2,774
Views
87
CrossRef citations to date
0
Altmetric
Original Articles

Survival of Microencapsulated Probiotic Bacteria after Processing and during Storage: A Review

, &

REFERENCES

  • Adler, M. and Lee, G. (1999). Stability and surface activity of lactate dehydrogenase in spray-dried trehalose. J. Pharm. Sci. 88:199–208.
  • Ahmed, T. and Kanwal, R. (2004). Biochemical characteristics of lactic acid producing bacteria and preparation of camel milk cheese by using starter culture. Pakistan Vet. J. 24:87–91.
  • Amagase, H. and Ide, N. (2007). Simulation of daily consumption of commercial probiotics culture products needed to be kept in refrigerator: Influence of moisture from the ambient air on the viable cell numbers and stability. FASEB J. 21:2.
  • Anal, A. K. and Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends Food Sci. Technol. 18:240–251.
  • Ananta, E., Volkert, M. and Knorr, D. (2005). Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. Int. Dairy. J. 15:399–409.
  • Andrade, J. C., Ferreira, M., Cardoso, S. and Cardoso, C. (2010). Microencapsulation of probiotic bacteria in alginate- protein mixtures. In: XVIII International Conference on Bioencapsulation. p.102. Porto, Portugal.
  • Angelis, M. D. and Gobbetti, M. (2004). Environmental stress responses in Lactobacillus: A review. Proteomics 4:106–122.
  • Ann, E. Y., Kim, Y., Oh, S., Imm, J.-Y., Park, D.-J., Han, K. S. and Kim, S. H. (2007). Microencapsulation of Lactobacillus acidophilus ATCC 43121 with prebiotic substrates using a hybridisation system. Int. J. Food Sci. Technol. 42:411–419.
  • Anonymous (2008). Global Probiotics Market Worth $19.6B by 2013. Available at http://www.naturalproductsinsider.com/news/2008/05/global-probiotics-market-worth-196b-by-2013.aspx
  • Asraf, S. S. and Gunasekaran, P. (2010). Current trends of ß-galactosidase research and application. Curr. Res. Technol. Edu. Topics Appl. Microbiol. Microbial. Biotechnol. FORMATEX:880–890.
  • Asraf Shaikh, S., Gunasekaran, P. (2010). Current trends of b-galactosidase research and application. In: Mendez-Vilas, A. (ed.). Current research, technology and education topics in applied microbiology and microbial biotechnology, 2nd ed. Formatex Research Center, Spain, pp. 880–889.
  • Axelsson, L. (1998). Lactic acid bacteria: Classification and Physiology. In: Lactic Acid Bacteria: Microbiology and Functional Aspects, pp.1–72. Salminen, S. and Wright, A., Eds., Marcel Dekker, Inc., New York.
  • Ballongue, J. (1998). Bifidobacteria and probiotic action. In: Lactic Acid Bacteria: Microbiology and Functional Aspects, p. 617. Salminen, S. and Wright, A., Eds., Marcel Dekker, Inc., New York.
  • Bedu-Addo, F. K. (2004). Understanding lyophilization formulation development. PharmTechnol. Lyophilization. 10–18. Available at http://images.alfresco.advanstar.com/alfresco_images/pharma/2014/08/22/9d9a55d5-6890-47ae-821a-e04be7b7afd8/article-84717.pdf
  • Bell, L. N. and Hageman, M. J. (1994). Differentiating between the effects of water activity and glass transition dependent mobility on a solid state chemical reaction: Aspartame degradation. J. Agric. Food Chem. 42:2398–2401.
  • Berner, D. and Viernstein, H. (2006). Effect of protective agents on the viability of Lactococcus lactis subjected to freeze-thawing and freeze-drying. Scientia Pharmaceutica 74:137–149.
  • Biró, E., Németh, A. Sz., Sisak, C., Feczkó, T. and Gyenis, J. 2008. Preparation of chitosan particles suitable for enzyme immobilization. J. Biochem. Biophys. Methods 70:1240–1246.
  • Boirivant, M. and Strober, W. (2007). The mechanism of action of probiotics. Curr. Opin. Gastroenterol. 23:679–692.
  • Boza, Y., Barbin, D. and Scamparini, A. (2004). Effect of spray-drying on the quality of encapsulated cells of Beijerinckia sp. Process Biochem. 39:1275–1284.
  • Brennan, M., Wanismail, B., Johnson, M. C. and Ray, B. (1986) Cellular damage in dried Lactobacillus acidophilus. J. Food Protection. 49:47–53.
  • Broadhead, J., Rouan, S. K. and Rhodes, C. T. (1994). The effect of process and formulation variables on the properties of spray-dried β-galactosidase. J. Pharm. Pharmacol. 46:458–467.
  • Bruno, F. A. and Shah, N. P. (2003). Viability of two freeze-dried strains of Bifidobacterium and of commercial preparations at various temperatures during prolonged storage. J. Food Sci. 68:2336–2339.
  • Burin, L., Buera, M. P., Hough, G. and Chirife, J. (2002). Thermal resistance of β-galactosidase in dehydrated dairy model systems as affected by physical and chemical changes. Food Chem. 76:423–430.
  • Calleros, C. L., Cruz-Hernández, M., Castillo-Zambrano, C., Sandoval-Castilla, O., Martínez-Romero, S., Yolanda, Hornelas-Orozco and Vernon-Carter, E. J. (2007) Microencapsulation of Lactobacillus casei 81 lyo using sodium alginate blended with amidated low-methoxyl pectin or modified starch as wall materials: Viability in yogurt. Acta Microsc. 16:250–251.
  • Canzi, E., Guglielmetti, S., Mora, D., Tamagnini, I. and Parin, C. (2005). Conditions affecting cell surface properties of human intestinal bifidobacteria. Antonie van Leeuwenhoek 88:207–219.
  • Capela, P., Hay, T. K. C. and Shah, N. P. (2006). Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze-dried yoghurt. Food Res. Int. 39:203–211.
