892
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Lignans from linseed (Linum usitatissimum L.) and its allied species: Retrospect, introspect and prospect

, &

References

  • Abbasi, B. H., A. Zahir, W. Ahmad, M. Nadeem, N. Giglioli- Guivarc’h, and C. Hano. 2019. Biogenic zinc oxide nanoparticles-enhanced biosynthesis of lignans and neolignans in cell suspension cultures of Linum usitatissimum L. Artificial Cells, Nanomedicine and Biotechnology 47 (1):1367–73. doi: 10.1080/21691401.2019.1596942.
  • Adlercreutz, H., and W. Mazur. 1997. Phyto-oestrogens and western diseases. Annals of Medicine 29 (2):95–120. doi: 10.3109/07853899709113696.
  • Adolphe, J. L., S. J. Whiting, B. H. J. Juurlink, L. U. Thorpe, and J. Alcorn. 2010. Health effects with consumption of the flax lignan secoisolariciresinol diglucoside. The British Journal of Nutrition 103 (7):929–38.
  • Ahmad, W., A. Zahir, M. Nadeem, L. Garros, S. Drouet, S. Renouard, J. Doussot, N. Giglioli-Guivarc’h, C. Hano, and B. H. Abbasi. 2019. Enhanced production of lignans and neolignans in chitosan-treated flax (Linum usitatissimum L.) cell cultures. Process Biochemistry 79:155–65. doi: 10.1016/j.procbio.2018.12.025.
  • Al-Jumaily, E. F., and A. H. Al-Azawi. 2013. Hepatoprotective activity of lignan compound from flaxseed (Linum usitatissimum L.) against acetaminophen induced hepatotoxicity in rabbits. World Journal of Pharmacy and Pharmaceutical Sciences 3:56–7.
  • Ardalani, H., A. Avan, and M. Ghayour-Mobarhan. 2017. Podophyllotoxin: A novel potential natural anticancer agent. Avicenna Journal of Phytomedicine 7 (4):285–94.
  • Attoumbre, J., C. Hano, F. Mesnard, F. Lamblin, L. Bensaddek, S. Raynaud Le Grandic, E. Laine, M. A. Fliniaux, and S. Baltora-Rosset. 2006. Identification by NMR and accumulation of a neolignan, the dehydrodiconiferyl alcohol-4-b-D-glucoside, in Linum usitatissimum cell cultures. Comptes Rendus Chimie 9 (3-4):420–5. doi: 10.1016/j.crci.2005.06.012.
  • Attoumbré, J., A. B. Mahamane Laoualy, C. Bienaimé, F. Dubois, and S. Baltora-Rosset. 2011. Investigation of lignan accumulation in developing Linum usitatissimum seeds by immunolocalization and HPLC. Phytochemistry Letters 4 (2):194–8. doi: 10.1016/j.phytol.2011.03.004.
  • Ayella, A. K., H. N. Trick, and W. Wang. 2007. Enhancing lignan biosynthesis by over-expressing pinoresinol lariciresinol reductase in transgenic wheat. Molecular Nutrition & Food Research 51 (12):1518–26. doi: 10.1002/mnfr.200700233.
  • Ayres, D. C., and J. D. Loike. 1990. Lignans. Chemical, biological and clinical properties. Cambridge: Cambridge University Press.
  • Bakke, J. E., and H. J. Klosterman. 1956. A new diglucoside from flaxseed. Proceedings of the National Academy of Sciences 10: 18–21.
  • Bahabadi, S. E., M. Sharifi, N. A. Chashmi, J. Murata, and H. Satake. 2014. Significant enhancement of lignans accumulation in hairy root cultures of Linum album using biotic elicitors. Acta Physiologiae Plantarum 36 (12):3325–31. doi: 10.1007/s11738-014-1700-z.
  • Baldi, A., A. Jain, N. Gupta, A. K. Srivastava, and V. S. Bisaria. 2008. Co-culture of arbuscular mycorrhiza-like fungi (Piriformospora indica and Sebacina vermifera) with plant cells of Linum album for enhanced production of podophyllotoxins: A first report. Biotechnology Letters 30 (9):1671–7.
  • Barvkar, V. T., V. C. Pardeshi, S. M. Kale, N. Y. Kadoo, and V. S. Gupta. 2012 . Phylogenomic analysis of UDP glycosyltransferase 1 multigene family in Linum usitatissimum identified genes with varied expression patterns. Bmc Genomics 13:175.
  • Barre, D. E., K. A. Mizier-Barre, E. Stelmach, J. Hobson, O. Griscti, A. Rudiuk, and D. Muthuthevar. 2012. 2012. Flaxseed lignan complex administration in older human type 2 diabetes manages central obesity a prothrombosis- An invitation to further investigation into polypharmacy reduction. Journal of Nutrition and Metabolism 2012:1–7. doi: 10.1155/2012/585170.
  • Baumgartner, L., S. Sosa, A. G. Atanasov, A. Bodensieck, N. Fakhrudin, J. Bauer, G. D. Favero, C. Ponti, E. H. Heiss, S. Schwaiger, et al. 2011. Lignan derivatives from Krameria lappacea roots inhibit acute inflammation in vivo and pro-inflammatory mediators in vitro. Journal of Natural Products 74 (8):1779–86.
  • Bayindir, Ü., A. W. Alfermann, and E. Fuss. 2008. Hinokinin biosynthesis in Linum corymbulosum. Reichenb. The Plant Journal: For Cell and Molecular Biology 55 (5):810–20.
  • Bedows, E., and G. M. Hatfield. 1982. An investigation of the antiviral activity of Podophyllum peltatum. Journal of Natural Products 45 (6):725–9.
  • Berim, A., O. Spring, J. Conrad, M. Maitrejean, W. Boland, and M. Petersen. 2005. Enhancement of lignan biosynthesis in suspension cultures of Linum nodiflorum by coronalon, indanoyl-isoleucine and methyl jasmonate. Planta 222 (5):769–76. doi: 10.1007/s00425-005-0019-9.
  • Beroza, M. 1955. The structure of sesamolin and its stereochemical relationship to sesamin, asarinin and pinoresinol. Journal of the American Chemical Society 77 (12):3332–4. doi: 10.1021/ja01617a053.
  • Bhattacharyya, D., R. Sinha, S. Ghanta, A. Chakraborty, S. Hazra, and S. Chattopadhyay. 2012. Proteins differentially expressed in elicited cell suspension culture of Podophyllum hexandrum with enhanced podophyllotoxin content. Proteome Science 10 (1):34.
  • Bhatnagar, A. S., J. Hemavathy, and A. G. Gopala Krishna. 2015. Development of a rapid method for determination of lignans content in sesame oil. Journal of Food Science and Technology 52 (1):521–7. doi: 10.1007/s13197-013-1012-0.
  • Boerjan, W., J. Ralph, and M. Baucher. 2003. Lignin biosynthesis. Annual Review of Plant Biology 54:519–46.
  • Braune, A., and M. Blaut. 2016. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 7 (3):216–34.
  • Bravo, D., A. Peirotén, I. Álvarez, and J. M. Landete. 2017. Phytoestrogen metabolism by lactic acid bacteria: Enterolignan production by Lactobacillus salivarius and Lactobacillus gasseri strains. Journal of Functional Foods 37:373–8. doi: 10.1016/j.jff.2017.08.015.
