2,637
Views
69
CrossRef citations to date
0
Altmetric
Reviews

Fermentation for tailoring the technological and health related functionality of food products

&

References

  • Ahmad, A., K. Ramasamy, A. B. A. Majeed, and V. Mani. 2015. Enhancement of beta-secretase inhibition and antioxidant activities of tempeh, a fermented soybean cake through enrichment of bioactive aglycones. Pharmaceutical Biology 53 (5):758–66.doi: 10.3109/13880209.2014.942791.
  • Abdel-Rahman, M. A., Y. Tashiro, and K. Sonomoto. 2013. Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances 31 (6):877–902. doi: 10.1016/j.biotechadv.2013.04.002.
  • Adebiyi, J. A., P. B. Njobeh, and E. Kayitesi. 2019. Assessment of nutritional and phytochemical quality of Dawadawa (an African fermented condiment) produced from Bambara groundnut (Vigna Subterranea). Microchemical Journal 149:104034. doi: 10.1016/j.microc.2019.104034.
  • Adebowale, O. J., and K. Maliki. 2011. Effect of fermentation period on the chemical composition and functional properties of pigeon pea (Cajanus cajan) seed flour. International Journal of Food Research 18 (4):1329–33.
  • Ahmed, A. R., A. G. A. Rao, and G. Ramanatham. 1988. Effect of autofermentation on the physicochemical properties of proteins of sorghum groundnut composite flour. Journal of Agricultural and Food Chemistry 36 (4):690–4. doi: 10.1021/jf00082a006.
  • Alvarez, M. A., and M. V. Moreno-Arribas. 2014. The problem of biogenic amines in fermented foods and the use of potential biogenic amine-degrading microorganisms as a solution. Trends in Food Science & Technology 39 (2):146–55. doi: 10.1016/j.tifs.2014.07.007.
  • Amadou, I., O. S. Gbadamosi, and G. W. Le. 2011. Millet-based traditional processed foods and Beverages-A review. Cereal Foods World 56 (3):115–21. doi: 10.1094/cfw-56-3-0115.
  • Amoa-Awua, W. K., M. Owusu, and P. Feglo. 2005. Utilization of unfermented cassava flour for the production of an indigenous African fermented food, Agbelima. World Journal of Microbiology and Biotechnology 21 (6–7):1201–7. doi: 10.1007/s11274-005-1441-7.
  • Amr, A., H. Takruri, M. Shomaf, O. Alhaj, M. Faris, and W. M. Abdel-Rahm. 2018. Fermented camel (Camelus dromedarius) and bovine milk attenuate azoxymethane-induced colonic aberrant crypt foci in Fischer 344 rats. Pakistan Journal of Nutrition 17:179–189.
  • Amritha, G. K., U. Dharmaraj, P. M. Halami, and G. Venkateswaran. 2018. Dephytinization of seed coat matter of finger millet (Eleusine coracana) by Lactobacillus pentosus CFR3 to improve zinc bioavailability. Lwt 87:562–6. doi: 10.1016/j.lwt.2017.09.024.
  • Anteneh, T., M. Tetemke, and A. Mogessie. 2011a. Antagonism of lactic acid bacteria against foodborne pathogens during fermentation and storage of borde and shamita, traditional Ethiopian fermented beverages. International Food Research Journal 18 (3):1135–40.
  • Anteneh, T., M. Tetemke, and A. Mogessie. 2011b. Inhibition of some food borne pathogens by pure and mixed lab cultures during fermentation and storage of ergo, a traditional ethiopian fermented milk. Journal of Agricultural and Biological Science 6 (4):13–9.
  • Augustin, M. A., M. Riley, R. Stockmann, L. Bennett, A. Kahl, T. Lockett, M. Osmond, P. Sanguansri, W. Stonehouse, I. Zajac, and L. Cobiac. 2016. Role of food processing in food and nutrition security. Trends in Food Science & Technology 56:115–25. doi: 10.1016/j.tifs.2016.08.005.
  • AwadElkareem, A. M., and J. R. N. Taylor. 2011. Protein quality and physical characteristics of kisra (fermented sorghum pancake-like flatbread) made from tannin and Non-Tannin sorghum cultivars. Cereal Chemistry Journal 88 (4):344–8. doi: 10.1094/CCHEM-07-10-0107.
  • Bacha, K., H. Jonsson, and M. Ashenafi. 2010. Microbial dynamics during the fermentation of Wakalim, a traditional Ethiopian fermented sausage. Journal of Food Quality 33 (3):370–90. doi: 10.1111/j.1745-4557.2010.00326.x.
  • Badifu, G. I. O. 1993. Food potentials of some unconventional oilseeds grown in Nigeria – A brief review. Plant Foods for Human Nutrition 43 (3):211–24. doi: 10.1007/BF01886222.
  • Barbieri, F., C. Montanari, F. Gardini, and G. Tabanelli. 2019. Biogenic amine production by lactic acid bacteria: A review. Foods 8 (1)17. doi: 10.3390/foods80100:.
  • Bartkiene, E., D. Vidmantiene, G. Juodeikiene, P. Viskelis, and D. Urbonaviciene. 2013. Lactic acid fermentation of tomato: Effects on cis/trans lycopene isomer ratio, beta-Carotene mass fraction and formation of L(+)- and D(-)-lactic acid. Food Technology and Biotechnology 51 (4):471–8.
  • Beltran-Barrientos, L. M., A. F. Gonzalez-Cordova, A. Hernandez-Mendoza, E. H. Torres-Inguanzo, H. Astiazaran-Garcia, J. Esparza-Romero, and B. Vallejo-Cordoba. 2018. Randomized double-blind controlled clinical trial of the blood pressure-lowering effect of fermented milk with Lactococcus lactis: A pilot study. Journal of Dairy Science 101 (4):2819–25. doi: 10.3168/jds.2017-13189.
  • Bengoa, A. A., C. Iraporda, G. L. Garrote, and A. G. Abraham. 2018. Kefir microorganisms: Their role in grain assembly and health properties of fermented milk. Journal of Applied Microbiology 126 (3):686–700. doi: 10.1111/jam.14107.
  • Bergqvist, S. W., T. Andlid, and A. S. Sandberg. 2006. Lactic acid fermentation stimulated iron absorption by caco-2 cells is associated with increased soluble iron content in carrot juice. British Journal of Nutrition 96 (4):705–11. doi: 10.1079/bjn20061905.
  • Berni Canani, R., F. De Filippis, R. Nocerino, M. Laiola, L. Paparo, A. Calignano, C. De Caro, L. Coretti, L. Chiariotti, J. A. Gilbert, and D. Ercolini. 2017. Specific signatures of the gut microbiota and increased levels of butyrate in children treated with fermented cow's milk containing heat-killed Lactobacillus paracasei CBA L74. Applied and Environmental Microbiology 83 (19):e01206-17. doi: 10.1128/aem.01206-17.
  • Bertoldi, D., T. Román, R. Guzzon, A. Santato, M. Malacarne, G. Nicolini, and R. Larcher. 2016. Vitality and detoxification ability of yeasts in naturally as-rich musts. European Food Research and Technology 242 (10):1655–62. doi: 10.1007/s00217-016-2664-6.
  • Bevilacqua, A., F. de Stefano, S. Augello, S. Pignatiello, M. Sinigaglia, and M. R. Corbo. 2015. Biotechnological innovations for table olives. International Journal of Food Sciences and Nutrition 66 (2):127–31. doi: 10.3109/09637486.2014.959901.
  • Birmeta, G., A. Bakeeva, and Vo. Passoth. 2019. Yeasts and bacteria associated with kocho, an Ethiopian fermented food produced from enset (ensete ventricosum). Antonie Van Leeuwenhoek International Leeuwenhoek 112 (4):651–9. doi: 10.1007/s10482-018-1192-8.
  • Borresen, E. C., A. J. Henderson, A. Kumar, T. L. Weir, and E. P. Ryan. 2012. Fermented foods: Patented approaches and formulations for nutritional supplementation and health promotion. Recent Patents on Food, Nutrition &Amp; Agriculture 4 (2):134–40.
  • Bourrie, B. C. T., B. P. Willing, and P. D. Cotter. 2016. The microbiota and health promoting characteristics of the fermented beverage kefir. Frontiers in Microbiology 7:647. doi: 10.3389/fmicb.2016.00647.
  • Brauman, A., S. Keleke, M. Malonga, E. Miambi, and F. Ampe. 1996. Microbiological and biochemical characterization of cassava retting, a traditional lactic acid fermentation for foo-foo (cassava flour) production. Applied and Environmental Microbiology 62 (8):2854–8.
  • Brochado, A. R., and K. R. Patil. 2013. Overexpression of O-methyltransferase leads to improved vanillin production in baker's yeast only when complemented with model-guided network engineering. Biotechnology and Bioengineering 110 (2):656–9. doi: 10.1002/bit.24731.
  • Burgess, C. M., E. J. Smid, and D. van Sinderen. 2009. Bacterial vitamin B2, B11 and B12 overproduction: An overview. International Journal of Food Microbiology 133 (1–2):1–7. doi: 10.1016/j.ijfoodmicro.2009.04.012.
  • Caggianiello, G., M. Kleerebezem, and G. Spano. 2016. Exopolysaccharides produced by lactic acid bacteria: From health-promoting benefits to stress tolerance mechanisms. Applied Microbiology and Biotechnology 100 (9):3877–86. doi: 10.1007/s00253-016-7471-2.
  • Cai, Y. X., J. H. Wang, C. McAuley, M. A. Augustin, and N. S. Terefe. 2019. Fermentation for enhancing the bioconversion of glucoraphanin into sulforaphane and improve the functional attributes of broccoli puree. Journal of Functional Foods 61:103461. doi: 10.1016/j.jff.2019.103461.
  • Cha, Y.-S., Mun, E.-G. K. Doyeon, H. J. Lee, 김보경. 김영. 2018. A survey of research papers on the health benefits of kimchi and kimchi lactic acid bacteria. Journal of Nutrition and Health 51 (1)박용순. 13. doi: 10.4163/jnh.2018.51.1.1.
  • Chang, S., and Z. Liu. 2012. Soymilk and Tofu manufacturing. In Handbook of plant-based fermented food and beverage technology. Boca Raton, FL: CRC Press.
