2,928
Views
95
CrossRef citations to date
0
Altmetric
Articles

Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability

ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Agustinah, W., Sarkar, D., Woods, F. and Shetty, K. (2016). Apple and Blueberry Synergies for Designing Bioactive Ingredients for the Management of Early Stages of Type 2 Diabetes. J. Food Qual., 39: 370–382.
  • Ajuwon, O. R., Katengua-Thamahane, E., Van Rooyen, J., Oguntibeju, O. O. and Marnewick, J. L. (2013). Protective effects of rooibos (Aspalathus linearis) and/or red palm oil (Elaeis guineensis) supplementation on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in Wistar rats. Evid. Based Complement. Alternat. Med., 2013: 1–19.
  • Altenburg, J. D., Bieberich, A. A., Terry, C., Harvey, K. A., Vanhorn, J. F., Xu, Z., Davisson, V. J. and Siddiqui, R. A. (2011). A synergistic antiproliferation effect of curcumin and docosahexaenoic acid in SK-BR-3 breast cancer cells: unique signaling not explained by the effects of either compound alone. BMC Cancer, 11: 1.
  • Altunkaya, A., Becker, E. M., Gökmen, V. and Skibsted, L. H. (2009). Antioxidant activity of lettuce extract (Lactuca sativa) and synergism with added phenolic antioxidants. Food Chem., 115: 163–168.
  • Altunkaya, A., Gokmen, V. and Skibsted, L. H. (2016). pH dependent antioxidant activity of lettuce (L. sativa) and synergism with added phenolic antioxidants. Food Chem., 190: 25–32.
  • Arias, N., Macarulla, M. T., Aguirre, L., Milton, I. and Portillo, M. P. (2016). The combination of resveratrol and quercetin enhances the individual effects of these molecules on triacylglycerol metabolism in white adipose tissue. Eur. J. Nutr., 55: 341–8.
  • Aubourg, S. P. (2001). Fluorescence study of the pro‐oxidant effect of free fatty acids on marine lipids. J. Sci. Food Agric., 81: 385–390.
  • Azevedo, J., Fernandes, I., Faria, A., Oliveira, J., Fernandes, A., De Freitas, V. and Mateus, N. (2010). Antioxidant properties of anthocyanidins, anthocyanidin-3-glucosides and respective portisins. Food Chem., 119: 518–523.
  • Balasubramanian, S. and Eckert, R. L. (2004). Green tea polyphenol and curcumin inversely regulate human involucrin promoter activity via opposing effects on CCAAT/enhancer-binding protein function. J. Biol. Chem., 279: 24007–24014.
  • Basnet, P. and Skalko-Basnet, N. (2011). Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules, 16: 4567–98.
  • Becker, E. M., Nissen, L. R. and Skibsted, L. H. (2004). Antioxidant evaluation protocols: Food quality or health effects. Eur. Food Res. Technol., 219: 561–571.
  • Becker, E. M., Ntouma, G. and Skibsted, L. H. (2007). Synergism and antagonism between quercetin and other chain-breaking antioxidants in lipid systems of increasing structural organisation. Food Chem., 103: 1288–1296.
  • Beretta, G., Aldini, G., Facino, R. M., Russell, R. M., Krinsky, N. I. and Yeum, K.-J. (2006). Total antioxidant performance: a validated fluorescence assay for the measurement of plasma oxidizability. Anal. Biochem., 354: 290–298.
  • Bermudez-Soto, M., Tomas-Barberan, F. and Garcia-Conesa, M. (2007). Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chem., 102: 865–874.
  • Böhm, V. and Bitsch, R. (1999). Intestinal absorption of lycopene from different matrices and interactions to other carotenoids, the lipid status, and the antioxidant capacity of human plasma. Eur. J. Nutr., 38: 118–125.
  • Boileau, T. W. M., Liao, Z., Kim, S., Lemeshow, S., Erdman Jr, J. W. and Clinton, S. K. (2003). Prostate carcinogenesis in N-methyl-N-nitrosourea (NMU)-testosterone-treated rats fed tomato powder, lycopene, or energy-restricted diets. J. Natl. Cancer Inst., 95: 1578–1586.
  • Bruno, R. S., Leonard, S. W., Atkinson, J., Montine, T. J., Ramakrishnan, R., Bray, T. M. and Traber, M. G. (2006). Faster plasma vitamin E disappearance in smokers is normalized by vitamin C supplementation. Free Radical Biol. Med., 40: 689–697.
  • Buettner, G. R. and Jurkiewicz, A. A. (1996). Chemistry and biochemistry of ascorbic acid. In: Handbook of antioxidants. pp. 91 - 115. Cadens, E. and Packer, L. Eds., Marcel Dekker, New York.
