2,005
Views
41
CrossRef citations to date
0
Altmetric
Reviews

The life and times of yeasts in traditional food fermentations

, , , , , , , , , , , & show all

References

  • Abbas, C. A. 2006. Production of antioxidants, aromas, colours, flavours, and vitamins by yeasts. In Yeasts in food and beverages, ed. A., Querol, H. Fleet, 285–334. Germany: Springer-Verlag.
  • Abbes, S., I. Amouri, H. Trabelsi, S. Neji, H. Sellami, F. Rahmouni, F. Makni, T. Rebai, and A. Ayadi. 2017. Analysis of virulence factors and in vivo biofilm-forming capacity of Yarrowia lipolytica isolated from patients with fungemia. Medical Mycology 55 (2):193–202. doi: 10.1093/mmy/myw028.
  • Abdelgadir, W. S., S. H. Hamad, P. L. Møller, and M. Jakobsen. 2001. Characterisation of the dominant microbiota of Sudanese fermented milk rob. International Dairy Journal 11 (1–2):63–70. doi: 10.1016/S0958-6946(01)00042-5.
  • Ahtesh, F. B., V. Apostolopoulos, L. Stojanovska, N. Shah, and V. K. Mishra. 2017. Effects of fermented skim milk drink by Kluyveromyces marxianus LAF4 co-cultured with lactic acid bacteria to release angiotensin-converting enzyme inhibitory activities. International Journal of Dairy Technology 70:1–11.
  • Akabanda, F., J. Owusu-Kwarteng, K. Tano-Debrah, R. L. Glover, D. S. Nielsen, and L. Jespersen. 2013. Taxonomic and molecular characterization of lactic acid bacteria and yeasts in nunu, a Ghanaian fermented milk product. Food Microbiology 34 (2):277–83. doi: 10.1016/j.fm.2012.09.025.
  • Akolkar, A. V., D. Durai, and A. J. Desai. 2010. Halobacterium sp. SP1(1) as a starter culture for accelerating fish sauce fermentation. Journal of Applied Microbiology 109 (1):44–53. doi: 10.1111/j.1365-2672.2009.04626.x.
  • Akther, F., B. Le, G. Chung, and S. H. Yang. 2017. Optimizing the fermentation condition of low salted squid jeotgal by lactic acid bacteria with enhanced antioxidant activity. Journal of Applied Biological Chemistry 60 (4):391–402. doi: 10.3839/jabc.2017.060.
  • Algazaq, J. N., K. Akrami, F. Martinez, A. McCutchan, and A. R. Bharti. 2017. Saccharomyces cerevisiae laryngitis and oral lesions in a patient with laryngeal carcinoma. Case Reports in Infectious Diseases 2017: 2941527. doi: 10.1155/2017/2941527.
  • Al-Otaibi, M. M. 2012. Isolation and identification of lactic acid bacteria and yeasts from Sameel milk: A Saudi traditional fermented milk. International Journal of Dairy Science 7:73–83. doi: 10.3923/ijds.2012.73.83.
  • Altay, F., F. Karbancıoglu-Güler, C. Daskaya-Dikmen, and D. Heperkan. 2013. A review on traditional Turkish fermented non-alcoholic beverages: Microbiota, fermentation process and quality characteristics. International Journal of Food Microbiology 167 (1):44–56. doi: 10.1016/j.ijfoodmicro.2013.06.016.
  • Alves, M., T. Gonçalves, and C. Quintas. 2012. Microbial quality and yeast population dynamics in cracked green table olives’ fermentations. Food Control 23 (2):363–8. doi: 10.1016/j.foodcont.2011.07.033.
  • Andrade, M. J., J. J. Cordoba, B. Sanchez, E. M. Casado, and M. Rodriguez. 2009. Evaluation and selection of yeasts isolated from dry-cured Iberian ham by their volatile compound production. Food Chemistry 113:457–63. doi: 10.1016/j.foodchem.2008.07.080.
  • Andrade, M. J., M. Rodriguez, E. M. Casado, E. Bermudez, and J. J. Cordoba. 2009. Differentiation of yeasts growing on dry-cured Iberian ham by mitochondrial DNA restriction analysis, RAPD-PCR and their volatile compounds production. Food Microbiology 26 (6):578–86. doi: 10.1016/j.fm.2009.03.014.
  • Anoop, V., S. Rotaru, P. S. Shwed, A. F. Tayabali, and G. Arvanitakis. 2015. Review of current methods for characterizing virulence and pathogenicity potential of industrial Saccharomyces cerevisiae strains towards humans. FEMS Yeast Research 15 (6):fov057. doi: 10.1093/femsyr/fov057.
  • Aponte, M., G. Blaiotta, F. L. Croce, A. Mazzaglia, V. Farina, L. Settanni, and G. Moschetti. 2012. Use of selected autochthonous lactic acid bacteria for Spanish-style table olive fermentation. Food Microbiology 30 (1):8–16. doi: 10.1016/j.fm.2011.10.005.
  • Appel-da-Silva, M. C., G. A. Narvaez, L. R. R. Perez, L. Drehmer, and L. Lewgoy. 2017. Saccharomyces cerevisiae var. Boulardii fungemia following probiotic treatment. Medical Mycology Case Reports 18:15–7. doi: 10.1016/j.mmcr.2017.07.007.
  • Aquilanti, L., S. Santarelli, G. Silvestri, A. Osimani, A. Petruzzelli, and F. Clementi. 2007. The microbial ecology of a typical Italian salami during its natural fermentation. International Journal of Food Microbiology 120 (1–2):136–45. doi: 10.1016/j.ijfoodmicro.2007.06.010.
  • Ardhana, M. M., and G. H. Fleet. 2003. The microbial ecology of cocoa bean fermentations in Indonesia. International Journal of Food Microbiology 86 (1–2):87–99. doi: 10.1016/S0168-1605(03)00081-3.
  • Arfi, K., S. Landaud, and P. Bonnarme. 2006. Evidence for distinct L-methionine catabolic pathways in the yeast Geotrichum candidum and the bacterium Brevibacterium linens. Applied and Environmental Microbiology 72 (3):2155–62. doi: 10.1128/AEM.72.3.2155-2162.2006.
  • Arroyo-López, F. N., V. Romero-Gil, J. Bautista-Gallego, F. Rodríguez-Gómez, R. Jiménez-Díaz, P. García-García, A. Querol, and A. Garrido-Fernández. 2012a. Yeasts in table olive processing: desirable or spoilage microorganisms? International Journal of Food Microbiology 160 (1):42–9. doi: 10.1016/j.ijfoodmicro.2012.08.003.
  • Arroyo-López, F. N., V. Romero-Gil, J. Bautista-Gallego, F. Rodríguez-Gómez, R. Jiménez- Díaz, P. García-García, A. Querol, and A. Garrido-Fernández. 2012b. Potential benefits of the application of yeast starters in table olive processing. Frontiers in Microbiology 5:34.
  • Asefa, D. T., T. Moretro, R. O. Gjerde, S. Langsrud, C. F. Kure, M. S. Sidhu, T. Nesbakken, and I. Skaar. 2009. Yeast diversity and dynamics in the production processes of Norwegian dry-cured meat products. International Journal of Food Microbiology 133 (1–2):135–40. doi: 10.1016/j.ijfoodmicro.2009.05.011.
  • Aslani, N., G. Janbabaei, M. Abastabar, J. F. Meis, M. Babaeian, S. Khodavaisy, T. Boekhout, and H. Badali. 2018. Identification of uncommon oral yeasts from cancer patients by MALDI-TOF mass spectrometry. BMC Infectious Diseases 18 (1):24. doi: 10.1186/s12879-017-2916-5.
  • Atanassova, M. R., C. Fernandez-Otero, P. Rodriguez-Alonso, I. C. Fernandez-No, J. I. Garabal, and J. A. Centeno. 2016. Characterization of yeasts isolated from artisanal short-ripened cows' cheeses produced in Galicia (NW Spain). Food Microbiology 53:172–81. doi: 10.1016/j.fm.2015.09.012.
  • Atıcı, S., A. Soysal, K. Karadeniz Cerit, Ş. Yılmaz, B. Aksu, G. Kıyan, and M. Bakır. 2017. Catheter-related Saccharomyces cerevisiae fungemia following Saccharomyces boulardii probiotic treatment: In a child in intensive care unit and review of the literature. Medical Mycology Case Reports 15:33–5. doi: 10.1016/j.mmcr.2017.02.002.
  • Avallone, S., B. Guyot, J. M. Brillouet, E. Olguin, and J. P. Guiraud. 2001. Microbiological and biochemical study of coffee fermentation. Current Microbiology 42 (4):252–6. doi: 10.1007/s002840010213.
  • Bahloul, M., K. Chtara, O. Turki, N. Khlaf Bouaziz, K. Regaieg, M. Hammami, W. Ben Amar, I. Chabchoub, R. Ammar, C. Ben Hamida, et al. 2017. Yarrowia lipolytica fungemia in patients with severe polytrauma requiring intensive care admission: analysis of 32 cases. Intensive Care Medicine 43 (12):1921–3. doi: 10.1007/s00134-017-4900-3.
  • Bajwa, J., and N. Sharma. 2018. Evaluation of probiotic properties of yeasts isolated from Sidra – An ethnic fermented fish product of North East India. International Journal of Current Microbiology and Applied Sciences 7 (2):2632–43. doi: 10.20546/ijcmas.2018.702.320.
  • Baker, D. M., K. I. Tomlins, and C. Gay. 1994. Survey of Ghanaian cocoa farmer fermentation practices and their influence on cocoa flavour. Food Chemistry 51 (4):425–31. doi: 10.1016/0308-8146(94)90197-X.
  • Ballhorn, K. 1985. Manufacture of acid-curd cheese. Leipzig: VEB Fachbuchverlag.
  • Barman, P., R. Pande, S. Sengupta, and V. P. Bhalla. 2017. Saccharomyces cerevisiae fungemia in inflammatory bowel disease. Tropical Gastroenterology 38:50–2.
  • Bautista-Gallego, J., F. Rodríguez-Gómez, E. Barrio, A. Querol, A. Garrido-Fernández, and F. N. Arroyo-López. 2011. Exploring the yeast biodiversity of green table olive industrial fermentations for technological applications. International Journal of Food Microbiology 147 (2):89–96. doi: 10.1016/j.ijfoodmicro.2011.03.013.
  • Bekhit, A. E. A., A. Duncan, C. S. F. Bah, I. A. M. Ahmed, F. Y. Al-Juhaimi, and H. F. Amin. 2018. Impact of fermentation conditions on the physicochemical properties, fatty acid and cholesterol contents in salted-fermented hoki roe. Food Chemistry 264:73–80. doi: 10.1016/j.foodchem.2018.05.008.
  • Bevilacqua, A., M. R. Corbo, and M. Sinigaglia. 2012. Selection of yeasts as starter cultures for table olives: A step-by-step procedure. Frontiers in Microbiology 3:194.
  • Beyda, N. D., S. H. Chuang, M. J. Alam, D. N. Shah, T. M. Ng, L. McCaskey, and K. W. Garey. 2013. Treatment of Candida famata bloodstream infections: Case series and review of the literature. Journal of Antimicrobial Chemotherapy 68 (2):438–43. doi: 10.1093/jac/dks388.
  • Biango-Daniels, M. N., and K. T. Hodge. 2018. Sea salts as a potential source of food spoilage fungi. Food Microbiology 69:89–95. doi: 10.1016/j.fm.2017.07.020.
  • Bockelmann, W. 2007. Cheeses with secondary cultures: mould-ripened, smear-ripened and farmhouse cheeses. In Improving the flavour of cheese, ed. B. C. Weimer, 494–519. Sawston, UK: Publishing.
  • Bockelmann, W., P. Willems, B. Jaeger, T. Hoppe-Seyler, G. Engel, and K. J. Heller. 2002. Ripening of harzer cheese. Kieler Milchwirtschaftliche Forschungsberichte 54:317–35.
  • Bokulich, N. A., and D. A. Mills. 2013. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Applied and Environmental Microbiology 79 (8):2519–26.
  • Bokulich, N. A., L. Amiranashvili, K. Chitchyan, N. Ghazanchyan, K. Darbinyan, N. Gagelidze, T. Sadunishvili, V. Goginyan, G. Kvesitadze, T. Torok, and D. A. Mills. 2015. Microbial biogeography of the transnational fermented milk matsoni. Food Microbiology 50:12–9. doi: 10.1016/j.fm.2015.01.018.
  • Bolla, P. A., P. Carasi, M. A. Bolla, G. L. De Antoni, and M. A. Serradell. 2013. Protective effect of a mixture of kefir-isolated lactic acid bacteria and yeasts in a hamster model of Clostridium difficile infection. Anaerobe 21:28–33. doi: 10.1016/j.anaerobe.2013.03.010.
  • Bolotin-Fukuhara, M., and C. Fairhead. 2014. Candida glabrata: A deadly companion? Yeast 31 (8):279–88. doi: 10.1002/yea.3019.
  • Bolumar, T., Y. Sanz, M. C. Aristoy, and F. Toldra. 2003a. Purification and properties of an arginyl aminopeptidase from Debaryomyces hansenii. International Journal of Food Microbiology 86 (1–2):141–51. doi: 10.1016/S0168-1605(03)00069-2.
  • Bolumar, T., Y. Sanz, M. C. Aristoy, and F. Toldra. 2003b. Purification and characterization of a prolyl aminopeptidase from Debaryomyces hansenii. Applied and Environmental Microbiology 69 (1):227–32. doi: 10.1128/AEM.69.1.227-232.2003.
  • Bolumar, T., Y. Sanz, M. C. Aristoy, and F. Toldra. 2005. Protease B from Debaryomyces hansenii: Purification and biochemical properties. International Journal of Food Microbiology 98 (2):167–77. doi: 10.1016/j.ijfoodmicro.2004.05.021.
  • Bolumar, T., Y. Sanz, M. C. Aristoy, and F. Toldra. 2008. Purification and characterization of proteases A and D from Debaromyces hansenii. International Journal of Food Microbiology 124 (2):135–41. doi: 10.1016/j.ijfoodmicro.2008.03.001.
