1,350
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Therapeutic and nutraceutical potential of rosmarinic acid—Cytoprotective properties and pharmacokinetic profile

, , , , , & , PhD show all

References

  • Alamed, J., Chaiyasit, W., Mcclements, D. J. and Decker, E. A. (2009). Relationships between Free Radical Scavenging and Antioxidant Activity in Foods. J. Agric. Food Chem. 57:2969–2976.
  • Alkam, T., Nitta, A., Mizoguchi, H., Itoh, A. and Nabeshima, T. (2007). A natural scavenger of peroxynitrites, rosmarinic acid, protects against impairment of memory induced by Abeta (25–35). Behav. Brain Res. 180:139–145.
  • Amidon, G. L., Lennernas, H., Shah, V. P. and Crison, J. R. (1995). A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12:413–420.
  • Anusuya, C. and Manoharan, S. (2011). Antitumor initiating potential of rosmarinic acid in 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis. J. Environ. Pathol. Toxicol. Oncol. 30:199–211.
  • Baba, S., Osakabe, N., Natsume, M. and Terao, J. (2004). Orally administered rosmarinic acid is present as the conjugated and/or methylated forms in plasma, and is degraded and metabolized to conjugated forms of caffeic acid, ferulic acid and m-coumaric acid. Life Sci. 75:165–178.
  • Baba, S., Osakabe, N., Natsume, M., Yasuda, A., Muto, Y., Hiyoshi, K., Takano, H., Yoshikawa, T. and Terao, J. (2005). Absorption, metabolism, degradation and urinary excretion of rosmarinic acid after intake of Perilla frutescens extract in humans. Eur. J. Nutr. 44:1–9.
  • Bel-Rhlid, R., Crespy, V., Page-Zoerkler, N., Nagy, K., Raab, T. and Hansen, C.E. (2009). Hydrolysis of rosmarinic acid from rosemary extract with esterases and Lactobacillus johnsonii in vitro and in a gastrointestinal model. J. Agric. Food Chem. 57:7700–7705.
  • Bravo, L. (1998). Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 56:317–333.
  • Choi, H. R., Choi, J. S., Han, Y. N., Bae, S. J. and Chung, H. Y. (2002). Peroxynitrite scavenging activity of herb extracts. Phytother. Res. 16:364–367.
  • Couteau, D., Mccartney, A. L., Gibson, G. R., Williamson, G. and Faulds, C. B. (2001). Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. J. Appl. Microbiol. 90:873–881.
  • Dweck, A. C. (2009). The internal and external use of medicinal plants. Clin. Dermatol. 27:148–158.
  • Exarchou, V., Nenadis, N., Tsimidou, M., Gerothanassis, I. P., Troganis, A. and Boskou, D. (2002). Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage, and summer savory. J. Agric. Food Chem. 50:5294–5299.
  • Felgines, C., Talavera, S., Texier, O., Gil-Izquierdo, A., Lamaison, J. L. and Remesy, C. (2005). Blackberry anthocyanins are mainly recovered from urine as methylated and glucuronidated conjugates in humans. J. Agric. Food Chem. 53:7721–7727.
  • Furtado, M. A., Almeida, L. C. F., Furtado, R. A., Cunha, W. R. and Tavares, D. C. (2008). Antimutagenicity of rosmarinic acid in Swiss mice evaluated by the micronucleus assay. Mutat Res Gen Toxicol Environm Mutagen. 657:150–154.
  • Gohari, A. R., Saeidnia, S., Hajimehdipoor, H., Shekarchi, M. and Hadjiakhoondi, A. (2011). Isolation and quantification of rosmarinic acid from hymenocrater calycinus. J Herbs, Spices Med Plants. 17:132–138.
  • Gonthier, M. P., Remesy, C., Scalbert, A., Cheynier, V., Souquet, J. M., Poutanen, K. and Aura, A.M. (2006). Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro. Biomed. Pharmacother. 60:536–540.
