499.
  • Kress BT, Iliff JJ, Xia M, et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol. 2014;76:845–861.
  • Iliff JJ, Chen MJ, Plog BA, et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci. 2014;34:16180–16193.
  • Gaberel T, Gakuba C, Goulay R, et al. Impaired glymphatic perfusion after strokes revealed by contrast-enhanced MRI: a new target for fibrinolysis? Stroke. 2014;45:3092–3096.
  • Shechter R, London A, Schwartz M. Orchestrated leukocyte recruitment to immune-privileged sites: absolute barriers versus educational gates. Nat Rev Immunol. 2013;13:206–218.
  • Wang Z-X, Wan Q, Xing A. HLA in Alzheimer’s disease: genetic association and possible pathogenic roles. Neuromol Med. 2020;22:464–473.
  • Mathys H, Davila-Velderrain J, Peng Z, et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature. 2019;570:332–337.
  • Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013;45:1452–1458.
  • Jiao B, Liu X, Zhou L, et al. Polygenic analysis of late-onset Alzheimer’s disease from mainland China. PLOS One. 2015;10:e0144898.
  • Lu R-C, Yang W, Tan L, et al. Association of HLA-DRB1 polymorphism with Alzheimer’s disease: a replication and meta-analysis. Oncotarget. 2017;8:93219–93226.
  • Listì F, Candore G, Balistreri CR, et al. Association between the HLA-A2 allele and Alzheimer disease. Rejuvenation Res. 2006;9:99–101.
  • Wang Z-X, Wang H-F, Tan L, et al. HLA-A2 alleles mediate Alzheimer’s disease by altering hippocampal volume. Mol Neurobiol. 2017;54:2469–2476.
  • Yang Y-M, Shang D-S, Zhao W-D, et al. Microglial TNF-α-dependent elevation of MHC class I expression on brain endothelium induced by amyloid-beta promotes T cell transendothelial migration. Neurochem Res. 2013;38:2295–2304.
  • Bullido MJ, Martínez-García A, Artiga MJ, et al. A TAP2 genotype associated with Alzheimer’s disease in APOE4 carriers. Neurobiol Aging. 2007;28:519–523.
  • Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308(5726):1314–1318.
  • Katsumoto A, Takeuchi H, Takahashi K, et al. Microglia in Alzheimer’s disease: risk factors and inflammation. Front Neurol. 2018;9:1–7.
  • Guerreiro R, Wojtas A, Bras J, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368:117–127.
  • Colonna M. TREMs in the immune system and beyond. Nat Rev Immunol. 2003;3:445–453.
  • Yeh FL, Wang Y, Tom I, et al. TREM2 binds to apolipoproteins, including APOE and CLU/APOJ, and thereby facilitates uptake of Amyloid-Beta by microglia. Neuron. 2016;91:328–340.
  • Poliani PL, Wang Y, Fontana E, et al. TREM2 sustains microglial expansion during aging and response to demyelination. J Clin Invest. 2015;125:2161–2170.
  • Huang Y, Mahley RW. Apolipoprotein E: structure and function in lipid metabolism, neurobiology, and Alzheimer’s diseases. Neurobiol Dis. 2014;72(Pt A):3–12.
  • Zhang H, Wu L-M, Wu J. Cross-Talk between apolipoprotein E and cytokines. Mediators Inflamm. 2011;2011:949072.
  • Halliday MR, Pomara N, Sagare AP, et al. Relationship between cyclophilin a levels and matrix metalloproteinase 9 activity in cerebrospinal fluid of cognitively normal apolipoprotein e4 carriers and blood-brain barrier breakdown. JAMA Neurol. 2013;70:1198–1200.
  • Halliday MR, Rege SV, Ma Q, et al. Accelerated pericyte degeneration and blood-brain barrier breakdown in apolipoprotein E4 carriers with Alzheimer’s disease. J Cereb Blood Flow Metab. 2016;36:216–227.
  • Fantozzi R, Ledda F, Caramelli L, et al. Clinical findings and follow-up evaluation of an outbreak of mushroom poisoning–survey of amanita phalloides poisoning. Klin Wochenschr. 1986;64(1):38–43.
  • Keller A, Westenberger A, Sobrido MJ, et al. Mutations in the gene encoding PDGF-B cause brain calcifications in humans and mice. Nat Genet. 2013;45:1077–1082.
  • Fiala C, Diamandis EP. Mutations in normal tissues—some diagnostic and clinical implications. BMC Med. 2020;18:283.
  • Miller MB, Huang AY, Kim J, et al. Somatic genomic changes in single Alzheimer’s disease neurons. Nature. 2022;604(7907):714–722.
  • Pei J-J, Hugon J. mTOR-dependent signalling in Alzheimer’s disease. J Cell Mol Med. 2008;12:2525–2532.
  • Sajdel-Sulkowska EM, Marotta CA. Alzheimer’s disease brain: alterations in RNA levels and in a ribonuclease-inhibitor complex. Science. 1984;225:947–949.
  • Langstrom N, Eriksson A, Winblad B, et al. Translational control of gene expression in the human brain. Prog Neuropsychopharmacol Biol Psychiatry. 1989;13(3–4):469–479.
  • Ding Q, Markesbery WR, Chen Q, et al. Ribosome dysfunction is an early event in Alzheimer’s disease. J Neurosci. 2005;25:9171–9175.
  • Ashraf GM, Greig NH, Khan TA, et al. Protein misfolding and aggregation in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol Disord Drug Targets. 2014;13:1280–1293.