  • Bonatsou, S., A. Benítez, F. Rodríguez-Gómez, E. Z. Panagou, and F. N. Arroyo-López. 2015. Selection of yeasts with multifunctional features for application as starters in natural black table olive processing. Food Microbiology 46:66–73. doi: 10.1016/j.fm.2014.07.011.
  • Boutrou, R., and M. Guéguen. 2005. Interests in Geotrichum candidum for cheese technology. International Journal of Food Microbiology 102 (1):1–20. doi: 10.1016/j.ijfoodmicro.2004.12.028.
  • Bretagne, S., C. Renaudat, M. Desnos-Ollivier, K. Sitbon, O. Lortholary, and F. Dromer. 2017. French mycosis study group. Predisposing factors and outcome of uncommon yeast species-related fungaemia based on an exhaustive surveillance programme (2002-14). Journal of Antimicrobial Chemotherapy 72 (6):1784–93. doi: 10.1093/jac/dkx045.
  • Campbell-Platt, G., and P. E. Cook. 1995. Fermented meats. 1st ed. London: Blackie Academic & Professional.
  • Camu, N., T. De Winter, K. Verbrugghe, I. Cleenwerck, P. Vandamme, J. S. Takrama, M. Vancanneyt, and L. De Vuyst. 2007. Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Applied and Environmental Microbiology 73 (6):1809–24. doi: 10.1128/AEM.02189-06.
  • Camu, N., T. De Winter, S. K. Addo, J. S. Takrama, H. Bernaert, and L. De Vuyst. 2008. Fermentation of cocoa beans: Influence of microbial activities and polyphenol concentrations on the flavour of chocolate. Journal of the Science of Food and Agriculture 88 (13):2288–97. doi: 10.1002/jsfa.3349.
  • Cano-Garcia, L., C. Belloch, and M. Flores. 2014. Impact of Debaryomyces hansenii strains inoculation on the quality of slow dry-cured fermented sausages. Meat Science 96:1469–77. doi: 10.1016/j.meatsci.2013.12.011.
  • Cano-Garcia, L., S. Rivera-Jimenez, C. Belloch, and M. Flores. 2014. Generation of aroma compounds in a fermented sausage meat model system by Debaryomyces hansenii strains. Food Chemistry 151:364–73. doi: 10.1016/j.foodchem.2013.11.051.
  • Cao, S. M., Y. Y. Wu, L. H. Li, X. Q. Yang, S. J. Chen, X. Hu, and H. X. Ma. 2018. Activities of endogenous lipase and lipolysis oxidation of low-salt lactic acid-fermented fish (Decapterus maruadsi). Journal of Oleo Science 67 (4):445–53. doi: 10.5650/jos.ess17176.
  • Cardoso, C. M. L., R. Mendes, and M. L. Nunes. 2009. Instrumental texture and sensory characteristics of cod frankfurter sausages. International Journal of Food Properties 12 (625):625–43. doi: 10.1080/10942910801992959.
  • Cardoso, C., R. Mendes, and M. L. Nunes. 2008. Development of a healthy low‐fat fish sausage containing dietary fibre. International Journal of Food Science & Technology 43 (2):276–83. doi: 10.1111/j.1365-2621.2006.01430.x.
  • Casaburi, A., R. Di Monaco, S. Cavella, F. Toldra, D. Ercolini, and F. Villani. 2008. Proteolytic and lipolytic starter cultures and their effect on traditional fermented sausages ripening and sensory traits. Food Microbiology 25 (2):335–47. doi: 10.1016/j.fm.2007.10.006.
  • Cassone, M., P. Serra, F. Mondello, A. Girolamo, S. Scafetti, E. Pistella, and M. Venditti. 2003. Outbreak of Saccharomyces cerevisiae subtype boulardii fungemia in patients neighboring those treated with a probiotic preparation of the organism. Journal of Clinical Microbiology 41 (11):5340–3. doi: 10.1128/JCM.41.11.5340-5343.2003.
  • Castanheira, M. 2018. Fungemia surveillance in Denmark demonstrates emergence of non-albicans candida species and higher antifungal usage and resistance rates than in other nations. Journal of Clinical Microbiology 56 (4):e01907-17.
  • Cavenaghi-Altemio, A. D., Alcade, L. B. and Fonseca. G. G. 2013. Low‐fat frankfurters from protein concentrates of tilapia viscera and mechanically separated tilapia meat. Food Science & Nutrition 1:445–51. doi: 10.1002/fsn3.42.
  • Chaillou, S., A. Chaulot-Talmon, H. Caekebeke, M. Cardinal, S. Christieans, C. Denis, M. Hélène Desmonts, X. Dousset, C. Feurer, E. Hamon, et al. 2015. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. The Isme Journal 9 (5):1105–18., doi: 10.1038/ismej.2014.202.
  • Chaves-López, C., R. Tofalo, A. Serio, A. Paparella, G. Sacchetti, and G. Suzzi. 2012. Yeasts from Colombian kumis as source of peptides with angiotensin I converting enzyme (ACE) inhibitory activity in milk. International Journal of Food Microbiology 159 (1):39–46. doi: 10.1016/j.ijfoodmicro.2012.07.028.
  • Chen, G., C. Chen, and Z. Lei. 2017. Meta-omics insights in the microbial community profiling and functional characterization of fermented foods. Trends in Food Science & Technology 65:23–31. doi: 10.1016/j.tifs.2017.05.002.
  • Chen, Y., T. Sun, J. Wang, C. Airden, M. Bai, and H. Zhang. 2009. Comparison of nutrition and microbiological compositions between two types of fermented milk from Tibet in China. International Journal of Food Sciences and Nutrition 60 (Suppl 7):243–50. doi: 10.1080/09637480903005540.
  • Cho, Y.-J., D.-H. Kim, D. Jeong, K.-H. Seo, H. S. Jeong, H. G. Lee, and H. Kim. 2018. Characterization of yeasts isolated from kefir as a probiotic and its synergic interaction with the wine byproduct grape seed flour/extract. LWT - Food Science and Technology 90:535–9. doi: 10.1016/j.lwt.2018.01.010.
  • Choi, E. J., H. M. Jin, K. H. Kim, and C. O. Jeon. 2014. Salimicrobium jeotgali sp. nov., isolated from salted, fermented seafood. International Journal of Systematic and Evolutionary Microbiology 64 (Pt 11):3624–30. doi: 10.1099/ijs.0.062042-0.
  • Choi, G., S. L. Meijer, and M. D. Hazenberg. 2012. Disseminated bread yeast fungaemia in a baker’s wife with acute myeloid leukaemia. British Journal of Haematology 158 (3):298. doi: 10.1111/j.1365-2141.2012.09212.x.
  • Clemons, K. V., L. C. Hanson, and D. A. Stevens. 1996. Colony phenotype switching in clinical and non-clinical isolates of Saccharomyces cerevisiae. Medical Mycology 34 (4):259–64. doi: 10.1080/02681219680000441.
  • Clemons, K. V., J. H. Salonen, J. Issakainen, J. Nikoskelainen, M. J. McCullough, J. Jorge, and D. A. Stevens. 2010. Molecular epidemiology of Saccharomyces cerevisiae in an immunocompromised host unit. Diagnostic Microbiology and Infectious Disease 68 (3):220–7. doi: 10.1016/j.diagmicrobio.2010.06.010.
  • Cocolin, L., R. Urso, K. Rantsiou, C. Cantoni, and G. Comi. 2006. Dynamics and characterization of yeasts during natural fermentation of Italian sausages. FEMS Yeast Research 6 (5):692–701. doi: 10.1111/j.1567-1364.2006.00050.x.
  • Coppola, S., G. Mauriello, M. Aponte, G. Moschetti, and F. Villani. 2000. Microbial succession during ripening of naples-type salami, a Southern Italian fermented sausage. Meat Science 56 (4):321–9. doi: 10.1016/S0309-1740(00)00046-2.
  • Corral, S., A. Salvador, C. Belloch, and M. Flores. 2014. Effect of fat and salt reduction on the sensory quality of slow fermented sausages inoculated with Debaryomyces hansenii yeast. Food Control 45:1–7. doi: 10.1016/j.foodcont.2014.04.013.
  • Corral, S., A. Salvador, C. Belloch, and M. Flores. 2015. Improvement the aroma of reduced fat and salt fermented sausages by Debaromyces hansenii inoculation. Food Control 47:526–35. doi: 10.1016/j.foodcont.2014.08.001.
  • Corsetti, A., G. Perpetuini, M. Schirone, R. Tofalo, and G. Suzzi. 2012. Application of starter cultures to table olive fermentation: An overview on the experimental studies. Frontiers in Microbiology 3:248.
  • Crafack, M., M. B. Mikkelsen, S. Saerens, M. Knudsen, A. Blennow, S. Lowor, J. Takrama, J. H. Swiegers, G. B. Petersen, H. Heimdal, and D. S. Nielsen. 2013. Influencing cocoa flavour using pichia kluyveri and Kluyveromyces marxianus in a defined mixed starter culture for cocoa fermentation. International Journal of Food Microbiology 167 (1):103–16. doi: 10.1016/j.ijfoodmicro.2013.06.024.
  • Dabiri, S., M. Shams-Ghahfarokhi, and M. Razzaghi-Abyaneh. 2018. Comparative analysis of proteinase, phospholipase, hydrophobicity and biofilm forming ability in Candida species isolated from clinical specimens. Journal de Mycologie Médicale 28 (3):437–42. doi: 10.1016/j.mycmed.2018.04.009.
  • Dadar, M., R. Tiwari, K. Karthik, S. Chakraborty, Y. Shahali, and K. Dhama. 2018. Candida albicans – Biology, molecular characterization, pathogenicity, and advances in diagnosis and control – An update. Microbial Pathogenesis 117:128–38. doi: 10.1016/j.micpath.2018.02.028.
  • Dagi, H. T., D. Findik, C. Senkeles, and U. Arslan. 2016. Identification and antifungal susceptibility of Candida species isolated from bloodstream infections in Konya, Turkey. Annals of Clinical Microbiology and Antimicrobials 15 (1):36.
  • Dainty, R. H., R. A. Edwards, and C. M. Hibbard. 1985. Time course of volatile compound formation during refrigerated storage of naturally contaminated beef in air. Journal of Applied Bacteriology 59 (4):303–9. doi: 10.1111/j.1365-2672.1985.tb03324.x.
  • Daroonpunt, R., N. Tanaka, M. Uchino, and S. Tanasupawat. 2018. Characterization and screening of lipolytic bacteria from Thai fermented fish. Sains Malaysiana 47 (1):91–7. doi: 10.17576/jsm-2018-4701-11.
  • De Castro, R. D., and P. Marraccini. 2006. Cytology, biochemistry and molecular changes during coffee fruit development. Brazilian Journal of Plant Physiology 18 (1):175–99. doi: 10.1590/S1677-04202006000100013.
  • De Filippis, F., M. Laiola, G. Blaiotta, and D. Ercolini. 2017. Different amplicon targets for sequencing-based studies of fungal diversity. Applied and Environmental Microbiology 83:e00905–17.
  • de Llanos, R., M. T. Fernandez-Espinar, and A. Querol. 2006. A comparison of clinical and food Saccharomyces cerevisiae isolates on the basis of potential virulence factors. Antonie Van Leeuwenhoek 90 (3):221–31. doi: 10.1007/s10482-006-9077-7.
  • de Melo-Pereira, G. V., M. Beux, M. G. Pagnoncelli, V. T. Soccol, C. Rodrigues, and C. R. Soccol. 2016. Isolation, selection and evaluation of antagonistic yeasts and lactic acid bacteria against ochratoxigenic fungus Aspergillus westerdijkiae on coffee beans. Letters in Applied Microbiology 62 (1):96–101. doi: 10.1111/lam.12520.
  • de Melo-Pereira, G. V., K. T. Magalhães, E. G. de Almeida, I. Coelho, and R. F. Schwan. 2013. Spontaneous cocoa bean fermentation carried out in a novel design stainless steel tank: Influence on the dynamics of microbial populations and physical‐chemical properties. International Journal of Food Microbiology 161 (2):121–33. doi: 10.1016/j.ijfoodmicro.2012.11.018.
  • de Melo-Pereira, G. V., E. Neto, V. T. Soccol, A. B. P. Medeiros, A. L. Woiciechowski, and C. R. Soccol. 2015. Conducting starter culture-controlled fermentations of coffee beans during on-farm wet processing: Growth, metabolic analyses and sensorial effects. Food Research International 75:348–56. doi: 10.1016/j.foodres.2015.06.027.
  • de Melo-Pereira, G. V., V. T. Soccol, A. Pandey, A. B. Medeiros, J. M. Andrade Lara, A. L. Gollo, and C. R. Soccol. 2014. Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process. International Journal of Food Microbiology 188:60–6. doi: 10.1016/j.ijfoodmicro.2014.07.008.
  • Desnos-Ollivier, M., M. Ragon, V. Robert, D. Raoux, J. C. Gantier, and F. Dromer. 2008. Debaryomyces hansenii (Candida famata), a rare human fungal pathogen often misidentified as Pichia guilliermondii (Candida guilliermondii). Journal of Clinical Microbiology 46 (10):3237–42. doi: 10.1128/JCM.01451-08.
  • Devrim, İ., B. Demirağ, Y. Yaman, N. Bayram, F. Özdemir, A. Kara, G. Özek, Y. Ayhan, G. Gülfidan, Y. Oymak, and C. Vergin. 2015. A 7-year study of the distribution of nosocomial candidemia in children with cancer. The Turkish Journal of Pediatrics 57 (3):225–9.
  • Dewan, S., and J. P. Tamang. 2006. Microbial and analytical characterization of Chhu-a traditional fermented milk product of the Sikkim Hymalayas. Journal of Scientific and Industrial Research. 65:747–52.
  • Dillon, V. M., and R. G. Board. 1991. Yeasts associated with red meats. Journal of Applied Bacteriology 71 (2):93–108. doi: 10.1111/j.1365-2672.1991.tb02962.x.