  • Bulusu, K. C., Guha, R., Mason, D. J., Lewis, R. P., Muratov, E., Kalantar Motamedi, Y., Cokol, M. and Bender, A. (2016). Modelling of compound combination effects and applications to efficacy and toxicity: state-of-the-art, challenges and perspectives. Drug Discov. Today, 21: 225–238.
  • Campbell, J. K., Canene-Adams, K., Lindshield, B. L., Boileau, T. W. M., Clinton, S. K. and Erdman, J. W. (2004). Tomato phytochemicals and prostate cancer risk. J. Nutr., 134: 3486S–3492S.
  • Campbell, J. K., King, J. L., Harmston, M., Lila, M. A. and Erdman, J. W. (2006). Synergistic effects of flavonoids on cell proliferation in Hepa‐1c1c7 and LNCaP cancer cell lines. J. Food Sci., 71: S358–S363.
  • Canene-Adams, K., Lindshield, B. L., Wang, S., Jeffery, E. H., Clinton, S. K. and Erdman, J. W. (2007). Combinations of tomato and broccoli enhance antitumor activity in dunning r3327-h prostate adenocarcinomas. Cancer Res., 67: 836–843.
  • Cao, G., Sofic, E. and Prior, R. L. (1997). Antioxidant and prooxidant behavior of flavonoids: structure-activity relationships. Free Radical Biol. Med., 22: 749–760.
  • Çelik et al., 2015Çelik, E. E., GöKmen, V. and Skibsted, L. H. (2015). Synergism between soluble and dietary fiber bound antioxidants. J. Agric. Food. Chem., 63: 2338–2343.
  • Celik, S. E., Ozyurek, M., Guclu, K. and Apak, R. (2010). Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods. Talanta, 81: 1300–1309.
  • Chandrasekara, A. and Shahidi, F. (2012). Bioaccessibility and antioxidant potential of millet grain phenolics as affected by simulated in vitro digestion and microbial fermentation. J. Func. Foods, 4: 226–237.
  • Chou, T. C. (2006). Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev., 58: 621–681.
  • Claudie, D.-M., Bertrand, C., Franck, T. and Marie-Josephe, A. (2013). Citrus flavanones enhance carotenoid uptake by intestinal Caco-2 cells. Food. Func., 4: 1625–1631.
  • Clinton, S. K. (1998). Lycopene: Chemistry, biology, and implications for human health and disease. Nutr. Rev., 56: 35–51.
  • Colon, M. and Nerín, C. (2016). Synergistic, antagonistic and additive interactions of green tea polyphenols. Eur. Food Res. Technol., 242: 211–220.
  • Dai, F., Chen, W.-F. and Zhou, B. (2008). Antioxidant synergism of green tea polyphenols with α-tocopherol and l-ascorbic acid in SDS micelles. Biochimie, 90: 1499–1505.
  • De Kok, T. M., Van Breda, S. G. and Manson, M. M. (2008). Mechanisms of combined action of different chemopreventive dietary compounds: a review. Eur. J. Nutr., 47 Suppl 2: 51–59.
  • Di Mascio, P., Kaiser, S. and Sies, H. (1989). Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch. Biochem. Biophys., 274: 532–538.
  • Dimarco-Crook, C. and Xiao, H. (2015). Diet-based strategies for cancer chemoprevention: the role of combination regimens using dietary bioactive components. Annual review of food science and technology, 6: 505–526.
  • Dong, X., Xu, W., Sikes, R. A. and Wu, C. (2013). Combination of low dose of genistein and daidzein has synergistic preventive effects on isogenic human prostate cancer cells when compared with individual soy isoflavone. Food Chem., 141: 1923–1933.
  • Dugo, P., Lo Presti, M., Öhman, M., Fazio, A., Dugo, G. and Mondello, L. (2005). Determination of flavonoids in citrus juices by micro‐HPLC‐ESI/MS. J. Sep. Sci., 28: 1149–1156.
  • Durak, A., Gawlik-Dziki, U. and Kowlska, I. (2015). Coffee with ginger - interactions of biologically active phytochemicals in the model system. Food Chem., 166: 261–269.
  • Durak, A., Gawlik-Dziki, U. and Pecio, L. (2014). Coffee with cinnamon - impact of phytochemicals interactions on antioxidant and anti-inflammatory in vitro activity. Food Chem., 162: 81–88.
  • Eckert, R. L., Crish, J. F., Efimova, T. and Balasubramanian, S. (2006). Opposing action of curcumin and green tea polyphenol in human keratinocytes. Mol. Nutr. Food Res., 50: 123–129.
  • Efferth, T. and Koch, E. (2011). Complex Interactions between Phytochemicals. The Multi-Target Therapeutic Concept of Phytotherapy. Curr. Drug Targets, 12: 122–132.
  • El-Agamey, A., Edge, R., Navaratnam, S., Land, E. J. and Truscott, T. G. (2006). Carotenoid radical anions and their protonated derivatives. Org. Lett., 8: 4255–4258.