  • Butler AE, Janson J, Soeller WC, et al. Increased beta-cell apoptosis prevents adaptive increase in beta-cell mass in mouse model of type 2 diabetes: evidence for role of islet amyloid formation rather than direct action of amyloid. Diabetes. 2003;52:2304–2314.
  • Onuki R, Bando Y, Suyama E, et al. An RNA-dependent protein kinase is involved in tunicamycin-induced apoptosis and Alzheimer’s disease. Embo J. 2004;23:959–968.
  • Page G, Rioux Bilan A, Ingrand S, et al. Activated double-stranded RNA-dependent protein kinase and neuronal death in models of Alzheimer’s disease. Neuroscience. 2006;139:1343–1354.
  • Chang RC-C, Suen K-C, Ma C-H, et al. Involvement of double-stranded RNA-dependent protein kinase and phosphorylation of eukaryotic initiation factor-2alpha in neuronal degeneration. J Neurochem. 2002;83(5):1215–1225.
  • Li X, Alafuzoff I, Soininen H, et al. Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer’s disease brain. FEBS J. 2005;272(16):4211–4220.
  • Kepchia D, Huang L, Dargusch R, et al. Diverse proteins aggregate in mild cognitive impairment and Alzheimer’s disease brain. Alzheimers Res Ther. 2020;12:75.
  • Gu Q, Cuevas E, Raymick J, et al. Downregulation of 14-3-3 proteins in Alzheimer’s disease. Mol Neurobiol. 2020;57:32–40.
  • Paradis E, Douillard H, Koutroumanis M, et al. Amyloid β peptide of Alzheimer’s disease downregulates bcl-2 and upregulates bax expression in human neurons. J Neurosci. 1996;16:7533–7539.
  • Steinacker P, Aitken A, Otto M. 14-3-3 Proteins in neurodegeneration. Semin Cell Dev Biol. 2011;22:696–704.
  • Shimada T, Fournier AE, Yamagata K. Neuroprotective function of 14-3-3 proteins in neurodegeneration. Biomed Res Int. 2013;2013:1–11.
  • Koch L. Altered splicing in Alzheimer transcriptomes. Nat Rev Genet. 2018;19:738–739.
  • Begcevic I, Brinc D, Drabovich AP, et al. Identification of brain-enriched proteins in the cerebrospinal fluid proteome by LC-MS/MS profiling and mining of the human protein atlas. Clin Proteom. 2016;13(1):11.
  • Sanotra R, Huang M, Silver W-C, et al. Serum levels of 4-hydroxynonenal adducts and responding autoantibodies correlate with the pathogenesis from hyperglycemia to Alzheimer’s disease. Clin Biochem. 2022;101:26–34.
  • Mor F, Izak M, Cohen IR. Identification of aldolase as a target antigen in Alzheimer’s disease. J Immunol. 2005;175(5):3439–3445.
  • Vojdani A. Elevated IgG antibody to aluminum bound to human serum albumin in patients with Crohn’s, Celiac and Alzheimer’s disease. Toxics. 2021;9(9):212.
  • Segundo-Acosta S, Montero-Calle P, Fuentes A, et al. Identification of Alzheimer’s disease autoantibodies and their target biomarkers by phage microarrays. J Proteome Res. 2019;18:2940–2953.
  • Vojdani A, Vojdani E. Amyloid-beta 1–42 cross-reactive antibody prevalent in human sera may contribute to intraneuronal deposition of A-Beta-P-42. Int J Alzheimers Dis. 2018;2018:1672568.
  • Hansen N, Malchow B, Zerr I, et al. Neural cell-surface and intracellular autoantibodies in patients with cognitive impairment from a memory clinic cohort. J Neural Transm. 2021;128(3):357–369.
  • Liu Y-H, Wang J, Li Q-X, et al. Association of naturally occurring antibodies to β-amyloid with cognitive decline and cerebral amyloidosis in Alzheimer’s disease. Sci Adv. 2021;7(1):1–9.
  • Myagkova MA, Gavrilova SI, Lermontova NN, et al. Autoantibodies to β-amyloid and neurotransmitters in patients with Alzheimer’s disease and senile dementia of the Alzheimer type. Bull Exp Biol Med. 2001;131(2):127–129.
  • Maftei M, Thurm F, Schnack C, et al. Increased levels of antigen-bound β-amyloid autoantibodies in serum and cerebrospinal fluid of Alzheimer’s disease patients. PLOS One. 2013;8(7):e68996.
  • Kellner A, Matschke J, Bernreuther C, et al. Autoantibodies against β-amyloid are common in Alzheimer’s disease and help control plaque burden. Ann Neurol. 2009;65(1):24–31.
  • Nath A, Hall E, Tuzova M, et al. Autoantibodies to amyloid beta-peptide (Abeta) are increased in Alzheimer’s disease patients and Abeta antibodies can enhance Abeta neurotoxicity: implications for disease pathogenesis and vaccine development. Neuromol Med. 2003;3(1):29–40.
  • Rustenhoven J, Kipnis J. Bypassing the blood-brain barrier. Science. 2019;366(6472):1448–1449.
  • Taguchi H, Planque S, Nishiyama Y, et al. Catalytic antibodies to amyloid β peptide in defense against Alzheimer disease. Autoimmun Rev. 2008;7(5):391–397.
  • Britschgi M, Olin CE, Johns HT, et al. Neuroprotective natural antibodies to assemblies of amyloidogenic peptides decrease with normal aging and advancing Alzheimer’s disease. Proc Natl Acad Sci USA. 2009;106(29):12145–12150.