  • Diniz, R., L. Garla, J. Schneedorf, and J. C. Carvalho. 2003. Study of anti-inflammatory activity of Tibetan mushroom, a symbiotic culture of bacteria and fungi encapsulated into a polysaccharide matrix. Pharmacological Research 47 (1):49–52. doi: 10.1016/S1043-6618(02)00240-2.
  • Diosma, G., D. E. Romanin, M. F. Rey-Burusco, A. Londero, and G. L. Garrote. 2014. Yeasts from kefir grains: isolation, identification, and probiotic characterization. World Journal of Microbiology and Biotechnology 30 (1):43–53. doi: 10.1007/s11274-013-1419-9.
  • Dorko, E., M. Kmťová, E. Pilipčinec, I. Bračoková, F. Dorko, J. Danko, E. Ŝvicky, and L. '. Tkáĉiková. 2000. Rare non-albicans Candida species detected in different clinical diagnoses. Folia Microbiologica 45 (4):364–8. doi: 10.1007/BF02817563.
  • Duan, S., X. Hu, M. Li, J. Miao, J. Du, and R. Wu. 2016. Composition and metabolic activities of the bacterial community in shrimp sauce at the flavor-forming stage of fermentation as revealed by metatranscriptome and 16S rRNA gene sequencings. Journal of Agricultural and Food Chemistry 64 (12):2591–25603. doi: 10.1021/acs.jafc.5b05826.
  • Dufresne, S. F., K. A. Marr, E. Sydnor, J. F. Staab, J. E. Karp, K. Lu, S. X. Zhang, C. Lavallée, T. M. Perl, and D. Neofytos. 2014. Epidemiology of Candida kefyr in patients with hematologic malignancies. Journal of Clinical Microbiology 52 (6):1830–7. doi: 10.1128/JCM.00131-14.
  • Durá, M. A., M. Flores, and F. Toldra. 2004a. Effect of Debaryomyces spp. on the proteolysis of dry-fermented sausages. Meat Science 68:319–28. doi: 10.1016/j.meatsci.2004.03.015.
  • Durá, M. A., M. Flores, and F. Toldra. 2004b. Effect of growth phase and dry-cured sausage processing conditions on Debaryomyces spp. generation of volatile compounds from branched-chain amino acids. Food Chemistry 86 (3):391–9. doi: 10.1016/j.foodchem.2003.09.014.
  • Durán Graeff, L., D. Seidel, M. J. G. T. Vehreschild, A. Hamprecht, A. Kindo, Z. Racil, J. Demeter, S. De Hoog, U. Aurbach, M. Ziegler, et al. 2017. Invasive infections due to Saprochaete and Geotrichum species: Report of 23 cases from the FungiScope registry. Mycoses 60 (4):273–9. doi: 10.1111/myc.12595.
  • Dzialo, M. C., R. Park, J. Steensels, B. Lievens, and K. J. Verstrepen. 2017. Physiology, ecology and industrial applications of aroma formation in yeasts. FEMS Microbiology Reviews 41 (Supp_1):S95–S128. doi: 10.1093/femsre/fux031.
  • EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), Ricci, A., A. Allende, D. Bolton, M. Chemaly, R. Davies, P. S. Fernandez Escamez, R. Girones, K. Koutsoumanis, R. Lindqvist, and B. Nørrung. 2018. Statement on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 7: Suitability of taxonomic units notified to EFSA until September 2017. EFSA Journal 16:5131–42. doi: 10.2903/j.efsa.2018.5131.
  • Elkhtab, E., M. El-Alfy, M. Shenana, A. Mohamed, and A. E. Yousef. 2017. New potentially antihypertensive peptides liberated in milk during fermentation with selected lactic acid bacteria and kombucha cultures. Journal of Dairy Science 100 (12):9508–20. doi: 10.3168/jds.2017-13150.
  • Enache-Angoulvant, A., and C. Hennequin. 2005. Invasive Saccharomyces infection: A comprehensive review. Clinical Infectious Diseases 41 (11):1559–68. doi: 10.1086/497832.
  • Encinas, J.-P., T.-M. López-Dı́az, M.-L. Garcı́a-López, A. Otero, and B. Moreno, 2000. Yeast populations on Spanish fermented sausages. Meat Science 54 (3):203–8. doi: 10.1016/S0309-1740(99)00080-7.
  • Engel, G., and N. Roesch. 1995. Development of yeasts during production and ripening of harzer cheese (yellow cheese type). Kieler Milchwirtschaftliche Forschungsberichte 47:97–112.
  • Essuman, K.M. 1992. Fermented fish in Africa: A study on processing, marketing and consumption. FAO. Fisheries Technical Paper. No. 329, FAO, Rome, 80.
  • Ettayebi, K., F. Errachidi, L. Jamai, M. A. Tahri-Jouti, K. Sendide, and M. Ettayebi. 2003. Biodegradation of polyphenols with immobilized Candida tropicalis under metabolic induction. FEMS Microbiology Letters 223 (2):215–9. doi: 10.1016/S0378-1097(03)00380-X.
  • Evangelista, S. R., M. G. da Cruz Pedrozo Miguel, C. de Souza Cordeiro, C. F. Silva, A. C. Marques Pinheiro, and R. F. Schwan. 2014. Inoculation of starter cultures in a semi-dry coffee (Coffea arabica) fermentation process. Food Microbiology 44:87–95. doi: 10.1016/j.fm.2014.05.013.
  • Evangelista, S. R., C. F. Silva, M. G. P. C. Miguel, C. S. Cordeiro, A. C. M. Pinheiro, W. F. Duarte, and R. F. Schwan. 2014. Improvement of coffee beverage quality by using selected yeasts strains during the fermentation in dry process. Food Research International 61:183–95. doi: 10.1016/j.foodres.2013.11.033.
  • Fan, Y., L. Tian, Y. Xue, Z. Li, H. Hou, and C. Xue. 2017. Characterization of protease and effects of temperature and salinity on the biochemical changes during fermentation of antarctic krill. Journal of the Science of Food and Agriculture 97 (11):3546–51. doi: 10.1002/jsfa.8209.
  • Farmakiotis, D., and D. P. Kontoyiannis. 2017. Epidemiology of antifungal resistance in human pathogenic yeasts: Current viewpoint and practical recommendations for management. International Journal of Antimicrobial Agents 50 (3):318–24. doi: 10.1016/j.ijantimicag.2017.05.019.
  • Fleet, G. H. 1992. Spoilage yeasts. Critical Reviews in Biotechnology 12 (1–2):1–44. doi: 10.3109/07388559209069186.
  • Fleet, G. H. 1990. Yeasts in dairy-products. Journal of Applied Bacteriology 68 (3):199–211. doi: 10.1111/j.1365-2672.1990.tb02566.x.
  • Fleet, G. H. 2007. Yeasts in food and beverages: Impact on product quality and safety. Current Opinion in Biotechnology 18 (2):170–5. doi: 10.1016/j.copbio.2007.01.010.
  • Flores, M., S. Corral, L. Cano-Garcia, A. Salvador, and C. Belloch. 2015. Yeast strains as potential aroma enhancers in dry fermented sausages. International Journal of Food Microbiology 212:16–24. doi: 10.1016/j.ijfoodmicro.2015.02.028.
  • Flores, M., M. A. Dura, A. Marco, and F. Toldra. 2004. Effect of Debaryomyces spp. on aroma formation and sensory quality of dry-fermented sausages. Meat Science 68 (3):439–46. doi: 10.1016/j.meatsci.2003.04.001.
  • Flores, M., and F. Toldra. 2011. Microbial enzymatic activities for improved fermented meats. Trends in Food Science & Technology 22 (2–3):81–90. doi: 10.1016/j.tifs.2010.09.007.
  • Fowler, M. S., P. Leheup, and J. L. Cordier. 1998. Cocoa, coffee and tea. In Microbiology of fermented foods, ed. B. J. B. Wood, 128–146. London: Blackie Academic and Professional.
  • Friques, A. G. F., C. M. Arpini, I. C. Kalil, A. L. Gava, M. A. Leal, M. L. Porto, B. V. Nogueira, A. T. Dias, T. U. Andrade, T. M. C. Pereira, et al. 2015. Chronic administration of the probiotic kefir improves the endothelial function in spontaneously hypertensive rats. Journal of Translational Medicine 13:390.
  • Fry, S. E. 2017. Applied use of next generation DNA sequencing for infectious disease. Medical Research Archives 5:1–14.
  • Fujii, T., D. Kyoui, H. Takahashi, T. Kuda, B. Kimura, Y. Washizu, E. Emoto, and T. Hiramoto. 2016. Pyrosequencing analysis of the microbiota of kusaya gravy obtained from izu islands. International Journal of Food Microbiology 238:320–5. doi: 10.1016/j.ijfoodmicro.2016.09.030.
  • Fusco, V., H. M. W. den Besten, A. F. Logrieco, F. P. Rodriguez, P. N. Skandamis, B. Stessl, and P. Teixeira. 2015. Food safety aspects on ethnic foods: Toxicological and microbial risks. Current Opinion in Food Science 6:24–32. doi: 10.1016/j.cofs.2015.11.010.
  • Fusco, V., F. A. Oguntoyinbo, and C.M.A.P. Franz. 2017. Fermentation to improve food security in Africa and Asia. Chapter 12 In Soft chemistry and food fermentation, volume 3: Handbook of food bioengineering, ed. Alexandru Grumezescu Alina Maria Holban, 337–378. Cambridge, MA: Academic Press (Elsevier). Paperback ISBN: 9780128114124.
  • Gabaldón, T., M. A. Naranjo-Ortíz, and M. Marcet-Houben. 2016. Evolutionary genomics of yeast pathogens in the saccharomycotina. FEMS Yeast Research 16 (6):fow064. doi: 10.1093/femsyr/fow064.
  • Gadaga, T. H., A. N. Mutukumira, and J. A. Narvhus. 2000. Enumeration and identification of yeasts isolated from Zimbabwean traditional fermented milk. International Dairy Journal 10 (7):459–66. doi: 10.1016/S0958-6946(00)00070-4.
  • Gao, P., Q. Jiang, Y. Xu, and W. Xia. 2017. Esterase activities of autochthonous starter cultures to increase volatile flavour compounds in Chinese traditional fermented fish (Suan yu). International Journal of Food Properties 20:663–72.
  • Gao, J., F. Gu, H. Ruan, Q. Chen, J. He, and G. He. 2013. Induction of apoptosis of gastric cancer cells SGC7901 in vitro by a cell-free fraction of Tibetan kefir. International Dairy Journal 30 (1):14–8. doi: 10.1016/j.idairyj.2012.11.011.
  • Garcia-Armisen, T., Z. Papalexandratou, H. Hendryckx, N. Camu, G. Vrancken, L. De Vuyst, and P. Cornelis. 2010. Diversity of the total bacterial community associated with Ghanaian and Brazilian cocoa bean fermentation samples as revealed by a 16 S rRNA gene clone library. Applied Microbiology and Biotechnology 87 (6):2281–92. doi: 10.1007/s00253-010-2698-9.
  • Gardini, F., G. Suzzi, A. Lombardi, F. Galgano, M. A. Crudele, C. Andrighetto, M. Schirone, and R. Tofalo. 2001. A survey of yeasts in traditional sausages of Southern Italy. FEMS Yeast Research 1 (2):161–7. doi: 10.1111/j.1567-1364.2001.tb00027.x.
  • Garrido-Fernandez, A., M. J. Fernandez-Dıaz, and R. M. Adams. 1997. Table olives: Production and processing. London, UK: Chapman & Hall.
  • Giaffer, M. H., A. Clark, and C. D. Holdsworth. 1992. Antibodies to Saccharomyces cerevisiae in patients with crohn's disease and their possible pathogenic importance. Gut 33 (8):1071–5. doi: 10.1136/gut.33.8.1071.
  • Gkatzionis, K., D. Yunita, R. S. T. Linforth, M. Dickinson, and C. E. R. Dodd. 2014. Diversity and activities of yeasts from different parts of a stilton cheese. International Journal of Food Microbiology 177:109–16. doi: 10.1016/j.ijfoodmicro.2014.02.016.
  • Golomb, B. L., V. Morales, A. Jung, B. Yau, K. L. Boundy-Mills, and M. L. Marco. 2013. Effects of pectinolytic yeast on the microbial composition and spoilage of olive fermentations. Food Microbiology 33 (1):97–106. doi: 10.1016/j.fm.2012.09.004.
  • Gram, L. 2009. Microbiological spoilage of fish and seafood products. In Compendium of the microbiological spoilage of foods and beverages. Food microbiology and food safety, eds. W. Sperber and M. Doyle. New York, NY: Springer.
  • Grishina, A., I. Kulikova, L. Alieva, A. Dodson, I. Rowland, and J. Jin. 2011. Antigenotoxic effect of kefir and ayran supernatants on fecal water-induced DNA damage in human Colon cells. Nutrition and Cancer 63 (1):73–9.
  • Groenewald, M., T. Boekhout, C. Neuvéglise, C. Gaillardin, P. W. van Dijck, and M. Wyss. 2014. Yarrowia lipolytica: Safety assessment of an oleaginous yeast with a great industrial potential. Critical Reviews in Microbiology 40 (3):187–206. doi: 10.3109/1040841X.2013.770386.
  • Guimarães, L. F., M. Halpern, A. S. de Lemos, E. F. de Gouvêa, R. T. Gonçalves, M. A. da Rosa Santos, M. Nucci, and G. Santoro‐Lopes. 2016. Invasive fungal disease in renal transplant recipients at a Brazilian center: Local epidemiology matters. Transplantation Proceedings 48 (7):2306–9. doi: 10.1016/j.transproceed.2016.06.019.
  • Gulcan, A., E. Gulcan, M. Keles, and E. Aktas. 2016. Oral yeast colonization in peritoneal dialysis and hemodialysis patients and renal transplant recipients. Comparative Immunology, Microbiology & Infectious Diseases 46:47–52. doi: 10.1016/j.cimid.2016.04.004.
  • Guzel-Seydim, Z. B., A. C. Seydim, A. K. Greene, and T. Ta. 2006. Determination of antimutagenic properties of acetone extracted fermented milks and changes in their total fatty acid profiles including conjugated linoleic acids. International Journal of Dairy Technology 59 (3):209–15. doi: 10.1111/j.1471-0307.2006.00265.x.