  • Carpenter, J. F. and Crowe, J. H. (1988). The mechanism of cryoprotection of proteins by solutes. Cryobiology 25:244–255.
  • Carvalho, A. S., Silva, J., Ho, P., Teixeira, P., Malcata, F. X. and Gibbs, P. (2003a). Effects of addition of sucrose and salt, and of starvation upon thermotolerance And survival during storage of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. J. Food Sci. 68:2538–2541.
  • Carvalho, A. S., Silva, J., Ho, P., Teixeira, P., Malcata, F. X. and Gibbs, P. (2003b). Protective effect of sorbitol and monosodium glutamate during storage of freeze-dried lactic acid bacteria. Le. Lait. 83:203–210.
  • Carvalho, A. S., Silva, J., Ho, P., Teixeira, P., Malcata, F. X. and Gibbs, P. (2004). Relevant factors for the preparation of freeze-dried lactic acid bacteria—Review. Int. Dairy J. 14:835–847.
  • Champagne, C. P. and Gardner, N. J. (2001). The effect of protective ingredients on the survival of immobilized cells of Streptococcus thermophilus to air and freeze-drying. EJB 4:146–152.
  • Champagne, C. P., Morin, N., Couture, R., Gagnon, C., Jelen, P. and Lacroix, C. (1992). The potential of immobilized cell technology to produce freeze-dried, phage-protected cultures of Lactococcus lactis. Food Res. Int. 25:419–427.
  • Champagne, C. P., Raymond, Y. and Tompkins, T. A. (2010). The determination of viable counts in probiotic cultures microencapsulated by spray-coating. Food Microbiol. 27:1104–1111.
  • Chandramouli, V., Kailasapathy, K., Peiris, P. and Jones, M. (2004). An improved method of microencapsulation and its evaluation to protect Lactobacillus spp. in simulated gastric conditions. J. Microbiol. Methods 56:27–35.
  • Chang, B. S., Beauvais, R. M., Dong, A. and Carpenter, J. F. (1996). Physical factors affecting the storage stability of freeze-dried Interleukin-1 receptor antagonist: Glass transition and protein conformation. Arch. Biochem. Biophys. 331:249–258.
  • Charteris, W. P., Kelly, P. M., Morelli, L. and Collins, J. K. (1998). Development and application of an in vivo methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J. Appl. Microbiol. 84:759–768.
  • Chavarri, M., Maranon, I., Ares, R., Ibanez, F. C., Marzo, F. and Mdel, C. V. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int. J. Food Microbiol. 142:185–189.
  • Chavez, B. E. and Ledeboer, A. M. (2007). Drying of probiotics: Optimization of formulation and process to enhance storage survival drying technology. Dry. Technol. 25:1193–1201.
  • Chen, K.-N., Chen, M.-J., Liu, J.-R., Lin, C.-W. and Chiu, H.-Y. (2005). Optimization of incorporated prebiotics as coating materials for probiotic microencapsulation. J. Food Sci. 70:M260–M266.
  • Colloca, M. E., Ahumada, M. C., Lopez, M. E. and Nader-Macıas, M. E. (2000). Surface properties of lactobacilli isolated from healthy subjects. Oral Dis. 6:227–233.
  • Constantino, H. R., Nguyen, P. A., Sweeney, T. D. and Hsu, C. C. (1998). Effect of mannitol crystallization on the stability and aerosol performance of a spray-dried pharmaceutical protein, recombinant humanized anti-IgE monoclonal antibody. J. Pharm. Sci. 87:1406–1411.
  • Corcoran, B. M., Ross, R. P., Fitzgerald, G. F. and Stanton, C. (2004). Comparative survival of probiotic lactobacilli spray-dried in the presence of prebiotic substances. J. Appl. Microbiol. 96:1024–1039.
  • Corcoran, B. M., Stanton, C., Fitzgerald, G. F. and Ross, R. P. (2005). Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microbiol. 71:3060–3067.
  • Cotter, P. D. and Hill, C. (2003). Surviving the acid test: Responses of gram positive bacteria to low pH. Microbiol. Mol. Biol. Rev. 67:429–453.
  • Coulibaly, I., Dubois-Dauphin, R., Destain, J., Fauconnier, M.-L., Lognay, G. and Thonart, P. (2010). The resistance to freeze-drying and to storage was determined as the cellular ability to recover its survival rate and acidification activity. Int. J. Microbiol. 2010:1–10.
  • Crittenden, R., Weerakkody, R., Sanguansri, L. and Augustin, M. (2006). Synbiotic microcapsules that enhance microbial viability during nonrefrigerated storage and gastrointestinal transit. Appl. Env. Microbiol. 72:2280–2282.
  • Crowe, J. H., Crowe, L. M., Carpenter, J. F. and Wistrom, C. A. (1987). Stabilization of dry phospholipid bilayers and proteins by sugars - review. Biochem. J. 242:1–10.
  • Cui, J.-H., Cao, Q.-R., Choi, Y.-J., Lee, K.-H. and Lee, B.-J. (2006). Effect of additives on the viability of bifidobacteria loaded in alginate poly- l -lysine microparticles during the freeze-drying process. Arch. Pharm. Res. 29:707–711.
  • Del-Re, B., Sgorbati, B., Miglioli, M. and Palenzona, D. (2000). Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett. Appl. Microbiol. 31:438–442.
  • Desmond, C., Ross, R. P., O'Callaghan, E., Fitzgerald, G. and Stanton, C. (2002). Improved survival of Lactobacillus paracasei NFBC 338 in spray-dried powders containing gum acacia. J. Appl. Microbiol. 93:1003–1011.
  • De-Valdez, G. F., De-Giori, G. S., Holgado, A. A. P. D. R. and Oliver, G. (1983). Protective effect of adonitol on lactic acid bacteria subjected to freeze-drying. Appl. Env. Microbiol. 45:302–304.
  • Dianawati, D., Mishra, V. and Shah, N. P. (2012). Role of calcium alginate and mannitol in protecting Bifidobacterium. Appl. Env. Microbiol. 78:6914–6921.