  • Buck, K., A. K. Zaineddin, A. Vrieling, J. Heinz, J. Linseisen, D. Flesch-Janys, and J. Chang-Claude. 2011. Estimated enterolignans, lignan-rich foods, and fibre in relation to survival after postmenopausal breast cancer. British Journal of Cancer 105 (8):1151–7. doi: 10.1038/bjc.2011.374.
  • Canel, C.,. R. M. Moraes, F. E. Dayan, and D. Ferreira. 2000. Podophyllotoxin. Phytochemistry 54 (2):115–20. doi: 10.1016/S0031-9422(00)00094-7.
  • Carraro, J. C. C., M. I. de Souza Dantas, A. C. R. Espeschit, H. S. D. Martino, and S. M. R. Ribeiro. 2012. Flaxseed and human health: Reviewing benefits and adverse effects. Food Reviews International 28 (2):203–30. doi: 10.1080/87559129.2011.595025.
  • Cassidy, A., B. Hanley, and R. M. Lamuela- Raventos. 2000. Isoflavones, lignans and stilbenes-origins, metabolism and potential importance to human health. Journal of the Science of Food and Agriculture 80 (7):1044–62. doi: 10.1002/(SICI)1097-0010(20000515)80:7 < 1044::AID-JSFA586 > 3.0.CO;2-N.
  • Castro, M. A., M. Gordaliza, J. M. Miguel del Corral, and A. San Feliciano. 1996. Distribution of lignanoids in the order coniferae. Phytochemistry 41 (4):995–1011. doi: 10.1016/0031-9422(95)00512-9.
  • Céspedes, C. L., J. G. Avila, A. M. García, J. Becerra, C. Flores, P. Aqueveque, M. Bittner, M. Hoeneisen, M. Martinez, and M. Silva. 2006. Antifungal and antibacterial activities of Araucaria araucana (Mol.) K. Koch heartwood lignans. Zeitschrift Fur Naturforschung. C, Journal of Biosciences 61 (1-2):35–43. doi: 10.1515/znc-2006-1-207.
  • Chang, J., J. Reiner, and J. Xie. 2005. Progress on the chemistry of dibenzocyclooctadiene lignans. Chemical Reviews 105 (12):4581–609.
  • Charlton, J. L. 1998. Antiviral activity of lignans. Journal of Natural Products 61 (11):1447–51.
  • Chen, H., L. Teng, J. N. Li, R. Park, D. E. Mold, J. Gnabre, J. R. Hwu, W. N. Tseng, and R. C. C. Huang. 1998. Antiviral activities of methylated nordihydroguaiaretic acids. 2. targeting herpes simplex virus replication by the mutation insensitive transcription inhibitor tetra-O-methyl-NDGA. Journal of Medicinal Chemistry 41 (16):3001–7.
  • Cho, J. Y., G. J. Choi, S. W. Son, K. S. Jang, H. K. Lim, S. O. Lee, N. D. Sung, K. Y. Cho, and J. C. Kim. 2007. Isolation and antifungal activity of lignans from Myristica fragrans against various plant pathogenic fungi. Pest Management Science 63 (9):935–40.
  • Christensen, A., and P. Quail. 1996. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Research 5 (3):213–38.
  • Corbin, C., S. Renouard, T. Lopez, F. Lamblin, E. Lainé, and C. Hano. 2013. Identification and characterization of cis-acting elements involved in the regulation of ABA- and/or GA-mediated LuPLR1 gene expression and lignan biosynthesis in flax (Linum usitatissimum L.) cell cultures. Journal of Plant Physiology 170 (5):516–22.
  • Corbin, C., C. Decourtil, D. Marosevic, M. Bailly, T. Lopez, S. Renouard, J. Doussot, C. Dutilleul, D. Auguin, N. Giglioli-Guivarc'h, et al. 2013 . Role of protein farnesylation events in the ABA-mediated regulation of the Pinoresinol-Lariciresinol Reductase 1 (LuPLR1) gene expression and lignan biosynthesis in flax (Linum usitatissimum L.).). Plant Physiology and Biochemistry: PPB 72:96–111.
  • Corbin, C., S. Drouet, I. Mateljak, L. Markulin, C. Decourtil, S. Renouard, T. Lopez, J. Doussot, F. Lamblin, D. Auguin, et al. 2017 . Functional characterization of the pinoresinol-lariciresinol reductase-2 gene reveals its roles in yatein biosynthesis and flax defense response. Planta 246 (3):405–20.
  • Corbin, C., S. Drouet, L. Markulin, D. Auguin, É. Lainé, L. B. Davin, J. R. Cort, N. G. Lewis, and C. Hano. 2018. A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: From gene identification and evolution to differential regulation. Plant Molecular Biology 97 (1-2):73–10.
  • Coran, S. A., V. Giannellini, and M. Bambagiotti-Alberti. 2004. High-performance thinlayer chromatographic – densitometric determination of secoisolariciresinol diglucoside in flaxseed. Journal of Chromatography A 1045 (1–2):217–22. doi: 10.1016/j.chroma.2004.06.042.
  • Costa, M. C. A., and Y. Takahata. 1997. Conformational analysis of synthetic neolignans active against leishmaniasis, using the molecular mechanics method (MM2). Journal of Computational Chemistry 18 (5):712–21. doi: 10.1002/(SICI)1096-987X(19970415)18:5 < 712::AID-JCC11 > 3.0.CO;2-E.
  • Cui, Q., R. Du, M. Liu, and L. Rong. 2020. Lignans and their derivatives from plants as antivirals. Molecules 25 (1):183. doi: 10.3390/molecules25010183.
  • Cullmann, F., and H. Becker. 1999. Lignans from the liverwort Lepicolea ochroleuca. Phytochemistry 52 (8):1651–6. doi: 10.1016/S0031-9422(99)00372-6.
  • Cutillo, F., B. D'Abrosca, M. DellaGreca, A. Fiorentino, and A. Zarrelli. 2003. Lignans and neolignans from Brassica fruticulosa: Effects on seed germination and plant growth. Journal of Agricultural and Food Chemistry 51 (21):6165–72.
  • Dar, A. A., P. K. Kancharla, K. Chandra, Y. S. Sodhi, and N. Arumugam. 2019. Assessment of variability in lignan and fatty acid content in the germplasm of Sesamum indicum L. Journal of Food Science and Technology 56 (2):976–86.
  • Davin, L. B., H.-B. Wang, A. L. Crowell, D. L. Bedgar, D. M. Martin, S. Sarkanen, and N. G. Lewis. 1997. Stereoselective bimolecular phenoxy radical coupling by an auxiliary (dirigent) protein without an active center. Science (New York, N.Y.) 275 (5298):362–7.
  • Davin, L. B., and N. G. Lewis. 2000. Dirigent proteins and dirigent sites explain the mystery of specificity of radical precursor coupling in lignan and lignin biosynthesis. Plant Physiology 123 (2):453–61.
  • Davin, L. B., and N. G. Lewis. 2003. A historical perspective on lignan biosynthesis: Monolignol, allylphenol and hydroxycinnamic acid coupling and downstream metabolism. Phytochemistry Reviews 2 (3):257–88. doi: 10.1023/B:PHYT.0000046175.83729.b5.
  • Davin, L. B., M. Jourdes, A. M. Patten, K.-W. Kim, D. G. Vassão, and N. G. Lewis. 2008. Dissection of lignin macromolecular configuration and assembly: Comparison to related biochemical processes in allyl/propenyl phenol and lignan biosynthesis. Natural Product Reports 25 (6):1015–90.