  • Mruthinti S, Buccafusco JJ, Hill WD, et al. Autoimmunity in Alzheimer’s disease: increased levels of circulating IgGs binding Aβ and RAGE peptides. Neurobiol Aging. 2004;25(8):1023–1032.
  • Mruthinti S, Schade RF, Harrell DU, et al. Autoimmunity in Alzheimer’s disease as evidenced by plasma immunoreactivity against RAGE and Aβ42: complication of diabetes. Curr Alzheimer Res. 2006;3(3):229–235.
  • Du Y, Dodel R, Hampel H, et al. Reduced levels of amyloid β-peptide antibody in Alzheimer disease. Neurology. 2001;57(5):801–805.
  • Weksler ME, Relkin N, Turkenich R, et al. Patients with Alzheimer disease have lower levels of serum anti-amyloid peptide antibodies than healthy elderly individuals. Exp Gerontol. 2002;37(7):943–948.
  • de Oliveira-Júnior LC, Santos F de A, Goulart A, et al. Epitope fingerprinting for recognition of the polyclonal serum autoantibodies of Alzheimer’s disease. BioMed Res Int. 2015;2015:e267989–8.
  • Wallukat G, Prüss H, Müller J, et al. Functional autoantibodies in patients with different forms of dementia. PLOS One. 2018;13:e0192778.
  • Giil LM, Kristoffersen EK, Vedeler CA, et al. Autoantibodies toward the angiotensin 2 type 1 receptor: a novel autoantibody in Alzheimer’s disease. J Alzheimers Dis. 2015;47(2):523–529.
  • Shim S-M, Koh YH, Kim J-H, et al. A combination of multiple autoantibodies is associated with the risk of Alzheimer’s disease and cognitive impairment. Sci Rep. 2022;12(1):1312.
  • Hempel P, Heinig B, Jerosch C, et al. Immunoadsorption of agonistic autoantibodies against α1-adrenergic receptors in patients with mild to moderate dementia. Ther Apher Dial. 2016;20:523–529.
  • Karczewski P, Hempel P, Kunze R, et al. Agonistic autoantibodies to the α(1)-adrenergic receptor and the β(2)-adrenergic receptor in Alzheimer’s and vascular dementia. Scand J Immunol. 2012;75:524–530.
  • Karczewski P, Hempel P, Bimmler M. Role of alpha1-adrenergic receptor antibodies in Alzheimer’s disease. Front Biosci Landmark Ed. 2018;23:2082–2089.
  • Skärdin S. Detection and quantification of auto-antibodies against proteins and peptides involved in Alzheimer’s disease [Internet]; 2019 [cited 2022 Jan 12]. Available from: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-406871.
  • San Segundo-Acosta P, Montero-Calle A, Jernbom-Falk A, et al. Multiomics profiling of Alzheimer’s disease serum for the identification of autoantibody biomarkers. J Proteome Res. 2021;20:5115–5130.
  • Wang Y-N, Hammers CM, Mao X, et al. Analysis of the autoimmune response against BP180 in patients with Alzheimer’s disease. Ann Transl Med. 2021;9(2):107–107.
  • Kokkonen N, Herukka S-K, Huilaja L, et al. Increased levels of the bullous pemphigoid BP180 autoantibody are associated with more severe dementia in Alzheimer’s disease. J Invest Dermatol. 2017;137(1):71–76.
  • Lim B, Tsolaki M, Batruch I, et al. Putative autoantibodies in the cerebrospinal fluid of Alzheimer’s disease patients. F1000Research. 2019;8:1900.
  • Vacirca D, Barbati C, Scazzocchio B, et al. Anti-ATP synthase autoantibodies from patients with Alzheimer’s disease reduce extracellular HDL level. JAD. 2011;26(3):441–445.
  • Schott K, Wormstall H, Dietrich M, et al. Autoantibody reactivity in serum of patients with Alzheimer’s disease and other age-related dementias. Psychiatry Res. 1996;59(3):251–254.
  • Hatzifilippou E, Koutsouraki E, Banaki T, et al. Antibodies against GM1 in demented patients. Am J Alzheimers Dis Other Dement. 2008;23:274–279.
  • Hatzifilippou E, Koutsouraki E, Costa VG, et al. Antibodies against gangliosides in patients with dementia. Am J Alzheimers Dis Other Dement. 2014;29:660–666.
  • Gruden MA, Davidova TB, Mališauskas M, et al. Differential neuroimmune markers to the onset of Alzheimer’s disease neurodegeneration and dementia: autoantibodies to Aβ(25–35) oligomers, S100b and neurotransmitters. J Neuroimmunol. 2007;186:181–192.
  • Tanaka J, Nakamura K, Takeda M, et al. Enzyme-linked immunosorbent assay for human autoantibody to glial fibrillary acidic protein: higher titer of the antibody is detected in serum of patients with Alzheimer’s disease. Acta Neurol Scand. 1989;80:554–560.
  • Davydova TV, Voskresenskaya NI, VYu G, et al. Production of autoantibodies to glutamate during Alzheimer’s dementia. Bull Exp Biol Med. 2009;147:405–407.
  • Mecocci P, Ekman R, Parnetti L, et al. Antihistone and anti-dsDNA autoantibodies in Alzheimer’s disease and vascular dementia. Biol Psychiatry. 1993;34:380–385.
  • Singh VK, Fudenberg HH. Increase of immunoglobulin G3 subclass is related to brain autoantibody in Alzheimer’s disease but not in down’s syndrome. Autoimmunity. 1989;3:95–101.
  • McRae A, Martins RN, Fonte J, et al. Cerebrospinal fluid antimicroglial antibodies in Alzheimer disease: a putative marker of an ongoing inflammatory process. Exp Gerontol. 2007;42:355–363.
