710
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

One-step Real-time Food Quality Analysis by Simultaneous DSC–FTIR Microspectroscopy

&

REFERENCES

  • Akao, K., Okubo, Y., Ikeda, T., Inoue, Y. and Sakurai, M. (1998). Infrared spectroscopic study on the structural property of a trehalose water complex. Chem. Lett. 27:759–760.
  • Akao, K., Okubo, Y., Asakawa, N., Inoue, Y. and Sakurai, M. (2001). Infrared spectroscopic study on the properties of the anhydrous form II of trehalose. Implications for the functional mechanism of trehalose as a biostabilizer. Carbohydr. Res. 334:233–241.
  • Akinade, K. A., Campbell, R. M. and Compton, A. C. (1994). The use of a simultaneous TGA/DSC/FT-IR system as a problem-solving tool. J. Mater. Sci. 29:3802–3812.
  • Alli, I. (2003). Food Quality Assurance: Principles and Practices. RC Press, Boca Raton, Florida, USA.
  • Belitz, H.-D., Grosch, W. and Schieberle, P. (2009). Food Chemistry, 4th ed., Springer-Verlag, Berlin, Germany.
  • Bell, L. N. and Hageman, M. J. (1994). Differentiating between the effects of water activity and glass transition dependent mobility on a solid state chemical reaction: Aspartame degradation. J. Agric. Food Chem., 42:2398–2401.
  • Bell, L. N. and Labuza, T. P. (1991a). Aspartame degradation kinetics as affected by pH in intermediate and low moisture food systems. J. Food Sci. 56:17–20.
  • Bell, L. N. and Labuza, T. P. (1991b). Aspartame degradation as a function of “water activity”. Adv Exp Med Biol. 302:337–349.
  • Berset, J. D. and Ochsenbein, N. (2012). Stability considerations of aspartame in the direct analysis of artificial sweeteners in water samples using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Chemosphere. 88:563–569.
  • Boran, G., Karaçam, H. and Boran, M. (2006) Changes in the quality of fish oils due to storage temperature and time. Food Chem. 98:693–698.
  • Butchko, H. H. and Stargel, W. W. (2001). Aspartame: scientific evaluation in the postmarketing period. Regul. Toxicol. Pharmacol. 34:221–233.
  • Chaiyasit, W., Elias, R. J., McClements, D. J. and Decker, E. A. (2007). Role of physical structures in bulk oils on lipid oxidation. Crit. Rev. Food Sci. Nutr. 47:299–317.
  • Cheng, Y. D. and Lin, S. Y. (2000). Isothermal Fourier transform infrared microspectrosopic studies on the stability kinetics of solid-state intramolecular cyclization of aspartame sweetener. J. Agric. Food Chem. 48:631–635.
  • Chuyen, N. V. (1998). Maillard reaction and food processing. Application aspects. Adv. Exp. Med. Biol. 434:213–235.
  • Clute, M. (2008). Food Industry Quality Control Systems. CRC Press, Boca Raton, Florida, USA.
  • Cordella, C., Moussa, I., Martel, A. C., Sbirrazzuoli, N. and Lizzani-Cuvelier, L. (2002). Recent developments in food characterization and adulteration detection: technique-oriented perspectives. J. Agric. Food Chem. 50:1751–1764.
  • Coultate, T. P. (2009). Food: The Chemistry of Its Components, 5th ed., RSC Publishing, Cambridge, UK.
  • Crowe, J. H. (2007). Trehalose as a chemical chaperone: fact and fantasy. Adv. Exp. Med. Biol. 594:143–158.
  • Damodaran, S., Parkin, K. L. and Fennema, O. R. (2007). Fennema's Food Chemistry, 4th ed., CRC Press, Boca Raton, Florida, USA.
  • Devlin, J. P. (1990). Vibrational modes of amorphous ice: bending mode frequencies for isotopically decoupled H2O and HOD at 90K. J. Mol. Struc. 224:33–48.
  • Dziezak, J. D. (1986). Sweetners and product development. Food Technol. 40:111–130.
  • Earle, R. L. and Earle, M. D. (2003). Fundamentals of Food Reaction Technology. Leatherhead Publishing, Leatherhead, UK.
  • Elbein, A. D., Pan, Y. T., Pastuszak, I. and Carroll, D. (2003). New insights on trehalose: a multifunctional molecule. Glycobiology. 13:17R–27R.
  • El-Ghorab, A. H., Fujioka, K. and Shibamoto, T. (2006). Determination of acrylamide formed in asparagine/d-glucose maillard model systems by using gas chromatography with headspace solid-phase microextraction. J. AOAC Int. 89:149–153.
