1,518
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Membrane separation processes for the extraction and purification of steviol glycosides: an overview

, , &

References

  • Abelyan, V. H., V. T. Ghochikyan, A. A. Markosyan, M. O. Adamyan, and L. A. Abelyan. 2010. Patent No. US7838044B2. United States.
  • Algieri, C., O. I. Parisi, M. R. Gullo, F. Puoci, E. Drioli, and L. Donato. 2018. Development of novel hybrid imprinted membranes for selective recovery of theophylline. Separation and Purification Technology 192:513–9. doi: 10.1016/j.seppur.2017.10.023.
  • Alvarez, M. V., S. Cabred, C. L. Ramirez, and M. A. Fanovich. 2019. Valorization of an agroindustrial soybean residue by supercritical fluid extraction of phytochemical compounds. The Journal of Supercritical Fluids 143:90–6. doi: 10.1016/j.supflu.2018.07.012.
  • Ameer, K., S. W. Bae, Y. Jo, H. G. Lee, A. Ameer, and J. H. Kwon. 2017. Optimization of microwave-assisted extraction of total extract, stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni) leaves, using response surface methodology (RSM) and artificial neural network (ANN) modelling. Food Chemistry 229:198–207. doi: 10.1016/j.foodchem.2017.01.121.
  • Atteh, J. O., O. M. Onagbesan, K. Tona, E. Decuypere, J. M. C. Geuns, and J. Buyse. 2008. Evaluation of supplementary stevia (Stevia rebaudiana, bertoni) leaves and stevioside in broiler diets: Effects on feed intake, nutrient metabolism, blood parameters and growth performance. Journal of Animal Physiology and Animal Nutrition 92 (6):640–9. doi: 10.1111/j.1439-0396.2007.00760.x.
  • Avram, A. M., P. Morin, C. Brownmiller, L. R. Howard, A. Sengupta, and S. R. Wickramasinghe. 2017. Concentrations of polyphenols from blueberry pomace extract using nanofiltration. Food and Bioproducts Processing 106:91–101. doi: 10.1016/j.fbp.2017.07.006.
  • Avramescu, M. E., M. Gironès, Z. Borneman, and M. Wessling. 2003. Preparation of mixed matrix adsorber membranes for protein recovery. Journal of Membrane Science 218 (1-2):219–33. (03)00178-9 doi: 10.1016/S0376-7388.
  • Baker, R. W., E. L. Cussier, W. Eykamp, W. J. Koros, R. L. Riley, and H. Strathmann. 1991. Membrane separation systems: Recent developments and future directions. 1st ed. Park Ridge, NJ: Noyes Data Corporation.
  • Baotang, Z., and W. Qing. 2015. Patent No. CN102838644A. China.
  • Barriocanal, L. A., M. Palacios, G. Benitez, S. Benitez, J. T. Jimenez, N. Jimenez, and V. Rojas. 2008. Apparent lack of pharmacological effect of steviol glycosides used as sweeteners in humans. A pilot study of repeated exposures in some normotensive and hypotensive individuals and in type 1 and type 2 diabetics. Regulatory Toxicology and Pharmacology: RTP 51 (1):37–41. doi: 10.1016/j.yrtph.2008.02.006.
  • Bilal, S., L. Ali, A. L. Khan, R. Shahzad, S. Asaf, M. Imran, S.-M. Kang, S.-K. Kim, and I.-J. Lee. 2018. Endophytic fungus Paecilomyces formosus LHL10 produces sester-terpenoid YW3548 and cyclic peptide that inhibit urease and α-glucosidase enzyme activities. Archives of Microbiology 200 (10):1493–502. doi: 10.1007/s00203-018-1562-7.
  • Bleve, M., L. Ciurlia, E. Erroi, G. Lionetto, L. Longo, L. Rescio, T. Schettino, and G. Vasapollo. 2008. An innovative method for the purification of anthocyanins from grape skin extracts by using liquid and sub-critical carbon dioxide. Separation and Purification Technology 64 (2):192–7. doi: 10.1016/j.seppur.2008.10.012.
  • Brazinha, C., and J. Crespo. 2014. 12. Valorization of food processing streams for obtaining extracts enriched in biologically active compounds. In Integrated membrane operations in the food production, eds. A. Cassano and E. Drioli, 295–307. Berlin, Germany: Walter de Gruyter.
  • Breite, D., M. Went, A. Prager, M. Kuehnert, and A. Schulze. 2018. Charge separating microfiltration membrane with pH-dependent selectivity. Polymers 11 (1):3–12. doi: 10.3390/polym11010003.
  • Brianceau, S., M. Turk, X. Vitrac, and E. Vorobiev. 2016. High voltage electric discharges assisted extraction of phenolic compounds from grape stems: Effect of processing parameters on flavan-3-ols, flavonols and stilbenes recovery. Innovative Food Science and Emerging Technologies. Innovative Food Science & Emerging Technologies 35:67–74. doi: 10.1016/j.ifset.2016.04.006.
  • Brown, R. J., M. A. de Banate, and K. I. Rother. 2010. Artificial sweeteners: A systematic review of metabolic effects in youth. International Journal of Pediatric Obesity: IJPO 5 (4):305–12. doi: 10.3109/17477160903497027.
  • Buonomenna, M. G. 2016. 14. Smart composite membranes for advanced wastewater treatments. In Smart composite coatings and membranes, ed. M. F. Montemor, 371–419. Sawston, UK: Woodhead Publishing. doi: 10.1016/B978-1-78242-283-9.00014-2.
  • Bursać Kovačević, D., F. J. Barba, D. Granato, C. M. Galanakis, Z. Herceg, V. Dragović-Uzelac, and P. Putnik. 2018. Pressurized hot water extraction (PHWE) for the green recovery of bioactive compounds and steviol glycosides from Stevia rebaudiana Bertoni leaves. Food Chemistry 254:150–7. doi: 10.1016/j.foodchem.2018.01.192.