  • Fale, P. L., Ascensao, L. and Serralheiro, M. L. (2013). Effect of luteolin and apigenin on rosmarinic acid bioavailability in Caco-2 cell monolayers. Food & function, 4: 426–431.
  • Fang, J. (2014). Bioavailability of anthocyanins. Drug Metab. Rev., 46: 508–520.
  • Ford, C. T., Richardson, S., Mcardle, F., Lotito, S. B., Crozier, A., Mcardle, A. and Jackson, M. J. (2016). Identification of (poly)phenol treatments that modulate the release of pro-inflammatory cytokines by human lymphocytes. Br. J. Nutr., 115: 1699–1710.
  • Frankel, E. N. and Meyer, A. S. (2000). The problems of using one‐dimensional methods to evaluate multifunctional food and biological antioxidants. J. Sci. Food Agric., 80: 1925–1941.
  • Fuhrman, B., Volkova, N., Rosenblat, M. and Aviram, M. (2000). Original research communication: Lycopene synergistically inhibits LDL oxidation in combination with Vitamin E, glabridin, rosmarinic acid, or Garlic. Antioxid. Redox Signal., 2: 494–506.
  • Fukumitsu, S., Villareal, M. O., Fujitsuka, T., Aida, K. and Isoda, H. (2016). Anti-inflammatory and anti-arthritic effects of pentacyclic triterpenoids maslinic acid through NF-kappaB inactivation. Mol. Nutr. Food Res., 60: 399–409.
  • Funaro, A., Wu, X., Song, M., Zheng, J., Guo, S., Rakariyatham, K., Rodriguez-Estrada, M. T. and Xiao, H. (2016). Enhanced Anti-Inflammatory Activities by the Combination of Luteolin and Tangeretin. J. Food Sci., 81: H1320–H1327.
  • Galvanoa, F., Faucib, L. L., Lazzarinoc, G., Foglianod, V., Ritienid, A., Ciappellanoe, S., Battistinif, N. C., Tavazzig, B. and Galvano, G. (2004). Cyanidins - metabolism and biological properties. J. Nutr. Biochem., 15: 2–11.
  • García-Vilas, J. A., Quesada, A. R. and Medina, M. Á. (2016). Screening of synergistic interactions of epigallocatechin-3-gallate with antiangiogenic and antitumor compounds. Synergy, 3: 5–13.
  • Gawlik-Dziki, U. (2012). Changes in the antioxidant activities of vegetables as a consequence of interactions between active compounds. J. Func. Foods, 4: 872–882.
  • Gawlik-Dziki, U., Durak, A., Jamioł, M. and Świeca, M. (2016). Interactions between antiradical and anti-inflammatory compounds from coffee and coconut affected by gastrointestinal digestion – In vitro study. LWT - Food. Sci. Tech, 69: 506–514.
  • Gaziano, J., Johnson, E. and Russell, R. (1995). Discrimination in absorption or transport of b-carotene isomers after oral supplementation with either all-trans or 9-cis-& carotene. Am J Clin Nutr 61: 1248–1252.
  • Gonzales, G. B., Smagghe, G., Grootaert, C., Zotti, M., Raes, K. and Camp, J. V. (2015). Flavonoid interactions during digestion, absorption, distribution and metabolism: a sequential structure–activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metab. Rev., 47: 175–190.
  • González, E. A. and Nazareno, M. A. (2011). Antiradical action of flavonoid–ascorbate mixtures. LWT - Food. Sci. Tech, 44: 558–564.
  • Graf, B. A., Milbury, P. E. and Blumberg, J. B. (2005). Flavonols, Flavones, Flavanones, and Human Health - Epidemiological Evidence. J. Med. Food, 8: 281–290.
  • Graversen, H. B., Becker, E. M., Skibsted, L. H. and Andersen, M. L. (2007). Antioxidant synergism between fruit juice and α-tocopherol. A comparison between high phenolic black chokeberry (Aronia melanocarpa) and high ascorbic blackcurrant (Ribes nigrum). Eur. Food Res. Technol., 226: 737–743.
  • Han, R. M., Chen, C. H., Tian, Y. X., Zhang, J. P. and Skibsted, L. H. (2010). Fast regeneration of carotenoids from radical cations by isoflavonoid dianions: Importance of the carotenoid keto group for electron transfer. J. Phys. Chem. A, 114: 126–132.
  • Han, R. M., Li, D. D., Chen, C. H., Liang, R., Tian, Y. X., Zhang, J. P. and Skibsted, L. H. (2011). Phenol acidity and ease of oxidation in isoflavonoid/β-carotene antioxidant synergism. J. Agric. Food. Chem., 59: 10367–10372.
  • Han, R. M., Tian, Y. X., Becker, E. M., Andersen, M. L., Zhang, J. P. and Skibsted, L. H. (2007). Puerarin and conjugate bases as radical scavengers and antioxidants: molecular mechanism and synergism with β-carotene. J. Agric. Food. Chem., 55: 2384–2391.