  • Chawla, P., L. Bhandari, P. K. Sadh, and R. Kaushik. 2017. Impact of solid-state fermentation (Aspergillus oryzae) on functional properties and mineral bioavailability of black-eyed pea (Vigna unguiculata) seed flour. Cereal Chemistry Journal 94 (3):437–42. doi: 10.1094/CCHEM-05-16-0128-R.
  • Chen, L., R.L. Madi, V.V. Praveen, L. Li, and W. Wang. 2013. Value-added products from soybean: removal of anti-nutritional factors via bioprocessing. In Soybean-bioactive compounds, ed. H. A. El-Shemy, 161–179. INTECH.
  • Chukeatirote, E.. 2015. Thua nao: Thai fermented soybean. Journal of Ethnic Foods 2 (3):115–8. doi: 10.1016/j.jef.2015.08.004.
  • Cocolin, L., and D. Ercolini. 2015. Zooming into food-associated microbial consortia: A ‘cultural’ evolution. Current Opinion in Food Science 2:43–50. doi: 10.1016/j.cofs.2015.01.003.
  • Coelho, L. F., S. M. Beitel, D. C. Sass, P. M. A. Neto, and J. Contiero. 2018. High-titer and productivity of L-(+)-lactic acid using exponential fed-batch fermentation with Bacillus coagulans arr4, a new thermotolerant bacterial strain. 3 Biotech 8 (4) doi: 10.1007/s13205-018-1232-0.
  • Consigliere, R., D. Meloni, and R. Mazzette. 2018. Key hurdles in the mediterranean-style dry fermented sausage “salsiccia sarda” as influenced by different ingredients related to product safety. Journal of Food Processing and Preservation 42 (1):e13321. doi: 10.1111/jfpp.13321.
  • Corbo, M. R., A. Bevilacqua, L. Petruzzi, F. P. Casanova, and M. Sinigaglia. 2014. Functional beverages: the emerging side of functional foods. Comprehensive Reviews in Food Science and Food Safety 13 (6):1192–206. doi: 10.1111/1541-4337.12109.
  • Dajanta, K., A. Apichartsrangkoon, and E. Chukeatirote. 2011. Volatile profiles of Thua Nao, a Thai fermented soy product. Food Chemistry 125 (2):464–70. doi: 10.1016/j.foodchem.2010.09.030.
  • David, L. A., C. F. Maurice, R. N. Carmody, D. B. Gootenberg, J. E. Button, B. E. Wolfe, A. V. Ling, A. S. Devlin, Y. Varma, M. A. Fischbach, et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505 (7484):559. doi: 10.1038/nature12820.
  • De Vuyst, L., F. De Vin, F. Vaningelgem, and B. Degeest. 2001. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. International Dairy Journal 11 (9):687–707. doi: 10.1016/S0958-6946(01)00114-5.
  • Demirkesen, I., T. A. Vilgis, and B. Mert. 2018. Effect of microfluidization on the microstructure and physical properties of a novel yoghurt formulation. Journal of Food Engineering 237:69–77. doi: 10.1016/j.jfoodeng.2018.05.025.
  • Derrien, M., and J. E. T. V. Vlieg. 2015. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends in Microbiology 23 (6):354–66. doi: 10.1016/j.tim.2015.03.002.
  • Dertli, E., M. T. Yilmaz, N. Berna Tatlisu, O. S. Toker, H. Cankurt, and O. Sagdic. 2016. Effects of in situ exopolysaccharide production and fermentation conditions on physicochemical, microbiological, textural and microstructural properties of Turkish-type fermented sausage (sucuk). Meat Science 121:156–65. doi: 10.1016/j.meatsci.2016.06.008.
  • Di Cagno, R., and R. Coda. 2014. Fermented foods | fermented vegetable products A2 - Batt, Carl A. In Encyclopedia of food microbiology, ed. Mary Lou Tortorello, 2nd ed., 875–883. Oxford: Academic Press.
  • Di Cagno, R., R. Coda, M. De Angelis, and M. Gobbetti. 2013. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiology 33 (1):1–10. doi: 10.1016/j.fm.2012.09.003.
  • Dirar, H.A. 1992. Sudan's fermented food heritage. In Applications of biotechnology to traditional fermented foods, 27–35. Washington, D.C.: National Academy Press.
  • Dirar, H. A., D. B. Harper, and M. A. Collins. 1985. Biochemical and microbiological studies on kawal, a meat substitute derived by fermentation of Cassia obtusifolia leaves. Journal of the Science of Food and Agriculture 36 (9):881–92. doi: 10.1002/jsfa.2740360919.
  • Dong, Y., C. B. Cui, C. W. Li, W. Hua, C. J. Wu, T. J. Zhu, and Q. Q. Gu. 2014. Activation of dormant secondary metabolite production by introducing neomycin resistance into the deep-sea fungus, aspergillus versicolor ZBY-3. Marine Drugs 12 (8):4326–52. doi: 10.3390/md12084326.
  • Dongmo, N., S. S. Procopio, B. Sacher, and T. Becker. 2016. Flavor of lactic acid fermented malt based beverages: Current status and perspectives. Trends in Food Science & Technology 54:37–51. doi: 10.1016/j.tifs.2016.05.017.
  • Eales, J., I. Lenoir-Wijnkoop, S. King, H. Wood, F. J. Kok, R. Shamir, A. Prentice, M. Edwards, J. Glanville, and R. L. Atkinson. 2016. Is consuming yoghurt associated with weight management outcomes? Results from a systematic review. International Journal of Obesity 40 (5):731–46. doi: 10.1038/ijo.2015.202.
  • EauClaire, S. F., J. Zhang, C. G. Rivera, and L. L. Huang. 2016. Combinatorial metabolic pathway assembly in the yeast genome with RNA-guided Cas9. Journal of Industrial Microbiology & Biotechnology 43 (7):1001–15. doi: 10.1007/s10295-016-1776-0.
  • Ekıncı, Raci. 2005. The effect of fermentation and drying on the water-soluble vitamin content of Tarhana, a traditional Turkish cereal food. Food Chemistry 90 (1–2):127–32. doi: 10.1016/j.foodchem.2004.03.036.
  • El Khalifa, A. O., and A. H. El Tinay. 1994. Effect of fermentation on protein fractions and tannin content of low- and high-tannin cultivars of sorghum. Food Chemistry 49 (3):265–9. doi: 10.1016/0308-8146(94)90171-6.
  • Elfahri, K. R., O. N. Donkor, and T. Vasiljevic. 2014. Potential of novel Lactobacillus helveticus strains and their cell wall bound proteases to release physiologically active peptides from milk proteins. International Dairy Journal 38 (1):37–46. doi: 10.1016/j.idairyj.2014.03.010.
  • Elmoneim, A., O. Elkhalifa, B. Schiffler, and R. Bernhardt. 2005. Effect of fermentation on the functional properties of sorghum flour. Food Chemistry 92 (1):1–5. doi: 10.1016/j.foodchem.2004.05.058.
  • Escamilla, D. M., M. L. Rosso, D. L. Holshouser, P. Chen, and B. Zhang. 2019. Improvement of soybean cultivars for natto production through the selection of seed morphological and physiological characteristics and seed compositions: a review. Plant Breeding 138 (2):131–9. doi: 10.1111/pbr.12678.
  • Essers, A. J. A., M. H. J. Bennik, and M. J. R. Nout. 1995. Mechanisms of increased linamarin degradation during solid-substrate fermentation of cassava. World Journal of Microbiology & Biotechnology 11 (3):266–70. doi: 10.1007/BF00367096.
  • Ezekiel, O. O., A. A. O. Ogunshe, and D. E. Jegede. 2015. Controlled fermentation of cotton seeds (Gossypium hirsutum) for owoh production using bacteria starter cultures. Nigerian Food Journal 33 (1):54–60. doi: 10.1016/j.nifoj.2015.04.013.
  • Falegan, C. R., and O. M. David. 2007. The effect of fermentation on nutritional composition of cottonseeds (Gossypium hirsutum linn) for production of 'owoh'. Journal of Pure and Applied Microbiology 1 (1):39–44.
  • Fernandez, M. A., S. Panahi, N. Daniel, A. Tremblay, and A. Marette. 2017. Yogurt and cardiometabolic diseases: A critical review of potential mechanisms. Advances in Nutrition: An International Review Journal 8 (6):812–29. doi: 10.3945/an.116.013946.
  • Filannino, P., Y. P. Bai, R. Di Cagno, M. Gobbetti, and M. G. Ganzle. 2015. Metabolism of phenolic compounds by lactobacillus spp. during fermentation of cherry juice and broccoli puree. Food Microbiology 46:272–9. doi: 10.1016/j.fm.2014.08.018.
  • Filannino, P., R. Di Cagno, and M. Gobbetti. 2018. Metabolic and functional paths of lactic acid bacteria in plant foods: get out of the labyrinth. Current Opinion in Biotechnology 49:64–72. doi: 10.1016/j.copbio.2017.07.016.
  • Fischer, M. M., I. M. Egli, I. Aeberli, R. F. Hurrell, and L. Meile. 2014. Phytic acid degrading lactic acid bacteria in tef-injera fermentation. International Journal of Food Microbiology 190:54–60. doi: 10.1016/j.ijfoodmicro.2014.08.018.
  • Fossi, B. T., and R. Ndjouenkeu. 2017. Probiotic potential of thermotolerant lactic acid bacteria isolated from “gari “a cassava-based African fermented food. Journal of Applied Biology & Biotechnology 5 (4):1–5. doi: 10.7324/JABB.2017.50401.
  • Fuchs, S., G. Sontag, R. Stidl, V. Ehrlich, M. Kundi, and S. Knasmuller. 2008. Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food and Chemical Toxicology 46 (4):1398–407. doi: 10.1016/j.fct.2007.10.008.
  • Galati, A., F. A. Oguntoyinbo, G. Moschetti, M. Crescimanno, and L. Settanni. 2014. The cereal market and the role of fermentation in cereal-based food production in Africa. Food Reviews International 30 (4):317–37. doi: 10.1080/87559129.2014.929143.
  • Gambacorta, G., A. Trani, R. Punzi, C. Fasciano, R. Leo, G. Fracchiolla, and M. Faccia. 2017. Impact of ultrasounds on the extraction of polyphenols during winemaking of red grapes cultivars from Southern Italy. Innovative Food Science & Emerging Technologies 43:54–9. doi: 10.1016/j.ifset.2017.07.029.