  • Carbonell-Capella, J. M., J. Šic Žlabur, S. Rimac Brnčić, F. J. Barba, N. Grimi, M. Koubaa, M. Brnčić, and E. Vorobiev. 2017. Electrotechnologies, microwaves, and ultrasounds combined with binary mixtures of ethanol and water to extract steviol glycosides and antioxidant compounds from Stevia rebaudiana leaves. Journal of Food Processing and Preservation 41 (5):e13179–8. doi: 10.1111/jfpp.13179.
  • Carocho, M., P. Morales, and I. C. F. R. Ferreira. 2015. Natural food additives: Quo vadis?. Trends in Food Science & Technology 45 (2):284–95. doi: 10.1016/j.tifs.2015.06.007.[ ]
  • Cassano, A., C. Conidi, L. Giorno, and E. Drioli. 2013. Fractionation of olive mill wastewaters by membrane separation techniques. Journal of Hazardous Materials 248–249 (1):185–93. doi: 10.1016/j.jhazmat.2013.01.006.
  • Cassano, A., C. Conidi, R. Ruby-Figueroa, and R. Castro-Muñoz. 2018. Nanofiltration and tight ultrafiltration membranes for the recovery of polyphenols from agro-food by-products. International Journal of Molecular Sciences 19 (2):351. doi: 10.3390/ijms19020351.
  • Cassano, A., C. Conidi, R. Timpone, M. D’Avella, and E. Drioli. 2007. A membrane-based process for the clarification and the concentration of the cactus pear juice. Journal of Food Engineering 80 (3):914–21. doi: 10.1016/j.jfoodeng.2006.08.005.
  • Cassano, A., N. K. Rastogi, and A. Basile. 2015. Membrane technologies for water treatment and reuse in the food and beverage industries. In Advances in membrane technologies for water treatment, eds. A. Basile, A. Cassano, and N. K. Rastogi, 551–80. Sawston, UK: Woodhead Publishing. doi: 10.1016/B978-1-78242-121-4.00018-6.
  • Castro-Muñoz, R., B. E. Barragán-Huerta, and J. Yáñez-Fernández. 2016. The use of nixtamalization waste waters clarified by ultrafiltration for production of a fraction rich in phenolic compounds. Waste and Biomass Valorization 7 (5):1167–76. doi: 10.1007/s12649-016-9512-6.
  • Castro-Muñoz, R., C. Conidi, and A. Cassano. 2019. Membrane-based technologies for meeting the recovery of biologically active compounds from foods and their by-products. Critical Reviews in Food Science and Nutrition 59 (18):2927–2. doi: 10.1080/10408398.2018.1478796.
  • Castro-Muñoz, R., G. Boczkaj, E. Gontarek, A. Cassano, and V. Fíla. 2020. Membrane technologies assisting plant-based and agro-food by-products processing: A comprehensive review. Trends in Food Science & Technology 95:219–32. doi: 10.1016/j.tifs.2019.12.003.
  • Castro-Muñoz, R., and J. Yañez-Fernandez. 2015. Valorization of Nixtamalization wastewaters (Nejayote) by integrated membrane process. Food and Bioproducts Processing 95:7–18. doi: 10.1016/j.fbp.2015.03.006.
  • Castro-Muñoz, R., J. Yáñez-Fernández, and V. Fíla. 2016. Phenolic compounds recovered from agro-food by-products using membrane technologies: An overview. Food Chemistry 213:753–62. doi: 10.1016/j.foodchem.2016.07.030.
  • Castro-Munoz, R., Ó. D. Iglesia, V. La Fíla, C. Téllez, and J. Coronas. 2018. Pervaporation-assisted esterification reactions by means of mixed matrix membranes. Industrial & Engineering Chemistry Research 57 (47):15998–6011. doi: 10.1021/acs.iecr.8b01564.
  • Castro-Muñoz, R., and V. Fíla. 2018. MEMBRANE-BASED technologies as an emerging tool for separating high-added-value compounds from natural products. Trends in Food Science & Technology 82:8–20. doi: 10.1016/j.tifs.2018.09.017.
  • Castro-Muñoz, R., V. Rodríguez-Romero, J. Yáñez-Fernández, and V. Fíla. 2017. Water production from food processing wastewaters by integrated membrane systems: Sustainable approach. Water Technology and Sciences 8 (6):129–36.
  • Ceunen, S., and J. M. C. Geuns. 2013. Steviol glycosides: Chemical diversity, metabolism, and function. Journal of Natural Products 76 (6):1201–28. doi: 10.1021/np400203b.
  • Chan, P., B. Tomlinson, Y. Chen, J. Liu, M. Hsieh, and J. Cheng. 2001. A double-blind placebo-controlled study of the effectiveness and tolerability of oral stevioside in human hypertension. British Journal of Clinical Pharmacology 50 (3):215–20. doi: 10.1046/j.1365-2125.2000.00260.x.
  • Chatsudthipong, V., and C. Muanprasat. 2009. Stevioside and related compounds: Therapeutic benefits beyond sweetness. Pharmacology & Therapeutics 121 (1):41–54. doi: 10.1016/j.pharmthera.2008.09.007.
  • Chatterjee, T., D. I. Kim, and E. J. Cho. 2018. Base-promoted synthesis of 2-aryl quinazolines from 2-aminobenzylamines in water. The Journal of Organic Chemistry 83 (14):7423–30. doi: 10.1021/acs.joc.8b00327.
  • Chen, J., P. B. Jeppesen, R. Abudula, S. E. U. Dyrskog, M. Colombo, and K. Hermansen. 2006. Stevioside does not cause increased basal insulin secretion or β-cell desensitization as does the sulphonylurea, glibenclamide: Studies in vitro. Life Sciences 78 (15):1748–53. doi: 10.1016/j.lfs.2005.08.012.
  • Chhaya, Majumdar, G. C., De S. 2013. Primary clarification of stevia extract: A comparison between centrifugation and microfiltration. Separation Science and Technology (Philadelphia) 48 (1):113–21. doi: 10.1080/01496395.2012.674605.
  • Chhaya, C. Sharma, S. Mondal, G. C. Majumdar, and S. De. 2012. Clarification of Stevia extract by ultrafiltration: Selection criteria of the membrane and effects of operating conditions. Food and Bioproducts Processing 90 (3):525–32. doi: 10.1016/j.fbp.2011.10.002.