  • Delgado, S., L. Guadamuro, B. Flórez, L. Vázquez, and B. Mayo. 2019. Fermentation of commercial soy beverages with lactobacilli and bifidobacteria strains featuring high β-glucosidase activity. Innovative Food Science & Emerging Technologies 51:148–55. doi: 10.1016/j.ifset.2018.03.018.
  • Delorme, D.,. Y. Ducharme, C. Brideau, C. C. Chan, N. Chauret, S. Desmarais, D. Dubé, J. P. Falgueyret, R. Fortin, J. Guay, et al. 1996 . Dioxabicyclooctanyl naphthalenenitriles as nonredox 5-lipoxygenase inhibitors: Structure-activity relationship study directed toward the improvement of metabolic stability. Journal of Medicinal Chemistry 39 (20):3951–70.
  • Dinkova-Kostova, A. T., D. R. Gang, L. B. Davin, D. L. Bedgar, A. Chu, and N. G. Lewis. 1996 . (+)-Pinoresinol/(+)-Lariciresinol reductase from Forsythia intermedia. Protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductaseThe Journal of Biological Chemistry 271 (46):29473–82.
  • Durazzo, A., M. Zaccaria, A. Polito, G. Maiani, and M. Carcea. 2013. Lignan content in cereals, buckwheat and derived foods. Foods (Basel, Switzerland) 2 (1):53–63. doi: 10.3390/foods2010053.
  • Fang, J., M. Reichelt, M. Kai, and B. Schneider. 2012 . Metabolic profiling of lignans and other secondary metabolites from rapeseed (Brassica napus L.). Journal of Agricultural and Food Chemistry 60 (42):10523–9.
  • Felmlee, M. A., G. Woo, E. Simko, E. S. Krol, A. D. Muir, and J. Alcorn. 2009. Effects of the flaxseed lignans secoisolariciresinol diglucoside and its aglycone on serum and hepatic lipids in hyperlipidaemic rats. The British Journal of Nutrition 102 (3):361–9.
  • Ford, J. D., K. S. Huang, H. B. Wang, L. B. Davin, and N. G. Lewis. 2001. Biosynthetic pathway to the cancer chemopreventive secoisolariciresinol diglucoside-hydroxymethyl glutaryl ester-linked lignan oligomers in flax (Linum usitatissimum) seed. Journal of Natural Products 64 (11):1388–97.
  • Fransen, M. C. R., and M. J. Walton. 1999. Biotransformations. In Chemicals from plants, perspectives on plant secondary products, eds. M. J. Walton and D. E. Brawn, vol. 77, p. 325. London: Imperial College Press.
  • Fritsche, J., R. Angoelal, and M. Dachtler. 2002. On-line liquid-chromatography-nuclear magnetic resonance spectroscopy–mass spectrometry coupling for the separation and characterization of secoisolariciresinol diglucoside isomers in flaxseed. Journal of Chromatography A 972 (2):195–203. doi: 10.1016/S0021-9673(02)01110-X.
  • Fryatt, T., and N. P. Botting. 2005. The synthesis of multiply 13C-labelled plant and mammalian lignans as internal standards for LC-MS and GC-MS analysis. Journal of Labelled Compounds and Radiopharmaceuticals 48 (13):951–69. doi: 10.1002/jlcr.1007.
  • Fukuda, Y., M. Nagata, T. Osawa, and N. Namiki. 1986. A contribution of lignan analogues to antioxidative activity of refined unroasted sesame seed oil. Journal of the American Oil Chemists' Society 63 (8):1027–31. doi: 10.1007/BF02673792.
  • Fukumitsu, S., K. Aida, N. Ueno, S. Ozawa, Y. Takahashi, and M. Kobori. 2008. Flaxseed lignan attenuates high-fat diet-induced fat accumulation and induces adiponectin expression in mice. The British Journal of Nutrition 100 (3):669–76.
  • Fukumitsu, S., K. Aida, H. Shimizu, and K. Toyoda. 2010. Flaxseed lignan lowers blood cholesterol and decreases liver disease risk factors in moderately hypercholesterolemic men. Nutrition Research 30 (7):441–6. doi: 10.1016/j.nutres.2010.06.004.
  • Gabr, A. M. M., H. B. Mabrok, K. Z. Ghanem, M. Blaut, and I. Smetanska. 2016. Lignan accumulation in callus and Agrobacterium rhizogenes-mediated hairy root cultures of flax (Linum usitatissimum). Plant Cell, Tissue and Organ Culture (PCTOC) 126 (2):255–67. doi: 10.1007/s11240-016-0995-4.
  • Gan, X. H., J. P. Robin, J. M. Huerta, P. Braquet, and B. Bonavida. 1994 . Inhibition of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) secretion but not IL-6 from activated human peripheral blood monocytes by a new synthetic demethylpodophyllotoxin derivative . Journal of Clinical Immunology 14 (5):280–8.
  • Gang, D. R., M. Fujita, L. B. Davin, and N. G. Lewis. 1998. The “Abnormal Lignins”: mapping heartwood formation through the lignan biosynthetic pathway. Lignin and lignan biosynthesis. ACS Symposium. 697: 389–421.
  • Gang, D. R., H. Kasahara, Z. Q. Xia, K. Vander Mijnsbrugge, G. Bauw, W. Boerjan, M. Van Montagu, L. B. Davin, and N. G. Lewis. 1999. Evolution of plant defense mechanisms. Relationships of phenylcoumaran benzylic ether reductases to pinoresinol-lariciresinol and isoflavone reductases. The Journal of Biological Chemistry 274 (11):7516–27.
  • Gaya, P., A. Peirotén, and J. M. Landete. 2020. Expression of a β-glucosidase in bacteria with biotechnological interest confers them the ability to deglycosylate lignans and flavonoids in vegetal foods. Applied Microbiology and Biotechnology 104 (11):4903–13. doi: 10.1007/s00253-020-10588-x.
  • Gnabre, J. N., J. N. Brady, D. J. Clanton, Y. Ito, J. Dittmer, R. B. Bates, and R. C. Huang. 1995. Inhibition of human immunodeficiency virus type 1 transcription and replication by DNA sequence-selective plant lignans. Proceedings of the National Academy of Sciences of the United States of America 92 (24):11239–43.
  • Ghose, K., K. Selvaraj, J. McCallum, C. W. Kirby, M. Sweeney-Nixon, S. J. Cloutier, M. Deyholos, R. Datla, and B. Fofana. 2014. Identification and functional characterization of a flax UDP-glycosyltransferase glucosylating secoisolariciresinol (SECO) into secoisolariciresinol monoglucoside (SMG) and diglucoside (SDG). Biomedical Central Plant Biology 14:1–17.
  • Gordaliza, M., M. Castro, JMa Miguel del Corral, M. López-Vázquez, A. San Feliciano, and G. T. Faircloth. 1997. In vivo immunosuppressive activity of some cyclolignans. Bioorganic & Medicinal Chemistry Letters 7 (21):2781–6. doi: 10.1016/S0960-894X(97)10072-5.
  • Gutterman, Y., M. Evenari, R. Cooper, E. C. Levy, and D. Lavie. 1980. Germination inhibition activity of a naturally occurring lignan from Aegilops ovata L. in green and infrared light. Experientia 36 (6):662–3. doi: 10.1007/BF01970124.