  • Gardini, F., Y. Ozogul, G. Suzzi, G. Tabanelli, and F. Ozogul. 2016. Technological factors affecting biogenic amine content in foods: A review. Frontiers in Microbiology 7:1218. doi: 10.3389/fmicb.2016.01218.
  • Ghanem, K. Z., I. H. Badawy, and A. M. Abdel-Salam. 2004. Influence of yoghurt and probiotic yoghurt on the absorption of calcium, magnesium, iron and bone mineralization in rats. Milchwissenschaft-Milk Science International 59 (9–10):472–5.
  • Gille, D., A. Schmid, B. Walther, and G. Vergeres. 2018. Fermented food and Non-Communicable chronic diseases: A review. Nutrients 10 (4):E448. doi: 10.3390/nu10040:448.
  • Gomi, A., K. Yamaji, O. Watanabe, M. Yoshioka, K. Miyazaki, Y. Iwama, and Y. Urita. 2018. Bifidobacterium bifidum YIT 10347 fermented milk exerts beneficial effects on gastrointestinal discomfort and symptoms in healthy adults: A double-blind, randomized, placebo-controlled study. Journal of Dairy Science 101 (6):4830–41. doi: 10.3168/jds.2017-13803.
  • Goodarzi Boroojeni, F., M. Senz, K. Kozłowski, D. Boros, M. Wisniewska, D. Rose, K. Männer, and J. Zentek. 2017. The effects of fermentation and enzymatic treatment of pea on nutrient digestibility and growth performance of broilers. Animal 11 (10):1698–707. doi: 10.1017/S1751731117000787.
  • Guan, S., C. Ji, T. Zhou, J. X. Li, Q. G. Ma, and T. G. Niu. 2008. Aflatoxin B-1 degradation by Stenotrophomonas maltophilia and other microbes selected using coumarin medium. International Journal of Molecular Sciences 9 (8):1489–503. doi: 10.3390/ijms9081489.
  • Guizani, N. 2011. Vegetable fermentation and pickling. In Handbook of vegetables and vegetable processing, ed. N. K. Sinha, 351–367. Hoboken, NJ: Blackwell Publishing Ltd.
  • Gupta, S., and N. Abu-Ghannam. 2012. Probiotic fermentation of plant based products: Possibilities and opportunities. Critical Reviews in Food Science and Nutrition 52 (2):183–99. doi: 10.1080/10408398.2010.499779.
  • Gupta, U., Rudramma, E. R. Rati, and R. Joseph. 1998. Nutritional quality of lactic fermented bitter gourd and fenugreek leaves. International Journal of Food Sciences and Nutrition 49 (2):101–8.
  • Guzel-Seydim, Z. B., T. Kok-Tas, A. K. Greene, and A. C. Seydim. 2011. Review: Functional properties of kefir. Critical Reviews in Food Science and Nutrition 51 (3):261–8. doi: 10.1080/10408390903579029.
  • Habtamu, L. D., M. Ashenafi, K. Taddese, K. Birhanu, and T. Getaw. 2015. Occurrence of lactose intolerance among Ethiopians. Journal of Food Processing and Technology 6 (10):505.
  • Hachmeister, K. A., and D. Y. Fung. 1993. Tempeh: a mold-modified indigenous fermented food made from soybeans and/or cereal grains. Critical Reviews in Microbiology 19 (3):137–88. doi: 10.3109/10408419309113527.
  • Hashim, N., C. W. Tai, H. X. Wen, A. Ismail, and K. W. Kong. 2018. Comparative evaluation of antioxidant properties and isoflavones of tempeh fermented in two different wrapping materials. Current Research in Nutrition and Food Science Journal 6 (2):307–317. doi: 10.12944/CRNFSJ.6.2.06.
  • Hassan, I. A. G., and A. H. El Tinay. 1995. Effect of fermentation on tannin content and in-vitro protein and starch digestibilities of two sorghum cultivars. Food Chemistry 53 (2):149–151. doi: 10.1016/0308-8146(95)90780-B.
  • Hellstrom, A. M., A. Almgren, N. G. Carlsson, U. Svanberg, and T. A. Andlid. 2012. Degradation of phytate by Pichia kudriavzevii TY13 and Hanseniaspora guilliermondii TY14 in Tanzanian togwa. International Journal of Food Microbiology 153 (1–2):73–77. doi: 10.1016/j.ijfoodmicro.2011.10.018.
  • Hongpattarakere, T., N. Cherntong, S. Wichienchot, S. Kolida, and R. A. Rastall. 2012. In vitro prebiotic evaluation of exopolysaccharides produced by marine isolated lactic acid bacteria. Carbohydrate Polymers 87 (1):846–852. doi: 10.1016/j.carbpol.2011.08.085.
  • Hou, Q., Li, C. Y. Liu, W. Li, Y. Chen, Siqinbateer, Y. Bao, W. Saqila, H. Zhang, B. Menghe, and Z. Sun. 2019. Koumiss consumption modulates gut microbiota, increases plasma high density cholesterol, decreases immunoglobulin G and albumin. Journal of Functional Foods 52:469–478. doi: 10.1016/j.jff.2018.11.023.
  • Huang, L., C. Duan, Y. Zhao, L. Gao, C. Niu, J. Xu, and S. Li. 2017. Reduction of aflatoxin B1 toxicity by Lactobacillus plantarum C88: A potential probiotic strain isolated from Chinese traditional fermented food “tofu. Plos ONE 12 (1):e0170109. doi: 10.1371/journal.pone.0170109.
  • Hugenholtz, J. 2013. Traditional biotechnology for new foods and beverages. Current Opinion in Biotechnology 24 (2):155–159. doi: 10.1016/j.copbio.2013.01.001.
  • Hugenschmidt, S., S. M. Schwenninger, N. Gnehm, and C. Lacroix. 2010. Screening of a natural biodiversity of lactic and propionic acid bacteria for folate and vitamin B12 production in supplemented whey permeate. International Dairy Journal 20 (12):852–857. doi: 10.1016/j.idairyj.2010.05.005.
  • Hulikunte Mallikarjunaiah, N., N. Jayapala, H. Puttaswamy, and N. S. Ramachandrappa. 2017. Characterization of non-aflatoxigenic strains of Aspergillus flavus as potential biocontrol agent for the management of aflatoxin contamination in groundnut. Microbial Pathogenesis 102:21–28. doi: 10.1016/j.micpath.2016.11.007.
  • Hussain, A., S. Bose, J. H. Wang, M. K. Yadav, G. B. Mahajan, and H. Kim. 2016. Fermentation, a feasible strategy for enhancing bioactivity of herbal medicines. Food Research International 81:1–16. doi: 10.1016/j.foodres.2015.12.026.
  • Hwang, J.-H., S.-J. Wu, P.-L. Wu, Y.-Y. Shih, and Y.-C. Chan. 2018. Neuroprotective effect of tempeh against lipopolysaccharide-induced damage in BV-2 microglial cells. Nutritional Neuroscience :1–10. doi: 10.1080/1028415X.2018.1456040.
  • Hyun, J., Y. Lee, S. Wang, J. Kim, J. Kim, J. H. Cha, Y.-S. Seo, and Y. Jung. 2016. Kombucha tea prevents obese mice from developing hepatic steatosis and liver damage. Food Science and Biotechnology 25 (3):861–6. doi: 10.1007/s10068-016-0142-3.
  • Igbabul, B. D., F. A. Bello, and E. C. Ani. 2014. Effect of fermentation on the proximate composition and functional properties of defatted coconut (Cocos nucifera L.) flour. Current Research in Nutrition and Food Science Journal 3 (5):34–40. doi: 10.12944/CRNFSJ.2.1.01.
  • Igbabul, B. D., O. Hiikyaa, and J. Amove. 2014. Effect of fermentation on the proximate composition and functional properties of mahogany bean (Afzelia africana) flour. Current Research in Nutrition and Food Science Journal 2 (1). doi: 10.12944/CRNFSJ.2.1.01.
  • Ismaiel, A. A., R. H. Bassyouni, Z. Kamel, and S. M. Gabr. 2016. Detoxification of patulin by kombucha tea culture. CyTA - Journal of Food 14 (2):271–279. doi: 10.1080/19476337.2015.1096828.
  • Izzreen, M., L. Nuobariene, S. K. Rasmussen, N. Arneborg, and A. S. Hansen. 2017. Changes in phytate content in whole meal wheat dough and bread fermented with phytase-active yeasts. Cereal Chemistry 94 (6):922–927. doi: 10.1094/cchem-03-17-0043-r.
  • Ji, C., Y. Fan, and L. Zhao. 2016. Review on biological degradation of mycotoxins. Animal Nutrition 2 (3):127–33. doi: 10.1016/j.aninu.2016.07.003.
  • Jonnala, B. R., Yeluri, P. L. H. McSweeney, J. J. Sheehan, and P. D. Cotter. 2018. Sequencing of the cheese microbiome and its relevance to industry. Frontiers in Microbiology 9:1020. doi: 10.3389/fmicb.2018.01020.
  • Joo, D. H., B. Y. Jeon, and D. H. Park. 2013. Effects of an electric pulse on variation of bacterial community and metabolite production in kimchi-making culture. Biotechnology and Bioprocess Engineering 18 (5):909–17. doi: 10.1007/s12257-013-0098-6.
  • Juan, M. Y., C. H. Wu, and C. C. Chou. 2010. Fermentation with bacillus spp. as a bioprocess to enhance anthocyanin content, the angiotensin converting enzyme inhibitory effect, and the reducing activity of black soybeans. Food Microbiology 27 (7):918–23. doi: 10.1016/j.fm.2010.05.009.
  • Jung, J. Y., S. H. Lee, and C. O. Jeon. 2014. Kimchi microflora: history, current status, and perspectives for industrial kimchi production. Applied Microbiology and Biotechnology 98 (6):2385–93. doi: 10.1007/s00253-014-5513-1.
  • Juvonen, R., K. Honkapaa, N. H. Maina, Q. Shi, K. Viljanen, H. Maaheimo, L. Virkki, M. Tenkanen, and R. Lantto. 2015. The impact of fermentation with exopolysaccharide producing lactic acid bacteria on rheological, chemical and sensory properties of pureed carrots (Daucus carota L.). International Journal of Food Microbiology 207:109–18. doi: 10.1016/j.ijfoodmicro.2015.04.031.
  • Karlovsky, P. 1999. Biological detoxification of fungal toxins and its use in plant breeding, feed and food production. Natural Toxins 7 (1):1–23. doi: 10.1002/(SICI)1522-7189(199902)7:1<1::AID-NT37>3.0.CO;2-9.