  • Gonzalez-Vallinas, M., Gonzalez-Castejon, M., Rodriguez-Casado, A. and Ramirez De Molina, A. (2013). Dietary phytochemicals in cancer prevention and therapy: a complementary approach with promising perspectives. Nutr. Rev. 71:585–599.
  • Grace, M. H., Guzman, I., Roopchand, D. E., Moskal, K., Cheng, D. M., Pogrebnyak, N., Raskin, I., Howell, A. and Lila, M. A. (2013). Stable binding of alternative protein-enriched food matrices with concentrated cranberry bioflavonoids for functional food applications. J. Agric. Food Chem. 61:6856–6864.
  • Hollman, P. C., Van Het Hof, K. H., Tijburg, L. B. and Katan, M. B. (2001). Addition of milk does not affect the absorption of flavonols from tea in man. Free Radic. Res. 34:297–300.
  • Kalim, M. D., Bhattacharyya, D., Banerjee, A. and Chattopadhyay, S. (2010). Oxidative DNA damage preventive activity and antioxidant potential of plants used in Unani system of medicine. BMC Complement. Altern. Med. 10:77.
  • Karthik, D., Viswanathan, P. and Anuradha, C.V. (2011). Administration of rosmarinic acid reduces cardiopathology and blood pressure through inhibition of p22phox NADPH oxidase in fructose-fed hypertensive rats. J. Cardiovasc. Pharmacol. 58:514–521.
  • Kim, D. H., Jung, E. A., Sohng, I. S., Han, J. A., Kim, T. H. and Han, M. J. (1998). Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch. Pharm. Res. 21:17–23.
  • Kim, D. S., Kim, H. R., Woo, E. R., Hong, S. T., Chae, H. J. and Chae, S. W. (2005). Inhibitory effects of rosmarinic acid on adriamycin-induced apoptosis in H9c2 cardiac muscle cells by inhibiting reactive oxygen species and the activations of c-Jun N-terminal kinase and extracellular signal-regulated kinase. Biochem. Pharmacol. 70:1066–1078.
  • Konishi, Y., Hitomi, Y., Yoshida, M. and Yoshioka, E. (2005). Pharmacokinetic study of caffeic and rosmarinic acids in rats after oral administration. J. Agric. Food Chem. 53:4740–4746.
  • Konishi, Y. and Kobayashi, S. (2005). Transepithelial transport of rosmarinic acid in intestinal Caco-2 cell monolayers. Biosci. Biotechnol. Biochem. 69:583–591.
  • Lai, X. J., Zhang, L., Li, J. S., Liu, H. Q., Liu, X. H., Di, L. Q., Cai, B. C. and Chen, L.H. (2011). Comparative pharmacokinetic and bioavailability studies of three salvianolic acids after the administration of Salviae miltiorrhizae alone or with synthetical borneol in rats. Fitoterapia. 82:883–888.
  • Li, G. S., Jiang, W. L., Tian, J. W., Qu, G. W., Zhu, H. B. and Fu, F. H. (2010). In vitro and in vivo antifibrotic effects of rosmarinic acid on experimental liver fibrosis. Phytomedicine. 17:282–288.
  • Li, X., Yu, C., Lu, Y., Gu, Y., Lu, J., Xu, W., Xuan, L. and Wang, Y. (2007). Pharmacokinetics, tissue distribution, metabolism, and excretion of depside salts from Salvia miltiorrhiza in rats. Drug. Metab. Dispos. 35:234–239.
  • Manach, C., Scalbert, A., Morand, C., Remesy, C. and Jimenez, L. (2004). Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79:727–747.
  • Moreno, S., Scheyer, T., Romano, C. S. and Vojnov, A. A. (2006). Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic. Res. 40:223–231.
  • Nakazawa, T. and Ohsawa, K. (2000). Metabolites of orally administered Perilla frutescens extract in rats and humans. Biol. Pharm. Bull. 23:122–127.
