2,006
Views
83
CrossRef citations to date
0
Altmetric
Original Articles

Advanced DNA- and Protein-based Methods for the Detection and Investigation of Food Allergens

, , , , &

REFERENCES

  • Aalberse, R. C. (2000). Structural biology of allergens. J. Allergy Clin. Immunol. 106:228–238.
  • Abbott, M., Hayward, S., Ross, W., Godefroy, S. B., Ulberth, F., Van Hengel, A. J., Roberts, J., Akiyama, H., Popping, B., Yeung, J. M., Wehling, P., Taylor, S. L., Poms, R. E. and Delahaut, P. (2010). Validation procedures for quantitative food allergen ELISA methods: Community guidance and best practices. J. AOAC Int. 93(2):442–451.
  • Akagawa, M., Handoyo, T., Ishii, T., Kumazawa, S., Morita, N. and Suyama, K. (2007). Proteomic analysis of wheat flour allergens. J. Agric. Food Chem. 55:6863–6870.
  • Anderson, J. A. (1996). Allergic reactions to food. Crit. Rev. Food Sci. Nutr. 36(Supplement):S19–S38.
  • Ansari, P., Stoppacher, N., Rudolf, J., Schuhmacher, R. and Baumgartner, S. (2011). Selection of possible marker peptides for the detection of major ruminant milk proteins in food by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 399:1105–1115.
  • Arlorio, M., Cereti, E., Coïsson, J. D., Travaglia, F. and Martelli, A. (2007). Detection of hazelnut (Corylus spp.) in processed foods using real-time PCR. Food Control 18(2):140–148.
  • Barbieri, G. and Frigeri, G. (2006). Identification of hidden allergens: Detection of pistachio traces in mortadella. Food Addit. Contam. 23(12):1260–1264.
  • Benedetto, A., Abete, M. C. and Squadrone, S. (2011). Towards a quantitative application of real-time PCR technique for fish DNA detection in feedstuffs. Food Chem. 126(3):1436–1442.
  • Bergerová, E., Brežná, B. and Kuchta, T. (2011). A novel method with improved sensitivity for the detection of peanuts based upon single-tube nested real-time polymerase chain reaction. Eur. Food Res. Technol. 232(6):1087–1091.
  • Besler, M. (2001). Determination of allergens in foods. TrAC Trends Anal. Chem. 20(11):662–672.
  • Bettazzi, F., Lucarelli, F., Palchetti, I., Berti, F., Marrazza, G. and Mascini, M. (2008). Disposable electrochemical DNA-array for PCR amplified detection of hazelnut allergens in foodstuffs. Anal. Chim. Acta. 614(1):93–102.
  • Bhat, S., Herrmann, J., Armishaw, P., Corbisier, P. and Emslie, K. R. (2009). Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number. Anal. Bioanal. Chem. 394(2):457–467.
  • Bhat, S., McLaughlin, J. L. H. and Emslie, K. R. (2011). Effect of sustained elevated temperature prior to amplification on template copy number estimation using digital polymerase chain reaction. The Anal. 136(4):724–732.
  • Blackburn, K., Cheng, F. Y., Williamson, J. D. and Goshe, M. B. (2010). Data-independent liquid chromatography/mass spectrometry (LC/MS(E)) detection and quantification of the secreted Apium graveolens pathogen defense protein mannitol dehydrogenase. Rapid Commun. Mass Spectrom. 24:1009–1016.
  • Blais, B. W., Gaudreault, M. and Phillipe, L. M. (2003). Multiplex enzyme immunoassay system for the simultaneous detection of multiple allergens in foods. Food Control 14:43–47.
  • Brambilla, F., Resta, D., Isak, I., Zanotti, M. and Arnoldi, A. (2009). A label-free internal standard method for the differential analysis of bioactive lupin proteins using nano HPLC-Chip coupled with Ion Trap mass spectrometry. Proteomics 9:272–286.
  • Breiteneder, H. and Ebner, C. (2000). Molecular and biochemical characterization of plant-derived allergens. J. Allergy Clin. Immunol. 106:27–36.
  • Brežná, B., Dudášová, H. and Kuchta, T. (2008). A novel real-time polymerase chain reaction method for the qualitative detection of pistachio in food. Eur. Food Res. Technol. 228(2):197–203.
  • Brežná, B., Hudecová, L. and Kuchta, T. (2006). A novel real-time polymerase chain reaction (PCR) method for the detection of walnuts in food. Eur. Food Res. Technol. 223(3):373–377.
  • Brežná, B., Piknová, L. and Kuchta, T. (2009). A novel real-time polymerase chain reaction method for the detection of macadamia nuts in food. Eur. Food Res. Technol. 229(3):397–401.
  • Brun, V., Dupuis, A., Adrait, A., Marcellin, M., Thomas, D., Court, M., Vandenesch, F. and Garin, J. (2007). Isotope-labeled protein standards: Toward absolute quantitative proteomics. Mol. Cell. Proteomics 6:2139–2149.
  • Brzezinski, J. L. (2006). Detection of cashew nut DNA in spiked baked goods using a real-time polymerase chain reaction method. J. AOAC Int. 89:1035–1038.
  • Brzezinski, J. L. (2007). Detection of sesame Seed DNA in foods using real-time PCR. J. Food Prot. 70(4):1033–1036.
  • Calvo, J., Rivas, J. and López-Quintela, M. A. (2012). Synthesis of Subnanometric Nanoparticles. Encyclopedia of Nanotechnology, Bhushan, Bharat (Ed.), Springer Verlag. 2639–2648.
  • Camafeita, E., Alfonso, P., Mothes, T. and Méndez, E. (1997). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric micro-analysis: The first non-immunological alternative attempt to quantify gluten gliadins in food samples. J. Mass Spectrom. 32:940–947.
  • Cao, Q., Zhao, H., Yang, Y., He, Y., Ding, N., Wang, J., Wu, Z., Xiang, K. and Wang, G. (2011). Electrochemical immunosensor for casein based on gold nanoparticles and poly (L-Arginine)/multi-walled carbon nanotubes composite film functionalized interface. Biosens. Bioelectron. 26(8):3469–3474.
  • Careri, M., Costa, A., Elviri, L., Lagos, J. B., Mangia, A., Terenghi, M., Cereti, A. and Garoffo, L. P. (2007). Use of specific peptide biomarkers for quantitative confirmation of hidden allergenic peanut proteins Ara h 2 and Ara h 3/4 for food control by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 389:1901–1907.
  • Careri, M., Elviri, L., Lagos, J. B., Mangia, A., Speroni, F. and Terenghi, M. (2008a). Selective and rapid immunomagnetic bead-based sample treatment for the liquid chromatography-electrospray ion-trap mass spectrometry.detection of Ara h3/4 peanut protein in foods. J. Chromatogr. A 1206:89–94.
  • Careri, M., Elviri, L., Maffini, M., Mangia, A., Mucchino, C. and Terenghi, M. (2008b). Determination of peanut allergens in cereal-chocolate-based snacks: Metal-tag inductively coupled plasma mass spectrometry immunoassay versus liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 22:807–811.
  • Carrera, M., Cañas, B. and Gallardo, J. M. (2012). Rapid direct detection of the major fish allergen, parvalbumin, by selected MS/MS ion monitoring mass spectrometry. J. Proteomics 75:3211–3220.