  • Katayama, T., Y. Tanaka, T. Okabe, H. Nakamura, W. Fujii, K. Kitamoto, and J. Maruyama. 2016. Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnology Letters 38 (4):637–42. doi: 10.1007/s10529-015-2015-x.
  • Katina, K., N. H. Maina, R. Juvonen, L. Flander, L. Johansson, L. Virkki, M. Tenkanen, and A. Laitila. 2009. In situ production and analysis of Weissella confusa dextran in wheat sourdough. Food Microbiology 26 (7):734–43. doi: 10.1016/j.fm.2009.07.008.
  • Kaur, P., A. Vohra, and T. Satyanarayana. 2013. Laboratory and Industrial Bioreactors for Submerged Fermentations. In Fermentation processes engineering in the food industry, eds. C. R. Soccol, A. Pandey and C. Larroche, 165–81. Boca Raton, FL: CRC Press.
  • Kavšček, M., M. Stražar, T. Curk, K. Natter, and U. Petrovič. 2015. Yeast as a cell factory: current state and perspectives. Microbial Cell Factories 14 (1):94. doi: 10.1186/s12934-015-0281-x.
  • Kemi, A. O., A. I. Mercy, and O. Oo. 2017. The effect of fermentation on functional properties of sweet potato and wheat flour. African Journal of Food Science and Technology 08 (02):14–8. doi: 10.14303/ajfst.2016.0113.
  • Khan, I., and S. C. Kang. 2017. Apoptotic activity of Lactobacillus plantarum DGK-17-Fermented soybean seed extract in human colon cancer cells via ROS-JNK signaling pathway. Journal of Food Science 82 (6):1475–83. doi: 10.1111/1750-3841.13732.
  • Khoury, N., S. El-Hayek, O. Tarras, M. El-Sabban, M. El-Sibai, and S. Rizk. 2014. Kefir exhibits antiproliferative and proapoptotic effects on Colon adenocarcinoma cells with no significant effects on cell migration and invasion. International Journal of Oncology 45 (5):2117–27. doi: 10.3892/ijo.2014.2635.
  • Khusnayaini, A. A., P. Hariyadi, and E. Syamsir. 2018. Kinetic changes of antioxidant capacity and physical quality of Tempe during heating. International Food Research Journal 25 (3):1166–73.
  • Kim, E. K., S.-Y. An, M.-S. Lee, T. H. Kim, H.-K. Lee, W. S. Hwang, S. J. Choe, T.-Y. Kim, S. J. Han, H. J. Kim, et al. 2011. Fermented kimchi reduces body weight and improves metabolic parameters in overweight and obese patients. Nutrition Research 31 (6):436–43. doi: 10.1016/j.nutres.2011.05.011.
  • Kim, H. J., J. T. Hwang, M. J. Kim, H. J. Yang, M. J. Sung, S. H. Kim, S. Park, E. J. Gu, Y. Park, and D. Y. Kwon. 2014. The inhibitory effect of saponin derived from cheonggukjang on adipocyte differentiation in vitro. Food Science and Biotechnology 23 (4):1273–8. doi: 10.1007/s10068-014-0175-4.
  • Kim, C. I., S. S. Shin, and S. S. Park. 2016. Growth inhibition and induction of apoptosis in human bladder cancer cells induced by fermented Citrus kombucha. Journal of the Korean Society of Food Science and Nutrition 45 (10):1422–29.
  • Kim, H. J., N. J. Sook, and Y. O. Song. 2018. Beneficial effects of kimchi, a Korean fermented vegetable food, on pathophysiological factors related to atherosclerosis. Journal of Medicinal Food 21 (2):127–135. doi: 10.1089/jmf.2017.3946.
  • Kobawilla, S. C., D. Louembe, S. Keleke, J. Hounhouigan, and C. Gamba. 2005. Reduction of the cyanide content during fermentation of cassava roots and leaves to produce bikedi and ntoba mbodi, two food products from Congo. African Journal of Biotechnology 4 (7):689–96. doi: 10.5897/AJB2005.000-3128.
  • Kok, C. R., and R. Hutkins. 2018. Yogurt and other fermented foods as sources of health-promoting bacteria. Nutrition Reviews 76 (Supplement_1):4–15. doi: 10.1093/nutrit/nuy056.
  • Kuhl, G. C., and J. De Dea Lindner. 2016. Biohydrogenation of linoleic acid by lactic acid bacteria for the production of functional cultured dairy products: A review. Foods 5 (1):E13.13. doi: 10.3390/foods50100.
  • Kumar, P., M. K. Chatli, A. K. Verma, N. Mehta, O. P. Malav, D. Kumar, and N. Sharma. 2017. Quality, functionality, and shelf life of fermented meat and meat products: A review. Critical Reviews in Food Science and Nutrition 57 (13):2844–56. doi: 10.1080/10408398.2015.1074533.
  • Kumar, J., N. Sharma, G. Kaushal, S. Samurailatpam, D. Sahoo, A. K. Rai, and S. P. Singh. 2019. Metagenomic insights into the taxonomic and functional features of kinema, a traditional fermented soybean product of Sikkim Himalaya. Frontiers in Microbiology 10:1744. doi: 10.3389/fmicb.2019.01744.
  • Kusumoto, K.-I., A. Helmrich, P. Mericko, L. P. Chen, J. D. Sato, S. Shirahata, S. Tokumaru, and D. Barnes. 2002. The Protective Anti-oxidant Effects of Kefir on SFME Neural Stem Cells. In Animal cell technology: Basic & applied aspects: Proceedings of the thirteenth annual meeting of the Japanese association for animal cell technology (JAACT), Fukuoka-Karatsu, November 16–21, 2000, edited by Sanetaka Shirahata, Kiichiro Teruya and Yoshinori Katakura, 353–357. Dordrecht: Springer Netherlands.
  • Kusumoto, K.-I., and A. Kumar Rai. 2017. Miso, the traditional fermented soybean paste of Japan. In Fermented foods, Part II: Technological interventions, Chapter 6, eds. R. C. Ray and D. Montet. Boca Raton, FL: CRC Press, Taylor and Francis.
  • Kuswanto, K. R. 1988. Studies on the Semayi Indonesian traditional fermented food. Memoirs of the Tokyo University of Agriculture 30:189–287.
  • Landete, J. M., T. Hernandez, S. Robredo, M. Duenas, B. de las Rivas, I. Estrella, and R. Munoz. 2015. Effect of soaking and fermentation on content of phenolic compounds of soybean (Glycine max cv. Merit) and mung beans (Vigna radiata L wilczek). International Journal of Food Sciences and Nutrition 66 (2):203–9. doi: 10.3109/09637486.2014.986068.
  • Larroude, M., E. Celinska, A. Back, S. Thomas, J. M. Nicaud, and R. Ledesma-Amaro. 2018. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of beta-carotene. Biotechnology and Bioengineering 115 (2):464–72. doi: 10.1002/bit.26473.
  • Lauri, S., and S. Hannu. 2004. Fermented cereal-based functional foods. In Handbook of food and beverage fermentation technology. Boca Raton, FL: CRC Press.
  • Lee, B. H. 2014a. Bacteria-based processes and products. In Fundamentals of food biotechnology, 241–312. Hoboken, NJ: John Wiley & Sons, Ltd.
  • Lee, B. H. 2015. Fundamentals of food biotechnology. Hoboken, NJ: John Wiley & Sons, Ltd.
  • Lee, B. H. 2014b. Yeast-Based Processes and Products. In Fundamentals of food biotechnology, 205–239. Hoboken, NJ: John Wiley & Sons, Ltd.
  • Lee, G. I., H. M. Lee, and C. H. Lee. 2012. Food safety issues in industrialization of traditional Korean foods. Food Control 24 (1–2):1–5. doi: 10.1016/j.foodcont.2011.09.014.
  • Leona, P., P. Petra, and B. Tomá. 2013. Advanced fermentation processes. In Engineering aspects of food biotechnology, 89–110. Boca Raton, FL: CRC Press.
  • Leroy, F., and L. De Vuyst. 2014. Fermented food in the context of a healthy diet: How to produce novel functional foods? Current Opinion in Clinical Nutrition and Metabolic Care 17 (6):574–81. doi: 10.1097/MCO.0000000000000108.
  • Leroy, F., A. Geyzen, M. Janssens, L. De Vuyst, and P. Scholliers. 2013. Meat fermentation at the crossroads of innovation and tradition: A historical outlook. Trends in Food Science & Technology 31 (2):130–7. doi: 10.1016/j.tifs.2013.03.008.
  • Leroy, F., P. Scholliers, and V. Amilien. 2015. Elements of innovation and tradition in meat fermentation: Conflicts and synergies. International Journal of Food Microbiology 212:2–8. doi: 10.1016/j.ijfoodmicro.2014.11.016.
  • Li, K. Y. 2004. Fermentation: Principles and microorganisms. In Handbook of food and beverage fermentation technology, eds. Y. H. Hui, L. Meunier-Goddik, A. S. Hansen, J. Josephsen, W. K. Nip, P. Stanfield and F. Toldra, 685–702. New York: Marcel-Dekker.
  • Liang, R., J. Huang, X. Wu, J. Fan, Y. Xu, C. Wu, Y. Jin, and R. Zhou. 2019. Effect of raw material and starters on the metabolite constituents and microbial community diversity of fermented soy sauce. Journal of the Science of Food and Agriculture. doi: 10.1002/jsfa.9830.
  • Liang, J., D. Li, R. Shi, J. Wang, Y. Ma, and K. Xiong. 2019. Effects of different co-cultures on the amino acid availability, biogenic amine concentrations and protein metabolism of fermented sufu and their relationships. Lwt 113:108323. doi: 10.1016/j.lwt.2019.108323.
  • Li, J., H. Huang, W. Feng, R. Guan, L. Zhou, H. Cheng, and X. Ye. 2019. Dynamic changes in biogenic amine content in the traditional brewing process of soy sauce. Journal of Food Protection 82 (9):1539–45. doi: 10.4315/0362-028X.JFP-19-035.
  • Li, S., M. Offengenden, M. Fentabil, Michael G. Gänzle, and Jianping Wu. 2013. Effect of egg white fermentation with lactobacilli on IgE binding ability of egg white proteins. Food Research International 52 (1):359–66. doi: 10.1016/j.foodres.2013.03.018.