  • Neethirajan, S. and Jayas, D.S. (2011). Nanotechnology for the Food and Bioprocessing Industries. Food Bioproc. Technol. 4:39–47.
  • Osakabe, N., Takano, H., Sanbongi, C., Yasuda, A., Yanagisawa, R., Inoue, K. and Yoshikawa, T. (2004a). Anti-inflammatory and anti-allergic effect of rosmarinic acid (RA); inhibition of seasonal allergic rhinoconjunctivitis (SAR) and its mechanism. Biofactors. 21:127–131.
  • Osakabe, N., Yasuda, A., Natsume, M., Sanbongi, C., Kato, Y., Osawa, T. and Yoshikawa, T. (2002). Rosmarinic acid, a major polyphenolic component of Perilla frutescens, reduces lipopolysaccharide (LPS)-induced liver injury in D-galactosamine (D-GalN)-sensitized mice. Free Radic. Biol. Med. 33:798–806.
  • Osakabe, N., Yasuda, A., Natsume, M. and Yoshikawa, T. (2004b). Rosmarinic acid inhibits epidermal inflammatory responses: anticarcinogenic effect of Perilla frutescens extract in the murine two-stage skin model. Carcinogenesis. 25:549–557.
  • Park, S. U., Uddin, M. R., Xu, H., Kim, Y. K. and Lee, S. Y. (2008). Biotechnological applications for rosmarinic acid production in plant. Afr. J. Biotechnol. 7:4959–4965.
  • Petersen, M. and Simmonds, M. S. (2003). Rosmarinic acid. Phytochemistry. 62:121–125.
  • Plumb, G. W., Garcia-Conesa, M. T., Kroon, P. A., Rhodes, M., Ridley, S. and Williamson, G. (1999). Metabolism of chlorogenic acid by human plasma, liver, intestine and gut microflora. J. Sci. Food Agr. 79:390–392.
  • Qiao, S. L., Li, W. H., Tsubouchi, R., Haneda, M., Murakami, K., Takeuchi, F., Nisimoto, Y. and Yoshino, M. (2005). Rosmarinic acid inhibits the formation of reactive oxygen and nitrogen species in RAW264.7 macrophages. Free Radic. Res. 39:995–1003.
  • Rechner, A. R., Kuhnle, G., Bremner, P., Hubbard, G. P., Moore, K. P. and Rice-Evans, C.A. (2002). The metabolic fate of dietary polyphenols in humans. Free Radic. Biol. Med. 33:220–235.
  • Ritschel, W. A., Starzacher, A., Sabouni, A., Hussain, A. S. and Koch, H.P. (1989). Percutaneous absorption of rosmarinic acid in the rat. Methods Find Exp. Clin. Pharmacol. 11:345–352.
  • Roura, E., Andres-Lacueva, C., Estruch, R., Bilbao, M. L. M., Izquierdo-Pulido, M. and Lamuela-Raventos, R. M. (2008). The effects of milk as a food matrix for polyphenols on the excretion profile of cocoa (−)-epicatechin metabolites in healthy human subjects. Br. J. Nutr. 100:846–851.
  • Ryan, L. and Petit, S. (2010). Addition of whole, semiskimmed, and skimmed bovine milk reduces the total antioxidant capacity of black tea. Nutr. Res. 30:14–20.
  • Sanbongi, C., Takano, H., Osakabe, N., Sasa, N., Natsume, M., Yanagisawa, R., Inoue, K., Kato, Y., Osawa, T. and Yoshikawa, T. (2003). Rosmarinic acid inhibits lung injury induced by diesel exhaust particles. Free Radic. Biol. Med. 34:1060–1069.
  • Schramm, D. D., Karim, M., Schrader, H. R., Holt, R. R., Kirkpatrick, N. J., Polagruto, J. A., Ensunsa, J. L., Schmitz, H. H. and Keen, C. L. (2003). Food effects on the absorption and pharmacokinetics of cocoa flavanols. Life Sci. 73:857–869.