  • Carrera, M., Cañas, B., López-Ferrer, D., Piñeiro, C., Vázquez, J. and Gallardo, J. M. (2011). Fast monitoring of species-specific peptide biomarkers using high-intensity-focused-ultrasound-assisted tryptic digestion and selected MS/MS ion monitoring. Anal. Chem. 83:5688–5695.
  • Carrera, M., Cañas, B., Vázquez, J. and Gallardo, J. M. (2010). Extensive de novo sequencing of new parvalbumin isoforms using a novel combination of bottom-up proteomics, accurate molecular mass measurement by FTICR-MS, and selected MS/MS ion monitoring. J. Proteome Res. 9:4393–4406.
  • Cereda, A., Kravchuk, A. V., D'Amato, A., Bachi, A. and Righetti, P. G. (2010). Proteomics of wine additives: Mining for the invisible via combinatorial peptide ligand libraries. J. Proteomics 73:1732–1739.
  • Cianferoni, A. and Spergel, J. M. (2009). Food allergy: Review, classification and diagnosis. Allergol. Int. 58:457–466.
  • Chassaigne, H., Nørgaard, J. and Hengel, A. J. (2007). Proteomics-based approach to detect and identify major allergens in processed peanuts by capillary LC-Q-TOF (MS/MS). J. Agric. Food Chem. 55:4461–4473.
  • Chen, X. J., Sanchez-Gaytan, B. L., Qian, Z. and Park, S. J. (2012). Noble metal nanoparticles in DNA detection and delivery. WIREs Nanomed. Nanobiotechnol. 4:273–290.
  • Cheng, J. C., Huang, C. L., Lin, C. C., Chen, C. C., Chang, Y. C., Chang, S. S., et al. (2006). Rapid detection and identification of clinically important bacteria by high resolution melting analysis after broad-range ribosomal RNA real-time PCR. Clin. Chem. 52(11):1997–2004.
  • Commission of the European Communities. (2006). Off. J. Eur. Union. L368:110.
  • Committee on Toxicity of Chemicals in Food, Consumer Products and the Environment (2000). Adverse reactions to food and food ingredients. Crown Copyright.
  • Corbisier, P., Bhat, S., Partis, L., Xie, V. R. D. and Emslie, K. R. (2010). Absolute quantification of genetically modified MON810 maize (Zea mays L.) by digital polymerase chain reaction. Anal. Bioanal. Chem. 396(6):2143–2150.
  • Costa, J., Mafra, I., Kuchta, T. and Oliveira, M. B. P. P. (2012a). Single-tube nested real-time PCR as a new highly sensitive approach to trace hazelnut. J. Agric. Food Chem. 60(33):8103–8110.
  • Costa, J., Mafra, I. and Oliveira, M. B. P. P. (2012b). High resolution melting analysis as a new approach to detect almond DNA encoding for Pru du 5 allergen in foods. Food Chem. 133(3):1062–1069.
  • Crevel, R. W. R., Ballmer-Weber, B. K., Holzhauser, T., Hourihane, J.O'B., Knulst, A. C., Mackie, A. R., Timmermans, F. and Taylor, S. L. (2008). Thresholds for food allergens and their value to different stake-holder. Allergy 63:597–603.
  • Cryar, A., Pritchard, C., Burkitt, W., Walker, M., O'Connor, G. and Quaglia, M. (2012). A mass spectrometry-based reference method for the analysis of lysozyme in wine and the production of certified reference materials. J. Assoc. Public Anal. 40:77–80.
  • Czerwenka, C., Maier, I., Potocnik, N., Pittner, F. and Lindner, W. (2007). Absolute quantitation of beta-lactoglobulin by protein liquid chromatography-mass spectrometry and its application to different milk products. Anal. Chem. 79:5165–5172.
  • D'Andrea, M., Coïsson, J. D., Locatelli, M., Garino, C., Cereti, E. and Arlorio, M. (2011). Validating allergen coding genes (Cor a 1, Cor a 8, Cor a 14) as target sequences for hazelnut detection via Real-Time PCR. Food Chem. 124(3):1164–1171.
  • D'Andrea, M., Coïsson, J. D., Travaglia, F., Garino, C. and Arlorio, M. (2009). Development and validation of a SYBR-Green I real-time PCR protocol to detect hazelnut (Corylus avellana L.) in foods through calibration via plasmid reference standard. J. Agric. Food Chem. 57(23):11201–11208.
  • D'Amato, A., Kravchuk, A. V., Bachi, A. and Righetti, P.G (2010). Noah's nectar: The proteome content of a glass of red wine. J. Proteomics 73:2370–2377.
  • Davila-Ibanez, A. B., Salgueirino, V., Martinez-Zorzano, V., Mariño-Fernández, R., García-Lorenzo, A., Maceira-Campos, M., Muñoz-Ubeda, M, Junquera, E., Aicart, E., Rivas, J., Rodriguez-Berrocal, F. J. and Legido, J. L. (2012). Magnetic silica nanoparticle cellular uptake and cytotoxicity regulated by electrostatic polyelectrolytes-DNA loading at their surface. ACS Nano 6(1):747–759.
  • Demmel, A., Hupfer, C., Busch, U. and Engel, K.-H. (2011). Detection of lupine (Lupinus spp.) DNA in processed foods using real-time PCR. Food Control 22(2):215–220.
  • Demmel, A., Hupfer, C., Busch, U. and Engel, K.-H. (2012). Quantification of lupine (Lupinus angustifolius) in wheat flour using real-time PCR and an internal standard material. Eur. Food Res. Technol. 235(1):61–66.
  • Demmel, A., Hupfer, C., Ilg Hampe, E., Busch, U. and Engel, K.-H. (2008). Development of a real-time PCR for the detection of lupine DNA (lupinus species) in foods. J. Agric. Food Chem. 56(12):4328–4332.
  • Doi, H., Touhata, Y., Shibata, H., Sakai, S., Urisu, A., Akiyama, H. and Teshima, R. (2008). Reliable enzyme-linked immunosorbent assay for the determination of walnut proteins in processed foods. J. Agric. Food Chem. 56:7625–7630.
  • Dovicovicová, L., Olexová, L., Pangallo, D., Siekel, P. and Kuchta, T. (2004). Polymerase chain reaction (PCR) for the detection of celery (Apium graveolens) in food. Eur. Food Res. Technol. 218(5):493–495.
  • Ecker, C., Ertl, A., Pulverer, W., Nemes, A., Szekely, P., Petrasch, A., Linsberger-Martin, G. and Cichna-Markl, M. (2013). Validation and comparison of a sandwich ELISA, two competitive ELISAs and a real-time PCR method for the detection of lupine in food. Food Chem. 141(1):407–418.
  • EFSA. (2004). Opinion of the Scientific Panel on Dietetic Products, Nutrition and Allergies on a request from the Commission relating to the evaluation of allergenic foods for labeling purposes. The EFSA J. 2004(32):1–197.
  • Egholm, M., Buchardt, O., Christensen, L., Behrens, C., Freier, S. M., Driver, D. A., Berg, R. H., Kim, S. K., Norden, B. and Nielsen, P. E. (1993). PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365(6446):566–568.
  • Ehlert, A., Demmel, A., Hupfer, C., Busch, U. and Engel, K.-H. (2009). Simultaneous detection of DNA from 10 food allergens by ligation-dependent probe amplification. Food Addit. Contam. Part A 26(4):409–418.