  • Han, R. M., Zhang, J. P. and Skibsted, L. H. (2012). Reaction dynamics of flavonoids and carotenoids as antioxidants. Molecules, 17: 2140–2160.
  • He, K., Song, S., Zou, Z., Feng, M., Wang, D., Wang, Y., Li, X. and Ye, X. (2016). The Hypoglycemic and Synergistic Effect of Loganin, Morroniside, and Ursolic Acid Isolated from the Fruits of Cornus officinalis. Phytother. Res., 30: 283–291.
  • Heymann, T., Heinz, P. and Glomb, M. A. (2015). Lycopene Inhibits the Isomerization of β-Carotene during Quenching of Singlet Oxygen and Free Radicals. J. Agric. Food. Chem., 63: 3279–3287.
  • Hidalgo, M., Sánchez-Moreno, C. and De Pascual-Teresa, S. (2010). Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chem., 121: 691–696.
  • Hollman, P. C., Bijsman, M. N., Van Gameren, Y., Cnossen, E. P., De Vries, J. H. and Katan, M. B. (1999). The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radical Res., 31: 569–573.
  • Horie, N., Hirabayashi, N., Takahashi, Y., Miyauchi, Y., Taguchi, H. and Takeishi, K. (2005). Synergistic effect of green tea catechins on cell growth and apoptosis induction in gastric carcinoma cells. Biol. Pharm. Bull., 28: 574–579.
  • Hsu, A., Bray, T. M. and Ho, E. (2010). Anti-inflammatory activity of soy and tea in prostate cancer prevention. Exp. Biol. Med. (Maywood), 235: 659–667.
  • Huang, D., Ou, B. and Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. J. Agric. Food. Chem., 53: 1841–1856.
  • Imming, P., Sinning, C. and Meyer, A. (2006). Drugs, their targets and the nature and number of drug targets. Nature reviews Drug discovery, 5: 821–834.
  • Iwuchukwu, O. F., Tallarida, R. J. and Nagar, S. (2011). Resveratrol in combination with other dietary polyphenols concomitantly enhances antiproliferation and UGT1A1 induction in Caco-2 cells. Life Sci., 88: 1047–1054.
  • Jeune, M. L., Kumi-Diaka, J. and Brown, J. (2005). Anticancer activities of pomegranate extracts and genistein in human breast cancer cells. J. Med. Food, 8: 469–475.
  • Jiang, H. W., Li, H. Y., Yu, C. W., Yang, T. T., Hu, J. N., Liu, R. and Deng, Z. Y. (2015). The Evaluation of Antioxidant Interactions among 4 Common Vegetables using Isobolographic Analysis. J. Food Sci., 80: C1162–C1169.
  • Johnson, E., Qin, J. and Krinsky, N. (1997). Ingestion by men of a combined dose of b-carotene and lycopene does not affect the absorption of b-carotene but improves that of lycopene. J. Nutr., 127: 1833–1837.
  • Kamal-Eldin, A. and Budilarto, E. (2014). Antioxidant activities and interactions of α - and γ - tocopherols within canola and soybean emulsions. Eur. J. Lipid. Sci. Technol., 116: 781–782.
  • Khafif, A., Schantz, S. P., Chou, T.-C., Edelstein, D. and Sacks, P. G. (1998). Quantitation of chemopreventive synergism between (-)-epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells. Carcinogenesis, 19: 419–424.
  • Kirakosyan, A., Seymour, E. M., Noon, K. R., Urcuyo Lianes, D., Kaufman, P. B., Warber, S. L. and Bolling, S. F. (2010). Interactions of antioxidants isolated from tart cherry (Prunus cerasus) fruits. Food Chem., 122: 78–83.
  • Knowles, L. M., Zigrossi, D. A., Tauber, R. A., Hightower, C. and Milner, J. A. (2000). Flavonoids suppress androgen-independent human prostate tumor proliferation. Nutr. Cancer, 38: 116–122.
  • Kostic, D., White, W. and Olson, J. (1995). Intestinal absorption, serum clearance, and interactions between lutein and b-carotene when administered to human adults in separate or combined oral doses. Am. J. Clin. Nutr., 62: 604–610.
  • Kumar, R., Verma, V., Jain, A., Jain, R. K., Maikhuri, J. P. and Gupta, G. (2011). Synergistic chemoprotective mechanisms of dietary phytoestrogens in a select combination against prostate cancer. J. Nutr. Biochem., 22: 723–731.
  • Liang, J., Tian, Y. X., Yang, F., Zhang, J. P. and Skibsted, L. H. (2009a). Antioxidant synergism between carotenoids in membranes. Astaxanthin as a radical transfer bridge. Food Chem., 115: 1437–1442.