  • Eskin, M. and Robinson, D. S. (2000). Food Shelf Life Stability: Chemical, Biochemical, and Microbiological Changes. CRC Press, Boca Raton, Florida, USA.
  • FAO/WHO. (2003). Assuring food safety and quality: Guidelines for strengthening national food control systems.
  • Farid, H. M. (2010). Mathematical Modeling of Food Processing. CRC Press, Boca Raton, Florida, USA.
  • Fay, L. B. and Brevard, H. (2005). Contribution of mass spectrometry to the study of the Maillard reaction in food. Mass Spectrom. Rev. 24:487–507.
  • Fellows, J. W., Chang, S. W. and Shazer, W. H. (1991). Stability of aspartame in fruit preparations used in yogurt. J. Food Sci. 56:689–691.
  • Fereidoon, S. (2005). Bailey's Industrial Oil and Fat Products: Volume 4. Edible Oil and Fat Products: Products and Applications, 6th ed., John Wiley and Sons, Inc., New York, NY, USA.
  • Franks, F. (1994). Accelerated stability testing of bioproducts: Attractions and pitfalls. Trends Biotechnol. 12:114–117.
  • Furuki, T., Oku, K. and Sakurai, M. (2009). Thermodynamic, hydration and structural characteristics of alpha,alpha-trehalose. Front. Biosci. 14:3523–3535.
  • Giguere, P. A. (1987). The bifurcated hydrogen-bond model of water and amorphous ice. J. Chem. Phys. 87:4835–4839.
  • Gonzalez, M. J. (1995). Fish oil, lipid peroxidation and mammary tumor growth. J. Am. Coll. Nutr. 14:325–335.
  • Halim, S. A. and Newby, L. K. (2012). Review: Omega-3 fatty acid supplements provide no protective benefit in cardiovascular disease. Ann. Intern. Med. 157:JC2–JC3.
  • Herrero, M., Simó, C., García-Cañas, V., Ibáñez, E. and Cifuentes, A. (2012). Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom. Rev. 31:49–69.
  • Hodge, J. E. (1953). Chemistry of browning reactions in model systems. J. Agric. Food Chem. 1:928–943.
  • Hoenicke, K. and Gatermann, R. (2005). Studies on the stability of acrylamide in food during storage. J. AOAC Int. 88:268–273.
  • Huang, T. C., Soliman, A. A., Rosen, R. T. and Ho C.T. (1987). Studies on the Maillard browning reaction between aspartame and glucose. Food Chem. 24:187–196.
  • Hwang, D. F., Hsieh, T. F. and Lin, S. Y. (2013). One-step simultaneous differential scanning calorimetry-FTIR microspectroscopy to quickly detect continuous pathways in solid-state glucose/asparagine Maillard reaction. JAOAC Int. 96:1362–1364.
  • Ibañez, E. and Cifuentes, A. (2001). New analytical techniques in food science. Crit. Rev. Food Sci. Nutr. 41:413–450.
  • Johnson, D. J., Compton, D. A. C. and Canale, P. L. (1992). Applications of simultaneous DSC/FTIR analysis. Thermochim. Acta. 195:5–20.
  • Kaletunc, G. (2009). Calorimetry in Food Processing: Analysis and Design of Food Systems. Wiley-Blackwell, Ames, Iowa, USA.
  • Khan, A. A., Stocker, B. L. and Timmer, M. S. (2012). Trehalose glycolipids– synthesis and biological activities. Carbohydr. Res. 356:25–36.
  • Kilcast, D. and Subramaniam, P. (2000). The Stability and Shelf-life of Food. Woodhead Pub., Cambridge, UK.
  • Kubow, S. (1990). Toxicity of dietary lipid peroxidation products. Trends Food Sci. Technol. 1:67–71.
  • Kulesza, K., Pielichowski, K. and German, K. (2006). Thermal decomposition of bisphenol A-based polyetherurethanes blown with pentane. J. Anal. Applied Pyrolysis. 76:243–248.
  • Lagouri, V. and Boskou, D. (1996). Nutrient antioxidants in oregano. Int. J. Food Sci. Nutr. 47:493–497.
  • Lee, J. H., O’Keefe, J. H., Lavie, C. J. and Harris, W. S. (2009) Omega-3 fatty acids: cardiovascular benefits, sources and sustainability. Nat. Rev. Cardiol. 6:753–758.
  • Leung, S. S. and Grant, D. J. (1997). Solid state stability studies of model dipeptides: Aspartame and aspartylphenylalanine. J. Pharm. Sci. 86:64–71.