  • Dianawati, D., Mishra, V. and Shah, N. P. (2013a). Stability of microencapsulated Lactobacillus acidophilus and Lactococcus lactis ssp. cremoris during storage at room temperature at low aw. Food Res. Int. 50:259–265.
  • Dianawati, D., Mishra, V. and Shah, N. P. (2013b). Effect of drying methods on microencapsulated L. acidophilus and L. cremoris on secondary protein structure and glass transition temperature as studied by Fourier transform infrared and differential scanning calorimetry. J. Dairy Sci. 96:1419–1430.
  • Dianawati, D. and Shah, N. P. (2011a). Enzyme stability of microencapsulated Bifidobacterium animalis ssp. lactis Bb12 after freeze drying and during storage in low water activity at room temperature. J. Food Sci. 76:M463–M471.
  • Dianawati, D. and Shah, N. P. (2011b). Survival, acid and bile tolerance, and surface hydrophobicity of microencapsulated B. animalis ssp. lactis Bb12 during storage at room temperature. J. Food Sci. 76:M592–M599.
  • Dicks, L. M. T. and Botes, M. (2010). Probiotic lactic acid bacteria in the gastro-intestinal tract: Health benefits, safety and mode of action. Benef. Microb. 1:11–29.
  • Ding, W. K. and Shah, N. P. (2007). Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. J. Food Sci. 72:M446–M450.
  • Ding, W. K. and Shah, N. P. (2009a). Effect of various encapsulating materials on the stability of probiotic bacteria. J. Food Sci. 74:M100–107.
  • Ding, W. K. and Shah, N. P. (2009b). An improved method of microencapsulation of probiotic bacteria for their stability in acidic and bile conditions during storage. J. Food Sci. 74:M53–M61.
  • Ding, W. K. and Shah, N. P. (2009c). Effect of homogenization techniques on reducing the size of microcapsules and the survival of probiotic bacteria therein. J. Food Sci. 74(6):M231–M236.
  • Doherty, S. B., Gee, V. L., Ross, R. P., Stanton, C., Fitzgerald, G. F. and Brodkorb, A. (2011). Development and characterisation of whey protein micro-beads as potential matrices for probiotic protection. Food Hydrocol. 25:1604–1617.
  • Dong, X., Xin, Y., Jian, W., Liu, X. and Ling, D. (2000). Bifidobacterium thermacidophilum sp. nov., isolated from an anaerobic digester. Int. J. System Evol. Microbiol. 50:119–125.
  • Donthidi, A. R., Tester, R. F. and Aidoo, K. E. (2010). Effect of lecithin and starch on alginate-encapsulated probiotic bacteria. J. Microencaps 27:67–77.
  • Driks, A. (1999) Bacillus subtilis spore coat. Microbiol. Mol. Biol. Rev. 63:1–20.
  • Drouault, S., Corthier, G., Ehrlich, S. D. and Renault, P. (1999). Survival, physiology, and lysis of Lactococcus lactis in the digestive tract. Appl. Env. Microbiol. 65:4881–4886.
  • Durand, H., Panes, J., 2003. Particles containing coated living micro-organisms, and method for producing same. Unites States Patent US2003/0109025 A1.
  • Efiuvwevwere, B. J. O., Gorris, L. G. M., Smid, E. J. and Kets, E. P. W. (1999). Mannitol-enhanced survival of Lactococcus lactis subjected to drying. Appl. Microbiol. Biotechnol. 51:100–104.
  • Elmarzugi, N., Enshasy, H. E., Malek, R. A., Othman, Z., Sarmidi, M. R. and Aziz, R. A. (2010). Optimization of cell mass production of the probiotic strain Lactococcus lactis in batch and fed-bach culture in pilot scale levels. Curr. Res. Technol. Edu. Topics Appl. Microbiol. Microbial. Technol. A. Mendez-Vilaz (ed.): 873–879.
  • Fachin, L., Moryia, J., Gândara, A. L. N. and Viotto, W. H. (2008). Evaluation of culture media for counts of Bifidobacterium animalis subsp. lactis Bb 12 in yoghurt after refrigerated storage. Brazilian J. Microbiol. 39:357–361.
  • FAO/WHO. (2001) Evaluation of health and nutritional properties of powder milk with live lactic acid bacteria. In Report from FAO/WHO Expert Consultation, 1–4 October 2001. Cordoba, Argentina.
  • Fávaro-Trindade, C. S. and C. R.Grosso (2002). Microencapsulation of L. acidophilus (La-05) and B. lactis (Bb-12) and evaluation of their survival at the pH values of the stomach and in bile. J. Microencapsul. 19:485–494.
  • Galazzo, J. L. and Bailey, J. E. (1990). Growing Saccharomyces cerevisiae in calcium-alginate beads induces cell alterations which accelerate glucose conversion to ethanol. Biotechnol. Bioeng. 36:417–426.
  • Gardiner, G. E., O'sullivan, E., Kelly, J., Auty, M. A. E., Fitzgerald, G. F., Collins, J. K., Ross, R. P. and Stanton, C. (2000). Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Appl. Env. Microbiol. 66:2605–2612.
  • Gbassi, G. K., Vandamme, T., Ennahar, S. and Marchioni, E. (2009). Microencapsulation of Lactobacillus plantarum spp in an alginate matrix coated with whey proteins. Int. J. Food Microbiol. 129:103–105.
  • Gharsallaoui, A., Roudaut, G. L., Chambin, O., Voilley, A. E. and Saurel, R. M. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res. Int. 40:1107–1121.
  • Gibbs, B. F., Kermasha, S., Alli, I. and Mulligan, C. N. (1999). Encapsulation in the food industry: A review. Int. J. Food Sci. Nutr. 50:213–224.
  • Gibson, G. R. (2007). Functional foods: Probiotics and prebiotics. Oxoid 28:1–3.
  • Gill, H. S. and Guarner, F. (2004). Probiotics and human health: A clinical perspective. Postgrad. Med. J. 80:516–526.
  • Gilliland, S. E. (1990). Health and nutritional benefits from lactic acid bacteria. FEMS Microbiol. Lett. 87:175–188.