  • Liang, R., Chen, C. H., Han, R. M., Zhang, J. P. and Skibsted, L. H. (2010). Thermodynamic versus kinetic control of antioxidant synergism between β-carotene and (iso) flavonoids and their glycosides in liposomes. J. Agric. Food. Chem., 58: 9221–9227.
  • Liang, R., Han, R. M., Fu, L. M., Ai, X. C., Zhang, J. P. and Skibsted, L. H. (2009b). Baicalin in radical scavenging and its synergistic effect with β-carotene in antilipoxidation. J. Agric. Food. Chem., 57: 7118–7124.
  • Libby, P., Okamoto, Y., Rocha, V. Z. and Folco, E. (2010). Inflammation in atherosclerosis: transition from theory to practice. Circ. J., 74: 213–220.
  • Lila, M. A. (2007). From beans to berries and beyond: teamwork between plant chemicals for protection of optimal human health. Ann. N. Y. Acad. Sci., 1114: 372–380.
  • Liu, R. H. (2013). Health-promoting components of fruits and vegetables in the diet. Advances in nutrition, 4: 384S–392S.
  • Liu, Z., Luo, Z., Jia, C., Wang, D. and Li, D. (2016). Synergistic Effects of Potentilla fruticosa L. Leaves Combined with Green Tea Polyphenols in a Variety of Oxidation Systems. J. Food Sci., 81: C1091–C1101.
  • Macdonald‐Wicks, L. K., Wood, L. G. and Garg, M. L. (2006). Methodology for the determination of biological antioxidant capacity in vitro: a review. J. Sci. Food Agric., 86: 2046–2056.
  • Maiani, G., Caston, M. J., Catasta, G., Toti, E., Cambrodon, I. G., Bysted, A., Granado-Lorencio, F., Olmedilla-Alonso, B., Knuthsen, P., Valoti, M., Bohm, V., Mayer-Miebach, E., Behsnilian, D. and Schlemmer, U. (2009). Carotenoids: actual knowledge on food sources, intakes, stability and bioavailability and their protective role in humans. Mol. Nutr. Food Res., 53 Suppl 2: S194–S218.
  • Melo, P. S., Arrivetti Lde, O., Alencar, S. M. and Skibsted, L. H. (2016). Antioxidative and prooxidative effects in food lipids and synergism with alpha-tocopherol of acai seed extracts and grape rachis extracts. Food Chem., 213: 440–449.
  • Mertens-Talcott, S. U., Talcott, S. T. and Percival, S. S. (2003). Low Concentrations of Quercetin and Ellagic Acid Synergistically Influence Proliferation, Cytotoxicity and Apoptosis in MOLT-4 Human Leukemia Cells–. J. Nutr., 133: 2669–2674.
  • Metzler, M., Pfeiffer, E., Schulz, S. I. and Dempe, J. S. (2013). Curcumin uptake and metabolism. BioFactors, 39: 14–20.
  • Meyer, A. S., Heinonen, M. and Frankel, E. N. (1998). Antioxidant interactions of catechin, cyanidin, caffeic acid, quercetin and ellagic acid on human LDL oxidation. Food Chem., 61: 71–75.
  • Montgomery, A., Adeyeni, T., San, K., Heuertz, R. M. and Ezekiel, U. R. (2016). Curcumin Sensitizes Silymarin to Exert Synergistic Anticancer Activity in Colon Cancer Cells. J. Cancer, 7: 1250–1257.
  • Morré, D. M. and Morré, D. J. (2006). Anticancer activity of grape and grape skin extracts alone and combined with green tea infusions. Cancer Lett., 238: 202–209.
  • Mortensen, A. and Skibsted, L. H. (1997). Relative stability of carotenoid radical cations and homologue tocopheroxyl radicals. A real time kinetic study of antioxidant hierarchy. FEBS Lett., 417: 261–266.
  • Murakami, M., Yamaguchi, T., Takamura, H. and Matoba, T. (2003). Effects of Ascorbic Acid and α‐Tocopherol on Antioxidant Activity of Polyphenolic Compounds. J. Food Sci., 68: 1622–1625.
  • Namitha, K. and Negi, P. S. (2010). Chemistry and biotechnology of carotenoids. Crit. Rev. Food Sci. Nutr., 50: 728–760.
  • Neunert, G., Górnaś, P., Dwiecki, K., Siger, A. and Polewski, K. (2015). Synergistic and antagonistic effects between alpha-tocopherol and phenolic acids in liposome system: spectroscopic study. Eur. Food Res. Technol., 241: 749–757.
  • Niki, E. (2010). Assessment of antioxidant capacity in vitro and in vivo. Free Radic. Biol. Med., 49: 503–515.
  • Özyürek et al., 2008Özyürek, M., Bektaşoğlu, B., Güçlü, K., Güngör, N. and Apak, R. (2008). Simultaneous total antioxidant capacity assay of lipophilic and hydrophilic antioxidants in the same acetone–water solution containing 2% methyl-β-cyclodextrin using the cupric reducing antioxidant capacity (CUPRAC) method. Anal. Chim. Acta, 630: 28–39.