  • Chhaya, S. Mondal, G. C. Majumdar, and S. De. 2012. Clarifications of stevia extract using cross flow ultrafiltration and concentration by nanofiltration. Separation and Purification Technology 89:125–34. doi: 10.1016/j.seppur.2012.01.016.
  • Choi, H., K. Zhang, D. D. Dionysiou, D. B. Oerther, and G. A. Sorial. 2005. Effect of permeate flux and tangential flow on membrane fouling for wastewater treatment. Separation and Purification Technology 45 (1):68–78. doi: 10.1016/j.seppur.2005.02.010.
  • Choi, Y. H., and R. Verpoorte. 2019. Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Current Opinion in Food Science 26:87–93. doi: 10.1016/j.cofs.2019.04.003.
  • Conidi, C., A. D. Rodriguez-Lopez, E. M. Garcia-Castello, and A. Cassano. 2015. Purification of artichoke polyphenols by using membrane filtration and polymeric resins. Separation and Purification Technology 144:153–61. doi: 10.1016/j.seppur.2015.02.025.
  • Conidi, C., A. Cassano, F. Caiazzo, and E. Drioli. 2017. Separation and purification of phenolic compounds from pomegranate juice by ultrafiltration and nanofiltration membranes. Journal of Food Engineering 195:1–13. doi: 10.1016/j.jfoodeng.2016.09.017.
  • Corrales, M., A. F. García, P. Butz, and B. Tauscher. 2009. Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. Journal of Food Engineering 90 (4):415–21. doi: 10.1016/j.jfoodeng.2008.07.003.
  • Crespo, J., and C. Brazinha. 2010. Membrane processing: Natural antioxidants from winemaking by-products. Filtration & Separation 47 (2):32–5. (10)70079-3 doi: 10.1016/S0015-1882.
  • Cseri, L., and G. Szekely. 2019. Towards cleaner PolarClean: Efficient synthesis and extended applications of the polar aprotic solvent methyl 5-(dimethylamino)-2-methyl-5-oxopentanoate. Green Chemistry 21 (15):4178–88. doi: 10.1039/c9gc01958h.
  • Cseri, L., M. Razali, P. Pogany, and G. Szekely. 2018. Organic solvents in sustainable synthesis and engineering. In Green chemistry: An inclusive approach, eds. B. Torok and T. Dransfield, 513–53. London, UK: Elsevier. doi: 10.1016/B978-0-12-809270-5.00020-0.
  • Das, A., D. Paul, A. K. Golder, and C. Das. 2015. Separation of Rebaudioside-A from stevia extract: Membrane selection, assessment of permeate quality and fouling behavior in laminar flow regime. Separation and Purification Technology 144:8–15. doi: 10.1016/j.seppur.2015.02.004.
  • Díaz-Montes, E., B. E. Barragán-Huerta, and J. Yáñez-Fernández. 2020. Identification and evaluation of antioxidant activity of hydroxycinnamic acids extracted by ultrafiltration from three varieties of Mexican maize. Waste and Biomass Valorization 11 (5):1799–808. doi: 10.1007/s12649-018-0420-9.
  • Díaz-Montes, E., J. Yáñez-Fernández, and R. Castro-Muñoz. 2020. Microfiltration-mediated extraction of dextran produced by Leuconostoc mesenteroides SF3. Food and Bioproducts Processing 119:317–28. doi: 10.1016/j.fbp.2019.11.017.
  • Díaz-Montes, E., and R. Castro-Muñoz. 2019. Metabolites recovery from fermentation broths via pressure-driven membrane processes. Asia-Pacific Journal of Chemical Engineering 22:e2332. doi: 10.1002/apj.2332.
  • Díaz-Reinoso, B., A. Moure, H. Domínguez, and J. C. Parajó. 2009. Ultra- and nanofiltration of aqueous extracts from distilled fermented grape pomace. Journal of Food Engineering 91 (4):587–93. doi: 10.1016/j.jfoodeng.2008.10.007.
  • Didaskalou, C., S. Buyuktiryaki, R. Kecili, C. P. Fonte, and G. Szekely. 2017. Valorisation of agricultural waste with an adsorption/nanofiltration hybrid process: From materials to sustainable process design. Green Chemistry 19 (13):3116–25. doi: 10.1039/c7gc00912g.
  • El Darra, N., N. Grimi, E. Vorobiev, N. Louka, and R. Maroun. 2013. Extraction of polyphenols from red grape pomace assisted by pulsed ohmic heating. Food and Bioprocess Technology 6 (5):1281–9. doi: 10.1007/s11947-012-0869-7.
  • Erkucuk, A., I. H. Akgun, and O. Yesil-Celiktas. 2009. Supercritical CO2 extraction of glycosides from Stevia rebaudiana leaves: Identification and optimization. The Journal of Supercritical Fluids 51 (1):29–35. doi: 10.1016/j.supflu.2009.07.002.
  • Escobedo-Avellaneda, Z., M. Pateiro-Moure, N. Chotyakul, J. A. Torres, J. Welti-Chanes, and C. Pérez-Lamela. 2011. Benefits and limitations of food processing by high-pressure technologies: Effects on functional compounds and abiotic contaminants. CYTA - Journal of Food 9 (4):351–64. doi: 10.1080/19476337.2011.616959.
  • Fanbin, M., and J. Haokui. 1994. Patent No. CN1024348C. China.
  • Faneer, K. A., R. Rohani, and A. W. Mohammad. 2017. Influence of pluronic addition on polyethersulfone membrane for xylitol purification. Chemical Engineering Transactions 56:1855–60. doi: 10.3303/CET1756310.
  • Figoli, A., T. Marino, S. Simone, E. Di Nicolò, X.-M. Li, T. He, S. Tornaghi, and E. Drioli. 2014. Towards non-toxic solvents for membrane preparation: A review. Green Chemistry 16 (9):4034–59. doi: 10.1039/c4gc00613e.
  • Fuh, W., and B. Chiang. 1990. Purification of steviosides by membrane and ion exchange processes. Journal of Food Science 55 (5):1454–7. doi: 10.1111/j.1365-2621.1990.tb03956.x.