  • Goderska, K. and Czarnecki, Z. (2008). Influence of microencapsulation and spray drying on the viability of Lactobacillus and Bifidobacterium strains. Polish J. Microbiol. 57:135–140.
  • Goderska, K., Zybata, M. and Czarnecki, Z. (2003). Characterisation of microencapsulated Lactobacillus rhamnosus LR7 strain. Polish J. Food Nutr. Sci. 12/53:21–24.
  • Goel, A., Sharma, R. K. and Tandon, H. K. L. (2006). A comparison of different polymeric gels for entrapment of cells of Streptococcus thermophilus containing s-galactosidase. J. Food Sci. Technol. 43:526–531.
  • Golowczyc, M. A., Silva, J., Abraham, A. G., Antoni, G. L. D. and Teixeira, P. (2010). Preservation of probiotic strains isolated from kefir by spray drying. Lett. Appl. Microbiol. 50:7–12.
  • Greene, J. D. and Klaenhammer, T. R. (1994). Factors involved in adherence of lactobacilli to human Caco-2 cell. Appl. Environ. Microbiol. 60:4487–4494.
  • Grosova, Z., Rosenberg, M., Gdovin, M., Slavikova, L. and Rebroš, M. (2009). Production of D-galactose using β -galactosidase and Saccharomyces cerevisiae entrapped in poly (vinylalcohol) hydrogel. Food Chem. 116:96–100.
  • Grosso, C. R. F. and Fávaro-Trindade, C. S. (2004). Stability of free and immobilized Lactobacillus acidophilus and Bifidobacterium lactis in acidified milk and of immobilized B. lactis in yoghurt. Brazilian J. Microbiol. 35:151–156.
  • Han, Y., Jin, B.-S., Lee, S.-B., Sohn, Y., Joung, J.-W. and Lee, J.-H. (2007). Effects of sugar additives on protein stability of recombinant human serum albumin during lyophilization and storage. Arch. Pharm. Res. 30:1124–1131.
  • Heidebach, T., Forst, P. and Kulozik, U. (2009). Microencapsulation of probiotic cells by means of rennet-gelation of milk proteins. Food Hydrocol. 23:1670–1677.
  • Heidebach, T., Först, P. and Kulozik, U. (2010). Influence of casein-based microencapsulation on freeze-drying and storage of probiotic cells. J. Food Eng. 98:309–316.
  • Henriques, A. O. and Moran, C. P. (2000). Structure and assembly of the bacterial endospore coat. Methods 20:95–110.
  • Heyraud, A. and Leonard, C. (1990). Structural characterization of alginates by liquid chromatographies. Food Hydrocoll. 4:59–68.
  • Higl, B., Kurtmann, L., Carlsen, C. U., Ratjen, J., Forst, P., Skibsted, L. H., Kulozik, U. and Risbo, J. (2007). Impact of water activity, temperature, and physical state on the storage stability of Lactobacillus paracasei ssp. paracasei freeze-dried in a lactose matrix. Biotechnol. Prog. 23:794–800.
  • Hincha, D. K., Zuther, E., Hellwege, E. M. and Heyer, A. G. (2002). Specific effects of fructo-and oligosaccharides in the preservation of liposomes during drying. Glycobiology 12:103–110.
  • Hsiao, H.-C., Lian, W.-C., Chou, C.-C. and (2004). Effect of packaging conditions and temperature on viability of microencapsulated bifidobacteria during storage. J. Sci. Food Agric. 84:134–139.
  • Hsu, C. A., Yu, R. C. and Chou, C. C. (2006). Purification and characterization of a sodium-stimulated β-galactosidase from Bifidobacterium longum CCRC 15708. World J. Microbiol. Biotech. 22:355–361.
  • Ishibashi, N., Yaeshima, T. and Hayasawa, H. (1997). Bifidobacteria: Their significance in human intestinal health. Mal. J. Nutr. 3:149–159.
  • Islam,  , Ariful, M., Yun, C.-H., Choi, Y.-J. and Cho, C.-S. (2010). Microencapsulation of live probiotic bacteria. J. Microbiol. Biotechnol. 20:1367–1377.
  • Izumi, T., Piskula, M. K., Osawa, S., Obata, A., Tobe, K., Saito, M., Kataoka, S., Kubota, Y. and Kikuchi, M. (2000). Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130:1695–1699.
  • Izutsu, K. and Kojima, S. (2002). Excipient crystallinity and its protein-structurestabilizing effect during freeze-drying. J. Pharm. Pharmacol. 54:1033–1039.
  • Jalali, M., Abedi, D., Varshosaz, J., Najjarzadeh, M., Mirlohi, M. and Tavakoli, N. (2011). Stability evaluation of freeze-dried Lactobacillus paracasei subsp. tolerance and Lactobacillus delbrueckii subsp. bulgaricus in oral capsules. Res. Pharm. Sci. 7:31–36.
  • Johnson, J. A. C. and Etzel, M. R. (1995). Properties of Lactobacillus helveticus CNRZ-32 attenuated by spray-drying, freeze-drying, or freezing. J. Dairy Sci. 78:761–768.
  • Kailasapathy, K. (2002). Microencapsulation of probiotic bacteria: Technology and potential applications. Curr. Issues Intest Microbiol. 3:39–48.
  • Kailasapathy, K. (2006). Survival of free and encapsulated probiotic bacteria and their effect on the sensory properties of yoghurt. LWT 39:1221–1227.
  • Kailasapathy, K. and Sureeta, B. S. (2004). Effect of storage and shelf life viability of freeze dried and microencapsulated Lactobacillus acidophilus and Bifidobacterium infantis cultures. Aust. J. Dairy Tech. 59:204–208.
  • Kearney, N., Meng, X. C., Stanton, C., Kelly, J., Fitzgerald, G. F. and Ross, R. P. (2009). Development of a spray dried probiotic yoghurt containing Lactobacillus paracasei NFBC 338. Int. Dairy J. 19:684–689.