  • Palozza, P. and Krinsky, N. I. (1992). Astaxanthin and canthaxanthin are potent antioxidants in a membrane model. Arch. Biochem. Biophys., 297: 291–295.
  • Pantan, R., Tocharus, J., Suksamrarn, A. and Tocharus, C. (2016). Synergistic effect of atorvastatin and Cyanidin-3-glucoside on angiotensin II-induced inflammation in vascular smooth muscle cells. Exp. Cell Res., 342: 104–112.
  • Parada, J. and Aguilera, J. M. (2007). Food microstructure affects the bioavailability of several nutrients. J. Food Sci., 72: R21–R32.
  • Park, H. J., Yang, J. Y., Ambati, S., Della-Fera, M. A., Hausman, D. B., Rayalam, S. and Baile, C. A. (2008). Combined effects of genistein, quercetin, and resveratrol in human and 3T3-L1 adipocytes. J. Med. Food, 11: 773–783.
  • Pérez-Jiménez, J. and Saura-Calixto, F. (2006). Effect of solvent and certain food constituents on different antioxidant capacity assays. Food Res. Int., 39: 791–800.
  • Pirro, M., Mannarino, M. R., Ministrini, S., Fallarino, F., Lupattelli, G., Bianconi, V., Bagaglia, F. and Mannarino, E. (2016). Effects of a nutraceutical combination on lipids, inflammation and endothelial integrity in patients with subclinical inflammation: a randomized clinical trial. Sci. Rep., 6: 1–9.
  • Polyakov, N. E., Focsan, A. L., Bowman, M. K. and Kispert, L. D. (2010). Free radical formation in novel carotenoid metal ion complexes of astaxanthin. J. Phys. Chem. B, 114: 16968–16977.
  • Prince, M., Frisoli, J. and Goetschkes, M. (1991). Rapid serum carotene loading with high-dose O-carotene: clinical implications. J. Cardiovasc. Pharmacol., 17: 343–347.
  • Prior, R. L., Wu, X. and Schaich, K. (2005). Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food. Chem., 53: 4290–4302.
  • Radhakrishnan, S., Reddivari, L., Sclafani, R., Das, U. N. and Vanamala, J. (2011). Resveratrol potentiates grape seed extract induced human colon cancer cell apoptosis. Front Biosci (Elite Ed), 3: 1509–1523.
  • Reboul, E., Thap, S., Perrot, E., Amiot, M. J., Lairon, D. and Borel, P. (2007a). Effect of the main dietary antioxidants (carotenoids, γ-tocopherol, polyphenols, and vitamin C) on α-tocopherol absorption. Eur. J. Clin. Nutr., 61: 1167–1173.
  • Reboul, E., Thap, S., Tourniaire, F., André, M., Juhel, C., Morange, S., Amiot, M.-J., Lairon, D. and Borel, P. (2007b). Differential effect of dietary antioxidant classes (carotenoids, polyphenols, vitamins C and E) on lutein absorption. Br. J. Nutr., 97: 440–446.
  • Roberts, W. G. and Gordon, M. H. (2003). Determination of the total antioxidant activity of fruits and vegetables by a liposome assay. J. Agric. Food. Chem., 51: 1486–1493.
  • Rodriguez-Casado, A. (2016). The Health Potential of Fruits and Vegetables Phytochemicals: Notable Examples. Crit. Rev. Food Sci. Nutr., 56: 1097–1107.
  • Rodríguez-Roque, M. J., De Ancos, B., Sánchez-Moreno, C., Cano, M. P., Elez-Martínez, P. and Martín-Belloso, O. (2015). Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. J. Func. Foods, 14: 33–43.
  • Rossetto, M., Vanzani, P., Mattivi, F., Lunelli, M., Scarpa, M. and Rigo, A. (2002). Synergistic antioxidant effect of catechin and malvidin 3-glucoside on free radical-initiated peroxidation of linoleic acid in micelles. Arch. Biochem. Biophys., 408: 239–245.
  • Schaich, K. M. Developing a rational basis for selection of antioxidant screening and testing methods. International Symposium on Natural Preservatives in Food Systems 709, 2005. 79–94.
  • Sengupta, A., Ghosh, S. and Das, S. (2004). Modulatory influence of garlic and tomato on cyclooxygenase-2 activity, cell proliferation and apoptosis during azoxymethane induced colon carcinogenesis in rat. Cancer Lett., 208: 127–136.
  • Serrano, J., Goñi, I. and Saura-Calixto, F. (2007). Food antioxidant capacity determined by chemical methods may underestimate the physiological antioxidant capacity. Food Res. Int., 40: 15–21.