  • Leung, S. S., Padden, B. E., Munson, E. J. and Grant, D. J. (1998a). Solid-state characterization of two polymorphs of aspartame hemihydrate. J. Pharm. Sci. 87:501–507.
  • Leung, S. S., Padden, B. E., Munson, E. J. and Grant, D. J. (1998b). Hydration and dehydration behavior of aspartame hemihydrate. J. Pharm. Sci. 87:508–513.
  • Lin, C. C. and Hwang, L.S (1993). Effects of tocopherol, β-carotene and ascorbyl palmitate on the oxidative stability of squid visceral oil. J. Chin. Agric. Chem. Soc. 31:365–377.
  • Lin, C. C. and Hwang, L. S. (2002). A comparison of the effects of various purification treatments on the oxidative stability of squid visceral oil. J. AOCS. 79:489–494
  • Lin, C. C., Lin, S. Y. and Hwang, L. S. (1995a). Microencapsulation of squid oil with hydrophilic macromolecules for oxidative and thermal stabilization. J. Food Sci. 60:36–39.
  • Lin, S. Y. and Cheng, Y. D. (2000). Simultaneous formation and detection of the reaction products of solid-state aspartame sweeteener by FT-IR/DSCmicroscopic system. Food Addit. Contam. 17:821–827.
  • Lin, S. Y., Hwang, L. S. and Lin, C. C. (1995b). Thermal analyser and micro FT-IR/DSC system used to determine the protective ability of microencapsulated squid oil. J. Microencapsul. 12:165–172.
  • Lin, S. Y. and Chien, J. L. (2003). In vitro simulation of solid–solid dehydration, rehydration, and solidification of trehalose dihydrate using thermal and vibrational spectroscopic techniques. Pharm. Res. 20:1926–1931.
  • Lin, S. Y. and Wang, S. L. (2012). Advances in simultaneous DSC-FTIR microspectroscopy for rapid solid-state chemical stability studies: some dipeptide drugs as examples. Adv. Drug Deliv. Rev. 64:461–478.
  • Magnuson, B. A., Burdock, G. A., Doull, J., Kroes, R. M., Marsh, G. M., Pariza, M. W., Spencer, P. S., Waddell, W. J., Walker, R. and Williams, G. M. (2007). Aspartame: a safety evaluation based on current use levels, regulations, and toxicological and epidemiological studies. Crit. Rev. Toxicol. 37:629–727.
  • Maqsood, S., Benjakul, S. and Kamal-Eldin, A. (2012). Extraction, processing, and stabilization of health-promoting fish oils. Recent Pat. Food Nutr. Agric. 4:141–147.
  • Martins, S. I. F.S., Jongen, W. M. F. and van Boekel, M. A. J.S. (2001). A review of Maillard reaction in food and implications to kinetic modelling. Trends Food Sci. Technol. 11:364–373.
  • Mirabella, F. M. (1986). Simultaneous differential scanning calorimetry (DSC) and infrared spectroscopy using an infrared microsampling accessory (IRMA) and FT-IR. Appl. Spectrosc. 40:417–420.
  • Muller, A and Steinhart, H. (2007). Recent developments in instrumental analysis for food quality. Food Chem. 102:436–444.
  • Ohtake, S. and Wang, Y. J. (2011). Trehalose: Current use and future applications. J Pharm Sci. 100:2020–2053.
  • Paré, J. R. J. and Bélanger, J. M. R. (1997). Instrumental methods in food analysis. Tech. Instru. Anal. Chem. 18:1–487.
  • Pattanaargson, S. and Sanchavanakit, C. (2000). Aspartame degradation study using electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 14:987–993.
  • Perjési, P., Pintér, Z., Gyöngyi, Z. and Ember, I. (2002). Effect of rancid corn oil on some onco/suppressor gene expressions in vivo. A short-term study. Anticancer Res. 22:225–230.
  • Pollien, P., Lindinger, C., Yeretzian, C. and Blank, I. (2003). Proton transfer reaction mass spectrometry, a tool for on-line monitoring of acrylamide formation in the headspace of maillard reaction systems and processed food. Anal. Chem. 75:5488–5494.
  • Prodolliet, J. and Bruelhart, M. (1993). Determination of aspartame and its major decomposition products in foods. J. AOAC Int. 76:275–282.
  • Ragnarsson, J. O. and Labuza, T. P. (1977) Accelerated shelf-life testing for oxidative rancidity in foods—A review. Food Chem. 2:291–308.