  • Kiely, L. J. and Olson, N. F. (2000). The physicochemical surface characteristics of Lactobacillus casei. Food Microbiol. 17:277–291.
  • Kim, S. S. and Bhowmik, S. R. (1990). Survival of lactic acid bacteria during spray drying of plain yogurt. J. Food Sci. 55:1008–1010, 1048.
  • Kim, S.-J., Cho, S. Y., Kim, S. H., Song, O.-J., Shin, I.-S., Cha, D. S. and Park, H. J. (2008). Effect of microencapsulation on viability and other characteristics in Lactobacillus acidophilus ATCC 43121. LWT 41:493–500.
  • Kim, H. S., Kamara, B. J., Good, I. C. and Enders, G. L. (1988). Method for the preparation of stabile microencapsulated lactic acid bacteria. J. Indus. Microbiol. 3:253–257.
  • Kimoto, H., Kurisaki, J., Tsuji, N. M., Ohmomo, S. and Okamoto, T. (1999) Lactococci as probiotic strains: Adhesion to human enterocyte-like Caco-2 cells and tolerance to low pH and bile. Lett. Appl. Microbiol. 29:313–316.
  • Kimoto, H., Nomura, M., Kobayashi, M., Mizumachi, K. and Okamoto, T. (2003). Survival of lactococci during passage through mouse digestive tract. Canadian J. Microbiol. 49:707–711.
  • Klijn, N., Weerkamp, A. H. and De-Vos, W. M. (1995). Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Appl. Env. Microbiol. 61:2771–2774.
  • Kos, B., Suskovic, J., Vukovic, S., Simpraga, M., Frece, J. and Matosic, S. (2003). Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J. Appl. Microbiol. 94:981–987.
  • Krasaekoopt, W., Bhandari, B. and Deeth, H. (2004). The influence of coating materials on some properties of alginate beads and survivability of microencapsulated probiotic bacteria. Int. Dairy J. 14:737–743.
  • Kurtmann, L., Carlsen, C. U., Skibted, L. H. and Risbo, J. (2009). Water activity-temperature state diagrams of freeze dried L. acidophilus (La-5): Influence of physical state on bacterial survival during storage. Biotechnol. Prog. 25:265–270.
  • Lankaputhra, W. E. V. and Shah, N. P. (1995). Survival of Lactobacillus acidophilus and Bifidobacterium ssp. in the presence of acid and bile salts. Cult. Dairy Prod. J. 30:2–7.
  • Lee, J. S., Cha, D. S. and Park, H. J. (2004). Survival of freeze-dried Lactobacillus bulgaricus KFRI 673 in chitosan-coated calcium alginate microparticles. J. Agric. Food Chem. 52:7300–7305.
  • Leslie, S. B., Israeli, E., Lighthart, B., Crowe, J. H. and Crowe, L. M. (1995). Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl. Environ. Microbiol. 61:3592–3597.
  • Li, Q. Q., Chen, Q. H., Hui, R., Zhu, D. S. and He, G. Q. (2010). Isolation and characterization of an oxygen, acid and bile resistant B. animalis subsp lactis Qq08. J. Sci. Food Agric. 90:1340–1346.
  • Li, X. Y., Chen, X. G., Sun, Z. W., Park, H. J. and Cha, D.-S. (2011b). Preparation of alginate / chitosan / carboxymethyl chitosan complex microcapsules and application in Lactobacillus casei ATCC 393. Carb. Polym. 83:1479–1485.
  • Lin, D. C. (2003). Probiotics as functional foods. Nutr. Clin. Pract. 18:497–506.
  • Li, B., Tian, F., Liu, X., Zhao, J., Zhang, H. and Chen, W. (2011a). Effects of cryoprotectants on viability of Lactobacillus reuteri CICC6226. Appl. Microbiol. Biotechnol. 92:609–616.
  • Ljungh, Å. and Wadström, T. (2006). Lactic acid bacteria as probiotics. Curr. Issues Intest. Microbiol. 7:73–90.
  • Maltini, E., Torreggiani, D., Venir, E. and Bertolo, G. (2003). Water activity and the preservation of plant foods. Food Chem. 82:79–86.
  • Mandal, S., Puniya, A. K. and Singh, K. (2006). Effect of alginate concentrations on survival of microencapsulated Lactobacillus casei NCDC-298. Int. Dairy J. 16:1190–1195.
  • Meile, L., Ludwig, W., Rueger, U., Gut, C., Kaufmann, P., Dasen, G., Wenger, S. and Teuber, M. (1997) Bifidobacterium lactis sp. Nov., a moderately oxygen tolerant species isolated from fermented milk. Sys. Appl. Microbiol. 20:57–64.
  • Meng, X. C., Stanton, C., Fitzgerald, G. F., Daly, C. and Ross, R. P. (2008). Anhydrobiotics: The challenges of drying probiotic cultures. Food Chem. 106:1406–1416.
  • Miao, S., Mills, S., Stanton, C., Fitzgerald, G. F., Roos, Y. and Ross, R. P. (2008). Effect of disaccharides on survival during storage of freeze dried probiotics. Dairy Sci. Technol. 88:19–30.
  • Mills, S., Stanton, C., Fitzgerald, G. F. and Ross, R. P. (2011). Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again. Microb. Cell Factor. 10:1–15.
  • Ming, L. C., Rahim, R. A., Wan, H. Y. and Ariff, A. B. (2009). Formulation of protective agents for improvement of lactobacillus salivarius i 24 survival rate subjected to freeze drying for production of live cells in powderized form. Food Bioproc. Technol. 2:431–436.
  • Mital, B. K. and Garg, S. K. (1992). Acidophilus milk products: Manufacture and therapeutics. Food Rev. Int. 8:347–389.
  • Monteagudo-Mera, A., Caro, I., Rodriguez-Aparicio, L. B., Rua, J., Ferrero, M. A. and Garcia-Armesto, M. R. (2011). Characterization of certain bacterial strains for potential use as starter or probiotic cultures in dairy products. J. Food Protect. 74:1379–1386.