  • Hajeb, P., and S. Jinap. 2015. Umami taste components and their sources in Asian foods. Critical Reviews in Food Science and Nutrition 55 (6):778–91. doi: 10.1080/10408398.2012.678422.
  • Hammes, W. P., and H. J. Knauf. 1994. Starters in the processing of meat products. Meat Science 36 (1-2):155–68. doi: 10.1016/0309-1740(94)90039-6.
  • Hansen, A. P. 1975a. Microbiological activity and its effect on cocoa beans. Manufacturing Confectioner 55:35–9.
  • Hansen, A. P. 1975b. Understanding the microbiological deterioration of cacao. Candy Snack Industry 140:44–7.
  • Hatoum, R., S. Labrie, and I. Fliss. 2012. Antimicrobial and probiotic properties of yeasts: From fundamental to novel applications. Frontiers in Microbiology 3:421.
  • Hernández, A., F. Pérez-Nevado, S. Ruiz-Moyano, M. J. Serradilla, M. C. Villalobos, A. Martín, and M. G. Córdoba. 2018. Spoilage yeasts: What are the sources of contamination of foods and beverages? International Journal of Food Microbiology 286:98–110. doi: 10.1016/j.ijfoodmicro.2018.07.031.
  • Hernández, A., A. Martín, M. G. Córdoba, M. J. Benito, E. Aranda, and F. Pérez-Nevado. 2008. Determination of killer activity in yeasts isolated from the elaboration of seasoned green table olives. International Journal of Food Microbiology 121 (2):178–88. doi: 10.1016/j.ijfoodmicro.2007.11.044.
  • Ho, V. T., J. Zhao, and G. Fleet. 2014. Yeasts are essential for cocoa bean fermentation. International Journal of Food Microbiology 174:72–87. doi: 10.1016/j.ijfoodmicro.2013.12.014.
  • Hong, W. S., H. C. Chen, Y. P. Chen, and M. J. Chen. 2009. Effects of kefir supernatant and lactic acid bacteria isolated from kefir grain on cytokine production by macrophage. International Dairy Journal 19 (4):244–51. doi: 10.1016/j.idairyj.2008.10.010.
  • Hrnjez, D., Ž. Vaštag, S. Milanović, V. Vukić, M. Iličić, L. Popović, and K. Kanurić. 2014. The biological activity of fermented dairy products obtained by kombucha and conventional starter cultures during storage. Journal of Functional Foods 10:336–45. doi: 10.1016/j.jff.2014.06.016.
  • Hsu, P. H., P. C. Chiang, C. H. Liu, and Y. W. Chang. 2015. Characterization of cell wall proteins in Saccharomyces cerevisiae clinical isolates elucidates Hsp150p in virulence. PLoS One 10 (8):e0135174. doi: 10.1371/journal.pone.0135174.
  • Huch, M., and C. Franz. 2014. Coffee: fermentation and microbiota. In Advances in fermented foods and beverages. Improving quality, technologies and health benefits, ed. W. Holzapfel, 501–513. Sawston, UK: Woodhead Publishing.
  • Hugas, M., and J. M. Monfort. 1997. Bacterial starter cultures for meat fermentation. Food Chemistry 59 (4):547–54. doi: 10.1016/S0308-8146(97)00005-8.
  • Hurtado, A., C. Reguant, A. Bordons, and N. Rozès. 2010. Evaluation of a single and combined inoculation of a Lactobacillus pentosus starter for processing cv. Arbequina natural green olives. Food Microbiology 27 (6):731–40. doi: 10.1016/j.fm.2010.03.006.
  • Huseini, H. F., G. Rahimzadeh, M. R. Fazeli, M. Mehrazma, and M. Salehi. 2012. Evaluation of wound healing activities of kefir products. Burns 38 (5):719–23. doi: 10.1016/j.burns.2011.12.005.
  • Huynh, H. L., R. Danhi, and S. W. Yan. 2016. Using fish sauce as a substitute for sodium chloride in culinary sauces and effects on sensory properties. Journal of Food Science 81:150–5.
  • Hwanhlem, N., N. Watthanasakphuban, S. Riebroy, S. Benjakul, A. H‐Kittikun, and S. Maneerat. 2010. Probiotic lactic acid bacteria from Kung‐som: Isolation, screening, inhibition of pathogenic bacteria. International Journal of Food Science & Technology 45 (3):594–601.
  • Ismaiel, A. A., M. F. Ghaly, and A. K. El-Naggar. 2011. Milk kefir: ultrastructure, antimicrobial activity and efficacy on aflatoxin b1 production by Aspergillus flavus. Current Microbiology 62 (5):1602–9. doi: 10.1007/s00284-011-9901-9.
  • Iucci, L., F. Patrignani, N. Belletti, M. Ndagijimana, M. E. Guerzoni, F. Gardini, and R. Lanciotti. 2007. Role of surface-inoculated Debaryomyces hansenii and Yarrowia Y. lipolytica strains in dried fermented sausage manufacture. Part 2: Evaluation of their effects on sensory quality and biogenic amine content. Meat Science 75 (4):669–75. doi: 10.1016/j.meatsci.2006.09.016.
  • Jakobsen, M., and J. Narvhus. 1996. Yeasts and their possible beneficial and negative effects on the quality of dairy products. International Dairy Journal 6 (8–9):755–68. doi: 10.1016/0958-6946(95)00071-2.
  • Jalali, F., M. Sharifi, and R. Salehi. 2016. Kefir induces apoptosis and inhibits cell proliferation in human acute erythroleukemia. Medical Oncology 33 (1):7.
  • Jang, G. I., G. Kim, C. Y. Hwang, and B. C. Cho. 2017. Prokaryotic community composition in alkaline-fermented skate (Raja pulchra). Food Microbiology 61:72–82. doi: 10.1016/j.fm.2016.08.008.
  • Jatmiko, Y. D., M. De Barros Lopes, and M. D. Barton. 2012. Molecular identification of yeasts isolated from dadih by RFLP-PCR and assessment on their ability in utilizing lactate. Microbiology Indonesia 6:30–4. doi: 10.5454/mi.6.1.5.
  • Jayabalan, R., R. V. Malbaša, E. S. Lončar, J. S. Vitas, and M. Sathishkumar. 2014. A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Comprehensive Reviews in Food Science and Food Safety 13 (4):538–50. doi: 10.1111/1541-4337.12073.
  • Ji, C., J. Zhang, X. Lin, J. Han, X. Dong, S. Yang, X. Yan, and B. Zhu. 2017. Metaproteomic analysis of microbiota in the fermented fish, Siniperca chuatsi. LWT 80:479–84. doi: 10.1016/j.lwt.2017.03.022.
  • Jung, J. Y., S. H. Lee, H. J. Lee, and C. O. Jeon. 2013. Microbial succession and metabolite changes during fermentation of Saeu-jeot: Traditional Korean salted seafood. Food Microbiology 34 (2):360–8. doi: 10.1016/j.fm.2013.01.009.
  • Jung, M. Y., T. W. Kim, C. Lee, J. Y. Kim, H. S. Song, Y. B. Kim, S. W. Ahn, J. S. Kim, S. W. Roh, and S. H. Lee. 2018. Role of Jeotgal, a Korean traditional fermented fish sauce, in microbial dynamics and metabolite profiles during kimchi fermentation. Food Chemistry 265:135–43. doi: 10.1016/j.foodchem.2018.05.093.
  • Kalakonda, A., K. Gupta, P. Aleksiejuk, S. Reddy, and S. Zaidi. 2016. Fungemia: an unexpected cause. American Journal of Respiratory and Critical Care Medicine 193:1.
  • Kang, J. I., H. S. Yoon, S. Kim, J. Park, Y. Hyun, A. Ko, Y. S. Ahn, Y. S. Koh, J. W. Hyun, E. S. Yoo, and H. K. Kang. 2018. Mackerel-Derived Fermented Fish Oil Promotes Hair Growth by Anagen-Stimulating Pathways. International journal of molecular sciences 19 (9):2770.
  • Kanurić, K. G., S. D. Milanović, B. B. Ikonić, E. S. Lončar, M. D. Iličić, V. R. Vukić, and D. V. Vukić. 2018. Kinetics of lactose fermentation in milk with kombucha starter. Journal of Food and Drug Analysis 26 (4):1229–34. doi: 10.1016/j.jfda.2018.02.002.
  • Kara, I., F. Yıldırım, Ö. Özgen, S. Erganiş, M. Aydoğdu, M. Dizbay, G. Gürsel, and A. Kalkanci. 2018. Saccharomyces cerevisiae fungemia after probiotic treatment in an intensive care unit patient. Journal de Mycologie Médicale 28 (1):218–21. doi: 10.1016/j.mycmed.2017.09.003.
  • Kasankala, L. M., Y. L. Xiong, and J. Chen. 2011. The influence of douchi starter cultures on the composition of extractive components, microbiological activity, and sensory properties of fermented fish pastes. Journal of Food Science 76:154–61.
  • Kaur, R., M. S. Dhakad, R. Goyal, and R. Kumar. 2016. Emergence of non‐albicans candida species and antifungal resistance in intensive care unit patients. Asian Pacific Journal of Tropical Biomedicine 6 (5):455–60. doi: 10.1016/j.apjtb.2015.12.019.
  • Kebede, Ameha, B. C. Viljoen, T. H. Gadaga, J. A. Narvhus, and A. Lourens-Hattingh. 2007. The effect of container type on the growth of yeast and lactic acid bacteria during production of sethemi, South african spontaneosusly fermented milk. Food Research International 40 (1):33–8. doi: 10.1016/j.foodres.2006.07.012.
  • Khmetsadykova, S., B. Almagul, K. Gaukhar, A. Nurlan, and L. Gérard. 2013. Microflora identification of fresh and fermented camel milk from Kazakhstan. Emirates Journal of Food and Agriculture 26:327–32.
  • Klingberg, T. D., U. Lesnik, N. Arneborg, P. Raspor, and L. Jespersen. 2008. Comparison of Saccharomyces cerevisiae strains of clinical and nonclinical origin by molecular typing and determination of putative virulence traits. FEMS Yeast Research 8 (4):631–40. doi: 10.1111/j.1567-1364.2008.00365.x.
  • Kostinek, M., and C. M. A. P. Franz. 2007. Kakao. In Lebensmittel pflanzlicher Herkunft, ed. W. H. Holzapfel, 486–490. Germany: Behr’s Verlag.
  • Kronen, R., C. Lin, K. Hsueh, W. Powderly, and A. Spec. 2017. Risk factors and mortality associated with Candida krusei bloodstream infections. Open Forum Infectious Diseases 4 (suppl_1):S74–S75. doi: 10.1093/ofid/ofx163.008.
  • Kuda, T., S. Kondo, Y. Usami, S. Ishizaki, H. Takahashi, and B. Kimura. 2016. Reduction of salmon chark meat by a fermented rice bran suspension with the satoumi-sourced yeast Saccharomyces cerevisiae misaki-1 and lactic acid bacteria Lactobacillus plantarum Sanriku-SU8. LWT - Food Science and Technology 68:244–50. doi: 10.1016/j.lwt.2015.12.022.
  • Kurtzman, C. P. 2014. Use of gene sequence analyses and genome comparisons for yeast systematics. International Journal of Systematic and Evolutionary Microbiology 64 (Pt 2):325–32. doi: 10.1099/ijs.0.054197-0.
  • Kurtzman, C. P., J. W. Fell, and T. Boekhout. 2011. The yeasts: A taxonomic study. Amsterdam: Elsevier Press.
  • Kuwabara, Y., S. Nagai, N. Yoshimitsu, I. Nakagawa, Y. Watanabe, and Y. Tamai. 1995. Antihypertensive effect of the milk fermented by culturing with various lactic acid bacteria and a yeast. Journal of Fermentation and Bioengineering 80 (3):294–5. doi: 10.1016/0922-338X(95)90834-M.
  • Lamzira, Z., A. Asehraou, D. Brito, M. Oliveira, M. Faid, and C. Peres. 2005. Bloater spoilage of green olives. Food Technology and Biotechnology 43:373–7.
  • Larkin, E., C. Hager, J. Chandra, P. K. Mukherjee, M. Retuerto, I. Salem, L. Long, N. Isham, L. Kovanda, K. Borroto-Esoda, et al. 2017. The emerging pathogen Candida auris: Growth phenotype, virulence factors, activity of antifungals, and effect of SCY-078, a novel glucan synthesis inhibitor, on growth morphology and biofilm formation. Antimicrobial Agents and Chemotherapy 61 (5):e02396–16. doi: 10.1128/AAC.02396-16.
  • Lee, S. H., J. Y. Jung, and C. O. Jeon. 2014a. Effects of temperature on microbial succession and metabolite change during saeu-jeot fermentation. Food Microbiology 38:16–25. doi: 10.1016/j.fm.2013.08.004.
  • Lee, S. H., J. Y. Jung, and C. O. Jeon. 2014b. Microbial successions and metabolite changes during fermentation of salted shrimp (saeu-jeot) with different salt concentrations. PLoS One 9 (2):e90115. doi: 10.1371/journal.pone.0090115.
  • Lee, S. H., J. Y. Jung, and C. O. Jeon. 2015. Bacterial community dynamics and metabolite changes in Myeolchi-Aekjeot, a Korean traditional fermented fish sauce, during fermentation. International Journal of Food Microbiology 203:15–22. doi: 10.1016/j.ijfoodmicro.2015.02.031.
  • Lee, H. W., Y. J. Choi, I. M. Hwang, S. W. Hong, and M. A. Lee. 2016. Relationship between chemical characteristics and bacterial community of a Korean salted-fermented anchovy sauce, Myeolchi-Aekjeot. LWT Food Lwt 73:251–8. doi: 10.1016/j.lwt.2016.06.007.
  • Lefeber, T., W. Gobert, G. Vrancken, N. Camu, and L. De Vuyst. 2011. Dynamics and species diversity of communities of lactic acid bacteria and acetic acid bacteria during spontaneous cocoa bean fermentation in vessels. Food Microbiology 28 (3):457–64. doi: 10.1016/j.fm.2010.10.010.