  • Halls, S. C., and N. G. Lewis. 2002 . Secondary and quaternary structures of the (+)-pinoresinol-forming dirigent protein. Biochemistry 41 (30):9455–61.
  • Halls, S. C., L. B. Davin, D. M. Kramer, and N. G. Lewis. 2004. Kinetic study of coniferyl alcohol radical binding to the (+)-pinoresinol forming dirigent protein. Biochemistry 43 (9):2587–95.
  • Hammonds, T. R., S. P. Denyer, D. E. Jackson, and W. L. Irving. 1996. Studies to show that with podophyllotoxin the early replicative stages of herpes simplex virus type 1 depend upon functional cytoplasmic microtubules. Journal of Medical Microbiology 45 (3):167–72.
  • Hao, M., and T. Beta. 2012. Qualitative and quantitative analysis of the major phenolic compounds as antioxidants in barley and flaxseed hulls using HPLC/MS/MS. Journal of the Science of Food and Agriculture 92 (10):2062–8. doi: 10.1002/jsfa.5582.
  • Hano, C., M. Addi, L. Bensaddek, D. Crônier, S. Baltora-Rosset, J. Doussot, S. Maury, F. Mesnard, B. Chabbert, S. Hawkins, et al. 2006. Differential accumulation of monolignol-derived compounds in elicited flax (Linum usitatissimum) cell suspension cultures. Planta 223 (5):975–89.,[Mismatch]
  • Hano, C., I. Martin, O. Fliniaux, B. Legrand, L. Gutierrez, R. R. J. Arroo, F. Mesnard, F. Lamblin, and E. Lainé. 2006. Pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 224 (6):1291–301.
  • Hano, C., C. Corbin, S. Drouet, A. Quéro, N. Rombaut, R. Savoire, R. Molinié, B. Thomasset, F. Mesnard, and E. Lainé. 2017. The lignan (+)-secoisolariciresinol extracted from flax hulls is an effective protectant of linseed oil and its emulsion against oxidative damage. European Journal of Lipid Science and Technology 119 (8):1600219. doi: 10.1002/ejlt.201600219.
  • Hashemzadeh, A. A., N. Nasoohi, F. Raygan, E. Aghadavod, E. Akbari, M. Taghizadeh, M. R. Memarzadeh, and Z. Asemi. 2017. Flaxseed oil supplementation improve gene expression levels of PPAR-gamma, LP(a), IL-1 and TNF-alpha in Type 2 diabetic patients with coronary heart disease. Lipids 52 (11):907–15. doi: 10.1007/s11745-017-4295-5.
  • Turner, E. E., E. L. Hirst, S. Peat, R. D. Haworth, W. Baker, R. P. Linstead, and J. W. Cook. 1936. Natural resins. Annual Reports on the Progress of Chemistry 33:228–79. doi: 10.1039/ar9363300228.
  • Herchi, W., D. Arraez -Roman, S. Boukhchina, H. Kallel, A. Segura- Carretero, and A. Fernandez-Gutierrez. 2012. A review of the methods used in the determination of flaxseed components. African Journal of. Biotechnology 11:724–31.
  • Heinonen, S., T. Nurmi, K. Liukkonen, K. Poutanen, K. Wähälä, T. Deyama, S. Nishibe, and H. Adlercreutz. 2001. In vitro metabolism of plant lignans: New precursors of mammalian lignans enterolactone and enterodiol. Journal of Agricultural and Food Chemistry 49 (7):3178–86.
  • Hemmati, S., T. J. Schmidt, and E. Fuss. 2007 . (+)-Pinoresinol/(-)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B . FEBS Letters 581 (4):603–10.
  • Hosseinian, F. 2006. Antioxidant properties of flaxseed lignans using in vitro model systems. Ph.D. diss., Canada: University of Saskatchewan.
  • Hosseinian, F., and T. Beta. 2009. Patented techniques for the extraction and isolation of secoisolariciresinol diglucoside from flaxseed. Recent Patents on Food, Nutrition & Agriculture 1 (1):25–31. doi: 10.2174/1876142910901010025.
  • Imran, M., N. Ahmad, F. M. Anjum, M. K. Khan, Z. Mushtaq, M. Nadeem, and S. Hussain. 2015. Potential protective properties of flax lignan secoisolariciresinol diglucoside. Nutrition Journal 14:71
  • Ionkova, I. 2009. Effect of methyl jasmonate on production of ariltetralin lignans in hairy root cultures of Linum tauricum. Pharmacognosy Research 1:102–5.
  • Ionkova, I.,. P. Sasheva, T. Ionkov, and G. Momekov. 2013. Linum narbonense: A new valuable tool for biotechnological production of a potent anticancer lignan Justicidine B. Pharmacogn Mag 9 (33):39–44.
  • Jeffries, D. E., and C. W. Lindsley. 2019. Asymmetric synthesis of natural and unnatural dibenzylbutane lignans from a common intermediate. The Journal of Organic Chemistry 84 (9):5974–9.
  • Jenab, M., and L. U. Thompson. 1996. The influence of flaxseed and lignans on colon carcinogenesis and beta-glucuronidase activity. Carcinogenesis 17 (6):1343–8.
  • Johnsson, P., A. Kamal-Eldin, L. N. Lundgren, and P. Aman. 2000. HPLC method for analysis of secoisolariciresinol diglucoside in flaxseeds. Journal of Agricultural and Food Chemistry 48 (11):5216–9. doi: 10.1021/jf0005871.
  • Kajla, P., A. Sharma, and D. R. Sood. 2015 . Flaxseed-a potential functional food source. Journal of Food Science and Technology 52 (4):1857–71.
  • Kamal-Eldin, A., N. Peerlkamp, P. Johnsson, R. Andersson, R. E. Andersson, L. N. Lundgren, and P. Aman. 2001 . An oligomer from flaxseed composed of secoisolariciresinoldiglucoside and 3-hydroxy-3-methyl glutaric acid residues. Phytochemistry 58 (4):587–90.
  • Kato-Noguchi, H., A. Kobayashi, O. Ohno, F. Kimura, Y. Fujii, and K. Suenaga. 2014. Phytotoxic substances with allelopathic activity may be central to the strong invasive potential of Brachiaria brizantha. Journal of Plant Physiology 171 (7):525–30.
  • Karimzadeh, F., R. Haddad, G. Garoosi, and R. Khademian. 2019. Effects of nanoparticles on activity of lignan biosynthesis enzymes in cell suspension culture of Linum usitatissimum L. Russian Journal of Plant Physiology 66 (5):756–62. doi: 10.1134/S1021443719050078.
  • Kasote, D. M. 2013. Flaxseed phenolics as natural antioxidants. International Food Research Journal 20:27–34.
  • Kezimana, P., A. A. Dmitriev, A. V. Kudryavtseva, E. V. Romanova, and N. V. Melnikova. 2018. Secoisolariciresinol diglucoside of flaxseed and its metabolites: Biosynthesis and potential for nutraceuticals. Frontiers in Plant Science 9:641.
  • Kitts, D. D., Y. V. Yuan, A. N. Wijewickreme, and L. U. Thompson. 1999. Antioxidant activity of the flaxseed lignan secoisolariciresinol diglycoside and its mammalian lignan metabolites enterodiol and enterolactone. Molecular and Cellular Biochemistry 202 (1/2):91–100. doi: 10.1023/A:1007022329660.