  • Shi, J., Kakuda, Y. and Yeung, D. (2004). Antioxidative properties of lycopene and other carotenoids from tomatoes: Synergistic effects. BioFactors, 21: 203–210.
  • Shixian, Q., Dai, Y., Kakuda, Y., Shi, J., Mittal, G., Yeung, D. and Jiang, Y. (2005). Synergistic Anti-Oxidative Effects of Lycopene with Other Bioactive Compounds. Food Rev. Int., 21: 295–311.
  • Singh, C. K., Siddiqui, I. A., El-Abd, S., Mukhtar, H. and Ahmad, N. (2016). Combination chemoprevention with grape antioxidants. Mol. Nutr. Food Res., 60: 1406–1415.
  • Song, L.-L., Liang, R., Li, D.-D., Xing, Y.-D., Han, R.-M., Zhang, J.-P. and Skibsted, L. H. (2011). β-Carotene radical cation addition to green tea polyphenols. Mechanism of antioxidant antagonism in peroxidizing liposomes. J. Agric. Food Chem, 59: 12643–12651.
  • Stahl, W., Junghans, A., De Boer, B., Driomina, E. S., Briviba, K. and Sies, H. (1998). Carotenoid mixtures protect multilamellar liposomes against oxidative damage: synergistic effects of lycopene and lutein. FEBS Lett., 427: 305–308.
  • Stinco, C. M., Heredia, F. J., Vicario, I. M. and Meléndez-Martínez, A. J. (2016). In vitro antioxidant capacity of tomato products: Relationships with their lycopene, phytoene, phytofluene and alpha-tocopherol contents, evaluation of interactions and correlation with reflectance measurements. LWT - Food. Sci. Tech, 65: 718–724.
  • Suganuma, M., Okabe, S., Kai, Y., Sueoka, N., Sueoka, E. and Fujiki, H. (1999). Synergistic effects of (−)-epigallocatechin gallate with (−)-epicatechin, sulindac, or tamoxifen on cancer-preventive activity in the human lung cancercell line PC-9. Cancer Res., 59: 44–47.
  • Sun, D., Huang, S., Cai, S., Cao, J. and Han, P. (2015). Digestion property and synergistic effect on biological activity of purple rice (Oryza sativa L.) anthocyanins subjected to a simulated gastrointestinal digestion in vitro. Food Res. Int., 78: 114–123.
  • Swada, J. G., Keeley, C. J., Ghane, M. A. and Engeseth, N. J. (2016). Synergistic potential of papaya and strawberry nectar blends focused on specific nutrients and antioxidants using alternative thermal and non-thermal processing techniques. Food Chem., 199: 87–95.
  • Tallarida, R. J. (2001). Drug synergism: its detection and applications. J. Pharmacol. Exp. Ther., 298: 865–872.
  • Vainio, H. and Weiderpass, E. (2006). Fruit and vegetables in cancer prevention. Nutr. Cancer, 54: 111–142.
  • Van Den Berg, H. (1999). Carotenoid Interactions. Nutr. Rev., 57: 1–10.
  • Vijayalakshmi, G., Adinarayana, M. and Rao, P. J. (2014). A synergistic approach to kinetic and mechanistic studies of regeneration of beta-carotene from tert-butoxyl radical induced beta-carotene radical cation by chlorogenic acid. Int. J. Pharm. Sci. Res, 5: 942–950.
  • Wagner, H. and Ulrich-Merzenich, G. (2009). Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine, 16: 97–110.
  • Wahlquist, M., Wattanapenpaiboon, N. and Macrae, F. (1994). Changes in serum carotenoids in subjects with colorectal adenomas after 24 months of b-carotene supplementation. Am. J. Clin. Nutr., 60: 936–943.
  • Walton, M. C., Mcghie, T. K., Reynolds, G. W. and Hendriks, W. H. (2006). The Flavonol Quercetin-3-Glucoside Inhibits Cyanidin-3-Glucoside Absorption in Vitro. J Agr Food Chem, 54: 4913–4920.
  • Wang, K., Zhang, C., Bao, J., Jia, X., Liang, Y., Wang, X., Chen, M., Su, H., Li, P., Wan, J. B. and He, C. (2016). Synergistic chemopreventive effects of curcumin and berberine on human breast cancer cells through induction of apoptosis and autophagic cell death. Sci. Rep., 6: 1–16.
  • Wang, S., Meckling, K. A., Marcone, M. F., Kakuda, Y. and Tsao, R. (2011). Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J. Agric. Food. Chem., 59: 960–968.
  • Wang, S. and Zhu, F. (2017). Dietary Antioxidant Synergy in Chemical and Biological Systems. Crit. Rev. Food Sci. Nutr., 57: 2343–2357.
  • Wang, S., Zhu, F. and Marcone, M. F. (2015). Synergistic interaction of sumac and raspberry mixtures in their antioxidant capacities and selective cytotoxicity against cancerous cells. J. Med. Food, 18: 345–53.