  • McRae A, Ling EA, Polinsky R, et al. Antibodies in the cerebrospinal fluid of some Alzheimer’s disease patients recognize amoeboid microglial cells in the developing rat Central nervous system. Neuroscience. 1991;41:739–752.
  • Wang BZ, Zailan FZ, Wong BYX, et al. Identification of novel candidate autoantibodies in Alzheimer’s disease. Eur J Neurol. 2020;27:2292–2296.
  • Li S. - Myelin basic protein autoantibodies. In: Peter JB, Shoenfeld Y, editors. Autoantibodies [internet]. Amsterdam: Elsevier Science B.V.; 1996. p. 520–526.
  • Singh VK, Yang YY, Singh EA. Immunoblot detection of antibodies to myelin basic protein in Alzheimer’s disease patients. Neurosci Lett. 1992;147(1):25–28.
  • Busse M, Kunschmann R, Dobrowolny H, et al. Dysfunction of the blood-cerebrospinal fluid-barrier and N-methyl-D-aspartate glutamate receptor antibodies in dementias. Eur Arch Psychiatry Clin Neurosci. 2018;268(5):483–492.
  • Busse S, Busse M, Brix B, et al. Seroprevalence of n-methyl-d-aspartate glutamate receptor (NMDA-R) autoantibodies in aging subjects without neuropsychiatric disorders and in dementia patients. Eur Arch Psychiatry Clin Neurosci. 2014;264(6):545–550.
  • Ehrenreich H. Autoantibodies against N-methyl-D-aspartate receptor 1 in health and disease. Curr Opin Neurol. 2018;31:306–312.
  • Bartos A, Fialová L, Švarcová J. Lower serum antibodies against tau protein and heavy neurofilament in Alzheimer’s disease. J Alzheimers Dis. 2018;64:751–760.
  • Bartos A, Fialová L, Švarcová J, et al. Patients with Alzheimer disease have elevated intrathecal synthesis of antibodies against tau protein and heavy neurofilament. J Neuroimmunol. 2012;252:100–105.
  • Terryberry JW, Thor G, Peter JB. Autoantibodies in neurodegenerative diseases: antigen-specific frequencies and intrathecal analysis. Neurobiol Aging. 1998;19:205–216.
  • Chapman J, Bachar O, Korczyn AD, et al. Alzheimer’s disease antibodies bind specifically to a neurofilament protein in torpedo cholinergic neurons. J Neurosci. 1989;9:2710–2717.
  • Kankaanpää J, Turunen SP, Moilanen V, et al. Cerebrospinal fluid antibodies to oxidized LDL are increased in Alzheimer’s disease. Neurobiol Dis. 2009;33(3):467–472.
  • McIntyre JA, Chapman J, Shavit E, et al. Redox-reactive autoantibodies in Alzheimer’s patients’ cerebrospinal fluids: preliminary studies. Autoimmunity. 2007;40:390–396.
  • McIntyre JA, Ramsey CJ, Gitter BD, et al. Antiphospholipid autoantibodies as blood biomarkers for detection of early stage Alzheimer’s disease. Autoimmunity. 2015;48(5):344–351.
  • McIntyre JA, Hamilton RL, DeKosky ST. Redox-reactive autoantibodies in cerebrospinal fluids. Ann N Y Acad Sci. 2007;1109:296–302.
  • McIntyre JA, Wagenknecht DR, Ramsey CJ. Redox-reactive antiphospholipid antibody differences between serum from Alzheimer’s patients and age-matched controls. Autoimmunity. 2009;42:646–652.
  • Delunardo F, Margutti P, Pontecorvo S, et al. Screening of a microvascular endothelial cDNA library identifies rabaptin 5 as a novel autoantigen in Alzheimer’s disease. J Neuroimmunol. 2007;192:105–112.
  • Wilson JS, Mruthinti S, Buccafusco JJ, et al. Anti-RAGE and abeta immunoglobulin levels are related to dementia level and cognitive performance. J Gerontol A Biol Sci Med Sci. 2009;64:264–271.
  • Mitchell MB, Buccafusco JJ, Schade RF, et al. RAGE and Abeta immunoglobulins: relation to Alzheimer’s disease-related cognitive function. J Int Neuropsychol Soc. 2010;16:672–678.
  • Daniilidou M, Tsolaki M, Giannakouros T, et al. Detection of elevated antibodies against SR protein kinase 1 in the serum of Alzheimer’s disease patients. J Neuroimmunol. 2011;238(1–2):67–72.
  • Mecocci P, Parnetti L, Romano G, et al. Serum anti-GFAP and anti-S100 autoantibodies in brain aging, Alzheimer’s disease and vascular dementia. J Neuroimmunol. 1995;57:165–170.
  • Marchi N, Bazarian JJ, Puvenna V, et al. Consequences of repeated blood-brain barrier disruption in football players. PLOS One. 2013;8:e56805.
  • Steiner J, Bogerts B, Schroeter ML, et al. S100B protein in neurodegenerative disorders. Clin Chem Lab Med. 2011;49:409–424.
  • Rosenmann H, Meiner Z, Geylis V, et al. Detection of circulating antibodies against tau protein in its unphosphorylated and in its neurofibrillary tangles-related phosphorylated state in Alzheimer’s disease and healthy subjects. Neurosci Lett. 2006;410:90–93.
  • Krestova M, Ricny J, Bartos A. Changes in concentrations of tau-reactive antibodies are dependent on sex in Alzheimer’s disease patients. J Neuroimmunol. 2018;322:1–8.