  • Galanakis, C. M. 2012. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends in Food Science & Technology 26 (2):68–87. doi: 10.1016/j.tifs.2012.03.003.
  • Galanakis, C. M., R. Castro-Muñoz, A. Cassano, and C. Conidi. 2016. Recovery of high-added-value compounds from food waste by membrane technology. In Membrane technologies for biorefining, eds. A. Basile, A. Cassano, and A. Basile, 205–6. Sawston, UK: Woodhead Publishing. doi: 10.1016/B978-0-08-100451-7.00008-6.
  • Gallo, M., M. Vitulano, A. Andolfi, M. DellaGreca, E. Conte, M. Ciaravolo, and D. Naviglio. 2017. Rapid solid-liquid dynamic extraction (RSLDE): A new rapid and greener method for extracting two steviol glycosides (stevioside and rebaudioside A) from stevia leaves. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 72 (2):141–8. doi: 10.1007/s11130-017-0598-1.
  • Gasmalla, M. A. A., R. Yang, A. Musa, X. Hua, and F. Ye. 2017. Influence of sonication process parameters to the state of liquid concentration of extracted rebaudioside A from Stevia (Stevia rebaudiana bertoni) leaves. Arabian Journal of Chemistry 10 (5):726–31. doi: 10.1016/j.arabjc.2014.06.012.
  • Gasmalla, M. A. A., R. Yang, and X. Hua. 2014. Stevia rebaudiana Bertoni: An alternative sugar replacer and its application in food industry. Food Engineering Reviews 6 (4):150–5. doi: 10.1007/s12393-014-9080-0.
  • Giacobbo, A., A. M. Bernardes, and M. N. de Pinho. 2017. Sequential pressure-driven membrane operations to recover and fractionate polyphenols and polysaccharides from second racking wine lees. Separation and Purification Technology 173:49–54. doi: 10.1016/j.seppur.2016.09.007.
  • González, C., M. Tapia, E. Pérez, D. Pallet, and M. Dornier. 2014. Main properties of steviol glycosides and their potential in the food industry: A review. Fruits 69 (2):127–41. doi: 10.1051/fruits/2014003.
  • Goyal, S. K., and R. K. Goyal. 2010. Stevia (Stevia rebaudiana) a bio-sweetener: A review. International Journal of Food Sciences and Nutrition 61:1–10. doi: 10.3109/09637480903193049.
  • Hernández, A., F. Tejerina, J. I. Arribas, L. Martínez, and F. Martínez. 1990. Microfiltración, Ultrafiltración y Ósmosis Inversa. 1st ed. Murcia, España: Secretariado de Publicaciones.
  • Hrnčič, M. K., D. Cör, and Ž. Knez. 2018. Subcritical extraction of oil from black and white chia seeds with n-propane and comparison with conventional techniques. The Journal of Supercritical Fluids 140:182–7. doi: 10.1016/j.supflu.2018.06.017.
  • Hsieh, M.-H., P. Chan, Y.-M. Sue, J.-C. Liu, T. H. Liang, T.-Y. Huang, B. Tomlinson, M. S. S. Chow, P.-F. Kao, and Y.-J. Chen. 2003. Efficacy and tolerability of oral stevioside in patients with mild essential hypertension: A two-year, randomized, placebo-controlled study. Clinical Therapeutics 25 (11):2797–808. doi: 10.1016/S0149-2918(03)80334-X.
  • Huang, X. Y., J. F. Fu, and D. L. Di. 2010. Preparative isolation and purification of steviol glycosides from Stevia rebaudiana Bertoni using high-speed counter-current chromatography. Separation and Purification Technology 71 (2):220–4. doi: 10.1016/j.seppur.2009.11.025.
  • Hubert, J., N. Borie, S. Chollet, J. Perret, C. Barbet-Massin, M. Berger, J. Daydé, and J.-H. Renault. 2015. Intensified separation of steviol glycosides from a crude aqueous extract of Stevia rebaudiana leaves using centrifugal partition chromatography. Planta Medica 81 (17):1614–20. doi: 10.1055/s-0035-1545840.
  • Iben Nasser, I., C. Algieri, A. Garofalo, E. Drioli, C. Ahmed, and L. Donato. 2016. Hybrid imprinted membranes for selective recognition of quercetin. Separation and Purification Technology 163:331–40. doi: 10.1016/j.seppur.2016.03.015.
  • Jaitak, V., Singh, B. Kaul. B., and V. K. 2009. An efficient microwave-assisted extraction process of stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni). Phytochemical Analysis: PCA 20 (3):240–5. doi: 10.1002/pca.1120.
  • Janoschek, L., L. Grozdev, and S. Berensmeier. 2018. Membrane-assisted extraction of monoterpenes: From in silico solvent screening towards biotechnological process application. Royal Society Open Science 5 (4):172004. doi: 10.1098/rsos.172004.
  • Jayaraman, S., M. S. Manoharan, and S. Illanchezian. 2008. In-vitro antimicrobial and antitumor activities of Stevia rebaudiana (Asteraceae) leaf extracts. Tropical Journal of Pharmaceutical Research 7 (4):1143–9. doi: 10.4314/tjpr.v7i4.14700.
  • Jeppesen, P. B., S. Gregersen, C. R. Poulsen, and K. Hermansen. 2000. Stevioside acts directly on pancreatic β cells to secrete insulin: Actions independent of cyclic adenosine monophosphate and adenosine triphosphate-sensitive K+-channel activity. Metabolism 49 (2):208–14. doi: 10.1016/S0026-0495(00)91325-8.
  • Jeppesen, P. B., S. Gregersen, K. K. Alstrup, and K. Hermansen. 2002. Stevioside induces antihyperglycaemic, insulinotropic and glucagonostatic effects in vivo: Studies in the diabetic Goto-Kakizaki (GK) rats. Phytomedicine 9 (1):9–14. doi: 10.1078/0944-7113-00081.