  • Kim, H.-J., E. Ono, K. Morimoto, T. Yamagaki, A. Okazawa, A. Kobayashi, and H. Satake. 2009. Metabolic engineering of lignan biosynthesis in Forsythia cell culture. Plant & Cell Physiology 50 (12):2200–9.
  • Kim, K. W., S. G. A. Moinuddin, K. M. Atwell, M. A. Costa, L. B. Davin, and N. G. Lewis. 2012. Opposite stereoselectivities of dirigent proteins in Arabidopsis and Schizandra species. The Journal of Biological Chemistry 287 (41):33957–72.
  • Konuklugil, B., I. Ionkova, N. Vasilev, T. J. Schmidt, J. Windhövel, E. Fuss, and A. W. Alfermann. 2007. Lignans from Linum species of sections Syllinum and Linum. Natural Product Research 21 (1):1–6.
  • Kraushofer, T., and G. Sontag. 2002. Determination of some phenolic compounds in flax seed and nettle roots by HPLC with coulometric electrode array detection. European Food Research and Technology 215 (6):529–33. doi: 10.1007/s00217-002-0606-y.
  • Kuijsten, A., C. W. Arts, P. V. Veer, and P. C. H. Hollman. 2005. The relative bioavailability of enterolignans in humans is enhanced by milling and crushing of flaxseed. The Journal of Nutrition 135 (12):2812–6. doi: 10.1093/jn/135.12.2812.
  • Kulik, T., M. Buśko, A. Pszczółkowska, J. Perkowski, and A. Okorski. 2014. Plant lignans inhibit growth and trichothecene biosynthesis in Fusarium graminearum. Letters in Applied Microbiology 59 (1):99–189. doi: 10.1111/lam.12250.
  • Kumar, V., G. Rajauria, V. Sahai, and V. S. Bisaria. 2012. Culture filtrate of root endophytic fungus Piriformospora indica promotes the growth and lignan production of Linum album hairy root cultures. Process Biochemistry 47 (6):901–7. doi: 10.1016/j.procbio.2011.06.012.
  • Kuo, Y. C., Y. H. Kuo, Y. L. Lin, and W. J. Tsai. 2006. Yatein from Chamaecyparis obtusa suppresses herpes simplex virus type 1 replication in HeLa cells by interruption the immediate-early gene expression. Antiviral Research 70 (3):112–20.
  • Lainé, E., C. Hano, and F. Lamblin. 2007. Phytoestrogens flax lignans are – They unsung benefactors? Phytothérapie 5 (3):121–8. doi: 10.1007/s10298-007-0237-3.
  • Landete, J. M. 2012. Plant and mammalian lignans: A review of source, intake, metabolism, intestinal bacteria and health. Food Research International 46 (1):410–24.
  • Li, X. B., Z. X. Yang, L. Yang, X. L. Chen, K. Zhang, Q. Yang, Y. M. Wu, S. B. Liu, K. S. Tao, and M. G. Zhao. 2012. Neuroprotective effects of flax lignan against NMDA-induced neurotoxicity in vitro. CNS Neuroscience & Therapeutics 18 (11):927–33.
  • Li, N., M. Zhao, T. Liu, L. Dong, Q. Cheng, J. Wu, L. Wang, X. Chen, C. Zhang, W. Lu, et al. 2017. A novel soybean dirigent gene GmDIR22 contributes to promotion of lignan biosynthesis and enhances resistance to Phytophthora sojae. Frontiers in Plant Science 8:1185–4620. doi: 10.3389/fpls.2017.01185.
  • Li, S., Z. Liang, J. Li, X. Zhang, R. Zheng, and C. Zhao. 2020. Update on naturally occurring novel arylnaphthalenes from plants. Phytochemistry Reviews 19 (2):337–403. doi: 10.1007/s11101-020-09668-7.
  • Liu, Z., N. M. Saarinen, and L. U. Thompson. 2006. Sesamin is one of the major precursors of mammalian lignans in sesame seed (Sesamum indicum) as observed in vitro and in rats. The Journal of Nutrition 136 (4):906–12. doi: 10.1093/jn/136.4.906.
  • Liu, S., W. Wei, K. Shi, X. Cao, M. Zhou, and Z. Liu. 2014. In Vitro and in vivo anti-hepatitis B virus activities of the lignan niranthin isolated from Phyllanthus niruri L. Journal of Ethnopharmacology 155 (2):1061–7.
  • Ma, X., R. Wang, X. Zhao, C. Zhang, J. Sun, J. Li, L. Zhang, T. Shao, L. Ruan, L. Chen, et al. 2013. Antidepressant-like effect of flaxseed secoisolariciresinol diglycoside in ovariectomized mice subjected to unpredictable chronic stress. Metabolic Brain Disease 28 (1):77–84.
  • Mahendra Kumar, C., and S. A. Singh. 2015. Bioactive lignans from sesame (Sesamum indicum L.): Evaluation of their antioxidant and antibacterial effects for food applications. Journal of Food Science and Technology 52 (5):2934–41.
  • Malik, S., O. Bíba, J. Grúz, R. R. J. Arroo, and M. Strnad. 2014. Biotechnological approaches for producing aryltetralin lignans from Linum species. Phytochemistry Reviews 13 (4):893–913. doi: 10.1007/s11101-014-9345-5.
  • Menendez, J. A., A. Vazquez-Martin, R. Garcia-Villalba, A. CarrascoPancorbo, C. Oliveras-Ferraros, A. Fernandez-Gutierrez, and A. Segura-Carretero. 2008. tabAnti-HER2 (erbB-2) oncogene effects of phenolic compounds directly isolated from commercial Extra-Virgin Olive Oil (EVOO). Biomedical Central Cancer 8:377.
  • Markulin, L., C. Corbin, S. Renouard, S. Drouet, L. Gutierrez, I. Mateljak, D. Auguin, C. Hano, E. Fuss, and E. Laine. 2019. Pinoresinol–lariciresinol reductases, key to the lignan synthesis in plants. Planta 249 (6):1695–714. doi: 10.1007/s00425-019-03137-y.
  • Markulin, L., C. Corbin, S. Renouard, S. Drouet, C. Durpoix, C. Mathieu, T. Lopez, D. Auguin, C. Hano, and É. Lainé. 2019. Characterization of LuWRKY36, a flax transcription factor promoting secoisolariciresinol biosynthesis in response to Fusarium oxysporum elicitors in Linum usitatissimum L. hairy roots. Planta 250 (1):347–66. doi: 10.1007/s00425-019-03172-9.
  • Mazur, W. M., J. A. Duke, K. Wähälä, S. Rasku, and H. Adlercreutz. 1998. Isoflavonoids and lignans in legumes: Nutritional and health aspects in humans. The Journal of Nutritional Biochemistry 9 (4):193–200. doi: 10.1016/S0955-2863(97)00184-8.
  • Mense, S. M., T. K. Hei, R. K. Ganju, and H. K. Bhat. 2008. Phytoestrogens and breast cancer prevention: Possible mechanisms of action. Environmental Health Perspectives 116 (4):426–33.
  • Milder, I. E., I. C. W. Arts, D. P. Venema, J. J. P. Lasaroms, K. Wahalä, and P. C. H. Hollman. 2004. Optimization of a liquid chromatography-tandem mass spectrometry method for quantification of the plant lignans secoisolariciresinol, matairesinol, lariciresinol, and pinoresinol in foods. Journal of Agricultural and Food Chemistry 52 (15):4643–51.