  • Gustaw-Rothenberg K, Lerner A, Bonda DJ, et al. Biomarkers in Alzheimer’s disease: past, present and future. Biomark Med. 2010;4:15–26.
  • Nagele EP, Han M, Acharya NK, et al. Natural IgG autoantibodies are abundant and ubiquitous in human sera, and their number is influenced by age, gender, and disease. PLOS One. 2013;8:e60726.
  • Krzyszczak ME, Li Y, Ross SJ, et al. Gender and ethnicity differences in the prevalence of scleroderma-related autoantibodies. Clin Rheumatol. 2011;30:1333–1339.
  • Kulasingam V, Prassas I, Diamandis EP. Towards personalized tumor markers. NPJ Precis Oncol. 2017;1(1):17.
  • Mouton-Barbosa E, Roux-Dalvai F, Bouyssié D, et al. In-depth exploration of cerebrospinal fluid by combining peptide ligand library treatment and label-free protein quantification. Mol Cell Proteomics. 2010;9:1006–1021.
  • Lin HJ, Shaffer KM, Sun Z, et al. Glial-derived nexin, a differentially expressed gene during neuronal differentiation, transforms HEK cells into neuron-like cells. Int J Dev Neurosci. 2005;23:9–14.
  • Choi BH, Kim RC, Vaughan PJ, et al. Decreases in protease nexins in Alzheimer’s disease brain. Neurobiol Aging. 1995;16:557–562.
  • Toden S, Zhuang J, Acosta AD, et al. Noninvasive characterization of Alzheimer’s disease by circulating, cell-free messenger RNA next-generation sequencing. Sci Adv. 2020;6:eabb1654.
  • Soussan L, Tchernakov K, Bachar-Lavi O, et al. Antibodies to different isoforms of the heavy neurofilament protein (NF-H) in normal aging and Alzheimer’s disease. Mol Neurobiol. 1994;9:83–91.
  • Perry G, Friedman R, Kang DH, et al. Antibodies to the neuronal cytoskeleton are elicited by Alzheimer paired helical filament fractions. Brain Res. 1987;420:233–242.
  • Davel AP, Brum PC, Rossoni LV. Isoproterenol induces vascular oxidative stress and endothelial dysfunction via a giα-coupled β2-adrenoceptor signaling pathway. PLOS One. 2014;9:e91877.
  • Stracke S, Lange S, Bornmann S, et al. Immunoadsorption for treatment of patients with suspected Alzheimer dementia and agonistic autoantibodies against Alpha1a-adrenoceptor-rationale and design of the IMAD pilot study. J Clin Med. 2020;9:e1919.
  • Nagele RG, Clifford PM, Siu G, et al. Brain-reactive autoantibodies prevalent in human sera increase intraneuronal amyloid-β(1–42) deposition. J Alzheimers Dis. 2011;25:605–622.
  • Miranda M, Morici JF, Zanoni MB, et al. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci. 2019;13:1–25.
  • Ray M, Ruan J, Zhang W. Variations in the transcriptome of Alzheimer’s disease reveal molecular networks involved in cardiovascular diseases. Genome Biol. 2008;9:r148.
  • Murer MG, Boissiere F, Yan Q, et al. An immunohistochemical study of the distribution of brain-derived neurotrophic factor in the adult human brain, with particular reference to Alzheimer’s disease. Neuroscience. 1999;88:1015–1032.
  • Burbach GJ, Hellweg R, Haas CA, et al. Induction of brain-derived neurotrophic factor in plaque-associated glial cells of aged APP23 transgenic mice. J Neurosci. 2004;24:2421–2430.
  • Durany N, Michel T, Kurt J, et al. Brain-derived neurotrophic factor and neurotrophin-3 levels in Alzheimer’s disease brains. Int J Dev Neurosci. 2000;18:807–813.
  • Ferrer I, Marín C, Rey MJ, et al. BDNF and full-length and truncated TrkB expression in Alzheimer disease. J Neuropathol Exp Neurol. 1999;58(7):729–739.
  • Ventriglia M, Zanardini R, Bonomini C, et al. Serum brain-derived neurotrophic factor levels in different neurological diseases. BioMed Res Int. 2013;2013:901082.
  • Laske C, Stransky E, Leyhe T, et al. BDNF serum and CSF concentrations in Alzheimer’s disease, normal pressure hydrocephalus and healthy controls. J Psychiatr Res. 2007;41:387–394.
  • Tsai S-J, S-J. Brain-derived neurotrophic factor: a bridge between major depression and Alzheimer’s disease? Med Hypotheses. 2003;61(1):110–113.
  • Laske C, Stransky E, Leyhe T. Stage-dependent BDNF serum concentrations in Alzheimer’s disease. J Neural Transm. 2006;113:1217–1224.
  • Zheng Z, Sabirzhanov B, Keifer J. Oligomeric amyloid-β inhibits the proteolytic conversion of brain-derived neurotrophic factor (BDNF), AMPA receptor trafficking, and classical conditioning. J Biol Chem. 2010;285(45):34708–34717.
  • Badaut J, Brunet J-F, Regli L. Aquaporins in the brain: from aqueduct to “multi-duct”. Metab Brain Dis. 2007;22:251–263.
  • Ikeshima-Kataoka H. Neuroimmunological implications of AQP4 in astrocytes. Int J Mol Sci. 2016;17:1306.
  • Hoshi A, Yamamoto T, Shimizu K, et al. Characteristics of aquaporin expression surrounding senile plaques and cerebral amyloid angiopathy in Alzheimer disease. J Neuropathol Exp Neurol. 2012;71:750–759.