  • Ehlert, A., Hupfer, C., Demmel, A., Engel, K.-H. and Busch, U. (2008). Detection of cashew nut in foods by a specific real-time PCR method. Food Anal. Methods 1(2):136–143.
  • Eng, J. K., McCormack, A. L. and Yates, J. R., III. (1994). An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5:976–989.
  • Espineira, M., Herrero, B., Vieites, J. M. and Santaclara, F. J. (2010). Validation of end-point and real-time PCR methods for the rapid detection of soy allergen in processed products. Food Addit. Contam. Part A 27(4):426–432.
  • Eugster, A. (2010). Alternative quantitative Bestimmung von Allergenen in Lebensmitteln mittels real-time PCR. Deut. Lebensm-Rundsch. 106:434–438
  • European Commission. (2000). Directive 2000/13/EC of the European Parliament and of the Council of 20 March 2000 on the approximation of the laws of the Member States relating to the labeling, presentation and advertising of foodstuffs. Off. J. Eur. Comm. L. 109:29–42.
  • European Commission. (2003). Directive 2003//EC of The European Parliament and of the Council of 10 November 2003 amending Directive 2000/13/EC as regards indication of the ingredients present in foodstuffs. Off. J. Eur. Comm. L. 308:15–18.
  • European Commission. (2007). Commission Directive 2007/68/EC of 27 November 2007 amending Annex IIIa to Directive 2000/13/EC of the European Parliament and of the Council as regards certain food ingredients. Off. J. Eur. Comm. L. 310:11–14.
  • Fæste, C. K., Rønning, H. T., Christians, U. and Granum, P. E. (2011). Liquid chromatography and mass spectrometry in food allergen detection. J. Food Prot. 74:316–345.
  • FDA. (2004). Food Allergy Labeling and Consumer Protection Act (FALCPA). Public Law 108–282, Title II.
  • Food Standards Agency. (2000). Adverse reactions to food and food ingredients. Crown Copyright.
  • Frémont, S., Kanny, G., Bieber, S., Nicolas, J. P. and Moneret-Vautrin, D. A. (1996). Identification of a masked allergen, alpha-lactalbumin, in baby-food cereal flour guaranteed free of cow's milk protein. Allergy 51:749–754.
  • Fuchs, M., Cichna-Markl, M. and Hochegger, R. (2010). Development and validation of a real-time PCR method for the detection of white mustard (Sinapis alba) in foods. J. Agric. Food Chem. 58:11193–11200.
  • Fuchs, M., Cichna-Markl, M. and Hochegger, R. (2012). Development and validation of a novel real-time PCR method for the detection of celery (Apium graveolens) in food. Food Chem. 130(1):189–195.
  • Fuchs, M., Cichna-Markl, M. and Hochegger, R. (2013). Development and validation of a duplex real-time PCR method for the simultaneous detection of celery and white mustard in food. Food Chem. 141(1):229–235.
  • Gallardo, J. M., Carrera, M. and Ortea, I. (2013). Proteomics in food science. In: Foodomics: Advanced Mass Spectrometry in Modern Food Science and Nutrition, pp. 125–165. Cifuentes, A., Ed., John Wiley & Sons, Inc.
  • Gallien, S., Duriez, E. and Domon, B. (2011). Selected reaction monitoring applied to proteomics. J. Mass Spectrom. 46:298–312.
  • Ganopoulos, I., Argiriou, A. and Tsaftaris, A. (2011). Adulterations in Basmati rice detected quantitatively by combined use of microsatellite and fragrance typing with High Resolution Melting (HRM) analysis. Food Chem. 129(2):652–659.
  • Gerber, S. A., Rush, J., Stemman, O., Kirschner, M. W. and Gygi, S. P. (2003). Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl. Acad. Sci. USA 100:6940–6945.
  • Geromanos, S. J., Vissers, J. P., Silva, J. C., Dorschel, C. A., Li, G. Z., Gorenstein, M. V., Bateman, R. H. and Langridge, J. I. (2009). The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS. Proteomics 9:1683–1695.
  • Gillet, L. C., Navarro, P., Tate, S., Röst, H., Selevsek, N., Reiter, L., Bonner, R. and Aebersold, R. (2012). Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics 11:O111.016717.
  • Giulietti, A., Overbergh, L., Valckx, D., Decallonne, B., Bouillon, R. and Mathieu, C. (2001). An overview of real-time quantitative PCR: Applications to quantify cytokine gene expression. Methods 25(4):386–401.
  • Gómez Galan, A. M., Brohée, M., de Andrade Silva, E., van Hengel, A. J. and Chassaigne, H. (2011). Development of a real-time PCR method for the simultaneous detection of soya and lupin mitochondrial DNA as markers for the presence of allergens in processed food. Food Chem. 127(2):834–841.
  • Gómez Galan, A. M., Brohée, M., Scaravelli, E., Hengel, A. J. and Chassaigne, H. (2010). Development of real-time PCR assays for the detection of lupin residues in food products. Eur. Food Res. Technol. 230(4):597–608.
  • Gómez-Hens, A., Fernández-Romero, J. M. and Aguilar-Caballos, M. P. (2008). Nanostructures as analytical tools in bioassays. TrAC Trends Anal. Chem. 27(5):394–406.
  • Goodwin, P. R. (2004). Food allergen detection methods: A coordinated approach. J. AOAC Int. 87(6):1383–1390.
  • Gryson, N., Messens, K. and Dewettinck, K. (2007). PCR detection of soy ingredients in bread. Eur. Food Res. Technol. 227(2):345–351.
  • Hebling, C. M., McFarland, M. A., Callahan, J. H. and Ross, M. M. (2012). Global proteomic screening of protein allergens and advanced glycation endproducts in thermally processed peanuts. J. Agric. Food Chem. 2013, 61(24):5638–5648.
  • Heick, J., Fischer, M., Kerbach, S, Tamm, U. and Popping, B. (2011a). Application of a liquid chromatography tandem mass spectrometry method for the simultaneous detection of seven allergenic foods in flour and bread and comparison of the method with commercially available ELISA test kits. J. AOAC Int. 94:1060–1068.
  • Heick, J., Fischer, M. and Pöpping, B. (2011). First screening method for the simultaneous detection of seven allergens by liquid chromatography mass spectrometry. J. Chromatogr. A 1218:938–943.
  • Helm, R. M. and Burks, A. W. (2000). Mechanisms of food allergy. Curr. Opin. Immunol. 12(6):647–653.
  • Hernando, A., Valdês, I. and Méndez, E. (2003). New strategy for the determination of gliadins in maize- or rice-based foods matrix-assisted laser desorption/ionization time-of-flight mass spectrometry: Fractionation of gliadins from maize or rice prolamins by acidic treatment. J. Mass Spectrom. 38:862–871.
  • Herrmann, M. G., Durtschi, J. D., Voelkerding, K. V. and Wittwer, C. T. (2006). Instrument comparison for DNA genotyping by amplicon melting. J. Assoc. Lab. Autom. 11:273–277.
  • Higuchi, R., Dollinger, G., Walsh, P. S. and Griffith, R. (1992). Simultaneous amplification and detection of specific DNA sequences. Biotechnology 10(4):413–417.
  • Hildebrandt, S. (2010). Multiplexed identification of different fish species by detection of parvalbumin, a common fish allergen gene: A DNA application of multi-analyte profiling (xMAP) technology. Anal. Bioanal. Chem. 397(5):1787–1796.