  • Mortazavian, A., Razavi, S. H., Ehsani, M. R. and Sohrabvandi, S. (2007). Principles and methods of microencapsulation of probiotic microorganisms: Review article. Iranian J. Biotechnol. 5:1–18.
  • Mottet, C. and Michetti, P. (2005). Probiotics: Wanted dead or alive. Dig. Liver. Dis. 37:3–6.
  • Mugnier, J. and Jung, G. (1985). Survival of bacteria and fungi in relation to water activity and the solvent properties of water in biopolymer gels. Appl. Env. Microbiol. 50:108–114.
  • Nag, A. (2011). Development of a microencapsulation technique for probiotic bacteria Lactobacillus casei 431 using a protein-polysaccharide complex. In Food Technology. p.194. Massey University, Palmerston North, New Zealand.
  • Nag, A., Singh, H., Das, S., Han, K-S. (2011). Development of a microencapsulation technique for probiotic bacteria Lactobacillus casei 431 using a protein-polysaccharide complex. Master's thesis. Food Technology, Massey University, Palmerston North, New Zealand. 194 pgs.
  • Nanasombat, S. and Sriwong, N. (2007). Improving viability of freeze-dried lactic acid bacteria using lyoprotectants in combination with osmotic and cold adaptation. KMITL Sci. Tech. J. 7:61–69.
  • Noriega, L., Cuevas, I., Margolles, A., De-Los, R. G. and Clara, G. (2006). Deconjugation and bile salts hydrolase activity by Bifidobacterium strains with acquired resistance to bile. Internat Dairy J. 16:850–855.
  • Nouaille, S., Ribeiro, L. A., Miyoshi, A., Pontes, D., Loir, Y. L., Oliveira, S. C., Langella, P. and Azevedo, V. (2003). Review: Heterologous protein production and delivery systems for Lactococcus lactis. Gen. Molec. Res. 2:102–111.
  • Novik, G. I., Astapovich, N. I. and Samartsev, A. A. (2001). Investigation of the physiological and biochemical characteristics of bifidobacteria at the late stages of their development. Microbiol. Molec. Biol. Rev. 70:429–435.
  • Okamoto, H., Todo, H., Iida, K. and Danjo, K. (2002). Dry powders for pulmonary delivery of peptides and proteins. KONA 20:71–83.
  • Oldenhof, H., Wolkers, W. F., Fonseca, F., Passot, S. and Marin, M. (2005). Effect of sucrose and maltodextrin on the physical properties and survival of air-dried Lactobacillus bulgaricus: An in situ Fourier Transform Infrared Spectroscopy study. Biotechnol. Prog. 21:885–892.
  • Oliveira, A. C., Moretti, T. S., Boschini, C., Baliero, J. C. C., Freitas, O. and Favaro-Trindade, C. S. (2007). Stability of microencapsulated B. lactis (BI 01) and L. acidophilus (LAC 4) by complex coacervation followed by spray drying. J. Microencaps. 24:685–693.
  • Op-den-Camp, H. J. M., Oosterhof, A. and Veerkamp, J. H. (1985). Interaction of bifidobacterial lipoteichoic acid with human intestinal epithelial cells. Infect. Immun. 47:332–334.
  • Orłowski, A. and Bielecka, M. (2006). Preliminary characteristics of lactobacillus and bifidobacterium strains as probiotic candidates. Pol. J. Food Nutr. Sci. 15/56:269–275.
  • Otieno, D. O., Shah, N. P. and Ashton, J. F. (2007). Role of microbial strain and storage temperatures in the degradation of isoflavone phytoestrogens in fermented soymilk with selected β-glucosidase producing Lactobacillus casei strains. Food Res. Int. 40:371–380.
  • O'Riordan, K., Andrews, D., Buckle, K. and Conway, P. (2001). Evaluation of microencapsulation of a Bifidobacterium strain with starch as an approach to prolonging viability during storage. J. Appl. Microbiol. 91:1059–1066.
  • Pan, W. H., Li, P. L. and Liu, Z. (2006). Food microbiology: The correlation between surface hydrophobicity and adherence of Bifidobacterium strains from centenarians' faeces. Anaerobe 12:148–152.
  • Peighambardoust, S. H., Tafti, A. G. and Hesari, J. (2011). Application of spray drying for preservation of lactic acid starter cultures: A review. Trends Food Sci. Technol. 22: 215–224.
  • Phadtare, S. (2004). Recent developments in bacterial cold-shock response. Curr. Issues Mol. Biol. 6:125–136.
  • Picot, A. and Lacroix, C. (2004). Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int. Dairy J. 14:505–515.
  • Poncelet, D. (2006). Microencapsulation: Fundamentals, methods and applications. Surf. Chem. Biomed Env. Sci. 228:23–34.
  • Prado, F. C., Parada, J. L., Pandey, A. and Soccol, C. R. (2008). Trends in non-dairy probiotic beverages. Food Res. Int. 41:111–123.
  • Rahman, M. S. (2010). Food stability determination by macro-micro region concept in the state diagram and by defining a critical temperature. J. Food Eng. 99:402–416.
  • Rahman, M. M., Kim, W. S., Kumura, H. and Shimazaki, K. (2008). Autoaggregation and surface hydrophobicity of bifidobacteria. World J. Microbiol. Biotechnol. 24:1593–1598.
  • Rashid, M. H. (1997). Purification and characterization of native, proteolytically nicked and chemically modified β-glucosidase from Aspergillus niger. In: Dep of Zoology. p.128. Punja University, Lahore.
  • Rashid, M. H., Shakoori, A.R., Siddiqui, K.S. (1997). Purification and characterization of native, proteolytically nicked and chemically modified β-glucosidase from Aspergillus niger. PhD thesis. Department of Zoology, Punja University, Lahore. 128 pg.
  • Ray, S., Sherlock, A., Wilken, T. and Woods, T. 2010. Cell wall lysed probiotic tincture decreases immune response to pathogenic enteric bacteria and improves symptoms in autistic and immune compromised children—Special paper for naturally oriented medical doctors, naturopaths, and pediatricians. Explore 19(1):1–5.