  • Kim SY, Grant P, Lee JH, et al. Differential expression of multiple transglutaminases in human brain. J Biol Chem. 1999;274(43):30715–30721.
  • Johnson GV, Cox TM, Lockhart JP, et al. Transglutaminase activity is increased in Alzheimer’s disease brain. Brain Res. 1997;751(2):323–329.
  • Ikura K, Takahata K, Sasaki R. Cross-linking of a synthetic partial-length (1–28) peptide of the Alzheimer beta/A4 amyloid protein by transglutaminase. FEBS Lett. 1993;326(1–3):109–111.
  • Rasmussen LK, Sørensen ES, Petersen TE, et al. Identification of glutamine and lysine residues in Alzheimer amyloid beta A4 peptide responsible for transglutaminase-catalysed homopolymerization and cross-linking to alpha 2M receptor. FEBS Lett. 1994;338(2):161–166.
  • Wilhelmus MMM, de Jager M, Bakker ENTP, et al. Tissue transglutaminase in Alzheimer’s disease: involvement in pathogenesis and its potential as a therapeutic target. J Alzheimers Dis. 2014;42(Suppl 3):S289–S303.
  • Valverde A, Montero-Calle A, Arévalo B, et al. Phage-derived and aberrant HaloTag peptides immobilized on magnetic microbeads for amperometric biosensing of serum autoantibodies and Alzheimer’s disease diagnosis. Anal Sens. 2021;1:161–165.
  • Gironella M, Malicet C, Cano C, et al. p8/nupr1 regulates DNA-repair activity after double-strand gamma irradiation-induced DNA damage. J Cell Physiol. 2009;221(3):594–602.
  • Hoffmeister A, Ropolo A, Vasseur S, et al. The HMG-I/Y-related protein p8 binds to p300 and Pax2 trans-activation domain-interacting protein to regulate the trans-activation activity of the Pax2A and Pax2B transcription factors on the glucagon gene promoter. J Biol Chem. 2002;277(25):22314–22319.
  • Kong DK, Georgescu SP, Cano C, et al. Deficiency of the transcriptional regulator p8 results in increased autophagy and apoptosis, and causes impaired heart function. Mol Biol Cell. 2010;21:1335–1349.
  • Santofimia-Castaño P, Lan W, Bintz J, et al. Inactivation of NUPR1 promotes cell death by coupling ER-stress responses with necrosis. Sci Rep. 2018;8:16999.
  • Gaudet P, Livstone MS, Lewis SE, et al. Phylogenetic-based propagation of functional annotations within the gene ontology consortium. Brief Bioinform. 2011;12:449–462.
  • Mathieu C, de la Sierra-Gallay L, Duval I, et al. Insights into brain glycogen metabolism: the structure of human brain glycogen phosphorylase. J Biol Chem. 2016;291:18072–18083.
  • Huang X, Zhang J, Zheng Y. ANTXR1 is a prognostic biomarker and correlates with stromal and immune cell infiltration in gastric cancer. Front Mol Biosci. 2020;7:598221.
  • Cheng B, Liu Y, Zhao Y, et al. The role of anthrax toxin protein receptor 1 as a new mechanosensor molecule and its mechanotransduction in BMSCs under hydrostatic pressure. Sci Rep. 2019;9:12642.
  • Urwyler O, Izadifar A, Vandenbogaerde S, et al. Branch-restricted localization of phosphatase prl-1 specifies axonal synaptogenesis domains. Science. 2019;364:eaau9952.
  • Liolitsa D, Powell J, Lovestone S. Genetic variability in the insulin signalling pathway may contribute to the risk of late onset Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2002;73:261–266.
  • Ramkumar A, Jong BY, Ori-McKenney KM. ReMAPping the microtubule landscape: how phosphorylation dictates the activities of microtubule-associated proteins. Dev Dyn. 2018;247:138–155.
  • Noble W, Olm V, Takata K, et al. Cdk5 is a key factor in tau aggregation and tangle formation in vivo. Neuron. 2003;38(4):555–565.
  • Zheng M, Ujiie H, Muramatsu K, et al. A possible association between BP230-type bullous pemphigoid and dementia: a report of two cases in elderly patients. Br J Dermatol. 2018;178(6):1449–1450.
  • Izumi K, Nishie W, Mai Y, et al. Autoantibody profile differentiates between inflammatory and noninflammatory bullous pemphigoid. J Invest Dermatol. 2016;136(11):2201–2210.
  • Bastuji-Garin S, Joly P, Lemordant P, et al. Risk factors for bullous pemphigoid in the elderly: a prospective case–control study. J Invest Dermatol. 2011;131(3):637–643.
  • Stahl T, Taschan H, Brunn H. Aluminium content of selected foods and food products. Environ Sci Eur. 2011;23(1):37.
  • Marrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol. 2009;9(4):287–293.
  • Kawahara M, Kato-Negishi M. Link between aluminum and the pathogenesis of Alzheimer’s disease: the integration of the aluminum and amyloid cascade hypotheses. Int J Alzheimers Dis. 2011;2011:276393.
  • Mold M, Linhart C, Gómez-Ramírez J, et al. Aluminum and amyloid-β in familial Alzheimer’s disease. JAD. 2020;73(4):1627–1635.
  • Morefield GL, Sokolovska A, Jiang D, et al. Role of aluminum-containing adjuvants in antigen internalization by dendritic cells in vitro. Vaccine. 2005;23(13):1588–1595.