  • Hildebrandt, S. and Garber, E. A. E. (2010). Effects of processing on detection and quantification of the parvalbumin gene in Atlantic salmon (Salmo salar). Food Chem. 119(1):75–80.
  • Hirao, T., Hiramoto, M., Imai, S. and Kato, H. (2006). A novel PCR method for quantification of buckwheat by using an unique internal standard material. J. Food Prot. 69(10):2478–2486.
  • Hird, H., Chisholm, J., Sanchez, A., Hernandez, M., Goodier, R., Schneede, K., Boltz, C. and Popping, B. (2006). Effect of heat and pressure processing on DNA fragmentation and implication for the detection of meat using a real-time polymerase chain reaction. Food Addit. Contam. 23:645–650.
  • Hird, H., Pumphrey, R., Wilson, P., Sunderland, J. and Reece, P. (2000). Identification of peanut and hazelnut allergens by native two-dimensional gel electrophoresis. Electrophoresis 21:2678–2683.
  • Hohensinner, V., Maier, I. and Pittner, F. (2007). A “gold cluster-linked immunosorbent assay”: Optical near-field biosensor chip for the detection of allergenic beta-lactoglobulin in processed milk matrices. J. Biotechnol. 130(4):385–388.
  • Holzhauser, T., Stephan, O. and Vieths, S. (2002). Detection of potentially allergenic hazelnut (Corylus avellana) residues in food: A comparative study with DNA PCR-ELISA and protein sandwich-ELISA. J. Agric. Food Chem. 50(21):5808–5815.
  • Hong, C., Jiang, H., Lü, E., Wu, Y., Guo, L., Xie, Y., Wang, C. and Yang, Y. (2012). Identification of milk component in ancient food residue by proteomics. PLoS One 7:e37053.
  • Hourihane, J.O'B. (1998). Prevalence and severity of food allergy-need for control. Allergy 53:(46 Supplement):84–88.
  • Hu, W. and Li, C. M. (2011). Nanomaterial-based advanced immunoassays. WIREs Nanomed. Nanobiotechnol. 3:119–133.
  • Hubalkova, Z. and Rencova, E. (2011). One-step multiplex PCR method for the determination of pecan and Brazil nut allergens in food products. J. Sci. Food Agric. 91(13):2407–2411.
  • Hupfer, C., Waiblinger, H.-U. and Busch, U. (2007). Development and validation of a real-time PCR detection method for celery in food. Eur. Food Res. Technol. 225(3–4):329–335.
  • Iliuk, A. B., Hu, L. and Tao, W. A. (2011). Aptamer in bioanalytical applications. Anal. Chem. 83(12):4440–4452.
  • Immer, U., Reck, B., Lindeke, S. and Koppelman, S. (2004). Ridascreen fast peanut, a rapid and safe tool to determine peanut contamination in food. Int. J. Food Sci. Technol. 39:869–871.
  • Iniesto, E., Jiménez, A., Prieto, N., Cabanillas, B., Burbano, C., Pedrosa, M. M., Rodríguez, J., et al. (2013). Real Time PCR to detect hazelnut allergen coding sequences in processed foods. Food Chem. 138(2–3):1976–1981.
  • Ishizaki, S., Sakai, Y., Yano, T., Nakano, S., Yamada, T., Nagashima, Y., Shiomi, K., Nakao, Y. and Akiyama, H. (2012). Specific detection by the polymerase chain reaction of potentially allergenic salmonid fish residues in processed foods. Biosci. Biotechnol. Biochem. 76(5):980–985.
  • Jaakola, L., Suokasa, M. and Häggmana, H. (2010). Novel approaches based on DNA barcoding and high-resolution melting of amplicons for authenticity analyses of berry species. Food Chem. 123:494–500.
  • Janská, V., Piknová, L. and Kuchta, T. (2011). Relative quantification of walnuts and hazelnuts in bakery products using real-time polymerase chain reaction. Eur. Food Res. Technol. 232(6):1057–1060.
  • Janská, V., Piknová, L. and Kuchta, T. (2012). Semi-quantitative estimation of the walnut content in fillings of bakery products using real-time polymerase chain reaction with internal standard material. Eur. Food Res. Technol. 235(6):1033–1038.
  • Johnson, P. E., Baumgartner, S., Aldick, T., Bessant, C., Giosafatto, V, Heick, J., Mamone, G., O'Connor, G., Poms, R., Popping, B., Reuter, A., Ulberth, F., Watson, A., Monaci, L. and Mills, E. N. (2011). Current perspectives and recommendations for the development of mass spectrometry methods for the determination of allergens in foods. J. AOAC Int. 94:1026–1033.
  • Jorge, I., Casas, E. M., Villar, M., Ortega-Pérez, I., López-Ferrer, D., Martínez-Ruiz, A., Carrera, M., Marina, A., Martínez, P., Serrano, H., Cañas, B., Were, F., Gallardo, J. M., Lamas, S., Redondo, J. M., García-Dorado, D. and Vázquez, J. (2007). High-sensitivity analysis of specific peptides in complex samples by selected MS/MS ion monitoring and linear ion trap mass spectrometry: Application to biological studies. J. Mass Spectrom. 42:1391–1403.
  • Kaul, S., Lüttkopf, D., Kastner, B., Vogel, L., Höltz, G., Vieths, S. and Hoffmann, A. (2007). Mediator release assays based on human or murine IgE in allergen standardization. Clin. Exp. Allergy 37:141–150.
  • Kenk, M., Panter, S., Engler-Blum, G. and Bergemann, J. (2012). Sensitive DNA-based allergen detection depends on food matrix and DNA isolation method. Eur. Food Res. Technol. 234(2):351–359.
  • Kerbach, S., Alldrick, A. J., Crevel, R. W. R., Dömötör, L., DunnGalvin, A., Clare Mills, E. N., Pfaff, S., Poms, R. E., Popping, B. and Tömösközi, S. (2009). Managing food allergens in the food supply chain - Viewed from different stakeholder perspectives. Qual. Assur. Saf. Crop. Foods 1(1):50–60.
  • Kimber, I. and Dearman, R. J. (2001). Food allergy: What are the issues? Toxicol. Lett. 120:165–170.
  • Kirsch, S., Fourdrilis, S., Dobson, R., Scippo, M.-L., Maghuin-Rogister, G. and De Pauw, E. (2009). Quantitative methods for food allergens: A review. Anal. Bioanal. Chem. 395(1):57–67.
  • Köppel, R., Dvorak, V., Zimmerli, F., Breitenmoser, A., Eugster, A. and Waiblinger, H.-U. (2010). Two tetraplex real-time PCR for the detection and quantification of DNA from eight allergens in food. Eur. Food Res. Technol. 230(3):367–374.
  • Köppel, R., Velsen-Zimmerli, F. and Bucher, T. (2012). Two quantitative hexaplex real-time PCR systems for the detection and quantification of DNA from twelve allergens in food. Eur. Food Res. Technol. 235(5):843–852.
  • Krishnan, H. B., Kim, W. S., Jang, S. and Kerley, M. S. (2009). All three subunits of soybean beta-conglycinin are potential food allergens. J. Agric. Food Chem. 57:938–943.
  • Kubista, M., Andrade, J. M., Bengtsson, M., Forootan, A., Jonák, J., Lind, K., Sindelka, R., et al. (2006). The real-time polymerase chain reaction. Mol. Aspects Med. 27(2–3):95–125.