  • Li, M. J., K. Schneider, M. Kristensen, I. Borodina, and J. Nielsen. 2016. Engineering yeast for high-level production of stilbenoid antioxidants. Scientific Reports 6. doi: 10.1038/srep36827.
  • Liu, K. 2004. “Fermented soy foods: an overview.” In Handbook of food and beverage fermentation technology. edited by Y. H. Hui, L. Meunier-Goddik, A. S. Hansen, J. Josephsen, W. K. Nip, P. Stanfield and F. Toldra, 553–568. New York: Marcel Dekker.
  • Liu, S.Q. 2012. Flavours and food fermentation. In Handbook of plant-based fermented food and beverage technology, eds. Y. H. Hui and O. Evranuz, 23–34. Boca Raton, FL: CRC Press.
  • Liu, L.,. N. Guan, J. Li, H. D. Shin, G. Du, and J. Chen. 2017. Development of GRAS strains for nutraceutical production using systems and synthetic biology approaches: advances and prospects. Critical Reviews in Biotechnology 37 (2):139–50. doi: 10.3109/07388551.2015.1121461.
  • Loenner, C., and K. Preve-Akesson. 1989. Effects of lactic acid bacteria on the properties of sour dough bread. Food Microbiology 6 (1):19–35. doi: 10.1016/S0740-0020(89)80034-6.
  • Loizzo, M. R., F. Menichini, N. Picci, F. Puoci, U. G. Spizzirri, and D. Restuccia. 2013. Technological aspects and analytical determination of biogenic amines in cheese. Trends in Food Science & Technology 30 (1):38–55. doi: 10.1016/j.tifs.2012.11.005.
  • London, L. E. E., V. Chaurin, M. A. E. Auty, M. A. Fenelon, G. F. Fitzgerald, R. Paul Ross, and C. Stanton. 2015. Use of Lactobacillus mucosae DPC 6426, an exopolysaccharide-producing strain, positively influences the techno-functional properties of yoghurt. International Dairy Journal 40:33–8. doi: 10.1016/j.idairyj.2014.08.011.
  • Lopes, R. P., M. J. Mota, C. A. Pinto, S. Sousa, J. A. Lopes da Silva, A. M. Gomes, I. Delgadillo, and J. A. Saraiva. 2019. Physicochemical and microbial changes in yogurts produced under different pressure and temperature conditions. LWT 99:423–30. doi: 10.1016/j.lwt.2018.09.074.
  • Lynch, K. M., A. Coffey, and E. K. Arendt. 2017. Exopolysaccharide producing lactic acid bacteria: Their techno-functional role and potential application in gluten-free bread products. Food Research International 110:52–61. doi: 10.1016/j.foodres.2017.03.012.
  • Madkor, S. A., P. S. Tong, and M. El Soda. 2000. Ripening of cheddar cheese with added attenuated adjunct cultures of lactobacilli. Journal of Dairy Science 83 (8):1684–91. doi: 10.3168/jds.S0022-0302(00)75037-5.
  • Mante, E. S., E. Sakyi-Dawson, and W. K. Amoa-Awua. 2003. Antimicrobial interactions of microbial species involved in the fermentation of cassava dough into Agbelima with particular reference to the inhibitory effect of lactic acid bacteria on enteric pathogens. International Journal of Food Microbiology 89 (1):41–50. doi: 10.1016/S0168-1605(03)00103-X.
  • Marco, M. L., D. S. Heeney, C. J. Binda, P. D. Cifelli, B. Cotter, M. Foligne, R. Ganzle, G. Kort, A. Pasin, E. J. Pihlanto, et al. 2017. Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology 44:94–102. doi: 10.1016/j.copbio.2016.11.010.
  • Marsh, A. J., C. Hill, R. P. Ross, and P. D. Cotter. 2014. Fermented beverages with health-promoting potential: Past and future perspectives. Trends in Food Science & Technology 38 (2):113–24. doi: 10.1016/j.tifs.2014.05.002.
  • Martinez-Villaluenga, C., E. Peñas, and J. Frias. 2017. Bioactive peptides in fermented foods: production and evidence for health effects. In Fermented foods in health and disease prevention, 23–47. Boston: Academic Press.
  • Meftah, S., S. Abid, T. Dias, and P. Rodrigues. 2018. Effect of dry-sausage starter culture and endogenous yeasts on Aspergillus westerdijkiae and Penicillium nordicum growth and OTA production. LWT 87:250–8. doi: 10.1016/j.lwt.2017.08.090.
  • Meinlschmidt, P., E. Ueberham, J. Lehmann, U. Schweiggert-Weisz, and P. Eisner. 2016. Immunoreactivity, sensory and physicochemical properties of fermented soy protein isolate. Food Chemistry 205:229–38. doi: 10.1016/j.foodchem.2016.03.016.
  • Meloni, D. 2015. Presence of Listeria monocytogenes in Mediterranean-Style dry fermented sausages. Foods 4 (4):34–50. doi: 10.3390/foods4010034.
  • Mercier, S. M., B. Diepenbroek, R. H. Wijffels, and M. Streefland. 2014. Multivariate PAT solutions for biopharmaceutical cultivation: Current progress and limitations. Trends in Biotechnology 32 (6):329–36. doi: 10.1016/j.tibtech.2014.03.008.
  • Merican, Z., and Q. L. Yeoh. 2004. Tapai processing in Malaysia: A technology in transition. In Industrialization of indigenous fermented foods, eds. K. H. Steinkraus. Boca Raton, FL: CRC Press.
  • Misganaw, W., and W. Teketay. 2016. Isolation, characterization and identification of lactic acid bacteria from ready to consume shamita: Ethiopian traditional fermented beverage. International Journal of Life Sciences and Technology (IJLST) 9 (6):51–5.
  • Mohamed, M. A., A. E. O. Elkhalifa, and M. A. Agab. 2012. Biochemical investigation on Hibiscus sabdariffa L. (karkade) seed-based sudanese fermented food locally known as furundu. Electronic Journal of Environmental, Agricultural and Food Chemistry 11 (3):265–78.
  • Montanha, F. P., A. Anater, J. F. Burchard, F. B. Luciano, G. Meca, L. Manyes, and C. T. Pimpao. 2018. Mycotoxins in dry-cured meats: A review. Food and Chemical Toxicology 111:494–502. doi: 10.1016/j.fct.2017.12.008.
  • Moss, M. O., and M. T. Long. 2002. Fate of patulin in the presence of the yeast Saccharomyces cerevisiae. Food Additives and Contaminants 19 (4):387–99. doi: 10.1080/02652030110091163.
  • Mota, M. J., R. P. Lopes, M. Koubaa, S. Roohinejad, F. J. Barba, I. Delgadillo, and J. A. Saraiva. 2018. Fermentation at non-conventional conditions in food- and bio-sciences by the application of advanced processing technologies. Critical Reviews in Biotechnology 38 (1):122–40. doi: 10.1080/07388551.2017.1312272.
  • Mozzi, F., M. E. Ortiz, J. Bleckwedel, L. De Vuyst, and M. Pescuma. 2013. Metabolomics as a tool for the comprehensive understanding of fermented and functional foods with lactic acid bacteria. Food Research International 54 (1):1152–61. doi: 10.1016/j.foodres.2012.11.010.
  • Murooka, Y., and M. Yamshita. 2008. Traditional healthful fermented products of Japan. Journal of Industrial Microbiology & Biotechnology 35 (8):791–8. doi: 10.1007/s10295-008-0362-5.
  • Nagino, T., C. Kaga, M. Kano, N. Masuoka, M. Anbe, K. Moriyama, K. Maruyama, S. Nakamura, K. Shida, and K. Miyazaki. 2018. Effects of fermented soymilk with Lactobacillus casei shirota on skin condition and the gut microbiota: a randomised clinical pilot trial. Beneficial Microbes 9 (2):209–18. doi: 10.3920/BM2017.0091.
  • Navarro, R., and E. I. Dizon. 1991. Protein enrichment of Philippine fermented rice cake (puto) using rice bean (Vigna umbellata L.). Philippine Agriculturist 74 (2):231–44.
  • Nowak, A., A. Czyzowska, and M. Stanczyk. 2015. Protective activity of probiotic bacteria against 2-amino-3-methyl-3H-imidazo 4,5-f quinoline (IQ) and 2-amino-1-methyl-6-phenyl-1H-imidazo 4,5-b pyridine (PhIP) – An in vitro study. Food Additives & Contaminants: Part A 32 (11):1927–38. doi: 10.1080/19440049.2015.1084651.
  • Nowak, A., and Z. Libudzisz. 2009. Ability of probiotic Lactobacillus casei DN 114001 to bind or/and metabolise heterocyclic aromatic amines in vitro. European Journal of Nutrition 48 (7):419–27. doi: 10.1007/s00394-009-0030-1.
  • Oguntoyinbo, F. A. 2014. Safety challenges associated with traditional foods of West Africa. Food Reviews International 30 (4):338–58. doi: 10.1080/87559129.2014.940086.
  • Oguro, Y., T. Nishiwaki, R. Shinada, K. Kobayashi, and A. Kurahashi. 2017. Metabolite profile of koji amazake and its lactic acid fermentation product by Lactobacillus sakei UONUMA. Journal of Bioscience and Bioengineering 124 (2):178–83. doi: 10.1016/j.jbiosc.2017.03.011.
  • Ojha, K. S., C. M. Burgess, G. Duffy, J. P. Kerry, and B. K. Tiwari. 2018. Integrated phenotypic-genotypic approach to understand the influence of ultrasound on metabolic response of Lactobacillus sakei. Plos ONE 13 (1):e0191053. doi: 10.1371/journal.pone.0191053.
  • Olanbiwoninu, A. A., O. Irokosu, and S. A. Odunfa. 2017. Riboflavin enriched iru: A fermented vegetable protein. African Journal of Microbiology Research 11 (13):546–52.
  • Olasupo, N. A., C. P. Okorie, and F. A. Oguntoyinbo. 2016. The biotechnology of ugba, a nigerian traditional fermented food condiment. Frontiers in Microbiology 7:1153. doi: 10.3389/fmicb.2016.01153.
  • Olivares, M., M. Paz Diaz-Ropero, N. Gomez, S. Sierra, F. Lara-Villoslada, R. Martin, J. Miguel Rodriguez, and J. Xaus. 2006. Dietary deprivation of fermented foods causes a fall in innate immune response. Lactic acid bacteria can counteract the immunological effect of this deprivation. Journal of Dairy Research 73 (4):492–8. doi: 10.1017/S0022029906002068.