  • Jeppesen, P. B., S. Gregersen, S. E. D. Rolfsen, M. Jepsen, M. Colombo, A. Agger, J. Xiao, M. Kruhøffer, T. Ørntoft, and K. Hermansen. 2003. Antihyperglycemic and blood pressure-reducing effects of stevioside in the diabetic Goto-Kakizaki Rat. Metabolism 52 (3):372–8. doi: 10.1053/meta.2003.50058.
  • Jianjun, H., X. Dongyang, L. Meizhen, and Y. Liangliang. 2016. Patent No. CN106243165A. China.
  • Jutabha, P., C. Toskulkao, and V. Chatsudthipong. 2000. Effect of stevioside on PAH transport by isolated perfused rabbit renal proximal tubule. Canadian Journal of Physiology and Pharmacology 78 (9):737–44. doi: 10.1139/y00-051.
  • Kanagaraj, P., A. Nagendran, D. Rana, T. Matsuura, S. Neelakandan, T. Karthikkumar, and A. Muthumeenal. 2015. Influence of N-phthaloyl chitosan on poly (ether imide) ultrafiltration membranes and its application in biomolecules and toxic heavy metal ion separation and their antifouling properties. Applied Surface Science 329:165–73. doi: 10.1016/j.apsusc.2014.12.082.
  • Kaur, G., V. Pandhair, and G. S. Cheema. 2014. Extraction and characterization of steviol glycosides from Stevia rebaudiana bertoni leaves. Journal of Medicinal Plant Sdudies 2 (5):41–5.
  • Kim, S.-S., S.-H. Park, and D.-H. Kang. 2018. Application of continuous-type pulsed ohmic heating system for inactivation of foodborne pathogens in buffered peptone water and tomato juice. LWT - Food Science and Technology. Lwt 93:316–22. doi: 10.1016/j.lwt.2018.03.032.[ ]
  • Knozowska, K., A. Kujawska, J. Kujawa, W. Kujawski, M. Bryjak, E. Chrzanowska, and J. K. Kujawski. 2017. Performance of commercial composite hydrophobic membranes applied forpervaporative reclamation of acetone, butanol, and ethanol from aqueous solutions: Binary mixtures. Separation and Purification Technology 188:512–22. doi: 10.1016/j.seppur.2017.07.072.
  • Kolah, A. K., C. T. Lira, and D. J. Miller. 2013. Reactive distillation for the biorefinery. In Separation and purification technologies in biorefineries, eds. S. Ramaswamy, H.-J. Huang, and B. V. Ramarao. 1st ed., 439–65. Boca Raton, FL: John Wiley & Sons, Inc. doi: 10.1002/9781118493441.
  • Kootstra, A. M. J., H. J. H. Elissen, and S. Huurman. 2015. Extraction of steviol glycosides from fresh Stevia using acidified water; clarification by ultrafiltration and concentration by nanofiltration. National Centre for Applied Research on Renewable Energy and Green Resources, pp. 1–67.
  • Kootstra, A. M. J., H. J. H. Elissen, and S. Huurman. 2016. Extraction of steviol glycosides from fresh Stevia using acidified water; clarification followed by ultrafiltration and nanofiltration. National Centre for Applied Research on Renewable Energy and Green Resources, pp. 1–38.
  • Kovács, Z., and P. Czermak. 2013. Diafiltration. In Encyclopedia of membrane science and technology, 1–46. Boca Raton, FL: John Wiley & Sons, Inc.
  • Kumar, J. K., G. K. Babu, V. K. Kaul, and P. S. Ahuja. 2006. Patent No. WO 2006/038221 A1. International Patent.
  • Kumari, N., and S. Kumar. 2017. Chemistry and analytical techniques for ent-kaurene-glycosides of Stevia rebaudiana Bertoni: A review. Journal of Applied and Natural Science 9 (4):2114–26. doi: 10.31018/jans.v9i4.1497.
  • Laidler, J. K., J. D. Payzant, and R. M. Ippolito. 2001. Patent No. CA2278083A1. Canada.
  • Lee, C., K. Wong, J. Liu, Y. Chen, J. Cheng, and P. Chan. 2001. Inhibitory effect of stevioside on calcium influx to produce antihypertension. Planta Medica 67 (9):796–9. doi: 10.1055/s-2001-18841.
  • Liazid, A., R. F. Guerrero, E. Cantos, M. Palma, and C. G. Barroso. 2011. Microwave assisted extraction of anthocyanins from grape skins. Food Chemistry 124 (3):1238–43. doi: 10.1016/j.foodchem.2010.07.053.
  • Lindley, M. G. 2012. Natural high-potency sweeteners. In Sweeteners and sugar alternatives in food technology, eds. K. O'Donnell and M. Kearsley, 185–212. Boca Raton, FL: John Wiley & Sons, Inc. doi: 10.1002/9781118373941.ch9.
  • Liu, Y., D. Di, Q. Bai, J. Li, Z. Chen, S. Lou, and H. Ye. 2011. Preparative separation and purification of rebaudioside a from steviol glycosides using mixed-mode macroporous adsorption resins. Journal of Agricultural and Food Chemistry 59 (17):9629–36. doi: 10.1021/jf2020232.
  • Lorenzo, C., J. Serrano-Díaz, M. Plaza, C. Quintanilla, and G. L. Alonso. 2014. Fast methodology of analysing major steviol glycosides from Stevia rebaudiana leaves. Food Chemistry 157:518–23. doi: 10.1016/j.foodchem.2014.02.088.
  • Maki, K. C., L. L. Curry, M. S. Reeves, P. D. Toth, J. M. McKenney, M. V. Farmer, S. L. Schwartz, B. C. Lubin, A. C. Boileau, M. R. Dicklin, et al. 2008. Chronic consumption of rebaudioside A, a steviol glycoside, in men and women with type 2 diabetes mellitus. Food and Chemical Toxicology 46:S47–S53. doi: 10.1016/j.fct.2008.05.007.
  • Malićanin, M., V. Rac, V. Antić, M. Antić, L. M. Palade, P. Kefalas, and V. Rakić. 2014. Content of antioxidants, antioxidant capacity and oxidative stability of grape seed oil obtained by ultra sound assisted extraction. Journal of the American Oil Chemists’ Society 91:989–99. doi: 10.1007/s11746-014-2441-2.