  • Milder, I. E. J., I. C. W. Arts, B. van de Putte, D. P. Venema, and P. C. H. Hollman. 2005. Lignan contents of Dutch plant foods: A database including lariciresinol, pinoresinol, secoisolariciresinol and matairesinol. The British Journal of Nutrition 93 (3):393–402. doi: 10.1079/BJN20051371.
  • Moazzami, A. A., S. L. Haese, and A. Kamal-Eldin. 2007. Lignan contents in sesame seeds and products. European Journal of Lipid Science and Technology 109 (10):1022–7. doi: 10.1002/ejlt.200700057.
  • Mohagheghzadeh, A., T. J. Schmidt, and A. W. Alfermann. 2002. Arylnaphthalene lignans from in vitro cultures of Linum austriacum. Journal of Natural Products 65 (1):69–71. doi: 10.1021/np0102814.
  • Mohagheghzadeh, A., S. Dehshahri, and S. Hemmati. 2009. Accumulation of lignans by in vitro cultures of three Linum species. Zeitschrift Für Naturforschung C 64 (1-2):73–6. doi: 10.1515/znc-2009-1-213.
  • Moree, S. S., and J. Rajesha. 2011. Secoisolariciresinol diglucoside: A potent multifarious bioactive phytoestrogen of flaxseed. Review Biomedical Engineering & Biotechnology 2:1–24.
  • Moree, S. S., G. B. Kavishankar, and J. Rajesha. 2013. Antidiabetic effect of secoisolariciresinol diglucoside in streptozotocin-induced diabetic rats. Phytomedicine 20 (3-4):237–45. doi: 10.1016/j.phymed.2012.11.011.
  • Momekov, G., S. Konstantinov, I. Dineva, and I. Ionkova. 2011 . Effect of justicidin B - A potent cytotoxic and pro-apoptotic arylnaphtalene lignan on human breast cancer-derived cell lines. Neoplasma 58 (4):320–5.
  • Morimoto, K., and H. Satake. 2013. Seasonal alteration in amounts of lignans and their glucosides and gene expression of the relevant biosynthetic enzymes in the Forsythia suspense leaf. Biological & Pharmaceutical Bulletin 36 (9):1519–23.
  • Murata, J., E. Matsumoto, K. Morimoto, T. Koyama, and H. Satake. 2015. Generation of triple-transgenic Forsythia cell cultures as a platform for the efficient, stable, and sustainable production of lignans. PLOS One 10 (12):e0144519. doi: 10.1371/journal.pone.0144519.
  • Murphy, P. A., and S. Hendrich. 2002. Phytoestrogens in foods. Advances in Food and Nutrition Research 44:195–246. doi: 10.1016/s1043-4526(02)44005-3.
  • Nadeem, M., B. H. Abbasi, L. Garros, S. Drouet, A. Zahir, W. Ahmad, N. Giglioli-Guivarc’h, and C. Hano. 2018. Yeast-extract improved biosynthesis of lignans and neolignans in cell suspension cultures of Linum usitatissimum L. Plant Cell, Tissue and Organ Culture (PCTOC) 135 (2):347–55. doi: 10.1007/s11240-018-1468-8.
  • Nadeem, M., W. Ahmed, A. Zahir, C. Hano, and B. H. Abbasi. 2019. Salicylic acid‐enhanced biosynthesis of pharmacologically important lignans and neo lignans in cell suspension culture of Linum ussitatsimum L. Engineering in Life Sciences 19:168–74. doi: 10.1002/elsc.201800095.
  • Nakatsubo, T., M. Mizutani, S. Suzuki, T. Hattori, and T. Umezawa. 2008. Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis. The Journal of Biological Chemistry 283 (23):15550–7. doi: 10.1074/jbc.M801131200.
  • Naoumkina, M. A., Q. Zhao, L. Gallego-Giraldo, X. Dai, P. X. Zhao, and R. A. Dixon. 2010. Genome-wide analysis of phenylpropanoid defence pathways. Molecular Plant Pathology 11 (6):829–46.
  • Niculaes, C., K. Morreel, H. Kim, F. Lu, L. S. McKee, B. Ivens, J. Haustraete, B. Vanholme, R. D. Rycke, M. Hertzberg, et al. 2014. Phenylcoumaran benzylic ether reductase prevents accumulation of compounds formed under oxidative conditions in poplar xylem. The Plant Cell 26 (9):3775–91.
  • Namiki, M. 1995. The chemistry and physiological functions of sesame. Food Reviews International 11 (2):281–329. doi: 10.1080/87559129509541043.
  • Oliva, A., R. M. Moraes, S. B. Watson, S. O. Duke, and F. E. Dayan. 2002. Aryltetralin lignans inhibit plant growth by affecting the formation of mitotic microtubular organizing centres. Pesticide Biochemistry and Physiology 72 (1):45–54. doi: 10.1006/pest.2002.2582.
  • Ono, E., J. Murata, H. Toyonaga, M. Nakayasu, M. Mizutani, M. P. Yamamoto, T. Umezawa, and M. Horikawa. 2018. Formation of a methylenedioxy bridge in (+)-epipinoresinol by CYP81Q3 corroborates with diastereomeric specialization in sesame lignans. Plant & Cell Physiology 59 (11):2278–87. doi: 10.1093/pcp/pcy150.
  • Pan, A., J. Sun, Y. Chen, X. Ye, H. Li, Z. Yu, Y. Wang, W. Gu, X. Zhang, X. Chen, et al. 2007. Effects of a flaxseed-derived lignan supplement in type 2 diabetic patients: A randomized, double-blind, cross-over trial. Plos One 2 (11):e1148. doi: 10.1371/journal.pone.0001148.
  • Panaite, T., M. Ropota, R. Turcu, M. Olteanu, A. R. Corbu, and V. Nour. 2017. Flaxseeds: Nutritional potential and bioactive compounds. Bulletin University of Agricultural and Veterinary Medicine Cluj- Napoca Food Sciences and Techology 74:2344.
  • Penalvo, J. L., K. Haajanen, N. Botting, and H. Adlercreutz. 2005. Quantification of lignans in food using isotope dilution gas chromatography/mass spectrometry. Journal of Agricultural and Food Chemistry 53 (24):9342–9347.
  • Penumathsa, S. V., S. Koneru, L. Zhan, S. John, V. P. Menon, K. Prasad, and N. Maulik. 2008. Secoisolariciresinol diglucoside induces neovascularization-mediated cardioprotection against ischemia-reperfusion injury in hypercholesterolemic myocardium. Journal of Molecular and Cellular Cardiology 44 (1):170–179.
  • Pickel, B., M.-A. Constantin, J. Pfannstiel, J. Conrad, U. Beifuss, and A. Schaller. 2010. An enantiocomplementary dirigent protein for the enantioselective laccase-catalyzed oxidative coupling of phenols. Angewandte Chemie (International ed. in English) 49 (1):202–204.[Mismatch]
  • Prasad, K. 1997. Hydroxyl radical-scavenging property of secoisolariciresinol diglucoside (SDG) isolated from flax-seed. Molecular and Cellular Biochemistry 168 (1-2):117–123.
  • Prasad, K. 2000a. Antioxidant activity of secoisolariciresinol diglucoside-derived metabolites, secoisolariciresinol, enterodiol, and enterolactone. The International Journal of Angiology: Official Publication of the International College of Angiology, Inc 9 (4):220–225.