  • Díaz-Nido J, Avila J. Aluminum induces the in vitro aggregation of bovine brain cytoskeletal proteins. Neurosci Lett. 1990;110(1–2):221–226.
  • Angiolillo A, Gandaglia A, Arcaro A, et al. Altered blood levels of anti-Gal antibodies in Alzheimer’s disease: a new clue to pathogenesis? Life. 2021;11(6):538.
  • Galili U. Discovery of the natural anti-Gal antibody and its past and future relevance to medicine. Xenotransplantation. 2013;20:138–147.
  • Galili U. Human natural antibodies to mammalian carbohydrate antigens as unsung heroes protecting against past, present, and future viral infections. Antibodies. 2020;9(2):25.
  • Shieh JC-C, Huang P-T, Lin Y-F. Alzheimer’s disease and diabetes: insulin signaling as the bridge linking two pathologies. Mol Neurobiol. 2020;57(4):1966–1977.
  • Siegel SJ, Bieschke J, Powers ET, et al. The oxidative stress metabolite 4-Hydroxynonenal promotes Alzheimer protofibril formation. Biochemistry. 2007;46(6):1503–1510.
  • DeMarshall CA, Nagele EP, Sarkar A, et al. Detection of Alzheimer’s disease at mild cognitive impairment and disease progression using autoantibodies as blood-based biomarkers. Alzheimers Dement Diagn Assess Dis Monit. 2016;3:51–62.
  • DeMarshall C, Oh E, Kheirkhah R, et al. Detection of early-stage Alzheimer’s pathology using blood-based autoantibody biomarkers in elderly hip fracture repair patients. PLOS One. 2019;14(11):e0225178.
  • Sim K-Y, Park S-H, Choi KY, et al. High-throughput epitope profiling of antibodies in the plasma of Alzheimer’s disease patients using random peptide microarrays. Sci Rep. 2019;9(1):4587.
  • Li X-W, Li X-X, Liu Q-S, et al. Blood and cerebrospinal fluid autoantibody to Aβ levels in patients with Alzheimer’s disease: a meta-analysis study. J Mol Neurosci. 2020;70(8):1208–1215.
  • van Oers NSC, Su D-M, Chidgey AP, et al. Editorial: new insights into thymic functions during stress, aging, and in disease settings. Front Immunol. 2020;11:591936.
  • Schwartz M, Arad M, Ben-Yehuda H. Potential immunotherapy for Alzheimer disease and age-related dementia. Dialogues Clin Neurosci. 2019;21(1):21–25.
  • Shechter R, London A, Varol C, et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLOS Med. 2009;6(7):e1000113.
  • Shechter R, Raposo C, London A, et al. The glial scar-monocyte interplay: a pivotal resolution phase in spinal cord repair. PLOS One. 2011;6(12):e27969.
  • Raposo C, Graubardt N, Cohen M, et al. CNS repair requires both effector and regulatory T cells with distinct temporal and spatial profiles. J Neurosci. 2014;34(31):10141–10155.
  • Ziv Y, Ron N, Butovsky O, et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci. 2006;9(2):268–275.
  • Zhao J, Su M, Lin Y, et al. Administration of amyloid precursor protein gene deleted mouse ESC-derived thymic epithelial progenitors attenuates Alzheimer’s pathology. Front Immunol. 2020;11:1–16.
  • Kunis G, Baruch K, Rosenzweig N, et al. IFN-γ-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain. 2013;136(11):3427–3440.
  • Baruch K, Deczkowska A, David E, et al. Aging-induced type I interferon response at the choroid plexus negatively affects brain function. Science. 2014;346(6205):89–93.
  • Baruch K, Rosenzweig N, Kertser A, et al. Breaking immune tolerance by targeting Foxp3+ regulatory T cells mitigates Alzheimer’s disease pathology. Nat Commun. 2015;6(1):7967.
  • Munafò A, Burgaletto C, Benedetto D, et al. Repositioning of immunomodulators: a ray of hope for Alzheimer’s disease? Front Neurosci. 2020;14:614643.
  • Mullard A. Landmark Alzheimer’s drug approval confounds research community. Nature. 2021;594(7863):309–310.
  • Bascones-Martinez A, Mattila R, Gomez-Font R, et al. Immunomodulatory drugs: oral and systemic adverse effects. Med Oral Patol Oral Cirugia Bucal. 2014;19:e24–e31.
  • Rosenzweig N, Dvir-Szternfeld R, Tsitsou-Kampeli A, et al. PD-1/PD-L1 checkpoint blockade harnesses monocyte-derived macrophages to combat cognitive impairment in a tauopathy mouse model. Nat Commun. 2019;10(1):465.
  • Castellani G, Schwartz M. Immunological features of non-neuronal brain cells: implications for Alzheimer’s disease immunotherapy. Trends Immunol. 2020;41(9):794–804.
  • Rogers NK, Romero C, SanMartín CD, et al. Inverse relationship between Alzheimer’s disease and cancer: how immune checkpoints might explain the mechanisms underlying age-related diseases. J Alzheimers Dis. 2020;73(2):443–454.
  • Zhao J, Ji R-R. Anti-PD-1 treatment as a neurotherapy to enhance neuronal excitability, synaptic plasticity and memory. bioRxiv. 2019:870600.
  • Obst J, Mancuso R, Simon E, et al. PD-1 deficiency is not sufficient to induce myeloid mobilization to the brain or alter the inflammatory profile during chronic neurodegeneration. Brain Behav Immun. 2018;73:708–716.