  • Marcano, S. J. G., and T. T. Tsotsis. 2002. Catalytic membranes and membrane reactors. 1st ed. Boca Raton, FL: John Wiley & Sons, Inc. doi: 10.1002/3527601988.
  • Maria, S., and B. De Slavutzky. 2010. Stevia and sucrose effect on plaque formation. Journal für Verbraucherschutz und Lebensmittelsicherheit volume 5:213–6. doi: 10.1007/s00003-010-0555-5.
  • Martínez-Alvarado, J. C., B. Torrestiana-Sánchez, and M. G. Aguilar-Uscanga. 2017. Isolation of steviol glycosides by a two-step membrane process operating under sustainable flux. Food and Bioproducts Processing 101:223–30. doi: 10.1016/j.fbp.2016.11.013.
  • Mehrotra, R., D. Singh, and A. Tiwari. 2014. Steviol glycosides and their use in food processing: A review. Innovare Journal of Food Science 2 (1):1–7.
  • Mohamed, M. E. A., and A. H. A. Eissa. 2012. Pulsed electric fields for food processing technology. In Structure and function of food engineering, 275–306. London, UK: InTech Open. doi: 10.5772/48678.
  • Mohammadtabar, F., B. Khorshidi, A. Hayatbakhsh, and M. Sadrzadeh. 2019. Integrated coagulation-membrane processes with zero liquid discharge (ZLD) configuration for the treatment of oil sands produced water. Water 11 (7):1348. doi: 10.3390/w11071348.
  • Mondal, S., and S. De. 2014. Processing of stevioside using membrane-based separation processes. In Integrated membrane operations in the food production, eds. A. Cassano and E. Drioli, 201–32. Berlin, Germany: Walter de Gruyter GmbH.
  • Mondal, S., Chhaya, and S. De. 2012. Prediction of ultrafiltration performance during clarification of stevia extract. Journal of Membrane Science 396:138–48. doi: 10.1016/j.memsci.2012.01.009.
  • Mondal, S., C. Rai, and S. De. 2013. Identification of fouling mechanism during ultrafiltration of stevia extract. Food and Bioprocess Technology 6 (4):931–40. doi: 10.1007/s11947-011-0754-9.
  • Mulder, M. H. V. 1995. Polarization phenomena and membrane fouling. In Membrane separation technology: Principles and applications, R. D. Noble and S. A. Stern, 1st ed., 45–84. Enschede, The Netherlands: Elsevier.
  • Nagarajan, J., W. Wah Heng, C. M. Galanakis, R. Nagasundara Ramanan, M. E. Raghunandan, J. Sun, A. Ismail, T. Beng-Ti, and K. N. Prasad. 2016. Extraction of phytochemicals using hydrotropic solvents. Separation Science and Technology 51 (7):1151–65. doi: 10.1080/01496395.2016.1143842.
  • Panagiotou, C., C. Mihailidou, G. Brauhli, O. Katsarou, and P. Moutsatsou. 2018. Effect of steviol, steviol glycosides and stevia extract on glucocorticoid receptor signaling in normal and cancer blood cells. Molecular and Cellular Endocrinology 460:189–99. doi: 10.1016/j.mce.2017.07.023.
  • Payzant, J. D., J. K. Laidler, and R. M. Ippolito. 1998. Patent No. CA2185496A1. Canada.
  • Payzant, J. D., J. K. Laidler, and R. M. Ippolito. 1999. Patent No. US5962678A. United States.
  • Paz, J. E. W., D. B. Muñiz Márquez, G. C. G. Martínez Ávila, R. E. Belmares Cerda, and C. N. Aguilar. 2015. Ultrasound-assisted extraction of polyphenols from native plants in the Mexican desert. Ultrasonics Sonochemistry 22:474–81. doi: 10.1016/j.ultsonch.2014.06.001.
  • Pichardo-Romero, D., Z. P. Garcia-Arce, A. Zavala-Ramirez, and R. Castro-Muñoz. 2020. Current advances in biofouling mitigation in membranes for water treatment: An overview. Processes 8 (2):182. 182. doi: 10.3390/pr8020182.
  • Pól, J., E. Varadová Ostrá, P. Karásek, M. Roth, K. Benesová, P. Kotlaríková, and J. Cáslavský. 2007. Comparison of two different solvents employed for pressurised fluid extraction of stevioside from Stevia rebaudiana: Methanol versus water. Analytical and Bioanalytical Chemistry 388 (8):1847–57. doi: 10.1007/s00216-007-1404-y.
  • Prakash, D. G., P. Panneerselvam, S. Madhusudanan, and V. Aditya. 2014. Hydrotropic extraction of xanthones from mangosteen pericarp. Advanced Materials Research 984–985:372–6. doi: 10.4028/www.scientific.net/AMR.984-985.372.
  • Prommuak, C., W. De-Eknamkul, and A. Shotipruk. 2008. Extraction of flavonoids and carotenoids from Thai silk waste and antioxidant activity of extracts. Separation and Purification Technology 62 (2):444–8. doi: 10.1016/j.seppur.2008.02.020.
  • Puri, M., D. Sharma, and A. K. Tiwari. 2011. Downstream processing of stevioside and its potential applications. Biotechnology Advances 29 (6):781–91. doi: 10.1016/j.biotechadv.2011.06.006.
  • Rajha, H. N., W. Ziegler, N. Louka, Z. Hobaika, E. Vorobiev, H. G. Boechzelt, and R. G. Maroun. 2014. Effect of the drying process on the intensification of phenolic compounds recovery from grape pomace using accelerated solvent extraction. International Journal of Molecular Sciences 15 (10):18640–58. doi: 10.3390/ijms151018640.
  • Rao, A. B., E. Prasad, G. R. S. Sridhar, and Y. V. L. Ravikumar. 2012. Simple extraction and membrane purification process in isolation of steviosides with improved organoleptic activity. Advances in Bioscience and Biotechnology 03 (04):327–35. doi: 10.4236/abb.2012.34048.