  • Prasad, K. 2000b. Oxidative stress as a mechanism of diabetes in diabetic BB prone rats: Effect of secoisolariciresinol diglucoside (SDG). Molecular and Cellular Biochemistry 209 (1/2):89–96. doi: 10.1023/A:1007079802459.
  • Prasad, K., and A. Jadhav. 2016. Prevention and treatment of atherosclerosis with flaxseed-derived compound secoisolariciresinol diglucoside. Current Pharmaceutical Design 22 (2):214–220.
  • Qazi, P. H., A. Rashid, and S. A. Shawl. 2011. Podophyllum hexandrum”– A versatile medicinal plant. International Journal of Pharmacy and Pharmaceutical Sciences 3:261–268.
  • Rajesha, J., A. Ranga Rao, B. Madhusudhan, and M. Karunakumar. 2010. Antibacterial properties of secoisolariciresinol diglucoside isolated from Indian flaxseed cultivars. Current Trends in Biotechnology and Pharmacy 4:551–560.
  • Raffaelli, B., A. Hoikkala, E. Leppala, and K. Wahala. 2002. Enterolignans. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 777 (1-2):29–43. doi: 10.1016/S1570-0232(02)00092-2.
  • Rantapaa-Dahlqvist, S., G. Landberg, G. Roos, and B. Norberg. 1994. Cell cycle effects of the anti-rheumatic agent CPH82. British Journal of Rheumatology 33 (4):327–331.
  • Rickard, S. E., Y. V. Yuan, J. Chen, and L. U. Thompson. 1999. Dose effects of flaxseed and its lignan on N-methyl-N-nitrosourea-induced mammary tumorigenesis in rats. Nutrition and Cancer 35 (1):50–57. doi: 10.1207/S1532791450-57.
  • Renouard, S., C. Corbin, T. Lopez, J. Montguillon, L. Gutierrez, F. Lamblin, E. Lainé, and C. Hano. 2012. Abscisic acid regulates pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds. Planta 235 (1):85–98.
  • Renouard, S., M.-A. Tribalatc, F. Lamblin, G. Mongelard, O. Fliniaux, C. Corbin, D. Marosevic, S. Pilard, H. Demailly, L. Gutierrez, et al. 2014. RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: Consequences on lignans and neolignans accumulation. Journal of Plant Physiology 171 (15):1372–1377.
  • Rodriguez-Leyva, D., W. Weighell, A. L. Edel, R. LaVallee, E. Dibrov, R. Pinneker, T. G. Maddaford, B. Ramjiawan, M. Aliani, R. Guzman, et al. 2013. Potent antihypertensive action of dietary flaxseed in hypertensive patients. Hypertension (Dallas, TX: 1979) 62 (6):1081–1089.,.
  • Rodríguez-García, C., C. Sánchez-Quesada, E. Toledo, M. Delgado-Rodríguez, and J. Gaforio. 2019. Naturally lignan-rich foods: A dietary tool for health promotion? Molecules 24 (5):917. doi: 10.3390/molecules24050917.
  • Rom, S., V. Zuluaga-Ramirez, N. L. Reichenbach, M. A. Erickson, M. Winfield, S. Gajghate, M. Christofidou-Solomidou, K. L. Jordan-Sciutto, and Y. Persidsky. 2018. Secoisolariciresinol diglucoside is a blood-brain barrier protective and anti-inflammatory agent: Implications for neuroinflammation. Journal of Neuroinflammation 15 (1):25.
  • Ross, J., Y. Li, E.-K. Lim, and D. J. Bowles. 2001. Higher plant glycosyltransferases. Genome Biology 2 (2):S3004.
  • Sainvitu, P., K. Nott, G. Richard, C. Blecker, C. Jérôme, J.-P. Wathelet, M. Paquot, and M. Deleu. 2012. Structure, properties and obtention routes of flaxseed lignan secoisolariciresinol: A review. Biotechnology, Agronomy, Society and Environment 16:115–124.
  • Saleem, M., H. J. Kim, M. S. Ali, and Y. S. Lee. 2005. An update on bioactive plant lignans. Natural Product Reports 22 (6):696–716.
  • Sánchez-Elordi, E., R. M. Sterling, R. Santiago, R. de Armas, C. Vicente, and M. E. Legaz. 2020. Increase in cytotoxic lignans production after smut infection in sugar cane plants. Journal of Plant Physiology 244:153087.[Mismatch]
  • Satake, H., E. Ono, and J. Murata. 2013 . Recent advances in the metabolic engineering of lignan biosynthesis pathways for the production of transgenic plant-based foods and supplements. Journal of Agricultural and Food Chemistry 61 (48):11721–11729.
  • Satake, H., T. Koyama, S. E. Bahabadi, E. Matsumoto, E. Ono, and J. Murata. 2015. Essences in metabolic engineering of lignan biosynthesis. Metabolites 5 (2):270–290.
  • Scher, J. M., J. Zapp, and H. Becker. 2003. Lignan derivatives from the liverwort Bazzania trilobata. Phytochemistry 62 (5):769–777. doi: 10.1016/S0031-9422(02)00626-X.
  • Schmidt, T. J., S. Hemmati, E. Fuss, and A. W. Alfermann. 2006. A combined HPLC-UV and HPLC-MS method for the identification of lignans and its application to the lignans of Linum usitatissimum L. and L. bienne Mill. Phytochemical Analysis: PCA 17 (5):299–311.
  • Schmidt, T. J., A. Alfermann, and E. Fuss. 2008. High-performance liquid chromatography/mass spectrometric identification of dibenzylbutyrolactone-type lignans: Insights into electrospray ionization tandem mass spectrometric fragmentation of lign-7-eno-9,9'-lactones and application to the lignans of Linum usitatissimum L. (Common Flax). Rapid Communications in Mass Spectrometry: RCM 22 (22):3642–3650.
  • Schmidt, T. J., S. Hemmati, M. Klaes, B. Konuklugil, A. Mohagheghzadeh, I. Ionkova, E. Fuss, and A. Wilhelm Alfermann. 2010 . Lignans in flowering aerial parts of Linum species-chemodiversity in the light of systematics and phylogeny. Phytochemistry 71 (14-15):1714–1728.
  • Schmidt, T. J., M. Klaes, and J. Sendker. 2012. Lignans in seeds of Linum species. Phytochemistry 82:89–99.
  • Schmitt, J., and M. Petersen. 2002. Influence of methyl jasmonate and coniferyl alcohol on pinoresinol and matairesinol accumulation in a Forsythia × intermedia suspension culture. Plant Cell Reports 20 (9):885–890. doi: 10.1007/s00299-001-0414-z.
  • Schwertner, H. A., and D. C. Rios. 2012. Analysis of sesamin, asarinin, and sesamolin by HPLC with photodiode and fluorescent detection by GC/MS: Application to sesame oil and serum samples. Journal of the American Oil Chemists' Society 89 (11):1943–1950. doi: 10.1007/s11746-012-2098-7.
  • Shams-Ardakani, M., S. Hemmati, and A. Mohagheghzadeh. 2005. Effect of elicitors on the enhancement of podophyllotoxin biosynthesis in suspension cultures of Linum album. DARU Journal of Pharmaceutical Sciences 13:56–60.