  • Reid, A. A., Champagne, C. P., Gardner, N., Fustier, P. and Vuillemard, J. C. (2007). Survival in food systems of Lactobacillus rhamnosus R011 microentrapped in whey protein gel particles. J. Food Sci. 72:M31–M37.
  • Reid, A. A., Vuillemard, J. C., Britten, M., Arcand, Y., Farnworth, E. and Champagne, C. P. (2005). Microentrapment of probiotic bacteria in a Ca2O-induced whey protein gel and effects on their viability in a dynamic gastro-intestinal model. J. Microencaps 22:603–619.
  • Rodríguez-Huezo, M. E., Durán-Lugo, R., Prado-Barragán, L. A., Cruz-Sosa, F., Lobato-Calleros, C., Alvarez-Ramírez, J. and Vernon-Carter, E. J. (2007). Pre-selection of protective colloids for enhanced viability of Bifidobacterium bifidum following spray-drying and storage, and evaluation of aguamiel as thermoprotective prebiotic. Food Res. Int. 40:1299–1306.
  • Rokka, S. and Rantamäki, P. (2010). Protecting probiotic bacteria by microencapsulation: Challenges for industrial applications. Eur. Food Res. Technol. 231:1–12.
  • Roos, Y. (1995). Water activity and glass transition temperature: How do they complement and how do they differ? In: Food Preservation by Moisture Control - Fundamentals and Applications, pp.133–154. Barbosa-Canovas, G. V. and Welti-Chanes, J., Eds. Technomic Publishing Company, Inc, Lancaster, USA.
  • Rosenberg, M., Gutnick, D. and Rosenberg, E. (1980). Adherence of bacteria to hydrocarbons: A simple method for measuring cell surface hydrophobicity. FEMS Microbiol. Lett. 9:29–33.
  • Ruiz, L., Ruas-Madiedo, P., Gueimonde, M., de Los Reyes-Gavilán, C. G., Margolles, A. and Sánchez, B. (2011). How do bifidobacteria counteract environmental challenges? Mechanisms involved and physiological consequences. Genes Nutr. 6:307–318.
  • Saarela, M., Virkajarvi, I., Alakomi, H.-L., Mattila-Sandholm, T., Vaari, A., Suomalainen, T. and Matto, J. (2005). Influence of fermentation time, cryoprotectant and neutralization of cell concentrate on freeze-drying survival, storage stability, and acid and bile exposure of Bifidobacterium animalis ssp. lactis cells produced without milk-based ingredients. J. Appl. Microbiol. 99:1330–1339.
  • Sabir, F., Beyatli, Y., Cokmus, C. and Onal-Darilmaz, D. (2010). Assessment of potential probiotic properties of Lactobacillus spp., Lactococcus spp. and Pediococcus spp. strains isolated from kefir. J. Food Sci. 75:M568–M573.
  • Santagapita, P. R. and Buera, M. P. (2008). Trehalose-water-salt interactions related to the stability of β-galactosidase in supercooled media. Food Biophys. 3:87–93.
  • Santivarangkna, C., Naumann, D., Kulozik, U. and Foerst, P. (2010). Protective effects of sorbitol during the vacuum drying of Lactobacillus helveticus: An FT-IR study. Ann. Microbiol. 60:235–242.
  • Sara, M. and Sleytr, U. B. (2000). Minireview: S-layer proteins. Bacteriology 182:859–868.
  • Sarkar, S. (2007). Functional foods as self-care complementary medicine. Nutr. Food Sci. 37:160–167.
  • Savini, M., Cecchini, C., Verdenelli, M. C., Silvi, S. and Orpianesi, C. (2010). Pilot-scale production and viability analysis of freeze-dried probiotic bacteria using different protective agents. Alberto. Cresci. Nutr. 2:330–339.
  • Schmidt, G. and Zink, R. (2000). Basic features of the stress response in three species of bifidobacteria: B. longum, B. adolescentis and B. breve. Int. J. Food Microbiol. 55:41–45.
  • Shahidi, F. and Han, X. Q. (1993). Encapsulation of food ingredients. Crit. Rev. Food Sci. Nutr. 33:501–547.
  • Shah, N. P. and Jelen, P. (1990) Survival of lactic acid bacteria and their lactases under acidic conditions. J. Food Sci. 55:506–509.
  • Shakirova, L., Auzina, L., Zikmanis, P., Gavare, M. and Grube, M. (2010). Influence of growth conditions on hydrophobicity of Lactobacillus acidophilus and Bifidobacterium lactis cells and characteristics by FT-IR spectra. Spectros Int. 24:251–255.
  • Sheu, T.-Y., Marshall, R. T. and Heymann, H. (1993). Improving survival of culture bacteria in frozen desserts-by microentrapment. J. Dairy Sci. 76:1902–1907.
  • Simpson, P. J., Stanton, C., Fitzgerald, G. F. and Ross, R. P. (2005). Intrinsic tolerance of Bifidobacterium species to heat and oxygen and survival following spray drying and storage. J. Appl. Microbiol. 99:493–501.
  • Singh, S. and Singh, J. (2003). Effect of polyols on the conformational stability and biological activity of a model protein lysozyme. AAPS Pharm. Sci. Tech. 4:1–9.
  • Sultana, K., Godward, G., Reynolds, N., Arumugaswamy, R., Peiris, P. and Kailasapathy, K. (2000). Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. Int. J. Food Microbiol. 62:47–55.
  • Sunde, E. P., Setlow, P., Hederstedt, L. and Halle, B. (2009). The physical state of water in bacterial spores. PNAS 106:19334–19339.
  • Sunny-Roberts, E. O. and Knorr, D. (2009). The Protective effect of monosodium glutamate on survival of Lactobacillus rhamnosus GG and Lactobacillus rhamnosus E-97800 (E800) strains during spray-drying and storage in trehalose-containing powders. Int. Dairy J. 19:209–214.
  • Tabbers, M. M. and Benninga, M. A. (2007). Administration of probiotic lactobacilli to children with gastrointestinal problems: There is still little evidence. Nederlands Tijdschrift voor Geneeskunde 151:2198–2202.