  • Ravelo-Pérez, L. M., Asensio-Ramos, M., Hernández-Borges, J. and Rodríguez-Delgado, M. A. (2009). Recent food safety and food quality applications of CE-MS. Electrophoresis. 30:1624–1646.
  • Rosén, J. and Hellenäs, K. E. (2002). Analysis of acrylamide in cooked foods by liquid chromatography tandem mass spectrometry. Analyst. 127:880–882.
  • Rossi, P. C., Pramparo, Mdel C., Gaich, M. C., Grosso, N. R. and Nepote, V. (2011). Optimization of molecular distillation to concentrate ethyl esters of eicosapentaenoic (20:5 ω-3) and docosahexaenoic acids (22:6 ω-3) using simplified phenomenological modeling. J. Sci. Food Agric. 91:1452–1458.
  • Sabah, S. and Scriba, G. K. (1998). Determination of aspartame and its degradation and epimerization products by capillary electrophoresis. J. Pharm. Biomed. Anal. 16:1089–1096.
  • Sakurai, M., Furuki, T., Akao, K., Tanaka, D., Nakahara, Y., Kikawada, T., Watanabe, M. and Okuda, T. (2008). Vitrification is essential for anhydrobiosis in an African chironomid, Polypedilum vanderplanki. Proc. Natl. Acad. Sci. USA 105:5093–5098.
  • Skibsted, L. H., Risbo, J. and Andersen, M. L. (2010). Chemical deterioration and physical instability of food and beverages. Woodhead Pub., Cambridge, UK.
  • Skwierczynski, R. D. and Connors, K. A. (1993). Demethylation kinetics of aspartame and l-phenylalanine methyl ester in aqueous solution. Pharm. Res. 10:1174–1180.
  • Soffritti, M., Belpoggi, F., Esposti, D. D., Lambertini, L., Tibaldi, E. and Rigano, A. (2006). First experimental demonstration of the multipotential carcinogenic effects of aspartame administered in the feed to Sprague-Dawley rats. Environ. Health Perspect. 114:379–385.
  • Sola-Penna, M. and Meyer-Fernandes, J. R. (1998). Stabilization against thermal inactivation promoted by sugars on enzyme structure and function: Why is trehalose more effective than other sugars? Arch Biochem. Biophys. 360:10–14.
  • Spragg, R. A. (2000). Combining FTIR microspectroscopy with differential scanning calorimetry. Analusis. 28:64–67.
  • Staprans, I., Pan, X. M., Rapp, J. H. and Feingold, K. R. (2005). The role of dietary oxidized cholesterol and oxidized fatty acids in the development of atherosclerosis. Mol. Nutr. Food Res. 49:1075–1082.
  • Swanson, D., Block, R. and Mousa, S. A. (2012). Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv. Nutr. 3:1–7.
  • Sussich, F., Skopec, C., Brady, J. and Cesàro, A. (2001). Reversible dehydration of trehalose and anhydrobiosis: From solution state to an exotic crystal? Carbohydr. Res. 334:165–176.
  • Takanobu, H. (2002). Novel functions and applications of trehalose. Pure Appl. Chem. 74:1263–1269.
  • Taneja, A. and Singh, H. (2012) Challenges for the delivery of long-chain n-3 fatty acids in functional foods. Annu. Rev. Food Sci. Technol. 3:105–123.
  • Valentas, K. J., Rotstain, E. and Singh, R. P. (1997). Handbook of food engineering practice. CRC Press, Boca Raton, Florida, USA.
  • Vlachos, N., Skopelitis, Y., Psaroudaki, M., Konstantinidou, V., Chatzilazarou, A. and Tegou, E. (2006). Applications of Fourier transform-infrared spectroscopy to edible oils. Anal. Chim. Acta. 573-574:459–465.
  • Wnorowski, A. and Yaylayan, V. A. (2003). Monitoring carbonyl-amine reaction between pyruvic acid and alpha-amino alcohols by FTIR spectroscopy–a possible route to Amadori products. J. Agric. Food Chem. 51:6537–6543.
  • Yaylayan, V. (2009). Acrylamide formation and its impact on the mechanism of the early Maillard reaction. J. Food Nutr. Res. 48:1–7.
  • Yaylayan, V. A. and Stadler, R. H. (2005). Acrylamide formation in food: A mechanistic perspective. J. AOAC Int. 88:262–267.
  • Ziegler, B., Herzog, K. and Salzer, R. (1995). In-situ investigations of thermal processes in polymers by simultaneous differential scanning calorimetry and infrared spectroscopy. J. Mol. Struct. 348:457–460.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.