  • Latta-Mahieu M, Elmer B, Bretteville A, et al. Systemic immune-checkpoint blockade with anti-PD1 antibodies does not alter cerebral amyloid-β burden in several amyloid transgenic mouse models. Glia. 2018;66(3):492–504.
  • Li S, Hayden EY, Garcia VJ, et al. Activated bone marrow-derived macrophages eradicate Alzheimer’s-related Aβ42 oligomers and protect synapses. Front Immunol. 2020;11:49.
  • Guerreiro S, Privat A-L, Bressac L, et al. CD38 in neurodegeneration and neuroinflammation. Cells. 2020;9(2):471.
  • Blacher E, Dadali T, Bespalko A, et al. Alzheimer’s disease pathology is attenuated in a CD38-deficient mouse model. Ann Neurol. 2015;78(1):88–103.
  • Koronyo Y, Salumbides BC, Sheyn J, et al. Therapeutic effects of glatiramer acetate and grafted CD115+ monocytes in a mouse model of Alzheimer’s disease. Brain J Neurol. 2015;138(8):2399–2422.
  • Van Skike CE, Jahrling JB, Olson AB, et al. Inhibition of mTOR protects the blood-brain barrier in models of Alzheimer’s disease and vascular cognitive impairment. Am J Physiol Heart Circ Physiol. 2018;314(4):H693–H703.
  • Wang X, Xia W, Li K, et al. Rapamycin regulates cholesterol biosynthesis and cytoplasmic ribosomal proteins in hippocampus and temporal lobe of APP/PS1 mouse. J Neurol Sci. 2019;399:125–139.
  • Choi Y, Kim H-S, Shin KY, et al. Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer’s disease models. Neuropsychopharmacology. 2007;32(11):2393–2404.
  • Rojanathammanee L, Floden AM, Manocha GD, et al. Attenuation of microglial activation in a mouse model of Alzheimer’s disease via NFAT inhibition. J Neuroinflammation. 2015;12(1):42.
  • Rozkalne A, Hyman BT, Spires-Jones TL. Calcineurin inhibition with FK506 ameliorates dendritic spine density deficits in plaque-bearing Alzheimer model mice. Neurobiol Dis. 2011;41(3):650–654.
  • Scott LJ. Glatiramer acetate: a review of its use in patients with relapsing-remitting multiple sclerosis and in delaying the onset of clinically definite multiple sclerosis. CNS Drugs. 2013;27(11):971–988.
  • Arnon R, Aharoni R. Glatiramer acetate: from bench to bed and back. Isr Med Assoc J. 2019;21:151–157.
  • Chen L, Yao Y, Wei C, et al. T cell immunity to glatiramer acetate ameliorates cognitive deficits induced by chronic cerebral hypoperfusion by modulating the microenvironment. Sci Rep. 2015;5(1):14308.
  • Kipnis J, Yoles E, Porat Z, et al. T cell immunity to copolymer 1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci USA. 2000;97(13):7446–7451.
  • Radjavi A, Smirnov I, Kipnis J. Brain antigen-reactive CD4+ T cells are sufficient to support learning behavior in mice with limited T cell repertoire. Brain Behav Immun. 2014;35:58–63.
  • Wolf SA, Steiner B, Akpinarli A, et al. CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J Immunol. 2009;182(7):3979–3984.
  • Schwartz M, London A, Shechter R. Boosting T-cell immunity as a therapeutic approach for neurodegenerative conditions: the role of innate immunity. Neuroscience. 2009;158(3):1133–1142.
  • Law BK. Rapamycin: an anti-cancer immunosuppressant? Crit Rev Oncol Hematol. 2005;56(1):47–60.
  • Kaeberlein M, Galvan V. Rapamycin and Alzheimer’s disease: time for a clinical trial? Sci Transl Med. 2019;11:eaar4289.
  • Caccamo A, Majumder S, Richardson A, et al. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and tau: effects on cognitive impairments. J Biol Chem. 2010;285(17):13107–13120.
  • Majumder S, Richardson A, Strong R, et al. Inducing autophagy by rapamycin before, but not after, the formation of plaques and tangles ameliorates cognitive deficits. PLOS One. 2011;6(9):e25416.
  • Shamim D, Laskowski M. Inhibition of inflammation mediated through the tumor necrosis factor α biochemical pathway can lead to favorable outcomes in Alzheimer disease. J Cent Nerv Syst Dis. 2017;9:117957351772251.
  • Familian A, Boshuizen RS, Eikelenboom P, et al. Inhibitory effect of minocycline on amyloid beta fibril formation and human microglial activation. Glia. 2006;53(3):233–240.
  • Ferretti MT, Allard S, Partridge V, et al. Minocycline corrects early, pre-plaque neuroinflammation and inhibits BACE-1 in a transgenic model of Alzheimer’s disease-like amyloid pathology. J Neuroinflammation. 2012;9(1):62.
  • Garrido-Mesa N, Zarzuelo A, Gálvez J. Minocycline: far beyond an antibiotic. Br J Pharmacol. 2013;169(2):337–352.
  • Khanna AK. Mechanism of the combination immunosuppressive effects of rapamycin with either cyclosporine or tacrolimus. Transplantation. 2000;70(4):690–694.
  • Lee RK, Knapp S, Wurtman RJ. Prostaglandin E2 stimulates amyloid precursor protein gene expression: inhibition by immunosuppressants. J Neurosci. 1999;19(3):940–947.
  • Cummings J, Lee G, Ritter A, et al. Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement. 2020;6:e12050.
  • Mayne K, White JA, McMurran CE, et al. Aging and neurodegenerative disease: is the adaptive immune system a friend or foe? Front Aging Neurosci. 2020;12:572090.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.