  • Oloyede, O. O., S. James, O. B. Ocheme, C. E. Chinma, and V. E. Akpa. 2016. Effects of fermentation time on the functional and pasting properties of defatted Moringa oleifera seed flour. Food Science & Nutrition 4 (1):89–95. doi: 10.1002/fsn3.262.
  • Olthof, M. R., P. C. H. Hollman, and M. B. Katan. 2001. Chlorogenic acid and caffeic acid are absorbed in humans. The Journal of Nutrition 131 (1):66–71. doi: 10.1093/jn/131.1.66.
  • Oluyesi, O. E., and O. M. Temitayo. 2015. Chemical and functional properties of fermented, roasted and germinated tamarind (Tamarindus indica) seed flours. Nutrition & Food Science 45 (1):97–111. doi: 10.1108/NFS-11-2013-0131.
  • Onimawo, I. A., E. C. Nimerole, P. I. Idoko, and P. I. Akubor. 2003. Effects of fermentation on nutrient content and some functional properties of pumpkin seed (Telfaria occidentalis). Plant Foods for Human Nutrition 58:1–9. doi: 10.1023/B:QUAL.0000040330.58205.dc.
  • Osman, M. A. 2004. Changes in sorghum enzyme inhibitors, phytic acid, tannins and in vitro protein digestibility occurring during khamir (local bread) fermentation. Food Chemistry 88 (1):129–34. doi: 10.1016/j.foodchem.2003.12.038.
  • Osman, M. A. 2011. Effect of traditional fermentation process on the nutrient and antinutrient contents of pearl millet during preparation of lohoh. Journal of the Saudi Society of Agricultural Sciences 10 (1):1–6. doi: 10.1016/j.jssas.2010.06.001.
  • Oyeyinka, S. A., O. I. Ajayi, C. T. Gbadebo, R. M. O. Kayode, O. R. Karim, and A. A. Adeloye. 2019. Physicochemical properties of gari prepared from frozen cassava roots. LWT 99:594–9. doi: 10.1016/j.lwt.2018.10.004.
  • Padghan, O. P. V., B. Mann, Rajeshkumar, R. Sharma, and A. Kumar. 2015. Studies on bio-functional activity of traditional lassi. Indian Journal of Traditional Knowledge 14 (1):124–31.
  • Padghan, P. V., B. Mann, and S. Hati. 2018. Purification and characterization of antioxidative peptides derived from fermented milk (lassi) by lactic cultures. International Journal of Peptide Research and Therapeutics 24 (2):235–49. doi: 10.1007/s10989-017-9608-2.
  • Pandit, A., S. Anand, K. Kalscheur, and A. Hassan. 2012. Production of conjugated linoleic acid by lactic acid bacteria in milk without any additional substrate. International Journal of Dairy Technology 65 (4):603–8. doi: 10.1111/j.1471-0307.2012.00870.x.
  • Panikuttira, B., N. O'Shea, J. T. Tobin, B. K. Tiwari, and C. P. O'Donnell. 2018. Process analytical technology for cheese manufacture. International Journal of Food Science & Technology 53 (8):1803–15. doi: 10.1111/ijfs.13806.
  • Park, S. Y., J.-H. Ha, S. H. Kim, and S.-D. Ha. 2017. Effects of high hydrostatic pressure on the inactivation of norovirus and quality of cabbage kimchi. Food Control 81:40–5. doi: 10.1016/j.foodcont.2017.05.033.
  • Pasini, F., F. Soglia, M. Petracci, M. F. Caboni, S. Marziali, C. Montanari, F. Gardini, L. Grazia, and G. Tabanelli. 2018. Effect of fermentation with different lactic acid bacteria starter cultures on biogenic amine content and ripening patterns in dry fermented sausages. Nutrients 10 (10):1497. doi: 10.3390/nu1010:1497.
  • Patel, S., A. Majumder, and A. Goyal. 2012. Potentials of exopolysaccharides from lactic acid bacteria. Indian Journal of Microbiology 52 (1):3–12. doi: 10.1007/s12088-011-0148-8.
  • Peñas, E., J. Frias, B. Sidro, and C. Vidal-Valverde. 2010. Impact of fermentation conditions and refrigerated storage on microbial quality and biogenic amine content of sauerkraut. Food Chemistry 123 (1):143–50. doi: 10.1016/j.foodchem.2010.04.021.
  • Piotrowska, M., and Z. Zakowska. 2005. The elimination of ochratoxin a by lactic acid bacteria strains. Polish Journal of Microbiology 54 (4):279–86.
  • Plengvidhya, V., F. Breidt, Z. Lu, and H. P. Fleming. 2007. DNA fingerprinting of lactic acid bacteria in sauerkraut fermentations. Applied and Environmental Microbiology 73 (23):7697–702. doi: 10.1128/AEM.01342-07.
  • Prakash Tamang, J. 2015. Naturally fermented ethnic soybean foods of India. Journal of Ethnic Foods 2 (1):8–17. doi: 10.1016/j.jef.2015.02.003.
  • Pretorius, I. S. 2017. Synthetic genome engineering forging new frontiers for wine yeast. Critical Reviews in Biotechnology 37 (1):112–36. doi: 10.1080/07388551.2016.1214945.
  • Pswarayi, F., and M. G. Ganzle. 2019. Composition and origin of the fermentation microbiota of Mahewu, a Zimbabwean fermented cereal beverage. Applied and Environmental Microbiology 85 (11) doi: 10.1128/AEM.03130-18.
  • Qian, M., C. Nelson, and S. Bloomer. 2002. Evaluation of fat-derived aroma compounds in blue cheese by dynamic headspace GC/Olfactometry-MS. Journal of the American Oil Chemists' Society 79 (7):663–7. doi: 10.1007/s11746-002-0540-4.
  • Quaglia, N. C., M. Storelli, F. Ioanna, G. Celano, G. V. Celano, C. Conversano, M. De Rosa, and A. Dambrosio. 2019. Listeria monocytogenes and enterotoxigenic Staphylococcus aureus in dry fermented sausages belonging to “traditional Agri-Food product” produced in Southern Italy. Journal of Food Safety doi: 10.1111/jfs.12685.
  • Quave, C. L., and A. Pieroni. 2014. Fermented foods for food security and food sovereignty in the Balkans: A case study of the Gorani people of northeastern Albania. Journal of Ethnobiology 34 (1):28–43. doi: 10.2993/0278-0771-34.1.28.
  • Rahaman, T., T. Vasiljevic, and L. Ramchandran. 2016. Effect of processing on conformational changes of food proteins related to allergenicity. Trends in Food Science & Technology 49:24–34. doi: 10.1016/j.tifs.2016.01.001.
  • Rahman, U., Ur, M. I. Khan, M. Sohaib, A. Sahar, and A. Ishaq. 2017. Exploiting microorganisms to develop improved functional meat sausages: A review. Food Reviews International 33 (2):195–215. doi: 10.1080/87559129.2016.1175012.
  • Ray, M., P. K. Hor, D. Ojha, J. P. Soren, S. N. Singh, and K. C. Mondal. 2018. Bifidobacteria and its rice fermented products on diet induced obese mice: Analysis of physical status, serum profile and gene expressions. Beneficial Microbes 9 (3):441–52. doi: 10.3920/BM2017.0056.
  • Reis, J. A., A. T. Paula, S. N. Casarotti, and A. L. B. Penna. 2012. Lactic acid bacteria antimicrobial compounds: Characteristics and applications. Food Engineering Reviews 4 (2):124–40. doi: 10.1007/s12393-012-9051-2.
  • Rizzello, C. G., M. De Angelis, R. Coda, and M. Gobbetti. 2006. Use of selected sourdough lactic acid bacteria to hydrolyze wheat and rye proteins responsible for cereal allergy. European Food Research and Technology 223 (3):405–11. doi: 10.1007/s00217-005-0220-x.
  • Rodriguez, A., T. Strucko, S. G. Stahlhut, M. Kristensen, D. Killerup Svenssen, J. Forster, Jens Nielsen, and I. Borodina. 2017. Metabolic engineering of yeast for fermentative production of flavonoids. Bioresource Technology 245:1645–54. doi: 10.1016/j.biortech.2017.06.043.
  • Rodríguez, H., J. A. Curiel, J. M. Landete, B. de las Rivas, F. López de Felipe, C. Gómez-Cordovés, J. M. Mancheño, and R. Muñoz. 2009. Food phenolics and lactic acid bacteria. International Journal of Food Microbiology 132 (2–3):79–90. doi: 10.1016/j.ijfoodmicro.2009.03.025.
  • Rosa, D. D., M. M. S. Dias, Ł. M. Grześkowiak, S. A. Reis, L. L. Conceição, and M. d. C. G. Peluzio. 2017. Milk kefir: Nutritional, microbiological and health benefits. Nutrition Research Reviews 30 (1):82–96. doi: 10.1017/S0954422416000275.
  • Ross, R. P., S. Morgan, and C. Hill. 2002. Preservation and fermentation: Past, present and future. International Journal of Food Microbiology 79 (1–2):3–16. doi: 10.1016/S0168-1605(02)00174-5.
  • Ruas-Madiedo, P., J. Hugenholtz, and P. Zoon. 2002. An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. International Dairy Journal 12 (2–3):163–71. doi: 10.1016/S0958-6946(01)00160-1.
  • Ruijschop, R. M. A. J., Alexandra, E. M. Boelrijk, and M. C. Te Giffel. 2008. Satiety effects of a dairy beverage fermented with propionic acid bacteria. International Dairy Journal 18 (9):945–50. doi: 10.1016/j.idairyj.2008.01.004.
  • Sajid, M., S. Mehmood, C. Niu, Y. H. Yuan, and T. L. Yue. 2018. Effective adsorption of patulin from apple juice by USING NON-CYTOTOXIC HEAT-INACTIVATED cells and spores of alicyclobacillus strains. Toxins 10 (9)344. doi: 10.3390/toxins10090:.
  • Salovaara, H., and T. Valjakka. 2007. The effect of fermentation temperature, flour type, and starter on the properties of sour wheat bread. International Journal of Food Science & Technology 22 (6):591–7. doi: 10.1111/j.1365-2621.1987.tb00527.x.