  • Rao, A. B., G. R. Reddy, P. Ernala, S. Sridhar, and Y. V. L. Ravikumar. 2012. An improvised process of isolation, purification of steviosides from Stevia rebaudiana Bertoni leaves and its biological activity. International Journal of Food Science & Technology 47 (12):2554–60. doi: 10.1111/j.1365-2621.2012.03134.x.
  • Rao, A. B., S. A. George, S. Alavala, H. M. Meshram, and K. C. Shekar. 2015. Metal salts assisted enzyme-based extraction of stevioside from the leaves of Stevia rebaudiana Bertoni. Advances in Bioscience and Biotechnology 06 (12):734–43. doi: 10.4236/abb.2015.612075.
  • Reis, M. H. M., F. V. Da Silva, C. M. G. Andrade, S. L. Rezende, M. R. Wolf MacIel, and R. Bergamasco. 2009. Clarification and purification of aqueous stevia extract using membrane separation process. Journal of Food Process Engineering 32 (3):338–54. doi: 10.1111/j.1745-4530.2007.00219.x.
  • Rodenburg, D. L., K. Alves, W. H. Perera, T. Ramsaroop, R. Carvalho, and J. D. McChesney. 2016. Development of HPLC analytical techniques for diterpene glycosides from Stevia rebaudiana (Bertoni) Bertoni: Strategies to scale-up. Journal of the Brazilian Chemical Society 27 (8):1406–12. doi: 10.5935/0103-5053.20160082.
  • Roselló-Soto, E., F. J. Barba, O. Parniakov, C. M. Galanakis, N. Lebovka, N. Grimi, and E. Vorobiev. 2015. High voltage electrical discharges, pulsed electric field, and ultrasound assisted extraction of protein and phenolic compounds from olive kernel. Food and Bioprocess Technology 8 (4):885–94. doi: 10.1007/s11947-014-1456-x.
  • Roy, A., and S. De. 2014. Extraction of steviol glycosides using novel cellulose acetate pthalate (CAP) – Polyacrylonitrile blend membranes. Journal of Food Engineering 126:7–16. doi: 10.1016/j.jfoodeng.2013.10.035.
  • Roy, A., and S. De. 2015. Resistance-in-series model for flux decline and optimal conditions of Stevia extract during ultrafiltration using novel CAP-PAN blend membranes. Food and Bioproducts Processing 94:489–99. doi: 10.1016/j.fbp.2014.07.006.
  • Roy, A., S. Moulik, S. Sridhar, and S. De. 2015. Potential of extraction of Steviol glycosides using cellulose acetate phthalate (CAP) – polyacrylonitrile (PAN) blend hollow fiber membranes. Journal of Food Science and Technology 52 (11):7081–91. doi: 10.1007/s13197-015-1865-5.
  • Russo, F., R. Castro-Muñoz, F. Galiano, and A. Figoli. 2019. Unprecedented preparation of porous Matrimid® 5218 membranes. Journal of Membrane Science 585:166–74. doi: 10.1016/j.memsci.2019.05.036.
  • Russo, F., F. Galiano, F. Pedace, F. Aricò, and A. Figoli. 2020. Dimethyl isosorbide as a green solvent for sustainable ultrafiltration and microfiltration membrane preparation. ACS Sustainable Chemistry & Engineering 8 (1):659–68. doi: 10.1021/acssuschemeng.9b06496.
  • Samprovalaki, K., S. Bakalis, and P. J. Fryer. 2007. Ohmic heating: Models and measurements. Heat Transfer in Food Processing 13:159–86. doi: 10.2495/978-1-85312-932-2/05.
  • Sarkis, J. R., N. Boussetta, I. C. Tessaro, L. D. F. Marczak, and E. Vorobiev. 2015. Application of pulsed electric fields and high voltage electrical discharges for oil extraction from sesame seeds. Journal of Food Engineering 153:20–7. doi: 10.1016/j.ifset.2015.02.011
  • Savita, S. M., Sheela, K. Sunanda, S. Shankar, A. G. Ramakrishna. P. 2004. Stevia rebaudiana – A functional component for food industry. Journal of Human Ecology 15 (4):261–4. doi: 10.1080/09709274.2004.11905703.
  • Sehar, I., A. Kaul, S. Bani, H. C. Pal, and A. K. Saxena. 2008. Immune up regulatory response of a non-caloric natural sweetener, stevioside. Chemico-Biological Interactions 173 (2):115–21. doi: 10.1016/j.cbi.2008.01.008.
  • Sen, D., A. Roy, A. Bhattacharya, D. Banerjee, and C. Bhattacharjee. 2011. Development of a knowledge based hybrid neural network (KBHNN) for studying the effect of diafiltration during ultrafiltration of whey. Desalination 273 (1):168–78. doi: 10.1016/j.desal.2010.10.038.
  • Siddique, H., E. Rundquist, Y. Bhole, L. G. Peeva, and A. G. Livingston. 2014. Mixed matrix membranes for organic solvent nanofiltration. Journal of Membrane Science 452:354–66. doi: 10.1016/j.memsci.2013.10.012.
  • Silva, F. V., R. Bergamasco, C. M. G. Andrade, N. Pinheiro, N. R. C. F. Machado, M. H. M. Reis, Á. A. de Araújo, and S. L. Rezende. 2007. Purification process of stevioside using zeolites and membranes. International Journal of Chemical Reactor Engineering 5 (1):8. doi: 10.2202/1542-6580.1443.
  • Soufi, S., G. D'Urso, C. Pizza, S. Rezgui, T. Bettaieb, and P. Montoro. 2016. Steviol glycosides targeted analysis in leaves of Stevia rebaudiana (Bertoni) from plants cultivated under chilling stress conditions. Food Chemistry 190:572–80. doi: 10.1016/j.foodchem.2015.05.116.
  • Sun, J., J. Shi, Y. Mu, S. Zhou, Z. Chen, and B. Xu. 2018. Subcritical butane extraction of oil and minor bioactive components from soybean germ: Determination of migration patterns and a kinetic model. Journal of Food Process Engineering 41 (5):e12697. doi: 10.1111/jfpe.12697.