  • Talwalkar, A. and Kailasapathy, K. (2003). Metabolic and biochemical responses of probiotic bacteria to oxygen. J. Dairy Sci. 86:2537–2546.
  • Tannock, G. W. (1999). Identification of Lactobacilli and Bifidobacteria. Curr. Issues Mol. Biol. 1:53–64.
  • Teixeira, P., Castro, H., Mohacsi-Farkas, C. and Kirby, R. (1997). Identification of sites of injury in Lactobacillus bulgaricus during heat stress. J. Appl. Microbiol. 83:219–226.
  • To, B. C. S. and Etzel, M. R. (1997). Spray drying, freeze drying, or freezing of three different lactic acid bacteria species. J. Food Sci. 62:576–585.
  • Trsic-Milanovic, N., Kodzic, A., Baras, J. and Dimitrijevic-Brankovic, S. (2001). The influence of a cryoprotective medium containing glycerol on the lyophilization of lactic acid bacteria. J. Serb. Chem. Soc. 66:435–441.
  • Vadillo-Rodrı´guez, V., Busscher, H. J., Norde, W., de Vries, J. and van der Mei, H. C. (2004). Dynamic cell surface hydrophobicity of lactobacillus strains with and without surface layer proteins. J. Bacteriol. 186:6647–6650.
  • Van der Mei, H. C., van-de-Belt-Gritter, B., Pouwels, P. H., Martinez, B. and Busscher, H. J. (2003) Cell surface hydrophobicity is conveyed by S-layer proteins - a study in recombinant lactobacilli. Colloid. Surf Biointerf. 28:127–134.
  • Vasiljevic, T. and Jelen, P. (2003). Drying and storage of crude β-galactosidase extracts from Lactobacillus delbrueckii ssp. bulgaricus 11842. Innov. Food Sci. Emerg. Technol. 4:319–329.
  • Veerkamp, J. H. (1971). Fatty acid composition of Bifidobacterium and Lactobacillus strains. J. Bacteriol. 108:861–867.
  • Vinderola, C. G. and Reinheimer, J. A. (2003). Lactic acid starter and probiotic bacteria, a comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Res. Internat. 36:895–904.
  • Von-Ah, U., Mozzetti, V., Lacroix, C., Kheadr, E. E., Fliss, I. and Meile, L. (2007) Classification of a moderately oxygen-tolerant isolate from baby faeces as Bifidobacterium thermophilum. BMC Microbiol. 7:79.
  • Wang, L.-Q., Meng, X.-C., Zhang, B.-R., Wang, Y. and Shang, Y.-L. (2010). Influence of cell surface properties on adhesion ability of bifidobacteria. World J. Microbiol. Biotechnol. 26:1999–2007.
  • Wang, Y. C., Yu, R. C. and Chou, C. C. (2004). Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage. Int. J. Food Microbiol. 93:209–217.
  • Wong, S., Kabeir, B. M., Mustafa, S., Mohamad, R., Hussin, A. S. M. and Manap, M. Y. (2010) Viability of Bifidobacterium pseudocatenulatum G4 after spray-drying and freeze-drying. Microbiol. Insights 3:37–43.
  • Woodward, J., Koran, L. J., Hernandez, L. J. and Stephan, L. M. (1993). Use of immobilized β-glucosidase in the hydrolysis of cellulose. ACS Sympos. Ser. 533:240–250.
  • Xiaoyan, L. and Xiguang, C. (2009). Drying of micro-encapsulated lactic acid bacteria - effects of trehalose and immobilization on cell survival and release properties. J. Ocean Univ. China (Ocean. Coastal. Sea Res.) 8:39–44.
  • Xie, Y., Gao, Y. and Chen, Z. (2004). Purification and characterization of an extracellular β-glucosidase with high transglucosylation activity and stability from Aspergillus niger. Appl. Biochem. Biotechnol. 119:229–240.
  • Yadav, A. K., Chaudahari, A. B. and Kothari, R. M. (2009). Enhanced viability of Bacillus coagulants after spray drying with calcium lactate, storage and rehydration. Indian J. Chem. Technol. 16:519–522.
  • Yang, S., Wang, L., Yan, Q., Jiang, Z. and Li, L. (2009). Hydrolysis of soybean isoflavone glycosides by a thermostable β-glucosidase from Paecilomyces thermophila. Food Chem. 115:1247–1252.
  • Ying, D. Y., Phoon, M. C., Sanguansri, L., Weerakkody, R., Burgar, I. and Augustin, M. A. (2010). Microencapsulated Lactobacillus rhamnosus GG powders: Relationship of powder physical properties to probiotic survival during storage. J. Food Sci. 75:E588–595.
  • Yoshii, H., Buche, F., Takeuchi, N., Terrol, C., Ohgawara, M. and Furuta, T. (2008). Effects of protein on retention of ADH enzyme activity encapsulated in trehalose matrices by spray drying. J. Food Eng. 87:34–39.
  • Yoshizawa,  , (2004). Trends in microencapsulation research. KONA 22:23–31.
  • Yu, C., Wang, W., Yao, H. and Liu, H. (2007). Preparation of phospholipid microcapsule by spray drying. Dry. Technol. 25:695–702.
  • Zamora, L. M., Carretero, C. and Parés, D. (2006). Comparative survival rates of lactic acid bacteria isolated from blood, following spray-drying and freeze-drying. Food Sci. Technol. Int. 12:77–84.
  • Zavaglia, A. G., Kociubinski, G., Perez, P., Disalvo, E. and Antoni, G. D. (2002). Effect of bile on the lipid composition and surface properties of bifidobacteria. J. Appl. Microbiol. 93:794–799.
  • Zayed, G. and Roos, Y. H. (2004). Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze-drying and storage. Proc. Biochem. 39:1081–1086.
  • Zohar-Perez, C., Chet, I. and Nussinovitch, A. (2004). Unexpected distribution of immobilized microorganisms within alginate beads. Biotechnol. Bioeng. 88:671–674.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.