  • Salvetti, E., and P. W. O'Toole. 2018. The genomic basis of lactobacilli as health-promoting organisms. In Bugs as Drugs, ed. R. Britton and P. Cani, 49–71. Washington, DC: ASM Press. doi: 10.1128/microbiolspec.BAD-0011-2016.
  • Sandhu, D. K., and S. K. Soni. 1988. Optimization of physicochemical parameters for Indian dosa batter fermentation. Biotechnology Letters 10 (4):277–82. doi: 10.1007/BF01024419.
  • Santiago-Lopez, L., J. E. Aguilar-Toala, A. Hernandez-Mendoza, B. Vallejo-Cordoba, A. M. Liceaga, and A. F. Gonzalez-Cordova. 2018. Invited review: Bioactive compounds produced during cheese ripening and health effects associated with aged cheese consumption. Journal of Dairy Science 101 (5):3742–57. doi: 10.3168/jds.2017-13465.
  • Santiyanont, P., K. Chantarasakha, P. Tepkasikul, Y. Srimarut, W. Mhuantong, S. Tangphatsornruang, Y.-G. Zo, and N. Chokesajjawatee. 2019. Dynamics of biogenic amines and bacterial communities in a thai fermented pork product nham. Food Research International 119:110–8. doi: 10.1016/j.foodres.2019.01.060.
  • Schwartz, C., K. Frogue, J. Misa, and I. Wheeldon. 2017. Host and pathway engineering for enhanced lycopene biosynthesis in Yarrowia lipolytica. Frontiers in Microbiology 8:2233. doi: 10.3389/fmicb.2017.02233.
  • Selle, K., and R. Barrangou. 2015. CRISPR-Based technologies and the future of food science. Journal of Food Science 80 (11):R2367–72. doi: 10.1111/1750-3841.13094.
  • Settachaimongkon, S., H. J. van Valenberg, V. Winata, X. Wang, M. J. Nout, T. C. van Hooijdonk, M. H. Zwietering, and E. J. Smid. 2015. Effect of sublethal preculturing on the survival of probiotics and metabolite formation in set-yoghurt. Food Microbiology 49:104–15. doi: 10.1016/j.fm.2015.01.011.
  • Settanni, Luca, and Aldo Corsetti. 2008. Application of bacteriocins in vegetable food biopreservation. International Journal of Food Microbiology 121 (2):123–38. doi: 10.1016/j.ijfoodmicro.2007.09.001.
  • Shalaby, A. R. 1996. Significance of biogenic amines to food safety and human health. Food Research International 29 (7):675–90. doi: 10.1016/S0963-9969(96)00066-X.
  • Shen, Y., S. J. Zhao, X. D. Zhao, H. Y. Sun, M. L. Shao, and H. H. Xu. 2019. In vitro adsorption mechanism of acrylamide by lactic acid bacteria. LWT 100:119–25. doi: 10.1016/j.lwt.2018.10.058.
  • Shi, J., Y. Luo, Y. Xiao, Z. Li, Q. Xu, and M. Yao. 2014. Effects of fermentation by Lactobacillus casei on the antigenicity and allergenicity of four bovine milk proteins. International Dairy Journal 35 (1):75–80. doi: 10.1016/j.idairyj.2013.10.010.
  • Shibahara-Sone, H., A. Gomi, T. Iino, M. Kano, C. Nonaka, O. Watanabe, K. Miyazaki, and T. Ohkusa. 2016. Living cells of probiotic Bifidobacterium bifidum YIT 10347 detected on gastric mucosa in humans. Beneficial Microbes 7 (3):319–26. doi: 10.3920/BM2015.0138.
  • Shida, K., T. Sato, R. Iizuka, R. Hoshi, O. Watanabe, T. Igarashi, K. Miyazaki, M. Nanno, and F. Ishikawa. 2017. Daily intake of fermented milk with Lactobacillus casei strain shirota reduces the incidence and duration of upper respiratory tract infections in healthy Middle-aged office workers. European Journal of Nutrition 56 (1):45–53. doi: 10.1007/s00394-015-1056-1.
  • Shigute, T., and A. P. Washe. 2018. Reduction of aflatoxin M1 levels during Ethiopian traditional fermented milk (ergo) production. Journal of Food Quality 2018:1. doi: 10.1155/2018/4570238.
  • Shumoy, H., M. Gabaza, J. Vandevelde, and K. Raes. 2017. Soluble and bound phenolic contents and antioxidant capacity of tef injera as affected by traditional fermentation. Journal of Food Composition and Analysis 58:52–9. doi: 10.1016/j.jfca.2017.01.004.
  • Shumoy, H., S. Lauwens, M. Gabaza, J. Vandevelde, F. Vanhaecke, and K. Raes. 2017. Traditional fermentation of tef injera: Impact on in vitro iron and zinc dialysability. Food Research International 102:93–100. doi: 10.1016/j.foodres.2017.09.092.
  • Siahmoshteh, F., I. Siciliano, H. Banani, Z. Hamidi-Esfahani, M. Razzaghi-Abyaneh, M. L. Gullino, and D. Spadaro. 2017. Efficacy of Bacillus subtilis and Bacillus amyloliquefaciens in the control of Aspergillus parasiticus growth and aflatoxins production on pistachio. International Journal of Food Microbiology 254:47–53. doi: 10.1016/j.ijfoodmicro.2017.05.011.
  • Silva, F. A. M., F. Borges, C. Guimaraes, Jlfc Lima, C. Matos, and S. Reis. 2000. Phenolic acids and derivatives: Studies on the relationship among structure, radical scavenging activity, and physicochemical parameters. Journal of Agricultural and Food Chemistry 48 (6):2122–6. doi: 10.1021/jf9913110.
  • Singh, A. K., J. Rehal, A. Kaur, and G. Jyot. 2015. Enhancement of attributes of cereals by germination and fermentation: A review. Critical Reviews in Food Science and Nutrition 55 (11):1575–89. doi: 10.1080/10408398.2012.706661.
  • Singh, B., and T. Satyanarayana. 2015. Fungal phytases: Characteristics and amelioration of nutritional quality and growth of non-ruminants. Journal of Animal Physiology and Animal Nutrition 99 (4):646–60. doi: 10.1111/jpn.12236.
  • Sisto, Angelo, and Paola Lavermicocca. 2012. Suitability of a probiotic Lactobacillus paracasei strain as a starter culture in olive fermentation and development of the innovative patented product “probiotic table olives. Frontiers in Microbiology 3:174. doi: 10.3389/fmicb.2012.00174.
  • Smid, E. J., and J. Hugenholtz. 2010. Functional genomics for food fermentation processes. Annual Review of Food Science and Technology 1 (1):497–519. doi: 10.1146/annurev.food.102308.124143.
  • Smid, E. J., and M. Kleerebezem. 2014. Production of aroma compounds in lactic fermentations. Annual review of food science and technology, 5, 313–326.
  • Soni, S., and G. Dey. 2014. Perspectives on global fermented foods. British Food Journal 116 (11):1767–87. doi: 10.1108/BFJ-01-2014-0032.
  • Sosa-Castaneda, J., A. Hernandez-Mendoza, A. F. Gonzalez-Cordova, and B. Vallejo-Cordoba. 2014. Production of conjugated linoleic acid (CLA) by lactic acid bacteria (LAB) and their benefiacil health effect. Interciencia 39 (8):540–6.
  • Sõukand, R., A. Pieroni, M. Biró, A. Dénes, Y. Dogan, A. Hajdari, R. Kalle, B. Reade, B. Mustafa, A. Nedelcheva, et al. 2015. An ethnobotanical perspective on traditional fermented plant foods and beverages in Eastern Europe. Journal of Ethnopharmacology 170:284–96. doi: 10.1016/j.jep.2015.05.018.
  • Steinkraus, K. 1996. Handbook of indigenous fermented foods. Boca Raton, FL: CRC Press.
  • Steinkraus, K. 2004. Origin and history of food fermentations. In Handbook of food and beverage fermentation technology. Boca Raton, FL: CRC Press.
  • Stephanie, S., N. Ratih, S. Soka, and A. Suwanto. 2017. Effect of tempeh supplementation on the profiles of human intestinal immune system and gut microbiota. Microbiology Indonesia 11 (1):11–7. doi: 10.5454/mi.11.1.2.
  • Stevens, M., S. Vollenweider, C. Lacroix, and E. T. H. Zurich. 2011. 5 – The potential of reuterin produced by Lactobacillus reuteri as a broad spectrum preservative in food. In Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage biopreservation, 129–160. Sawston, UK: Woodhead Publishing.
  • Stidl, R., G. Sontag, V. Koller, and S. Knasmuller. 2008. Binding of heterocyclic aromatic amines by lactic acid bacteria: Results of a comprehensive screening trial. Molecular Nutrition & Food Research 52 (3):322–9. doi: 10.1002/mnfr.200700034.
  • Stinson, E. E., S. F. Osman, C. N. Huhtanen, and D. D. Bills. 1978. Disappearance of patulin during alcoholic fermentation of apple juice. Applied and Environmental Microbiology 36 (4):620–2.
  • Sulieman, A., A. A. Ilayan, and A. E. A. El Faki. 2006. Chemical and microbiological quality of garris, sudanese fermented camel's milk product. International Journal of Food Science and Technology 41 (3):321–8. doi: 10.1111/j.1365-2621.2005.01070.x.
  • Svanberg, I.. 2015. Raestur fiskur: Air-dried fermented fish the faroese way. Journal of Ethnobiology and Ethnomedicine 11 (1):76. doi: 10.1186/s13002-015-0064-9.
  • Tamang, J. P., D.-H. Shin, S.-J. Jung, and S.-W. Chae. 2016. Functional properties of microorganisms in fermented foods. Frontiers in Microbiology 7:578. doi: 10.3389/fmicb.2016.00578.
  • Technavio 2016. GLOBAL DIGESTIVE HEALTH FOOD AND DRINKS MARKET.
  • Terefe, N.S. 2016. Emerging trends and opportunities in food fermentation. In Reference module in food science, ed. G. Smithers. Amsterdam, Netherlands: Elsevier.
  • Thierry, A., F. Valence, S.-M. Deutsch, S. Even, H. Falentin, Y. Le Loir, G. Jan, and Valérie Gagnaire. 2015. Strain-to-strain differences within lactic and propionic acid bacteria species strongly impact the properties of cheese–A review. Dairy Science & Technology 95 (6):895–918. doi: 10.1007/s13594-015-0267-9.