  • Lefeber, T., Z. Papalexandratou, W. Gobert, N. Camu, and L. De Vuyst. 2012. On-farm implementation of starter culture for improved cocoa bean fermentation and its influence on the flavor of chocolate produced thereof. Food Microbiology 30 (2):379–92. doi: 10.1016/j.fm.2011.12.021.
  • Legras, J. L., V. Galeote, F. Bigey, C. Camarasa, S. Marsit, T. Nidelet, I. Sanchez, A. Couloux, J. Guy, and R. Franco-Duarte. 2018. Adaptation of S. cerevisiae to fermented food environments reveals remarkable genome plasticity and the footprints of domestication. Molecular Biology and Evolution doi: 10.1093/molbev/msy066.
  • Lehrian, D., and G. Patterson. 1983. Cocoa fermentation. In Food and feed production with microorganism. Biotechnology, ed. G. Reed, 529–575. Weinheim: Verlag Chemie.
  • Leistner, L. 2000. Basic aspects of food preservation by hurdle technology. International Journal of Food Microbiology 55 (1–3):181–6. doi: 10.1016/S0168-1605(00)00161-6.
  • Leroy, F., and L. De Vuyst. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends in Food Science & Technology 15 (2):67–78. doi: 10.1016/j.tifs.2003.09.004.
  • Levenson, D., M. A. Pfaller, M. A. Smith, R. Hollis, T. Geraden, C. B. Tucci, and H. D. Isenberg. 1991. Candida zeylanoides – Another opportunistic yeast. Journal of Clinical Microbiology 29:1689–92.
  • Lherm, T., C. Monet, B. Nougiere, M. Soulier, D. Larbi, C. Le Gall, D. Caen, and C. Malbrunot. 2002. Seven cases of fungemia with Saccharomyces boulardii in critically ill patients. Intensive Care Medicine 28 (6):797–801. doi: 10.1007/s00134-002-1267-9.
  • Li, D., W. Zhang, S. Zheng, Z. Ma, P. Zhang, and Z. Liu. 2013. Surveillance study of candidemia in cancer patients in North China. Medical Mycology 51 (4):378–84. doi: 10.3109/13693786.2012.727481.
  • Liao, E., Y. Xu, Q. Jiang, and W. Xia. 2019. Effects of inoculating autochthonous starter cultures on N-nitrosodimethylamine and its precursors formation during fermentation of Chinese traditional fermented fish. Food Chemistry 271:174–81. doi: 10.1016/j.foodchem.2018.07.186.
  • Lima, M. D. S. F., K. M. S. Souza, W. W. C. Albuquerque, J. A. C. Teixeira, M. T. H. Cavalcanti, and A. L. F. Porto. 2017. Saccharomyces cerevisiae from Brazilian kefir-fermented milk: An in vitro evaluation of probiotic properties. Microbial Pathogenesis 110:670–7. doi: 10.1016/j.micpath.2017.05.010.
  • Liti, G., D. M. Carter, A. M. Moses, J. Warringer, L. Parts, S. A. James, R. P. Davey, I. N. Roberts, A. Burt, and V. Koufopanou. 2009. Population genomics of domestic and wild yeasts. Nature 458 (7236):337–41.
  • Liu, J. R., M. J. Chen, and C. W. Lin. 2005. Antimutagenic and antioxidant properties of milk-kefir and soymilk-kefir. Journal of Agricultural and Food Chemistry 53 (7):2467–74. doi: 10.1021/jf048934k.
  • Liu, X., T. Kuda, H. Takahashi, and B. Kimura. 2018. Bacterial and fungal microbiota of spontaneously fermented Chinese products, rubing milk cake and yan-cai vegetable pickles. Food Microbiology 72:106–11. doi: 10.1016/j.fm.2017.11.014.
  • Liu, W., X. Xi, Q. Sudu, L. Kwok, Z. Guo, Q. Hou, B. Menhe, T. Sun, and H. Zhang. 2015. High-throughput sequencing reveals microbial community diversity of Tibetan naturally fermented yak milk. Annals of Microbiology 65 (3):1741–51. doi: 10.1007/s13213-014-1013-x.
  • Llopis, S., C. Hernández-Haro, L. Monteoliva, A. Querol, M. Molina, and M. T. Fernández-Espinar. 2014. Pathogenic potential of Saccharomyces strains isolated from dietary supplements. PLoS One 9 (5):e98094. doi: 10.1371/journal.pone.0098094.
  • Lo, N., S. H. Lee, H. M. Jin, J. Y. Jung, P. Schumann, and C. O. Jeon. 2015. Garicola koreensis gen. nov., sp. nov., isolated from saeu-jeot, traditional korean fermented shrimp. International Journal of Systematic and Evolutionary Microbiology 65 (Pt 3):1015–21. doi: 10.1099/ijs.0.000056.
  • Lopandic, K. 2018. Saccharomyces interspecies hybrids as model organisms for studying yeast adaptation to stressful environments. Yeast 35 (1):21–38. doi: 10.1002/yea.3294.
  • Lopez, A. S., and P. S. Dimick. 1995. Cocoa fermentation. In Biotechnology: a comprehensive treatise. Enzymes, food and feed, eds. G. Reed and T. Nagodawithana, 563–577. Weinheim: VCH.
  • Lopitz, F. O., A. Rementeria, N. Elguezabal, and J. Garaizar. 2006. Kefir: una comunidad simbiótica de bacteria sy levadura sconpropieda des saludables. Revista Iberoamericana de Micología 23:67–74. doi: 10.1016/S1130-1406(06)70016-X.
  • Lore, T. A., S. K. Mbugua, and J. Wangoh. 2005. Enumeration and identification of microflora in suusac, a Kenyan traditional fermented camel milk product. Lwt - Food Science and Technology 38 (2):125–30. doi: 10.1016/j.lwt.2004.05.008.
  • Loreto, E. S., L. A. Scheid, C. W. Nogueira, G. Zeni, J. M. Santurio, and S. H. Alves. 2010. Candida dubliniensis: Epidemiology and phenotypic methods for identification. Mycopathologia 169 (6):431–43. doi: 10.1007/s11046-010-9286-5.
  • Lortholary, O., C. Renaudat, K. Sitbon, M. Desnos-Ollivier, S. Bretagne, F. Dromer, and French Mycoses Study Group. 2017. The risk and clinical outcome of candidemia depending on underlying malignancy. Intensive Care Medicine 43 (5):652–62. doi: 10.1007/s00134-017-4743-y.
  • Lücke, F. K. 1994. Fermented food products. Food Research International 27 (3):299–307. doi: 10.1016/0963-9969(94)90098-1.
  • Lücke, F. K. 2000. Utilization of microbes to process and preserve meat. Meat Science 56 (2):105–15. doi: 10.1016/S0309-1740(00)00029-2.
  • Lunestad, B. T., D. H. Grevskott, I. S. Roiha, and C. S. Svanevik. 2018. Microbiota of lutefisk, a Nordic traditional cod dish with a high pH. Food Control 90:312–6. doi: 10.1016/j.foodcont.2018.03.011.
  • Mainente, F., A. Menin, A. Alberton, G. Zoccatelli, and C. Rizzi. 2018. Evaluation of the sensory and physical properties of meat and fish derivatives containing grape pomace powders. International Journal of Food Science & Technology 54:952–8.
  • Malbaša, R., L. Jevrić, E. Lončar, J. Vitas, S. Podunavac-Kuzmanović, S. Milanović, and S. Kovačević. 2015. Chemometric approach to texture profile analysis of kombucha fermented milk products. Journal of Food Science and Technology 52 (9):5968–74. doi: 10.1007/s13197-014-1648-4.
  • Malbaša, R. V., J. S. Vitas, E. S. Lončar, and S. Ž. Kravić. 2011. Influence of fermentation temperature on the content of fatty acids in low energy milk-based kombucha products. Acta Periodica Technologica 42:81–90. doi: 10.2298/APT1142081M.
  • Marco, A., J. L. Navarro, and M. Flores. 2006. The influence of nitrite and nitrate on microbial, chemical and sensory parameters of slow dry fermented sausage. Meat Science 73 (4):660–73. doi: 10.1016/j.meatsci.2006.03.011.
  • Martin, I. W., R. Tonner, J. Trivedi, H. Miller, R. Lee, X. Liang, L. Rotello, E. Isenbergh, J. Anderson, T. Perl, and S. X. Zhang. 2017. Saccharomyces boulardii probiotic-associated fungemia: questioning the safety of this preventive probiotics use. Diagnostic Microbiology and Infectious Disease 87 (3):286–8. doi: 10.1016/j.diagmicrobio.2016.12.004.
  • Martin, A., J. J. Cordoba, E. Aranda, M. G. Cordoba, and M. A. Asensio. 2006. Contribution of a selected fungal population to the volatile compounds on dry-cured ham. International Journal of Food Microbiology 110 (1):8–18. doi: 10.1016/j.ijfoodmicro.2006.01.031.
  • Martin, N., C. Berger, C. Le Du, and H. E. Spinnler. 2001. Aroma compound production in cheese curd by coculturing with selected yeast and bacteria. Journal of Dairy Science 84 (10):2125–35. doi: 10.3168/jds.S0022-0302(01)74657-7.
  • Martínez Leal, J., L. Valenzuela Suárez, R. Jayabalan, J. Huerta Oros, and A. Escalante-Aburto. 2018. A review on health benefits of kombucha nutritional compounds and metabolites. Cyta - Journal of Food 16 (1):390–9. doi: 10.1080/19476337.2017.1410499.
  • Martínez-Álvarez, O., M. E. López-Caballero, M. C. Gómez-Guillén, and P. Montero. 2016. Fermented seafood products and health. In Fermented foods in health and disease prevention, eds. J. Frias, C. Martinez-Villaluenga, and E. Peñas, 177–202. Amsterdam, Netherlands: Elsevier Inc.
  • Masoud, W., L. B. Cesar, L. Jespersen, and M. Jakobsen. 2004. Yeast involved in fermentation of Coffea arabica in east africa determined by genotyping and by direct denaturating gradient gel electrophoresis. Yeast 21 (7):549–56. doi: 10.1002/yea.1124.
  • Mathara, J. M., U. Schillinger, P. M. Kutima, S. K. Mbugua, and W. H. Holzapfel. 2004. Isolation, identification and characterisation of the dominant microorganisms of kule naoto: The maasai traditional fermented milk in Kenya. International Journal of Food Microbiology 94 (3):269–78. doi: 10.1016/j.ijfoodmicro.2004.01.008.
  • McCullough, M. J., K. V. Clemons, C. Farina, J. H. McCusker, and D. A. Stevens. 1998. Epidemiological investigation of vaginal Saccharomyces cerevisiae isolates by a genotypic method. Journal of Clinical Microbiology 36 (2):557–62.
  • Miceli, M. H., J. A. Díaz, and S. A. Lee. (2011). Emerging opportunistic yeast infections. The Lancet Infectious Diseases 11, 142–151.
  • Milanović, S. D., E. S. Lončar, M. S. Đurić, R. V. Malbaša, M. N. Tekić, M. D. Iličić, and K. G. Duraković. 2008. Low energy kombucha fermented milk-based beverages. Acta Periodica Technologica 39:37–46.
  • Miteva, E., E. Kirova, D. Gadjeva, and M. Radeva. 1986. Sensory aroma and taste profiles of raw-dried sausages manufactured with a lipolytically active yeast culture. Nahrung-Food 30:829–32.
  • Mittal, J., W. A. Szymczak, L. Pirofski, and B. T. Galen. 2018. Fungemia caused by Aureobasidium pullulans in a patient with advanced AIDS: A case report and review of the medical literature. JMM Case Reports 5 (4):e005144.
  • Mixão, V., and T. Gabaldón. 2018. Hybridization and emergence of virulence in opportunistic human yeast pathogens. Yeast 35 (1):5–20. doi: 10.1002/yea.3242.
  • Moller, L., B. Lerm, and A. Botha. 2016. Interactions of arboreal yeast endophytes: an unexplored discipline. Fungal Ecology 22:73–82. doi: 10.1016/j.funeco.2016.03.003.
  • Monte, E., J. R. Villanueva, and A. Dominguez. 1986. Fungal profiles of Spanish country-cured hams. International Journal of Food Microbiology 3 (6):355–9. doi: 10.1016/0168-1605(86)90018-8.
  • Moosavi‐Nasab, M., R. Mohammadi, and N. Oliyaei. 2018. Physicochemical evaluation of sausages prepared by lantern fish (Benthosema pterotum) protein isolate. Food Science & Nutrition 6:617–26. doi: 10.1002/fsn3.583.
  • Mota-Gutierrez, J., I. Ferrocino, K. Rantsiou, and L. Cocolin. 2019. Metataxonomic comparison between internal transcribed spacer and 26S ribosomal large subunit (LSU) rDNA gene. International Journal of Food Microbiology 290:32–140.
  • Moubasher, A. A., M. A. Abdel-Sater, and Z. S. M. Soliman. 2018. Yeasts and filamentous fungi associated with some dairy products in Egypt. Journal de Mycologie Médicale 28 (1):76–86. doi: 10.1016/j.mycmed.2017.12.003.
  • Mouritsen, O. G., L. Duelund, G. Calleja, and M. B. Frøst. 2017. Flavour of fermented fish, insect, game, and pea sauces: Garum revisited. International Journal of Gastronomy and Food Science 9:16–28. doi: 10.1016/j.ijgfs.2017.05.002.
  • Mu, Z., X. Yang, and H. Yuan. 2012. Detection and identification of wild yeast in koumiss. Food Microbiology 31 (2):301–8. doi: 10.1016/j.fm.2012.04.004.
  • Muccilli, S., and C. Restuccia. 2015. Bioprotective role of yeasts. Microorganisms 3 (4):588–611. doi: 10.3390/microorganisms3040588.
  • Mun, Y. S., M. S. Lee, J. S. Park, J. W. Lee, S. Y. Jung, H. J. Yoon, and H. Y. Han. 2015. An unusual case of candidemiapresenting as acute respiratory distress syndrome after a small bowel bezoar removal operation. Annals of Surgical Treatment and Research 88 (1):48–51. doi: 10.4174/astr.2015.88.1.48.