  • Kumar, S. K. A. (2008). Recent advances on DNA biosensors. Sensors & Transducers Journal 92(5):122–133.
  • Ladics, G. S. and Selgrade, M. K. (2009). Identifying food proteins with allergenic potential: Evolution of approaches to safety assessment and research to provide additional tools. Regul. Toxicol. Pharm. 54:S2–S6.
  • Lee, J. Y. and Kim, C. J. (2010). Determination of allergenic egg proteins in food by protein-, mass spectrometry-, and DNA-based methods. J. AOAC Int. 93:462–477.
  • Leitner, A., Castro-Rubio, F., Marina, M. L. and Lindner, W. (2006). Identification of marker proteins for the adulteration of meat products with soybean proteins by multidimensional liquid chromatography-tandem mass spectrometry. J. Proteome Res. 5:2424–2430.
  • Levin, C. S., Hofmann, C., Ali, T. A., Kelly, A. T., Morosan, E., Nordlandler, P., Whitmire, K. H. and Halas, N. J. (2009). Magnetic-Plasmonic Core-Shell Nanoparticles. ACS Nano 3:1379–1388.
  • Liz-Marzan, L. M. (2006). Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22(1):32–41.
  • Locati, D., Morandi, S., Zanotti, M. and Arnoldi, A. (2006). Preliminary approaches for the development of a high-performance liquid chromatography/electrospray ionization tandem mass spectrometry method for the detection and label-free semi-quantitation of the main storage proteins of Lupinus albus in foods. Rapid Commun. Mass Spectrom. 20:1305–1316.
  • López, J. L., Marina, A., Alvarez, G. and Vázquez, J. (2002). Application of proteomics for fast identification of species-specific peptides from marine species. Proteomics 2:1658–1665.
  • López-Andreo, M., Aldeguer, M., Guillén, I., Gabaldón, J. A. and Puyet, A. (2012). Detection and quantification of meat species by qPCR in heat-processed food containing highly fragmented DNA. Food Chem. 134(1):518–523.
  • López-Andreo, M., Lugo, L., Garrido-Pertierra, A., Prieto, M. I. and Puyet, A. (2005). Identification and quantitation of species in complex DNA mixtures by real-time polymerase chain reaction. Anal. Biochem. 339:73–82.
  • López-Calleja, I. M., De la Cruz, S., Pegels, N., González, I., García, T. and Martín, R. (2013). Development of a real time PCR assay for detection of allergenic trace amounts of peanut (Arachis hypogaea) in processed foods. Food Control 30(2):480–490.
  • López-Matas, M. A., Larramendi, C. H., Ferrer, A., Huertas, A. J., Pagán, J. A., García-Abujeta, J. L., Bartra, J., Andreu, C., Lavín, J. R. and Carnés, J. (2011). Identification and quantification of tomato allergens: In vitro characterization of six different varieties. Ann. Allergy Asthma Immunol. 106:230–238.
  • López-Quintela, M. A. and Rivas, J. (1996). Nanoscale magnetic particles: Synthesis, structure and dynamics. Curr. Opin. Colloid Interface Sci. 1(6):806–819.
  • Lutter, P., Parisod, V. and Weymuth, H. (2011). Development and validation of a method for the quantification of milk proteins in food products based on liquid chromatography with mass spectrometric detection. J. AOAC Int. 94:1043–1059.
  • Luykx, D. M., Cordewener, J. H., Ferranti, P., Frankhuizen, R., Bremer, M. G., Hooijerink, H. and America, A. H. (2007). Identification of plant proteins in adulterated skimmed milk powder by high-performance liquid chromatography – mass spectrometry. J. Chromatogr. A 1164:189–197.
  • Madesis, P., Ganopoulos, I., Anagnostis, A. and Tsaftaris, A. (2012). The application of Bar-HRM (Barcode DNA-High Resolution Melting) analysis for authenticity testing and quantitative detection of bean crops (Leguminosae) without prior DNA purification. Food Control 25(2):576–582.
  • Madesis, P., Ganopoulos, I., Bosmali, I. and Tsaftaris, A. (2013). Barcode High Resolution Melting analysis for forensic uses in nuts: A case study on allergenic hazelnuts (Corylus avellana). Food Res. Int. 50(1):351–360.
  • Mafra, I., Ferreira, I. M. P. L. V. O. and Oliveira, M. B. P. P. (2008). Food authentication by PCR-based methods. Eur. Food Res. Technol. 227(3):649–665.
  • Maier, I., Morgan, M. R. A, Lindner, W. and Pittner, F. (2008). Optical resonance-enhanced absorption-based near-field immunochip biosensor for allergen detection. Anal. Chem. 80(8):2694–2703.
  • Mari, A., Rasi, C., Palazzo, P. and Scala, P. (2009). Allergen databases: Current status and perspectives. Curr. Allergy Asthma Rep. 9:373–383.
  • Martín, I., García, T., Rojas, M., Pegels, N., Pavón, M. A., Hernández, P. E., González, I. and Martín, R. (2010). Real-time polymerase chain reaction detection of fishmeal in feedstuffs. J. AOAC Int. 93(6):1768–1777.
  • Marzban, G., Herndl, A., Maghuly, F., Katinger, H. and Laimer, M. (2008). Mapping of fruit allergens by 2D electrophoresis and immunodetection. Expert Rev. Proteomics 5:61–75.
  • McLafferty, F. W., Breuker, K., Jin, M., Han, X., Infusini, G., Jiang, H., X. Kong, X. and Begley, T. P. (2007). Top-down MS, a powerful complement to the high capabilities of proteolysis proteomics. FEBS J. 274:6256–6268.
  • Metcalfe, D. D., Astwood, J. D., Townsend, R., Sampson, H. A., Taylor, S. L. and Fuchs, R. L. (1996). Assessment of allergenic potential of foods derived from genetically engineered crop plants. Crit. Rev. Food Sci. Nutr. 36(Supplement):S165–S186.
  • Mollé, D. and Léonil, J. (2005). Quantitative determination of bovine k-casein macropeptide in dairy products by LC-ESI/MS and LC-ESI/MS/MS. Int. Dairy J. 15:419–428.
  • Monaci, L., Losito, I., De Angelis, E., Pilolli, R. and Visconti, A. (2013). Multi-allergen quantification of fining-related egg and milk proteins in white wines by high-resolution mass spectrometry. Rapid Commun. Mass Spectrom. 27(17):2009–2018.
  • Monaci, L., Losito, I., Palmisano, F. and Visconti, A. (2010). Identification of allergenic milk proteins markers in fined white wines by capillary liquid chromatography-electrospray ionization-tandem mass spectrometry. J. Chromatogr. A 1217:4300–4305.
  • Monaci, L., Losito, I., Palmisano, F. and Visconti, A. (2011). Reliable detection of milk allergens in food using a high-resolution, stand-alone mass spectrometer. J. AOAC Int. 94:1034–1042.
  • Monaci, L., Tregoat, V., van Hengel, A. J. and Anklam, E. (2006). Milk allergens, their characteristics and their detection in food: A review. Eur. Food Res. Technol. 223:149–179.
  • Monaci, L. and van Hengel, A. J. (2008). Development of a method for the quantification of whey allergen traces in mixed-fruit juices based on LC with MS detection. J. Chromatogr. 1192:113–120.
  • Monaci, L. and Visconti, A. (2010). Immunochemical and DNA-based methods in food allergen analysis and quality assurance perspectives. Trends Food Sci. Technol. 21(6):272–283.