  • Tian, X. W., Y. H. Wang, J. Chu, A. Mohsin, and Y. P. Zhuang. 2018. Exploring cellular fatty acid composition and intracellular metabolites of osmotic-tolerant mutant Lactobacillus paracasei NCBIO-M2 for highly efficient lactic acid production with high initial glucose concentration. Journal of Biotechnology 286:27–35. doi: 10.1016/j.jbiotec.2018.09.005.
  • Tiwari, U., E. Sheehy, D. Rai, M. Gaffney, P. Evans, and E. Cummins. 2015. Quantitative human exposure model to assess the level of glucosinolates upon thermal processing of cruciferous vegetables. LWT - Food Science and Technology 63 (1):253–61. doi: 10.1016/j.lwt.2015.03.088.
  • Torino, M. I., R. I. Limon, C. Martinez-Villaluenga, S. Makinen, A. Pihlanto, C. Vidal-Valverde, and J. Frias. 2013. Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chemistry 136 (2):1030–7. doi: 10.1016/j.foodchem.2012.09.015.
  • Uchimura, T., V. V. Garcia, and D. M. Flores. 1984. Microbiological studies on fermented rice cake, 'puto' and the application to puto making using cassava flour. Tropical Root Crops. Postharvest Physiology and Processing [see FSTA (1987) 19 5J85] 273–83.
  • Verhoeckx, K. C., Y. M. J. L. Vissers, R. Baumert, M. Faludi, S. Feys, C. Flanagan, T. Herouet-Guicheney, R. Holzhauser, N. Shimojo, H. van der Bolt, et al. 2015. Food processing and allergenicity. Food and Chemical Toxicology 80:223–40. doi: 10.1016/j.fct.2015.03.005.
  • Vesa, T., P. Pochart, and P. Marteau. 2000. Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis MG 1363 in the human gastrointestinal tract. Alimentary Pharmacology & Therapeutics 14 (6):823–8.
  • Villa, C., J. Costa, M. Oliveira, and I. Mafra. 2018. Bovine milk allergens: a comprehensive review. Comprehensive Reviews in Food Science and Food Safety 17 (1):137–64. doi: 10.1111/1541-4337.12318.
  • Wang, J., and D. Y. C. Fung. 1996. Alkaline-fermented foods: A review with emphasis on pidan fermentation. Critical Reviews in Microbiology 22 (2):101–38. doi: 10.3109/10408419609106457.
  • Wang, Y., B. P. Ji, W. Wu, R. J. Wang, Z. W. Yang, D. Zhang, and W. L. Tian. 2014. Hepatoprotective effects of kombucha tea: Identification of functional strains and quantification of functional components. Journal of the Science of Food and Agriculture 94 (2):265–72. doi: 10.1002/jsfa.6245.
  • Wang, K., W. Li, X. Rui, X. H. Chen, M. Jiang, and M. S. Dong. 2014. Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. International Journal of Biological Macromolecules 63:133–9. doi: 10.1016/j.ijbiomac.2013.10.036.
  • Wang, S., T. Tamura, N. Kyouno, X. Liu, H. Zhang, Y. Akiyama, and J. Y. Chen. 2019. Effect of the chemical composition of miso (Japanese fermented soybean paste) upon the sensory evaluation. Analytical Letters 52 (11):1813–27. doi: 10.1080/00032719.2019.1570244.
  • Wang, H. K., S. T. Zhang, Y. Sun, and Y. J. Dai. 2013. ACE-Inhibitory peptide isolated from fermented soybean meal as functional food. International Journal of Food Engineering 9 (1):1–7. doi: 10.1515/ijfe-2012-0207.
  • Waters, D. M., A. Mauch, A. Coffey, E. K. Arendt, and E. Zannini. 2015. Lactic acid bacteria as a cell factory for the delivery of functional biomolecules and ingredients in Cereal-Based beverages: A review. Critical Reviews in Food Science and Nutrition 55 (4):503–20. doi: 10.1080/10408398.2012.660251.
  • Watson, E. 2016a. Don't have a cow? Perfect day animal-free milk bids for slice of multibillion-dollar global dairy market. Food Navigator.
  • Watson, E. 2016b. Geltor seeks to disrupt the gelatin market with potentially game-changing animal-free alternative. Food Navigator.
  • Watson, E. 2018. Cargill launches EverSweet fermented steviol glycosides. Food Navigator.
  • Weldemichael, H., D. Stoll, C. Weinert, T. Berhe, S. Admassu, M. Alemu, and M. Huch. 2019. Characterization of the microbiota and volatile components of kocho, a traditional fermented food of Ethiopia. Heliyon 5 (6):e01842. doi: 10.1016/j.heliyon.2019.e01842.
  • Wiczkowski, W., D. Szawara-Nowak, and J. Romaszko. 2016. The impact of red cabbage fermentation on bioavailability of anthocyanins and antioxidant capacity of human plasma. Food Chemistry 190:730–40. doi: 10.1016/j.foodchem.2015.06.021.
  • Wróblewska, B., L. H. Markiewicz, A. M. Szyc, M. A. Dietrich, A. Szymkiewicz, and J. Fotschki. 2016. Lactobacillus casei LcY decreases milk protein immunoreactivity of fermented buttermilk but also contains IgE-reactive proteins. Food Research International 83:95–101. doi: 10.1016/j.foodres.2016.02.016.
  • Xu, Y., Y. Wang, R. Coda, E. Sade, P. Tuomainen, M. Tenkanen, and K. Katina. 2017. In situ synthesis of exopolysaccharides by Leuconostoc spp. and Weissella spp. and their rheological impacts in fava bean flour. International Journal of Food Microbiology 248:63–71. doi: 10.1016/j.ijfoodmicro.2017.02.012.
  • Xu, D., H. Wang, Y. Zhang, Z. Yang, and X. Sun. 2013. Inhibition of non-toxigenic Aspergillus niger FS10 isolated from chinese fermented soybean on growth and aflatoxin B1 production by Aspergillus flavus. Food Control 32 (2):359–65. doi: 10.1016/j.foodcont.2012.12.013.
  • Yagoub, A., B. E. Mohamed, A. H. R. Ahmed, and A. H. El Tinay. 2004. Study on furundu, a traditional sudanese fermented roselle (Hibiscus sabdariffa L.) seed: Effect on in vitro protein digestibility, chemical composition, and functional properties of the total proteins. Journal of Agricultural and Food Chemistry 52 (20):6143–50. doi: 10.1021/jf0496548.
  • Yagoub, A. E. G. A., and M. A. Mohammed. 2008. Fururndu, a meat substitute from fermented roselle (Hibiscus sabdariffa L.) seed: investigation on amino acids composition, protein fractions, minerals content and HCl-extractability and microbial growth. Pakistan Journal of Nutrition 7 (2):352–8. doi: 10.3923/pjn.2008.352.358.
  • Yamamoto, Y., K. Fujino, J. Saruta, T. Takahashi, M. To, S. Fuchida, T. Shimizu, Y. Kamata, K. Misawa, and K. Tsukinoki. 2017. Effects of yogurt fermented with Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1 on the IgA flow rate of saliva in elderly persons residing in a nursing home: A before-after non-randomised intervention study. Gerodontology 34 (4):479–85. doi: 10.1111/ger.12296.
  • Yamamoto, S., Y. Nakashima, J. Yoshikawa, N. Wada, and S. Matsugo. 2011. Radical scavenging activity of the japanese traditional food, amazake. Food Science and Technology Research 17 (3):209–18. doi: 10.3136/fstr.17.209.
  • Yang, H. J., D. Y. Kwon, N. R. Moon, M. J. Kim, H. J. Kang, D. Y. Jung, and S. Park. 2013. Soybean fermentation with Bacillus licheniformis increases insulin sensitizing and insulinotropic activity. Food & Function 4 (11):1675–84. doi: 10.1039/c3fo60198f.
  • Yilmaz, M. T., E. Dertli, O. S. Toker, N. B. Tatlisu, O. Sagdic, and M. Arici. 2015. Effect of in situ exopolysaccharide production on physicochemical, rheological, sensory, and microstructural properties of the yogurt drink ayran: An optimization study based on fermentation kinetics. Journal of Dairy Science 98 (3):1604–24. doi: 10.3168/jds.2014-8936.
  • Yuan Ko, C., H.-T. V. Lin, and G. J. Tsai. 2013. Gamma-aminobutyric acid production in black soybean milk by Lactobacillus brevis FPA 3709 and the antidepressant effect of the fermented product on a forced swimming rat model. Process Biochemistry 48:559–68.
  • Zaroug, M., I. E. Orhan, F. S. Senol, and S. Yagi. 2014. Comparative antioxidant activity appraisal of traditional sudanese kisra prepared from two sorghum cultivars. Food Chemistry 156:110–6. doi: 10.1016/j.foodchem.2014.01.069.
  • Zhang, X., Y. Guo, Y. Ma, Y. Chai, and Y. Li. 2016. Biodegradation of patulin by a byssochlamys nivea strain. Food Control 64:142–50. doi: 10.1016/j.foodcont.2015.12.016.
  • Zhang, W., B. B. Xue, M. M. Li, Y. Mu, Z. H. Chen, J. P. Li, and A. S. Shan. 2014. Screening a strain of Aspergillus niger and optimization of fermentation conditions for degradation of aflatoxin B-1. Toxins 6 (11):3157–72. doi: 10.3390/toxins6113157.
  • Zhao, L. H., S. Guan, X. Gao, Q. G. Ma, Y. P. Lei, X. M. Bai, and C. Ji. 2011. Preparation, purification and characteristics of an aflatoxin degradation enzyme from Myxococcus fulvus ANSM068. Journal of Applied Microbiology 110 (1):147–55. doi: 10.1111/j.1365-2672.2010.04867.x.
  • Zheng, L., D. Li, Z. L. Li, L. N. Kang, Y. Y. Jiang, X. Y. Liu, Y. P. Chi, Y. Q. Li, and J. H. Wang. 2017. Effects of bacillus fermentation on the protein microstructure and anti-nutritional factors of soybean meal. Letters in Applied Microbiology 65 (6):520–6. doi: 10.1111/lam.12806.
  • Zoghi, A., K. Khosravi-Darani, S. Sohrabvandi, and H. Attar. 2019. Patulin removal from synbiotic apple juice using Lactobacillus plantarum ATCC 8014. Journal of Applied Microbiology 126 (4):1149–60. doi: 10.1111/jam.14172.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.