  • Mussatto, S. I., E. M. S. Machado, S. Martins, and J. A. Teixeira. 2011. Production, composition, and application of coffee and its industrial residues. Food and Bioprocess Technology 4 (5):661. doi: 10.1007/s11947-011-0565-z.
  • Myint, T., M. J. Dykhuizen, C. H. McDonald, and J. A. Ribes. 2015. Post operative fungal endopthalmitis due to Geotrichum candidum. Medical Mycology Case Reports 10:4–6. doi: 10.1016/j.mmcr.2015.11.001.
  • Nagarathnamma, T., S. K. Chunchanur, S. M. Rudramurthy, K. R. Vineetha, K. Ramamurthy, J. Joseph, and R. Ambica. 2017. Outbreak of pichia kudriavzevii fungaemia in a neonatal intensive care unit. Journal of Medical Microbiology 66 (12):1759–64. doi: 10.1099/jmm.0.000645.
  • Nahidul-Islam, S. M., T. Kuda, H. Takahashi, and B. Kimura. 2018. Bacterial and fungal microbiota in traditional Bangladeshi fermented milk products analysed by culture-dependent and culture-independent methods. Food Research International 111:431–7. doi: 10.1016/j.foodres.2018.05.048.
  • Najafian, L., and A. S. Babji. 2018. Fractionation and identification of novel antioxidant peptides from fermented fish (pekasam). Journal of Food Measurement and Characterization 12 (3):2174–83. doi: 10.1007/s11694-018-9833-1.
  • Narvhus, J. A., and T. H. Gadaga. 2003. The role of interaction between yeasts and lactic acid bacteria in African fermented milks: A review. International Journal of Food Microbiology 86 (1–2):51–60. doi: 10.1016/S0168-1605(03)00247-2.
  • Nie, X., Q. Zhang, and S. Lin. 2014. Biogenic amine accumulation in silver carp sausage inoculated with Lactobacillus plantarum plus Saccharomyces cerevisiae. Food Chemistry 153:432–6. doi: 10.1016/j.foodchem.2013.12.093.
  • Nielsen, D. S., O. D. Teniola, L. Ban-Koffi, M. Owusu, T. S. Andersson, and W. H. Holzapfel. 2007. The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and culture-independent methods. International Journal of Food Microbiology 114 (2):168–86. doi: 10.1016/j.ijfoodmicro.2006.09.010.
  • Nisiotou, A. A., N. Chorianopoulos, G. J. Nychas, and E. Z. Panagou. 2010. Yeast heterogeneity during spontaneous fermentation of black Conservolea olives in different brine solutions. Journal of Applied Microbiology 108 (2):396–405. doi: 10.1111/j.1365-2672.2009.04424.x.
  • Noori, M., M. Dakhili, A. Sepahvand, and N. Davari. 2017. Evaluation of esterase and hemolysin activities of different Candida species isolated from vulvovaginitis cases in Lorestan province, Iran. Current Medical Mycology 3 (4):1–5. doi: 10.29252/cmm.3.4.1.
  • Nurliyani, Harmayani, E. Sunarti. 2015. Antidiabetic potential of kefir combination from goat milk and soy milk in rats induced with streptozotocin-nicotinamide. Korean Journal for Food Science of Animal Resources 35:847–58.
  • Nyambane, B., W. M. Thari, J. Wangoh, and P. M. Njage. 2014. Lactic acid bacteria and yeasts involved in the fermentation ofamabere amaruranu, a Kenyan fermented milk. Food Science & Nutrition 2:692–9. doi: 10.1002/fsn3.162.
  • Nychas, G. J. E., E. Z. Panagou, M. L. Parker, K. W. Waldron, and C. C. Tassou. 2002. Microbial colonization of naturally black olives during fermentation and associated biochemical activities in the cover brine. Letters in Applied Microbiology 34 (3):173–7. doi: 10.1046/j.1472-765x.2002.01077.x.
  • Obodai, M., and C. E. R. Dodd. 2006. Characterization of dominant microbiota of a Ghanaian fermented milk product, nyarmie, by culture‐and nonculture‐based methods. Journal of Applied Microbiology 100 (6):1355–63. doi: 10.1111/j.1365-2672.2006.02895.x.
  • Oki, K., J. Dugersuren, S. Demberel, and K. Watanabe. 2014. Pyrosequencing analysis of the microbial diversity of airag, khoormog and tarag, traditional fermented dairy products of Mongolia. Bioscience of Microbiota, Food and Health 33 (2):53–64. doi: 10.12938/bmfh.33.53.
  • Olesen, P. T., and L. H. Stahnke. 2000. The influence of Debaryomyces hansenii and Candida utilis on the aroma formation in garlic spiced fermented sausages and model minces. Meat Science 56 (4):357–68. doi: 10.1016/S0309-1740(00)00063-2.
  • Oliveira, A. C. M., B. H. Himelbloom, N. Montazeri, M. Davenport, H. Biceroglu, K. A. Brenner, S. R. Thomas, and C. A. Crapo. 2014. Development and characterization of fish sausages supplemented with salmon oil. Journal of Food Processing and Preservation 38 (4):1641–52. doi: 10.1111/jfpp.12126.
  • Olver, W. J., S. A. James, A. Lennard, A. Galloway, I. N. Roberts, T. C. Boswell, and N. H. Russell. 2002. Nosocomial transmission of Saccharomyces cerevisiae in bone marrow transplant patients. Journal of Hospital Infection 52 (4):268–72. doi: 10.1053/jhin.2002.1314.
  • Onsurathum, S., P. Pinlaor, O. Haonon, A. Chaidee, L. Charoensuk, K. Intuyod, T. Boonmars, P. Laummaunwai, and S. Pinlaor. 2016. Effects of fermentation time and low temperature during the production process of Thai pickled fish (pla-som) on the viability and infectivity of Opisthorchis viverrini metacercariae. International Journal of Food Microbiology 218:1–5. doi: 10.1016/j.ijfoodmicro.2015.11.001.
  • Osei Abunyewa, A. A., E. Laing, A. Hugo, and B. C. Viljoen. 2000. The population change of yeasts in commercial salami. Food Microbiology 17 (4):429–38. doi: 10.1006/fmic.1999.0333.
  • Ozturk, I., and O. Sagdic. 2014. Biodiversity of yeast mycobiota in “sucuk,” a traditional Turkish fermented dry sausage: Phenotypic and genotypic identification, functional and technological properties. Journal of Food Science 79:2315–22.
  • Padilla, B., C. Belloch, J. López-Díez, M. Flores, and P. Manzanares. 2014. Potential impact of dairy yeasts on the typical flavour of traditional ewes’ and goats’ cheeses. International Dairy Journal 35 (2):122–9. doi: 10.1016/j.idairyj.2013.11.002.
  • Pajno, G. B., G. Passalacqua, C. Salpietro, D. Vita, L. Caminiti, and G. Barberio. 2005. Looking for immunotolerance: A case of allergy to baker’s yeast (Saccharomyces cerevisiae). European Annals of Allergy and Clinical Immunology 37:271–2.
  • Panagou, E. Z., U. Schillinger, C. M. Franz, and G. J. Nychas. 2008. Microbiological and biochemical profile of cv. Conservolea naturally black olives during controlled fermentation with selected strains of lactic acid bacteria. Food Microbiology 25 (2):348–58. doi: 10.1016/j.fm.2007.10.005.
  • Papalexandratou, Z., N. Camu, G. Falony, and L. De Vuyst. 2011. Comparison of the bacterial species diversity of spontaneous cocoa bean fermentations carried out at selected farms in Ivory Coast and Brazil. Food Microbiology 28 (5):964–73. doi: 10.1016/j.fm.2011.01.010.
  • Papalexandratou, Z., G. Vrancken, K. De Bruyne, P. Vandamme, and L. De Vuyst. 2011. Spontaneous organic cocoa bean box fermentations in Brazil are characterized by a restricted species diversity of lactic acid bacteria and acetic acid bacteria. Food Microbiology 28:326–38.
  • Pappas, P. G., M. S. Lionakis, M. C. Arendrup, L. Ostrosky-Zeichner, and B. J. Kullberg. 2018. Invasive candidiasis. Nature Reviews. Disease Primers 4:18026.doi: 10.1038/nrdp.2018.26.
  • Park, J. E., Y. J. Hyun, M. J. Piao, K. A. Kang, Y. S. Ryu, K. Shilnikova, A. X. Zhen, M. J. Ahn, Y. S. Ahn, Y. S. Koh, et al. 2018. Mackerel-derived fermented fish oil protects skin against UVB-induced cellular damage by inhibiting oxidative stress. Journal of Functional Foods 46:147–58. doi: 10.1016/j.jff.2018.04.057.
  • Parmeland, L., M. Gazon, C. Guerin, L. Argaud, J. J. Lehot, O. Bastien, B. Allaouchiche, M. Michallet, S. Picot, A. L. Bienvenu, and Study Group 2013. Candida albicans and non-Candida albicans fungemia in an institutional hospital during a decade. Medical Mycology 51 (1):33–7. doi: 10.3109/13693786.2012.686673.
  • Passoth, V., M. Olstorpe, and J. Schnürer. 2011. Past, present and future research directions with pichia anomala. Antonie Van Leeuwenhoek 99 (1):121–5. doi: 10.1007/s10482-010-9508-3.
  • Patrignani, F., L. Iucci, M. Vallicelli, M. E. Guerzoni, F. Gardini, and R. Lanciotti. 2007. Role of surface-inoculated Debaryomyces hansenii and Yarrowia lipolytica strains in dried fermented sausage manufacture. Part 1: Evaluation of their effects on microbial evolution, lipolytic and proteolytic patterns. Meat Science 75 (4):676–86. doi: 10.1016/j.meatsci.2006.09.017.
  • Perapoch, J., A. M. Planes, A. Querol, V. López, I. Martínez-Bendayán, R. Tormo, F. Fernández, G. Peguero, and S. Salcedo. 2000. Fungemia with Saccharomyces cerevisiae in two newborns, only one of whom had been treated with Ultra-Levura. European Journal of Clinical Microbiology & Infectious Diseases 19 (6):468–70. doi: 10.1007/s100960000295.
  • Pereira, V. D. M., D. P. de Carvalho Neto, A. B. Pedroni Medeiros, V. T. Soccol, E. Neto, A. L. Woiciechowski, and R. C. Soccol. 2016. Potential of lactic acid bacteria to improve the fermentation and quality of coffee during on-farm processing. International Journal of Food Science & Technology 51 (7):1689–169. doi: 10.1111/ijfs.13142.
  • Pérez-Torrado, R., S. Llopis, B. Perrone, R. Gomez-Pastor, B. Hube, and A. Querol. 2015. Comparative genomic analysis reveals a critical role of de novo nucleotide biosynthesis for Saccharomyces cerevisiae virulence. PLoS One 10 (3):e0122382.
  • Pérez-Torrado, R., and A. Querol. 2016. Opportunistic strains of Saccharomyces cerevisiae: A potential risk sold in food products. Frontiers in Microbiology 6:1522. doi: 10.3389/fmicb.2015.01522.
  • Perfect, J. R., and T. Bicanic. 2015. Cryptococcosis diagnosis and treatment: What do we know now. Fungal Genetics and Biology 78:49–54.
  • Perpetuini, G., F. Tittarelli, P. Mattarelli, M. Modesto, E. Cilli, G. Suzzi, and R. Tofalo. 2018. Intraspecies polymorphisms of Kluyveromyces marxianus strains from Yaghnob valley. FEMS Microbiology Letters 365 (6):fny028.
  • Peter, J., M. De Chiara, A. Friedrich, J.-X. Yue, D. Pflieger, A. Bergström, A. Sigwalt, B. Barre, K. Freel, A. Llored, et al. 2018. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556 (7701):339–44. doi: 10.1038/s41586-018-0030-5.
  • Pettipher, G. L. 1986. Analysis of cocoa pulp and the formulation of a standardised artificial cocoa pulp medium. Journal of the Science of Food and Agriculture 37 (3):297–309. doi: 10.1002/jsfa.2740370315.
  • Pfaller, M. A., D. J. Diekema, D. L. Gibbs, V. A. Newell, E. Nagy, S. Dobiasova, M. Rinaldi, R. Barton, and A. Veselov. 2008. Candida krusei, a multidrug-resistant opportunistic fungal pathogen: Geographic and temporal trends from the ARTEMIS DISK antifungal surveillance program, 2001 to 2005. Journal of Clinical Microbiology 46 (2):515–21. doi: 10.1128/JCM.01915-07.
  • Pottier, I., S. Gente, J. P. Vernoux, and M. Guéguen. 2008. Safety assessment of dairy microorganisms: Geotrichum candidum. International Journal of Food Microbiology 126 (3):327–32. doi: 10.1016/j.ijfoodmicro.2007.08.021.
  • Prado, M. R., L. M. Blandón, L. P. S. Vandenberghe, C. Rodrigues, G. R. Castro, V. Thomaz-Soccol, and C. R. Soccol. 2015. Milk kefir: Composition, microbial cultures, biological activities, and related products. Frontiers in Microbiology 6:1177. doi: 10.3389/fmicb.2015.01177.
  • Priest, S. J., and M. C. Lorenz. 2015. Characterization of virulence-related phenotypes in candida species of the CUG clade. Eukaryotic Cell 14 (9):931–40. doi: 10.1128/EC.00062-15.
  • Querol, A., M.T. Fernández-Espinar, and C. Belloch. 2008. Genetics of yeasts. In Meat biotechnology, F. Toldrá, 167–180. Germany: Springer-Verlag.
  • Qvirist, L. A., C. De Filippo, F. Strati, I. Stefanini, M. Sordo, T. Andlid, G. E. Felis, P. Mattarelli, and D. Cavalieri. 2016. Isolation, identification and characterization of yeasts from fermented goat milk of the yaghnob valley in Tajikistan. Frontiers in Microbiology 7:1690. doi: 10.3389/fmicb.2016.01690.
  • Rafie, N., S. Golpour Hamedani, R. Ghiasvand, and M. Miraghajani. 2015. Kefir and cancer: a systematic review of literatures. Archives of Iranian Medicine 18 (12):852–7.