  • Takahashi, K., M. Matsuda, K. Ohashi, K. Taniguchi, O. Nakagomi, Y. Abe, S. Mori, N. Sato, K. Okutani, and S. Shigeta. 2001. Analysis of anti-rotavirus activity of extract from Stevia rebaudiana. Antiviral Research 49 (1):15–24. doi: 10.1016/S0166-3542(00)00134-0.
  • Thuy, N. T. T., and A. Boontawan. 2017. Production of very-high purity succinic acid from fermentation broth using microfiltration and nanofiltration-assisted crystallization. Journal of Membrane Science 524:470–81. doi: 10.1016/j.memsci.2016.11.073.
  • Tijhuis, M. T., D. Wapperom, G. Wolterink, C. H. M. van Oosterhout, E. H. M. Temme, J. D. van Klaveren, H. Verhagen, and H. P. Fransen. 2011. Steviol glycosides in food: Exposure scenarios and health effect Steviol glycosides in food.
  • Todisco, S., P. Tallarico, and B. B. Gupta. 2002. Mass transfer and polyphenols retention in the clarification of black tea with ceramic membranes. Innovative Food Science & Emerging Technologies 3 (3):255–62. doi: 10.1016/S1466-8564(02)00046-2.
  • Tundis, R., C. Ursino, M. Bonesi, M. R. Loizzo, V. Sicari, T. Pellicanò, I. L. Manfredi, A. Figoli, and A. Cassano. 2019. Flower and leaf extracts of Sambucus nigra L.: Application of membrane processes to obtain fractions with antioxidant and antityrosinase properties. Membranes 9 (10):127–12. doi: 10.3390/membranes9100127.
  • Ulbricht, M. 2006. Advanced functional polymer membranes. Polymer 47 (7):2217–62. doi: 10.1016/j.polymer.2006.01.084.
  • Ursino, C., R. Castro-Muñoz, E. Drioli, L. Gzara, M. H. Albeirutty, and A. Figoli. 2018. Progress of nanocomposite membranes for water treatment. Membranes 8 (2):18. doi: 10.3390/membranes8020018.
  • Van Der Bruggen, B., C. Vandecasteele, T. Van Gestel, W. Doyen, and R. Leysen. 2003. A review of pressure-driven membrane processes in wastewater treatment and drinking water production. Environmental Progress 22 (1):46–56. doi: 10.1002/ep.670220116.
  • Van de Bruggen, B., L. Lejon, and C. Vandecasteele. 2003. Reuse, treatment, and discharge of the concentrate of pressure-driven membrane processes. Environmental Science & Technology 37 (17):3733–8. doi: 10.1021/es0201754.
  • Vanneste, J., A. Sotto, C. M. Courtin, V. Van Craeyveld, K. Bernaerts, J. Van Impe, J. Vandeur, S. Taes, and B. Van der Bruggen. 2011. Application of tailor-made membranes in a multi-stage process for the purification of sweeteners from Stevia rebaudiana. Journal of Food Engineering 103 (3):285–93. doi: 10.1016/j.jfoodeng.2010.10.026.
  • Voros, V., E. Drioli, C. Fonte, and G. Szekely. 2019. Process intensification via continuous and simultaneous isolation of antioxidants: An upcycling approach for olive leaf waste. ACS Sustainable Chemistry & Engineering 7 (22):18444–52. doi: 10.1021/acssuschemeng.9b04245.
  • Wei, C., X. Huang, R. Ben, K. Yamamoto, and G. Amy. 2011. Critical flux and chemical cleaning-in-place during the long-term operation of a pilot-scale submerged membrane bioreactor for municipal wastewater treatment. Water Research 45 (2):863–71. doi: 10.1016/j.watres.2010.09.021.
  • Weihrauch, M. R., and V. Diehl. 2004. Artificial sweeteners-do they bear a carcinogenic risk? Annals of Oncology 15 (10):1460–5. doi: 10.1093/annonc/mdh256.
  • Xie, L., E. Cahoon, Y. Zhang, and O. N. Ciftci. 2019. Extraction of astaxanthin from engineered Camelina sativa seed using ethanol-modified supercritical carbon dioxide. The Journal of Supercritical Fluids 143:171–8. doi: 10.1016/j.supflu.2018.08.013.
  • Yadav, S. K., and P. Guleria. 2012. Steviol glycosides from stevia: Biosynthesis pathway review and their application in foods and medicine. Critical Reviews in Food Science and Nutrition 52 (11):988–98. doi: 10.1080/10408398.2010.519447.
  • Yan, L.-G., Y. Deng, T. Ju, K. Wu, and J. Xi. 2018. Continuous high voltage electrical discharge extraction of flavonoids from peanut shells based on “annular gap type” treatment chamber. Food Chemistry 256:350–7. doi: 10.1016/j.foodchem.2018.02.129.
  • Yang, M., J. Hua, and L. Qin. 2011. Patent No. US7923541B2. United States.
  • Yang, Q. 2010. Gain weight by “going diet?” Artificial Sweeteners and the Neurobiology of Sugar Neuroscience 83:101–8.
  • Yang, Y., Y. Qin, Z. Fenfen, M. Wanliang, and H. Zhenxing. 2016. Patent No. CN104193788B. China.
  • Yuan, X., F. You, L. Yong, C. Yang, L. Zhu, B. Hu, and T. Liu. 2019. Rapid determination of 16 polycyclic aromatic hydrocarbons in PM2.5 by microwave assisted extraction-high performance liquid chromatography. Microchemical Journal 144:391–6. doi: 10.1016/j.microc.2018.09.029.
  • Zhang, S. Q., A. Kumar, and O. Kutowy. 2000. Membrane-based separation scheme for processing sweeteners from stevia leaves. Food Research International 33 (7):617–20. doi: 10.1016/S0963-9969(00)00098-3.
  • Žlabur, J. Š., S. Voća, N. Dobričević, M. Brnčić, F. Dujmić, and S. R. Brnčić. 2015. Optimization of ultrasound assisted extraction of functional ingredients from Stevia rebaudiana Bertoni leaves. International Agrophysics 29 (2):231–7. doi: 10.1515/intag-2015-0017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.