  • Moreno, F. J., Jenkins, J. A., Mellon, F. A., Rigby, N. M., Robertson, J. A., Wellner, N. and Clare Mills, E. N. (2004). Mass spectrometry and structural characterization of 2S albumin isoforms from Brazil nuts (Bertholletia excelsa). Biochim. Biophys. Acta 1698:175–186.
  • Morishita, N., Kamiya, K., Matsumoto, T., Sakai, S., Teshima, R., Urisu, A., Moriyama, T., Ogawa, T., Akiyama, H. and Morimatsu, F. (2008). Reliable enzyme-linked immunosorbent assay for the determination of soybean proteins in processed foods. J. Agric. Food Chem. 56:6818–6824.
  • Morisset, D., Štebih, D., Milavec, M, Gruden, K. and Žel, J. (2013). Quantitative analysis of food and feed samples with droplet digital PCR. PLoS ONE 8(5):e62583.
  • Mustorp, S., Engdahl-Axelsson, C., Svensson, U. and Holck, A. (2008). Detection of celery (Apium graveolens), mustard (Sinapis alba, Brassica juncea, Brassica nigra) and sesame (Sesamum indicum) in food by real-time PCR. Eur. Food Res, Technol. 226(4):771–778.
  • Mustorp, S. L., Drømtorp, S. M. and Holck, A. L. (2011). Multiplex, quantitative, ligation-dependent probe amplification for determination of allergens in food. J. Agric. Food Chem. 59:5231–5239.
  • Nadal, P., Pinto, A., Svobodova, M., Canela, N. and O'sullivan, C. K. (2012). DNA aptamers against the Lup an 1 food allergen. PloS ONE 7(4):e35253.
  • Natale, M., Bisson, C., Monti, G., Peltran, A., Garoffo, L. P., Valentini, S., Fabris, C., Bertino, E., Coscia, A. and Conti, A. (2004). Cow's milk allergens identification by two-dimensional immunoblotting and mass spectrometry. Mol. Nutr. Food Res. 48:363–369.
  • Ortea, I., Cañas, B., Calo-Mata, P., Barros-Velázquez, J. and Gallardo, J. M. (2009b). Arginine kinase peptide mass fingerprinting as a proteomic approach for species identification and taxonomic analysis of commercially relevant shrimp species. J. Agric. Food Chem. 57:5665–5672.
  • Ortea, I., Cañas, B. and Gallardo, J. M. (2009a). Mass spectrometry characterization of species-specific peptides from arginine kinase for the identification of commercially relevant shrimp species. J. Proteome Res. 8:5356–5362.
  • Ortea, I., Cañas, B. and Gallardo, J. M. (2011). Selected tandem mass spectrometry ion monitoring for the fast identification of seafood species. J. Chromatogr. A 1218:4445–4451.
  • Ortolani, C., Ispano, M., Scibilia, J. and Pastorello, E. A. (2001). Introducing chemists to food allergy. Allergy 56:5–8.
  • Pafundo, S., Gullì, M. and Marmiroli, N. (2009). SYBR® GreenER™ Real-Time PCR to detect almond in traces in processed food. Food Chem. 116(3):811–815.
  • Pafundo, S., Gullì, M. and Marmiroli, N. (2010). Multiplex real-time PCR using SYBR® GreenER™ for the detection of DNA allergens in food. Anal. Bioanal. Chem. 396(5):1831–1839.
  • Pafundo, S., Gullì, M. and Marmiroli, N. (2011). Comparison of DNA extraction methods and development of duplex PCR and real-time PCR to detect tomato, carrot, and celery in food. J. Agric. Food Chem. 59(19):10414–10424.
  • Palchetti, I. and Mascini, M. (2012). Electrochemical nanomaterial-based nucleic acid aptasensors. Anal. Bioanal. Chem. 402(10):3103–3114.
  • Palle-Reisch, M., Wolny, M., Cichna-Markl, M. and Hochegger, R. (2013). Development and validation of a real-time PCR method for the simultaneous detection of black mustard (Brassica nigra) and brown mustard (Brassica juncea) in food. Food Chem. 138(1):348–355.
  • Panchaud, A., Affolter, M., Moreillon, P. and Kussmann, M. (2008). Experimental and computational approaches to quantitative proteomics: Status quo and outlook. J. Proteomics 71:19–33.
  • Pandey, A. and Mann, M. (2000). Proteomics to study genes and genomes. Nature 405:837–846.
  • Pappin, D. J. C., Hojrup, P. and Bleasby, A. J. (1993). Rapid identification of proteins by peptide-mass fingerprinting. Curr. Biol. 3:327–332.
  • Pedreschi, R., Nørgaard, J. and Maquet, A. (2012). Current challenges in detecting food allergens by shotgun and targeted proteomic approaches: A case study on traces of peanut allergens in baked cookies. Nutrients 4:132–150.
  • Pegels, N., González, I., López-Calleja, I., García, T. and Martín, R. (2013). Detection of Fish-Derived Ingredients in Animal Feeds by a TaqMan Real-Time PCR Assay. Food Anal. Methods 6(4):1040–1048.
  • Perkins, D. N., Pappin, D. J. C., Creasy, D. M. and Cottrell, J. S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567.
  • Pilolli, R., Monaci, L. and Visconti, A. (2013). Advances in biosensor development based on integrating nanotechnology and applied to food-allergen management. TrAC Trends Anal. Chem. 47:12–26.
  • Piknová, Ľ. and Kuchta, T. (2007). Detection of cashew nuts in food by real-time polymerase chain reaction. J. Food Nutr. Res. 46(3):101–104.
  • Piknová, L., Pangallo, D. and Kuchta, T. (2008). A novel real-time polymerase chain reaction (PCR) method for the detection of hazelnuts in food. Eur. Food Res. Technol. 226(5):1155–1158.
  • Pinheiro, L. B., Coleman, V. A., Hindson, C. M., Herrmann, J., Hindson, B. J., et al. (2012). Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 83:1003–1011.
  • Pividori, M. I. and Alegret, S. (2010). Micro and nanoparticles in biosensing systems for food safety and environmental monitoring. An example of converging technologies. Microchim. Acta 170(3–4):227–242.
  • Platteau, C., De Loose, M., De Meulenaer, B. and Taverniers, I. (2011a). Detection of allergenic ingredients using real-time PCR: A case study on hazelnut (Corylus avellena) and soy (Glycine max). J. Agric. Food Chem. 59(20):10803–10814.
  • Platteau, C., De Loose, M., De Meulenaer, B. and Taverniers, I. (2011b). Quantitative detection of hazelnut (Corylus avellana) in cookies: ELISA versus real-time PCR. J. Agric. Food Chem. 59(21):11395–11402.
  • Pollet, J., Delport, F., Janssen, K. P. F., Tran, D. T., Wouters, J., Verbiest, T. and Lammertyn, J. (2011). Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor. Talanta 83(5):1436–1441.
  • Poms, R. E., Anklam, E. and Kuhn, M. (2004a). Polymerase chain reaction techniques for food allergen detection. J. AOAC Int. 87(6):1391–1397.
  • Poms, R. E., Capelletti, C. and Anklam, E. (2004b). Effect of roasting history and buffer composition on peanut protein extraction efficiency. Mol. Nutr. Food Res. 48(6):459–464.