  • Rahman, N., C. Xiaohong, F. Meiqin, and D. Mingsheng. 2009. Characterization of the dominant microflora in naturally fermented camel milk shubat. World Journal of Microbiology and Biotechnology 25 (11):1941–6. doi: 10.1007/s11274-009-0092-5.
  • Rajkowska, K., and A. Kunicka-Styczyńska. 2018. Typing and virulence factors of food-borne Candida spp. isolates. International Journal of Food Microbiology 279:57–63. doi: 10.1016/j.ijfoodmicro.2018.05.002.
  • Ramón Cacelín Garza, J., R. Sebastián Cacelín Miranda, A. María Cacelín Garza, A. Paula Espinoza Texis, E. Guzmán Díaz, and U. Salas Juárez. 2018. Peritonitis due to Geotrichum candidum in continuous ambulatory peritoneal dialysis. Case Reports in Clinical Medicine 07 (03):232–40. doi: 10.4236/crcm.2018.73021.
  • Ren, P., S. Sridhar, and V. Chaturvedi. 2004. Use of paraffin-embedded tissue for identification of Saccharomyces cerevisiae in a baker’s lung nodule by fungal PCR and nucleotide sequencing. Journal of Clinical Microbiology 42 (6):2840–2. doi: 10.1128/JCM.42.6.2840-2842.2004.
  • Revie, N. M., K. R. Iyer, N. Robbins, and L. E. Cowen. 2018. Antifungal drug resistance: Evolution, mechanisms and impact. Current Opinion in Microbiology 45:70–6. doi: 10.1016/j.mib.2018.02.005.
  • Ribeiro, B., C. Cardoso, H. A. Silva, C. Serrano, C. Ramos, P. C. Santos, and R. Mendes. 2013. Effect of grape dietary fibre on the storage stability of innovative functional seafood products made from farmed meagre (Argyrosomus regius). International Journal of Food Science & Technology 48 (1):10–21. doi: 10.1111/j.1365-2621.2012.03151.x.
  • Riebroy, S., S. Benjakul, and W. Visessanguan. 2008. Properties and acceptability of som-fug, a Thai fermented fish mince, inoculated with lactic acid bacteria starters. LWT - Food Science and Technology 41 (4):569–80. doi: 10.1016/j.lwt.2007.04.014.
  • Rodríguez, M., F. Nunez, J. J. Cordoba, M. E. Bermudez, and M. A. Asensio. 1998. Evaluation of proteolytic activity of micro-organisms isolated from dry cured ham. Journal of Applied Microbiology 85:905–12. doi: 10.1046/j.1365-2672.1998.00610.x.
  • Roelofsen, P. A. 1958. Fermentation, drying, and storage of cacao beans. Advances in Food Research 8:25–296.
  • Romanio, M. R., L. A. Coraine, V. P. Maielo, M. L. Abramczyc, R. L. de Souza, and N. F. Oliveira. 2017. Saccharomyces cerevisiae fungemia in a pediatric patient after treatment with probiotics. Revista Paulista de Pediatria 35 (3):361–36. doi: 10.1590/1984-0462/;2017;35;3;00014.
  • Roy, U., L. G. Jessani, S. M. Rudramurthy, R. Gopalakrishnan, S. Dutta, C. Chakravarty, J. Jillwin, and A. Chakrabarti. 2017. Seven cases of Saccharomyces fungaemia related to use of probiotics. Mycoses 60 (6):375–80. doi: 10.1111/myc.12604.
  • Sakita, K. M., D. R. Faria, E. M. D. Silva, F. K. Tobaldini-Valério, E. S. Kioshima, T. I. E. Svidzinski, and P. S. Bonfim-Mendonça. 2017. Healthcare workers; hands as a vehicle for the transmission of virulent strains of Candida spp.: A virulence factor approach. Microbial Pathogenesis 113:225–32. doi: 10.1016/j.micpath.2017.10.044.
  • Salari, S., N. Sadat Seddighi, and P. Ghasemi Nejad Almani. 2018. Evaluation of biofilm formation ability in different Candida strains and anti-biofilm effects of Fe3O4-NPs compared with fluconazole: an in vitro study. Journal de Mycologie Médicale 28 (1):23–8. doi: 10.1016/j.mycmed.2018.02.007.
  • Samelis, J., and J. N. Sofos. 2003. Yeasts in meat and meat products. In Yeasts in food — beneficial and detrimental aspects, T. Boekhout and V. Robert, 239–265. Hamburg, Germany: Behr's Verlag.
  • Sanchart, C., N. Watthanasakphuban, O. Boonseng, T.-H. Nguyen, D. Haltrich, and S. Maneerat. 2018. Tuna condensate as a promising low-cost substrate for glutamic acid and GABA formation using Candida rugosa and Lactobacillus futsaii. Process Biochemistry 70:29–35. doi: 10.1016/j.procbio.2018.04.013.
  • Sanchez Betancourt, A. A., P. Sibaja Alvarez, R. A. Camacho, and E. Guevara Espinoza. 2016. Candida famata mediastinitis. A rare complication of open heart surgery. Case report and brief review. IDCases 5:37–9. doi: 10.1016/j.idcr.2016.07.001.
  • Santana, P., N. Huda, and T. A. Yang. 2015. Physicochemical properties and sensory characteristics of sausage formulated with surimi powder. Journal of Food Science and Technology 52 (3):1507. doi: 10.1007/s13197-013-1145-1.
  • Santos, A., D. Marquina, J. A. Leal, and J. M. Peinado. 2000. (1,6)-β-Dglucan as cell wall receptor for Pichia membranifaciens killer toxin. Applied and Environmental Microbiology 66 (5):1809–13. doi: 10.1128/AEM.66.5.1809-1813.2000.
  • Santos, N. N., R. C. Santos-Mendonca, Y. Sanz, T. Bolumar, M. C. Aristoy, and F. Toldra. 2001. Hydrolysis of pork muscle sarcoplasmic proteins by Debaryomyces hansenii. International Journal of Food Microbiology 68 (3):199–206. doi: 10.1016/S0168-1605(01)00489-5.
  • Sarbu, I., D. Pelinescu, I. Stoica, L. Marutescu, and T. Vassu. 2013. Phenotypic profiles of virulence in different candida species isolated from vulvovaginal infections. Roumanian Archives of Microbiology and Immunology 72:225–33.
  • Schwan, R. F. 1998. Cocoa fermentations conducted with a defined microbial cocktail inoculum. Applied and Environmental Microbiology 64:1477–83. doi: 10.1128/AEM.01144-12.
  • Schwan, R.F., G.V.M. Pereira, and G.H. Fleet. 2014. Microbial activities during cocoa fermentation. In Cocoa and coffee fermentations, eds. R. F. Schwan and G. H. Fleet, 129–190. Boca Raton, FL: CRC Press.
  • Segovia Bravo, K. A., F. N. Arroyo López, P. García García, M. C. Durán Quintana, and A. Garrido Fernández. 2007. Treatment of green table olive solutions with ozone. Effect on their polyphenol content and on Lactobacillus pentosus and Saccharomyces cerevisiae growth. International Journal of Food Microbiology 28:60–8. doi: 10.1016/j.ijfoodmicro.2006.09.032.
  • Seng, P., A. Cerlier, C. Cassagne, M. Coulange, R. Legré, and A. Stein. 2016. Saccharomyces cerevisiae osteomyelitis in an immunocompetent baker. IDCases 5:1–3. doi: 10.1016/j.idcr.2016.05.002.
  • Shangpliang, H. N. J., R. Rai, S. Keisam, K. Jeyaram, and J. P. Tamang. 2018. Bacterial community in naturally fermented milk products of Arunachal Pradesh and Sikkim of India analysed by high-throughput amplicon sequencing. Scientific Reports 8 (1):1532.
  • Sharma, Y., S. K. Chumber, and M. Kaur. 2017. Studying the prevalence, species distribution, and detection of in vitro production of phospholipase from Candida isolated from cases of invasive candidiasis. Journal of Global Infectious Diseases 9 (1):8–11. doi: 10.4103/0974-777X.199995.
  • Shiby, V. K., and H. N. Mishra. 2013. Fermented milks and milk products as functional foods. Critical Reviews in Food Science and Nutrition 53 (5):482–96. doi: 10.1080/10408398.2010.547398.
  • Shobharani, P., P. M. Halami, and N. M. Sachindra. 2013. Potential of marine lactic acid bacteria to ferment Sargassum sp. for enhanced anticoagulant and antioxidant properties. Journal of Applied Microbiology 114 (1):96–107. doi: 10.1111/jam.12023.
  • Siccardi, D., P. Rellini, L. Corte, F. Bistoni, F. Fatichenti, and G. Cardinali. 2006. General evidence supporting the hypothesis that Saccharomyces cerevisiae vaginal isolates originate from food industrial environments. New Microbiol 29 (3):201–6.
  • Silva, C. F., L. R. Batista, L. M. Abreu, E. S. Dias, and R. F. Schwan. 2008. Succession of bacterial and fungal communities during natural coffee (Coffea arabica) fermentation. Food Microbiology 25 (8):951–7. doi: 10.1016/j.fm.2008.07.003.
  • Silva, C. F., R. F. Schwan, E. S. Sousa Dias, and A. E. Wheals. 2000. Microbial diversity during maturation and natural processing of coffee cherries of Coffea arabica in Brazil. International Journal of Food Microbiology 60 (2–3):251–60. doi: 10.1016/S0168-1605(00)00315-9.
  • Silva, T., Reto, M. Sol, M. Peito, A. Peres, C. M. Peres, C. Xavier , and Malcata. F. 2011. Characterization of yeasts from Portuguese brined olives, with a focus on their potentially probiotic behavior. LWT - Food Science and Technology 44 (6):1349–54. doi: 10.1016/j.lwt.2011.01.029.
  • Simoncini, N., D. Rotelli, R. Virgili, and S. Quintavalla. 2007. Dynamics and characterization of yeasts during ripening of typical Italian dry-cured ham. Food Microbiology 24 (6):577–84. doi: 10.1016/j.fm.2007.01.003.
  • Singh, A., and A. K. Singh. 2017. Haloarchaea: worth exploring for their biotechnological potential. Biotechnology Letters 39 (12):1793–800. doi: 10.1007/s10529-017-2434-y.
  • Singh, R., A. Kumari, K. Kaur, P. Sethi, and A. Chakrabarti. 2018. Relevance of antifungal penetration in biofilm-associated resistance of Candida albicans and non-albicans candida species. Journal of Medical Microbiology 67 (7):922–6. doi: 10.1099/jmm.0.000757.
  • Singh, S., C. Lee, and H. Lee. 2017. Metabolomics for empirical delineation of the traditional Korean fermented foods and beverages. Trends in Food Science & Technology 61:103–15. doi: 10.1016/j.tifs.2017.01.001.
  • Singh, S. S., S. De Mandal, E. Lalnunmawii, and N. Senthil Kumar. 2018. Antimicrobial, antioxidant and probiotics characterization of dominant bacterial isolates from traditional fermented fish of Manipur, North-East India. Journal of Food Science and Technology 55 (5):1870–9. doi: 10.1007/s13197-018-3103-4.
  • Singh, S. S., S. De Mandal, V. Mathipi, S. Ghatak, and N. S. Kumar. 2018. Traditional fermented fish harbors bacteria with potent probiotic and anticancer properties. Biocatalysis and Agricultural Biotechnology 15:283–90. doi: 10.1016/j.bcab.2018.07.007.
  • Solari-Godiño, A., J. Pérez-Jiménez, F. Saura-Calixto, A. J. Borderías, and H. M. Moreno. 2017. Anchovy mince (Engraulis ringens) enriched with polyphenol-rich grape pomace dietary fibre: in vitro polyphenols bioaccessibility, antioxidant and physico-chemical properties. Food Research International 102:639. doi: 10.1016/j.foodres.2017.09.044.
  • Sorensen, B. B. 1997. Lipolysis of pork fat by the meat starter culture Staphylococcus xylosus at various environmental conditions. Food Microbiology 14:153–60.
  • Sorensen, B. B., and H. Samuelsen. 1996. The combined effects of environmental conditions on lipolysis of pork fat by lipases of the meat starter culture organisms Staphylococcus xylosus and Debaryomyces hansenii. International Journal of Food Microbiology 32:59–71. doi: 10.1016/0168-1605(96)01106-3.
  • Speranza, B., A. Racioppo, L. Beneduce, A. Bevilacqua, M. Sinigaglia, and M. R. Corbo. 2017. Autochthonous lactic acid bacteria with probiotic aptitudes as starter cultures for fish-based products. Food Microbiology 65:244–53. doi: 10.1016/j.fm.2017.03.010.
  • Staib, F., S. K. Mishra, B. Tompak, G. Grosse, T. Abel, A. Blisse, U. Folkens, and B. Frohlich. 1980. Pathogenic yeast-like fungi in meat-products. Zentralblatt für Bakteriologie, Mikrobiologie und Hygiene 248:422–9. doi: 10.1016/S0174-3031(80)80016-3.
  • Strope, P. K., D. A. Skelly, S. G. Kozmin, G. Mahadevan, E. A. Stone, P. M. Magwene, F. S. Dietrich, and J. H. McCusker. 2015. The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Research 25 (5):762–74. doi: 10.1101/gr.185538.114.
  • Subramanian, P., and P. A. Shankar. 1983. A note on lactose fermenting yeasts in milk products. Journal of Food Science and Technology 20:181–3.
  • Sudun, W., K. Arakawa, M. Miyamoto, and T. Miyamoto. 2013. Interaction between lactic acid bacteria and yeasts in airag, an alcoholic fermented milk. Animal Science Journal 84:66–74.
  • Sundararaman, A., S. Srinivasan, J. H. Lee, and S. S. Lee. 2016. Virgibacillus jeotgali sp. nov., isolated from myeolchi-jeotgal, a traditional korean high-salt-fermented anchovy. International Journal of Systematic and Evolutionary Microbiology 67:158–63.
  • Sundararaman, A., S. Srinivasan, J. H. Lee, and S. S. Lee. 2018. Lentibacillus alimentarius sp. nov., isolated from myeolchi-jeotgal, a traditional Korean high-salt fermented anchovy. Antonie Van Leeuwenhoek 111 (7):1065–71. doi: 10.1007/s10482-017-1006-4.