  • Selma, M. V., Espin, J. C. and Tomas-Barberan, F. A. (2009). Interaction between phenolics and gut microbiota: role in human health. J. Agric. Food Chem. 57:6485–6501.
  • Serafini, M., Testa, M. F., Villano, D., Pecorari, M., Van Wieren, K., Azzini, E., Brambilla, A. and Maiani, G. (2009). Antioxidant activity of blueberry fruit is impaired by association with milk. Free Radic. Biol. Med. 46:769–774.
  • Shahidi, F. (2009). Nutraceuticals and functional foods: Whole versus processed foods. Trends Food Sci. Technol. 20:376–387.
  • Sharmila, R. and Manoharan, S. (2012). Anti-tumor activity of rosmarinic acid in 7,12-dimethylbenz(a)anthracene (DMBA) induced skin carcinogenesis in Swiss albino mice. Indian J. Exp. Biol. 50:187–194.
  • Shekarchi, M., Hajimehdipoor, H., Saeidnia, S., Gohari, A. R. and Hamedani, M. P. (2012). Comparative study of rosmarinic acid content in some plants of Labiatae family. Pharmacognosy Mag. 8:37–41.
  • Shen, J., Gao, G., Liu, X. and Fu, J. (2014). Natural Polyphenols Enhance Stability of Crosslinked UHMWPE for Joint Implants. Clin. Orthop. Relat. Res.
  • Shimojo, Y., Kosaka, K., Noda, Y., Shimizu, T. and Shirasawa, T. (2010). Effect of rosmarinic acid in motor dysfunction and life span in a mouse model of familial amyotrophic lateral sclerosis. J. Neurosci. Res. 88:896–904.
  • Shishikura, Y., Khokhar, S. and Murray, B. S. (2006). Effects of tea polyphenols on emulsification of olive oil in a small intestine model system. J. Agric. Food Chem. 54:1906–1913.
  • Swarup, V., Ghosh, J., Ghosh, S., Saxena, A. and Basu, A. (2007). Antiviral and anti-inflammatory effects of rosmarinic acid in an experimental murine model of Japanese encephalitis. Antimicrob. Agents Chemother. 51:3367–3370.
  • Tahira, R., Naeemullah, M., Akbar, F. and Masood, M.S. (2011). Major phenolic acids of local and exotic mint germplasm grown in Islamabad. Pakistan J. Bot. 43:151–154.
  • Tyagi, S., Singh, G., Sharma, A. and Aggarwal, G. (2010). Phytochemicals as candidate therapeutics: an overview. Int. J. Pharm. Sci. Rev. Res. 3:53–55.
  • Van Duynhoven, J., Vaughan, E. E., Jacobs, D. M., Kemperman, R. A., Van Velzen, E. J., Gross, G., Roger, L. C., Possemiers, S., Smilde, A. K., Dore, J., Westerhuis, J. A. and Van De Wiele, T. (2011). Metabolic fate of polyphenols in the human superorganism. Proc. Natl. Acad. Sci. U S A. 108(suppl 1):4531–4538.
  • Van Het Hof, K. H., Kivits, G. A., Weststrate, J. A. and Tijburg, L. B. (1998). Bioavailability of catechins from tea: the effect of milk. Eur. J. Clin. Nutr. 52:356–359.
  • Van Nuenen, M. H., Venema, K., Van Der Woude, J. C. and Kuipers, E. J. (2004). The metabolic activity of fecal microbiota from healthy individuals and patients with inflammatory bowel disease. Dig. Dis. Sci. 49:485–491.
  • Weiss, J., Takhistov, P. and Mcclements, D. J. (2006). Functional materials in food nanotechnology. J. Food Sci. 71:R107–R116.
  • Williamson, G., Day, A. J., Plumb, G. W. and Couteau, D. (2000). Human metabolic pathways of dietary flavonoids and cinnamates. Biochem. Soc. Trans. 28:16–22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.