  • Poms, R. E., Klein, C. L. and Anklam, E. (2004c). Methods for allergen analysis in food: A review. Food Addit. Contam. 21:1–31.
  • Poms, R. E., Mills, C. and Pöpping, B. (2010). MoniQA (Monitoring and Quality Assurance)—an EU-funded Network of Excellence (NoE) Contributing toward a harmonized approach to food safety management and method validation—Including food allergens. Food Anal. Methods 3(4):389–401.
  • Prado, M., Berben, G., Fumière, O., Van Duijn, G., Mensinga-Kruize, J., Reaney, S., Boix, A., et al. (2007). Detection of ruminant meat and bone meals in animal feed by real-time polymerase chain reaction: Result of an interlaboratory study. J. Agric. Food Chem. 55(18):7495–7501.
  • Prado, M., Boix, A. and Von Holst, C. (2012). Novel approach for the simultaneous detection of DNA from different fish species based on a nuclear target: Quantification potential. Anal. Bioanal. Chem. 403:3041–3050.
  • Prado, M., Boix, A. and von Holst, C. (2013). Development of a real-time PCR method for the simultaneous detection of mackerel and horse mackerel. Food Control 34(1):19–23.
  • Prado, M., Casqueiro, J., Iglesias, Y., Cepeda, A. and Barros-Velázquez, J. (2004). Application of a polymerase chain reaction (PCR) method as a complementary tool to microscopic analysis for the detection of bones and other animal tissues in home-made animal meals. J. Sci. Food Agric. 84(6):505–512.
  • Rahman, A. M. A., Kamath, S., Lopata, A. L. and Helleur, R. J. (2010). Analysis of the allergenic proteins in black tiger prawn (Penaeus monodon) and characterization of the major allergen tropomyosin using mass spectrometry. Rapid Commun. Mass Spectrom. 24:2462–2470.
  • Reed, G. H., Kent, J. O. and Wittwer, C. T. (2007). High-resolution DNA melting analysis for simple and efficient molecular diagnostics. Pharmacogenomics 8:597–606.
  • Reynolds, R. A., Mirkin, C. A. and Letsinger, R. L. (2000). Homogeneous, nanoparticle-based quantitative colorimetric detection of oligonucleotides. J. Am. Chem. Soc. 122:3795–3796.
  • Rigby, N. M., Marsh, J., Sancho, A. I., Wellner, K., Akkerdaas, J., van Ree, R., Knulst, A., Fernández-Rivas, M., Brettlova, V., Schilte, P. P., Summer, C., Pumphrey, R., Shewry, P. R. and Mills, E. N. (2008). The purification and characterization of allergenic hazelnut seed proteins. Mol. Nutr. Food Res. 52:S251–S261.
  • Röder, M., Filbert, H. and Holzhauser, T. (2010). A novel, sensitive and specific real-time PCR for the detection of traces of allergenic Brazil nut (Bertholletia excelsa) in processed foods. Anal. Bioanal. Chem. 398(5):2279–2288.
  • Röder, M., Vieths, S. and Holzhauser, T. (2011). Sensitive and specific detection of potentially allergenic almond (Prunus dulcis) in complex food matrices by Taqman® real-time polymerase chain reaction in comparison to commercially available protein-based enzyme-linked immunosorbent assay. Anal. Chim. Acta 685(1):74–83.
  • Rosi, N. L. and Mirkin, C. A. (2005). Nanostructures in biodiagnostics. Chem. Rev. 105:1547–1562.
  • Rossi, S., Scaravelli, E. and Germini, A. (2006). A PNA-array platform for the detection of hidden allergens in foodstuffs. Eur. Food Res. Technol. 223:1–6.
  • Sabbadin, S., Seraglia, R., Allegri, G., Bertazzo, A. and Traldi, P. (1999). Matrix-assisted laser desorption/ionization mass spectrometry in evaluation of protein profiles of infant formulae. Rapid Commun. Mass Spectrom. 13:1438–1443.
  • Sakaridis, I., Ganopoulos, I., Argiriou, A. and Tsaftaris, A. (2013). A fast and accurate method for controlling the correct labeling of products containing buffalo meat using High Resolution Melting (HRM) analysis. Meat Sci. 94(1):84–88.
  • Sathe, S. K., Teuberb, S. S. and Roux, K. H. (2005). Effects of food processing on the stability of food allergens. Biotechnol. Adv. 23:423–429.
  • Scaravelli, E., Brohée, M., Marchelli, R. and van Hengel, A. J. (2007). Development of three real-time PCR assays to detect peanut allergen residue in processed food products. Eur. Food Res. Technol. 227(3):857–869.
  • Scaravelli, E., Brohée, M., Marchelli, R. and van Hengel, A. J. (2009). The effect of heat treatment on the detection of peanut allergens as determined by ELISA and real-time PCR. Anal. Bioanal. Chem. 395(1):127–137.
  • Scheibe, B., Weiss, W., Ruëff, F., Przybilla, B. and Görg, A. (2001). Detection of trace amounts of hidden allergens: Hazelnut and almond proteins in chocolate. J. Chromatogr. B 756:229–237.
  • Schöringhumer, K. and Cichna-Markl, M. (2007). Development of a real-time PCR method to detect potentially allergenic sesame (Sesamum indicum) in food. J. Agric. Food Chem. 55(26):10540–10547.
  • Schöringhumer, K., Redl, G. and Cichna-Markl, M. (2009). Development and validation of a duplex real-time PCR method to simultaneously detect potentially allergenic sesame and hazelnut in food. J. Agric. Food Chem. 57(6):2126–2134.
  • Schouten, J. P., McElgunn, C. J., Waaijer, R., Zwijnenburg, D., Diepvens, F. and Pals, G. (2002). Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucl. Acids Res. 30(12):e57.
  • Schubert-Ullrich, P., Rudolf, J., Ansari, P., Galler, B., Führer, M., Molinelli, A. and Baumgartner, S. (2009). Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: An overview. Anal. Bioanal. Chem. 395:69–81.
  • Sealey-Voyksnear, J. A., Khosla, C., Voyksner, R. D. and Jorgenson, J. W. (2010). Novel aspects of quantitation of immunogenic wheat gluten peptides by liquid chromatography-mass spectrometry/mass spectrometry. J. Chromatogr. A 1217:4167–4183.
  • Seiki, K., Oda, H., Yoshioka, H., Sakai, S., Urisu, A., Akiyama, H. and Ohno, Y. (2007). A reliable and sensitive immunoassay for the determination of crustacean protein in processed foods. J. Agric. Food Chem. 55:9345–9350.
  • Sharma, G. M., Roux, K. H. and Sathe, S. K. (2009). A sensitive and robust competitive Enzyme-Linked Immunosorbent Assay for Brazil nut (Bertholletia excelsa L.) detection. J. Agric. Food Chem. 57:769–776.
  • Shefcheck, K. J., Callahan, J. H. and Musser, S. M. (2006). Confirmation of peanut protein using peptide markers in dark chocolate using liquid chromatography-tandem mass spectrometry (LC-MS/MS). J. Agric. Food Chem. 54:7953–7959.
  • Shefcheck, K. J. and Musser, S. M. (2004). Confirmation of the allergenic peanut protein, Ara h 1, in a model food matrix using liquid chromatography/tandem mass spectrometry (LC/MS/MS). J. Agric. Food Chem. 52:2785–2790.