  • Wang, X. (2012a). Carotenoids. In: Modern nutrition in health and disease. pp. 427–437. Ross, A., Caballero, B., Cousins, R., Tucker, K. and Ziegler, T. Eds., PA: Lippincott Williams & Wilkins, Philadelphia.
  • Wang, X. D. (2012b). Lycopene metabolism and its biological significance. Am. J. Clin. Nutr., 96: 1214S–1222S.
  • White, W., Peck, K. and Bierer, T. (1993). Interactionsof oral b-carotene and canthaxanthin in ferrets. J. Nutr., 123: 1405–1413.
  • Williams, S. N., Pickwell, G. V. and Quattrochi, L. C. (2003). A combination of tea (Camellia senensis) catechins is required for optimal inhibition of induced CYP1A expression by green tea extract. J. Agric. Food. Chem., 51: 6627–6634.
  • Williams, S. N., Shih, H., Guenette, D. K., Brackney, W., Denison, M. S., Pickwell, G. V. and Quattrochi, L. C. (2000). Comparative studies on the effects of green tea extracts and individual tea catechins on human CYP1A gene expression. Chem. Biol. Interact., 128: 211–229.
  • Williamson, E. M. (2001). Synergy and other interactions in phytomedicines. Phytomedicine, 8: 401–409.
  • Woo, J. E., Seo, J. Y., Kim, J. H., Shin, J.-H., Cho, K. M. and Kim, J.-S. (2016). Soy products fermented with sprouted garlic have increased neuroprotective activities and restore cognitive functions. Food Science and Biotechnology, 25: 301–309.
  • Wrona, M., Korytowski, W., Różanowska, M., Sarna, T. and Truscott, T. G. (2003). Cooperation of antioxidants in protection against photosensitized oxidation. Free Radical Biol. Med., 35: 1319–1329.
  • Yang, J. and Liu, R. H. (2009). Synergistic effect of apple extracts and quercetin 3-β-D-glucoside combination on antiproliferative activity in MCF-7 human breast cancer cells in vitro. J. Agric. Food. Chem., 57: 8581–8586.
  • Yang, M., I Koo, S., O Song, W. and K Chun, O. (2011). Food matrix affecting anthocyanin bioavailability: review. Curr. Med. Chem., 18: 291–300.
  • Yeum, K.-J., Beretta, G., Krinsky, N. I., Russell, R. M. and Aldini, G. (2009). Synergistic interactions of antioxidant nutrients in a biological model system. Nutrition, 25: 839–846.
  • Yi, W. and Wetzstein, H. Y. (2011). Anti‐tumorigenic activity of five culinary and medicinal herbs grown under greenhouse conditions and their combination effects. J. Sci. Food Agric., 91: 1849–1854.
  • Yin, J., Becker, E. M., Andersen, M. L. and Skibsted, L. H. (2012). Green tea extract as food antioxidant. Synergism and antagonism with alpha-tocopherol in vegetable oils and their colloidal systems. Food Chem., 135: 2195–2202.
  • Zanfini, A., Corbini, G., La Rosa, C. and Dreassi, E. (2010). Antioxidant activity of tomato lipophilic extracts and interactions between carotenoids and α-tocopherol in synthetic mixtures. LWT - Food. Sci. Tech, 43: 67–72.
  • Zhao, C. F., Lei, D. J., Song, G. H., Zhang, H., Xu, H. and Yu, L. J. (2015). Characterisation of water-soluble proanthocyanidins of Pyracantha fortuneana fruit and their improvement in cell bioavailable antioxidant activity of quercetin. Food Chem., 169: 484–491.
  • Zhao, C. L., Chen, Z. J., Bai, X. S., Ding, C., Long, T. J., Wei, F. G. and Miao, K. R. (2014). Structure–activity relationships of anthocyanidin glycosylation. Mol. Divers., 18: 687–700.
  • Zhou, B., Miao, Q., Yang, L. and Liu, Z. L. (2005a). Antioxidative effects of flavonols and their glycosides against the free-radical-induced peroxidation of linoleic acid in solution and in micelles. Chem. Eur. J., 11: 680–691.
  • Zhou, B. O., Wu, L. M., Yang, L. I. and Liu, Z. L. (2005b). Evidence for α-tocopherol regeneration reaction of green tea polyphenols in SDS micelles. Free Radical Biol. Med., 38: 78–84.
  • Zhou, J.-R., Yu, L., Zhong, Y. and Blackburn, G. L. (2003). Soy phytochemicals and tea bioactive components synergistically inhibit androgen-sensitive human prostate tumors in mice. J. Nutr., 133: 516–521.
  • Zhou, J. R., Yu, L., Mai, Z. and Blackburn, G. L. (2004). Combined inhibition of estrogen‐dependent human breast carcinoma by soy and tea bioactive components in mice. Int. J. Cancer, 108: 8–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.