  • Suriyarachchi, V. R., and G. H. Fleet. 1981. Occurrence and growth of yeasts in yogurts. Applied and Environmental Microbiology 42 (4):574–9.
  • Tassou, C. C., E. Z. Panagou, and K. C. Katsaboxakis. 2002. Microbiological and physicochemical changes of naturally black olives fermented at different temperatures and NaCl levels in the brines. Food Microbiology 19 (6):605–15. doi: 10.1006/fmic.2002.0480.
  • Teblick, A., H. Jansens, K. Dams, F. J. Somville, and P. G. Jorens. 2017. Boerhaave’s syndrome complicated by a Saccharomyces cerevisiae pleural empyema. Case report and review of the literature. Acta Clinica Belgica 5:1–5. doi: 10.1080/17843286.2017.1398439.
  • Thompson, S., K. Miller, and A. Lopez. 2001. Cocoa and coffee. In Food microbiology—fundamentals and frontiers, eds. M. J. Doyle, L. R. Beuchat, and T. J. Montville, 721–733. Washington, DC: ASM Press.
  • Tofalo, R., G. Perpetuini, M. Schirone, G. Suzzi, and A. Corsetti. 2013. Yeast biota associated to naturally fermented table olives from different Italian cultivars. International Journal of Food Microbiology 161 (3):203–8. doi: 10.1016/j.ijfoodmicro.2012.12.011.
  • Tofalo, R., M. Schirone, G. Perpetuini, G. Angelozzi, G. Suzzi, and A. Corsetti. 2012. Microbiological and chemical profiles of naturally fermented table olives and brines from different Italian cultivars. Antonie Van Leeuwenhoek 102 (1):121–31. doi: 10.1007/s10482-012-9719-x.
  • Trabelsi, H., K. Chtara, N. Khemakhem, S. Néji, F. Cheikhrouhou, H. Sellami, R. Guidara, F. Makni, M. Bouaziz, and A. Ayadi. 2015. Fungemia caused by Yarrowia lipolytica. Mycopathologia 179 (5-6):437–45. doi: 10.1007/s11046-015-9859-4.
  • Tsapatsaris, S., and P. Kotzekidou. 2004. Application of Central composite design and response surface methodology to the fermentation of olive juice by Lactobacillus plantarum and Debaryomyces hansenii. International Journal of Food Microbiology 95 (2):157–68. doi: 10.1016/j.ijfoodmicro.2004.02.011.
  • Tu, M. Y., H. L. Chen, Y. T. Tung, C. C. Kao, F. C. Hu, and C. M. Chen. 2015. Short-term effects of kefir-fermented milk consumption on bone mineral density and bone metabolism in a randomized clinical trial of osteoporotic patients. PLoS One 10 (12):e0144231. doi: 10.1371/journal.pone.0144231.
  • Tufariello, M., M. Durante, F. A. Ramires, F. Grieco, L. Tommasi, E. Perbellini, V. Falco, M. Tasioula-Margari, A. F. Logrieco, and G. Mita. 2015. New process for production of fermented black table olives using selected autochthonous microbial resources. Frontiers in Microbiology 24:1007. doi: 10.3389/fmicb.2015.01007.
  • Udomsil, N., S. Rodtong, S. Tanasupawat, and J. Yongsawatdigul. 2015. Improvement of fish sauce quality by strain CMC5-3-1: A novel species of Staphylococcus sp. Journal of Food Science 80:2015–22.
  • Udomsil, N., S. Chen, S. Rodtong, and J. Yongsawatdigul. 2017. Improvement of fish sauce quality by combined inoculation of Tetragenococcus halophilus MS33 and Virgibacillus sp. SK37. Food Control 73:930–8. doi: 10.1016/j.foodcont.2016.10.007.
  • Van den Bogaerde, J., M. A. Kamm, and S. C. Knight. 2001. Immune sensitization to food, yeast and bacteria in Crohn's disease. Alimentary Pharmacology & Therapeutics 15 (10):1647–53. doi: 10.1046/j.1365-2036.2001.01032.x.
  • Vilela, D. M., G. V. Pereira, C. F. Silva, L. R. Batista, and R. F. Schwan. 2010. Molecular ecology and polyphasic characterization of the microbiota associated with semi-dry processed coffee (Coffea arabica L.). Food Microbiology 27 (8):1128–35. doi: 10.1016/j.fm.2010.07.024.
  • Viljoen, B.C. 2006. Yeast ecological interactions. Yeast–yeast, yeast–bacteria, yeast–fungi interactions and yeasts as biocontrol agents. In Yeasts in food and beverages, eds. A. Querol and H. Fleet, 83–110. Berlin: Springer.
  • Viljoen, B., A. Lourens-Hattingh, B. Ikalafeng, and P. Gabor. 2003. Temperature abuse initiated yeast growth in yoghurt. Food Research International 36 (2):193–7. doi: 10.1016/S0963-9969(02)00138-2.
  • Vitas, J., R. Malbaša, J. Grahovac, and E. Lončar. 2013. The antioxidant activity of kombucha fermented milk products with stinging nettle and winter savory. Chemical Industry and Chemical Engineering Quarterly 19 (1):129–39. doi: 10.2298/CICEQ120205048V.
  • Vu, D., M. Groenewald, M. de Vries, T. Gehrmann, B. Stielow, U. Eberhardt, A. Al-Hatmi, J. Z. Groenewald, G. Cardinali, J. Houbraken, et al. 2019. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 92:135–54. doi: 10.1016/j.simyco.2018.05.001.
  • Wang, L., E. Gao, M. Hu, A. Oladejo, X. Gong, J. Wang, and H. Zhong. 2018. Isolation, identification and screening of high-quality yeast strains for the production of milk beer. International Journal of Dairy Technology 71(4). 10.1111/1471-0307.12530.
  • Wang, W.,. W. Xia, P. Gao, Y. Xu, and X. Jiang. 2017. Proteolysis during fermentation of suanyu as a traditional fermented fish product of China. International Journal of Food Properties 20:166–76.
  • Wang, S. Y., K. N. Chen, Y. M. Lo, M. L. Chiang, H. C. Chen, J. R. Liu, and M. J. Chen. 2012. Investigation of microorganisms involved in biosynthesis of the kefir grain. Food Microbiology 32 (2):274–85. doi: 10.1016/j.fm.2012.07.001.
  • Watanabe, K., J. Fujimoto, M. Sasamoto, J. Dugersuren, T. Tumursuh, and S. Demberel. 2008. Diversity of lactic acid bacteria and yeasts in airag and tarag, traditional fermented milk products of Mongolia.W. World Journal of Microbiology and Biotechnology 24 (8):1313–25. doi: 10.1007/s11274-007-9604-3.
  • Weigmann, H. 1923. Sauermilchkaese, Harzkaese, Mainzer Kaese u.a. In Eugling´s handbuch der praktischen kaeserei, ed. H. Weigmann, 431–443. Berlin, Germany: Verlagsbuchhandlung Paul Parey.
  • Wood, G. A. R., and R. A. Lass. 1985. Cocoa. 4th Ed. London: Longman.
  • Wu, X. E., Z. Luo, L. Yu, F. Z. Ren, B. Z. Han, and M. J. Nout. 2009. A survey on composition and microbiota of fresh and fermented yak milk at different Tibetan altitudes. Dairy Science and Technology 89 (2):201–9. doi: 10.1051/dst/2009007.
  • Wu, Y., S. Du, J. L. Johnson, H.-Y. Tung, C. T. Landers, Y. Liu, B. G. Seman, R. T. Wheeler, M. Costa-Mattioli, F. Kheradmand, et al. 2019. Microglia and amyloid precursor protein coordinate control of transient Candida cerebritis with memory deficits. Nature Communications 10 (1):58.
  • Xu, Y., L. Li, J. M. Regenstein, P. Gao, J. Zang, W. Xia, and Q. Jiang. 2018. The contribution of autochthonous microflora on free fatty acids release and flavor development in low-salt fermented fish. Food Chemistry 256:259–67. doi: 10.1016/j.foodchem.2018.02.142.
  • Yadav, J. S., J. Bezawada, S. Yan, R. D. Tyagi, and R. Y. Surampalli. 2012. Candida krusei: biotechnological potentials and concerns about its safety. Canadian Journal of Microbiology 58 (8):937–52. doi: 10.1139/w2012-077.
  • Yam, B. A., K. Morteza, S. Alireza, and M. J. Seid. 2014. Isolation and identification of yeasts from local traditional fermented camel milk, Chal. Journal of Microbiology Research 4:112–6.
  • Yang, F., W. S. Xia, X. W. Zhang, Y. S. Xu, and Q. X. Jiang. 2016. A comparison of endogenous and microbial proteolytic activities during fast fermentation of silver carp inoculated with Lactobacillus plantarum. Food Chemistry 207:86–92. doi: 10.1016/j.foodchem.2016.03.049.
  • Yongjin, H., W. Xia, and C. Ge. 2008. Characterization of fermented silver carp sausages inoculated with mixed starter culture. LWT - Food Science and Technology 41:730–8. doi: 10.1016/j.lwt.2007.04.004.
  • Yongsawatdigul, J., S. Rodtong, and N. Raksakulthai. 2007. Acceleration of Thai fish sauce fermentation using proteinases and bacterial starter cultures. Journal of Food Science 72:382–90.
  • Yoshikawa, S., H. Kurihara, Y. Kawai, K. Yamazaki, A. Tanaka, T. Nishikiori, and T. Ohta. 2010. Effect of halotolerant starter microorganisms on chemical characteristics of fermented chum salmon (Oncorhynchus keta) sauce. Journal of Agricultural and Food Chemistry 58 (10):6410–7. doi: 10.1021/jf904548u.
  • Yoshikawa, S., D. Yasokawa, K. Nagashima, K. Yamazaki, H. Kurihara, T. Ohta, and Y. Kawai. 2010. Microbiota during fermentation of chum salmon (Oncorhynchus keta) sauce mash inoculated with halotolerant microbial starters: Analyses using the plate count method and PCR-denaturing gradient gel electrophoresis (DGGE). Food Microbiology 27 (4):509–14. doi: 10.1016/j.fm.2009.12.008.
  • Young, C. A., A. Sonnenberg, and E. A. Burns. 1994. Lymphocyte proliferation response to baker's yeast in crohn's disease. Digestion 55 (1):40–3. doi: 10.1159/000201121.
  • Young-In, K., E. Apostolidis, and K. Shetty. 2006. Anti-diabetes functionality of kefir culture-mediated fermented soy milk supplemented with rhodiola extracts. Food Biotechnology 20:13–29. doi: 10.1080/08905430500522055.
  • Yu, X., X. Mao, S. He, P. Liu, Y. Wang, and C. Xue. 2014. Biochemical properties of fish sauce prepared using low salt, solid state fermentation with anchovy by-products. Food Science and Biotechnology 23 (5):1497–506. doi: 10.1007/s10068-014-0205-2.
  • Zamora-Sillero, J., A. Gharsallaoui, and C. Prentice. 2018. Peptides from fish by-product protein hydrolysates and its functional properties: An overview. Marine Biotechnology 20 (2):118–30. doi: 10.1007/s10126-018-9799-3.
  • Zang, J., Y. Xu, W. Xia, Q. Jiang, F. Yang, and B. Wang. 2018. Phospholipid molecular species composition of Chinese traditional low-salt fermented fish inoculated with different starter cultures. Food Research International 111:87–96. doi: 10.1016/j.foodres.2018.05.016.
  • Zang, J., Y. Xu, W. Xia, D. Yu, P. Gao, Q. Jiang, and F. Yang. 2018. Dynamics and diversity of microbial community succession during fermentation of suan yu, a Chinese traditional fermented fish, determined by high throughput sequencing. Food Research International 111:565–73. doi: 10.1016/j.foodres.2018.05.076.
  • Zeng, X., W. Xia, J. Wang, Q. Jiang, Y. Xu, Y. Qiu, and H. Wang. 2014. Technological properties of Lactobacillus plantarum strains isolated from Chinese traditional low salt fermented whole fish. Food Control 140:351–8. doi: 10.1016/j.foodcont.2013.11.048.
  • Zeng, X., W. Xia, Q. Jiang, and F. Yang. 2013. Effect of authochthonous starter cultures on microbiological and physico-chemical characteristics of suan yu, a traditional Chinese low salt fermented fish. Food Control 33 (2):344–51. doi: 10.1016/j.foodcont.2013.03.001.
  • Zhang, J., X. Wang, D. Huo, W. Li, Q. Hu, C. Xu, S. Liu, and C. Li. 2016. Metagenomic approach reveals microbial diversity and predictive microbial metabolic pathways in Yucha, a traditional Li fermented food. Scientific Reports 6:32524.
  • Zhao, Y., J. F.-W. Chan, C.-C. Tsang, H. Wang, D. Guo, Y. Pan, Y. Xiao, N. Yue, J. H.-K. Chen, S. K.-P. Lau, et al. 2015. Clinical characteristics, laboratory identification, and in vitro antifungal susceptibility of yarrowia (candida) lipolytica isolates causing fungemia: A multicenter, prospective surveillance study. Journal of Clinical Microbiology 53 (11):3639–45. doi: 10.1128/JCM.01985-15.
  • Zhao, D., F. Lu, M. Qiu, Y. Ding, and X. Zhou. 2016. Dynamics and diversity of microbial community succession of surimi during fermentation with next-generation sequencing. Journal of Food Safety 36 (3):308–16. doi: 10.1111/jfs.12245.
  • Zhao, J., Q. Jiang, Y. Xu, and W. Xia. 2017. Effect of mixed kojis on physiochemical and sensory properties of rapid‐fermented fish sauce made with freshwater fish by‐products. International Journal of Food Science & Technology 52 (9):2088–96. doi: 10.1111/ijfs.13487.
  • Zhu, Y. O., G. Sherlock, and D. A. Petrov. 2016. Whole genome analysis of 132 clinical Saccharomyces cerevisiae strains reveals extensive ploidy variation. G3 6:2421–34

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.