  • Shevchenko, A., Wilm, M. and Mann, M. (1997). Peptide sequencing by mass spectrometry for homology searches and cloning of genes. J. Prot. Chem. 16:481–490.
  • Shiomi, K., Sato, Y., Hamamoto, S., Mita, H. and Shimakura, K. (2008). Sarcoplasmic calcium-binding protein: Identification as a new allergen of the black tiger shrimp Penaeus monodon. Int. Arch. Allergy Immunol. 146:91–98.
  • Sicherer, S. H. and Sampson, H. A. (2006). Food allergy. J. Allergy Clin. Immunol. 117(2 Supplement Mini-Primer):S470–S475.
  • Siegel, M., Schnur, K., Boernsen, B., Pietsch, K. and Waiblinger, H.-U. (2012). First ring-trial validation of real-time PCR methods for the quantification of allergenic food ingredients. Eur. Food Res. Technol. 235(4):619–630.
  • Sivaganesan, M., Seifring, S., Varma, M., Haugland, R. A. and Shanks, O. C. (2008). A Bayesian method for calculating real-time quantitative PCR calibration curves using absolute plasmid DNA standards. BMC Bioinformatics 9:120.
  • Słowianek, M. and Majak, I. (2011). Methods of allergen detection based on DNA analysis. Biotechnol. Food Sci. 75(2):39–44.
  • Soares, S., Mafra, I., Amaral, J. S. and Oliveira, M. B. P. P. (2010). A PCR assay to detect trace amounts of soybean in meat sausages. Int. J. Food Sci. Technol. 45(12):2581–2588.
  • Song, S., Wang, L., Li, J., Fan, C. and Zhao, J. (2008). Aptamer-based biosensors. TrAC Trends Anal. Chem. 27(2):108–117.
  • Speroni, F., Elviri, L., Careri, M. and Mangia, A. (2010). Magnetic particles functionalized with PAMAM-dendrimers and antibodies: A new system for an ELISA method able to detect Ara h3/4 peanut allergen in foods. Anal. Bioanal. Chem. 397(7):3035–3042.
  • Stadler, A., Chi, C., van der Lelie, D. and Gang, O. (2010). DNA-incorporating nanomaterials in biotechnological applications. Nanomedicine 5(2):319–334.
  • Stephan, O. and Vieths, S. (2004). Development of a real-time PCR and a sandwich ELISA for detection of potentially allergenic trace amounts of peanut (Arachis hypogaea) in processed foods. J. Agric. Food Chem. 52(12):3754–3760.
  • Sun, X., Guan, L., Shan, X., Zhang, Y. and Li, Z. (2012). Electrochemical detection of peanut allergen Ara h 1 using a sensitive DNA biosensor based on stem-loop probe. J. Agric. Food Chem. 60(44):10979–10984.
  • Sykes, P. J., Neoh, S. H., Brisco, M. J., Hugues, E., Condon, J., et al. (1992). Quantitation of targets for PCR by use of limiting dilution. Biotechniques 13:444–449.
  • Taylor, S. L., Hefle, S. L., Farnum, K., Rizk, S. W., Yeung, J., Barnett, M. E., Busta, F., et al. (2006). Analysis and evaluation of food manufacturing practices used to address allergen concerns. Compr. Rev. Food Sci. Food Saf. 5(4):138–157.
  • Thompson, M., Ellison, S. L. R. and Wood, R. (2002). Harmonized guidelines for single-laboratory (IUPAC Technical Report). Pure Appl. Chem. 74:835–855.
  • Tortajada-Genaro, L. A., Santiago-Felipe, S., Morais, S., Gabaldón, J. A., Puchades, R. and Maquieira, Á. (2012). Multiplex DNA detection of food allergens on a digital versatile disk. J. Agric. Food Chem. 60(1):36–43.
  • Tran, D. T., Janssen, K. P. F., Pollet, J., Lammertyn, E., Anné, J., Van Schepdael, A. and Lammertyn, J. (2010). Selection and characterization of DNA aptamers for egg white lysozyme. Molecules 15(3):1127–1140.
  • Tran, D. T., Knez, K., Janssen, K. P., Pollet, J., Spasic, D. and Lammertyn, J. (2013). Selection of aptamers against Ara h 1 protein for FO-SPR biosensing of peanut allergens in food matrices. Biosens. Bioelectron. 43:245–251.
  • Tuerk, C. and Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510.
  • Valdés, M. G., Valdés González, A. C., García Calzón, J. A. and Díaz-García, M. E. (2009). Analytical nanotechnology for food analysis. Microchim. Acta 166(1–2):1–19.
  • van Hengel, A. J. (2007). Food allergen detection methods and the challenge to protect food-allergic consumers. Anal. Bioanal. Chem. 389:111–118.
  • von Holst, C., Boix, A., Marien, A. and Prado, M. (2012). Factors influencing the accuracy of measurements with real-time PCR: The example of the determination of processed animal proteins. Food Control. 24:142–147.
  • Wang, J. (2007). Nanoparticle-based electrochemical bioassays of proteins. Electroanalysis 19:769–776.
  • Wang, W., Han, J., Wu, Y., Yuan, F., Chen, Y. and Ge, Y. (2011a). Simultaneous detection of eight food allergens using optical thin-film biosensor chips. J. Agric. Food Chem. 59(13):6889–6894.
  • Wang, W., Li, Y., Zhao, F., Chen, Y. and Ge, Y. (2011b). Optical thin-film biochips for multiplex detection of eight allergens in food. Food Res. Int. 44(10):3229–3234.
  • Watanabe, T., Akiyama, H., Maleki, S., Yamakawa, H., Iijima, K. E. N., Yamazaki, F., Matsumoto, T., Futo, S., Arakawa, F., Watai, M. and Maitani, T. (2006). A specific qualitative detection method for peanut (Arachis hypogaea) in foods using polymerase chain reaction. J. Food Biochem. 30:215–233.
  • Weber, D., Chantal, C. and Godefroy, S. B. (2009). Emerging analytical methods to determine gluten markers in processed foods-method development in support of standard setting. Anal. Bioanal. Chem. 395:111–117.
  • Weber, D., Raymond, P., Ben-Rejeb, S. and Lau, B (2006). Development of a liquid chromatography-tandem mass spectrometry method using capillary liquid chromatography and nanoelectrospray ionization-quadrupole time-of-flight hybrid mass spectrometer for the detection of milk allergens. J. Agric. Food Chem. 54:1604–1610.
  • Weber, P., Steinhart, H. and Paschke, A. (2007). Investigation of the allergenic potential of wines fined with various proteinogenic fining agents by ELISA. J. Agric. Food Chem. 55:3127–133.
  • WHO. (1999). United Nations Environment Programme, International Labour Organization, World Health Organization, International Programme On Chemical Safety (1999) Principles and methods for assessing allergic hypersensitization associated with exposure to chemicals. Environmental health criteria no 212. World Health Organization, Geneva
  • Wojdacz, T. K. and Dobrovic, A. (2007). Methylation-sensitive high resolution melting (MS-HRM): A new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res. 35(6):e41.
  • Xu, K., Huang, J., Ye, Z., Ying, Y. and Li, Y. (2009). Recent development of nano-materials used in DNA biosensors. Sensors 9(7):5534–5557.
  • Yu, C. J., Lin, Y. F., Chiang, B. L. and Chow, L. P. (2003). Proteomics and immunological analysis of a novel shrimp allergen, Pen m 2. J. Immunol. 170:445–453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.