  • Shim, Y. Y., B. Gui, P. G. Arnison, Y. Wang, and M. J. T. Reaney. 2014. Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: A review. Trends in Food Science & Technology 38 (1):5–20. doi: 10.1016/j.tifs.2014.03.011.
  • Sicilia, T., H. B. Niemeyer, D. M. Honig, and M. Metzler. 2003. Identification and stereochemical characterization of lignans in flaxseed and pumpkin seeds. Journal of Agricultural and Food Chemistry 51 (5):1181–1188.
  • Singh, J. K., A. Vishwakarma, and S. Kumar. 2018. Importance of linseed crops in agricultural sustainability. International Journal of Current Microbiology and Applied Sciences 7 (12):1198–1207. doi: 10.20546/ijcmas.2018.712.149.
  • Smeds, A. I., P. C. Eklund, R. E. Sjöholm, S. M. Willför, S. Nishibe, T. Deyama, and B. R. Holmbom. 2007. Quantification of a broad spectrum of lignans in cereals, oilseeds, and nuts. Journal of Agricultural and Food Chemistry 55 (4):1337–1346. doi: 10.1021/jf0629134.
  • Sørensen, M. G., K. Henriksen, A. V. Neutzsky-Wulff, M. H. Dziegiel, and M. A. Karsdal. 2007. Diphyllin, a novel and naturally potent V-ATPase inhibitor, abrogates acidification of the osteoclastic resorption lacunae and bone resorption. Journal of Bone and Mineral Research 22 (10):1640–1648. doi: 10.1359/jbmr.070613.
  • Struijs, K. 2008. The lignan macromolecule from flaxseed. structure and bioconversion of lignans. Ph.D. diss., Wageningen: Wageningen University.
  • Tahsili, J., M. Sharifi, N. Safaie, S. Esmaeilzadeh-Bahabadi, and M. Behmanesh. 2014. Induction of lignans and phenolic compounds in cell culture of Linum album by culture filtrate of Fusarium graminearum. Journal of Plant Interactions 9 (1):412–417. doi: 10.1080/17429145.2013.846419.
  • Tan, K. P., J. Chen, W. E. Ward, and L. U. Thompson. 2004. Mammary gland morphogenesis is enhanced by exposure to flaxseed or its major lignan during suckling in rats. Experimental Biology and Medicine (Maywood, N.J.) 229 (2):147–157.
  • Teponno, R. B., S. Kusari, and M. Spiteller. 2016. Recent advances in research on lignans and neolignans. Natural Product Reports 33 (9):1044–1092.
  • Takeda, R., J. Hasegawa, and M. Shinozaki. 1990. The first isolation of lignans, megacerotonic acid and anthocerotonic acid, from non-vascular plants, anthocerotae (hornworts). Tetrahedron Letters 31 (29):4159–4162. doi: 10.1016/S0040-4039(00)97569-5.
  • Tashackori, H., M. Sharif, N. A. Chashmi, E. Fuss, M. Behmanesh, and N. Safaie. 2019. RNAi-mediated silencing of pinoresinol lariciresinol reductase in Linum album hairy roots alters the phenolic accumulation in response to fungal elicitor. Journal of Plant Physiology 232:115–126.
  • Tham, D. M., C. D. Gardner, and W. L. Haskell. 1998. Potential health benefits of dietary phytoestrogens: A review of the clinical, epidemiological, and mechanistic evidence. The Journal of Clinical Endocrinology and Metabolism 83 (7):2223–2235. doi: 10.1210/jc.83.7.2223.
  • Tera, M., T. Koyama, J. Murata, A. Furukawa, S. Mori, T. Azuma, T. Watanabe, K. Hori, A. Okazawa, Y. Kabe, et al. 2019. Identification of a binding protein for sesamin and characterization of its roles in plant growth. Scientific Reports 9 (1):8631.
  • Thompson, L. U., P. Robb, M. Serraino, and F. Cheung. 1991. Mammalian lignan production from various foods. Nutrition and Cancer 16 (1):43–52.
  • Thompson, L. U. 1998. Experimental studies on lignans and cancer. Baillière's Clinical Endocrinology and Metabolism 12 (4):691–705. doi: 10.1016/S0950-351X(98)80011-6.
  • Thompson, L. U., B. A. Boucher, Z. Liu, M. Cotterchio, and N. Kreiger. 2006 . Phytoestrogen content of foods consumed in Canada, including isoflavones, lignans, and coumestan. Nutrition and Cancer 54 (2):184–201.
  • Thongphasuk, P., R. Suttisri, R. Bavovada, and R. Verpoorte. 2004. Antioxidant lignan glucosides from Strychnos vanprukii. Fitoterapia 75 (7-8):623–628. doi: 10.1016/j.fitote.2004.04.013.
  • Touré, A., and X. Xueming. 2010. Flaxseed lignans: Source, biosynthesis, metabolism, antioxidant activity, bio‐active components, and health benefits. Comprehensive Reviews in Food Science and Food Safety 9 (3):261–269. doi: 10.1111/j.1541-4337.2009.00105.x.
  • Umezawa, T., L. B. Davin, D. G. I. Kingston, E. Yamamoto, and N. G. Lewis. 1990. Lignan biosynthesis in Forsythia species. Journal of the Chemical Society, Chemical Communications (20):1405–1408. doi: 10.1039/c39900001405.
  • Umezawa, T., L. B. Davin, and N. G. Lewis. 1991. Formation of lignans, (−)-secoisolariciresinol and (−)-matairesinol with Forsythia intermedia cell-free extracts. The Journal of Biological Chemistry 266 (16):10210–10217.
  • Umezawa, T. 2003. Diversity in lignan biosynthesis. Phytochemistry Reviews 2 (3):371–390. doi: 10.1023/B:PHYT.0000045487.02836.32.
  • Vanharanta, M., S. Voutilainen, T. A. Lakka, M. van der Lee, H. Adlercreutz, and J. T. Salonen. 1999. Risk of acute coronary events according to serum concentrations of enterolactone: A prospective population-based case-control study. The Lancet 354 (9196):2112–2115. doi: 10.1016/S0140-6736(99)05031-X.
  • van Fürden, B., A. Humburg, and E. Fuss. 2005. Influence of methyl jasmonate on podophyllotoxin and 6-methoxypodophyllotoxin accumulation in Linum album cell suspension cultures. Plant Cell Reports 24 (5):312–317.
  • Valsta, L. M., A. Kilkkinen, W. Mazur, T. Nurmi, A. M. Lampi, M. L. Ovaskainen, T. Korhonen, H. Adlercreutz, and P. Pietinen. 2003. Phyto-oestrogen database of foods and average intake in Finland. British Journal of Nutrition 89 (S1):S31–S38. doi: 10.1079/BJN2002794.
  • Vasilev, N., G. Momekov, M. Zaharieva, S. Konstantinov, P. Bremner, M. Heinrich, and I. Ionkova. 2005. Cytotoxic activity of a podophyllotoxin-like lignan from Linum tauricum Willd. Neoplasma 52 (5):425–429.
  • Vasilev, N.,  Elfahmi, R. Bos, O. Kayser, G. Momekov, S. Konstantinov, and I. Ionkova. 2006. Production of justicidin B, a cytotoxic arylnaphthalene lignan from genetically transformed root cultures of Linum leonii. Journal of Natural Products 69:1014–1017. doi: 10.1021/np060022k.
  • Vardapetyan, H. R., A. B. Kirakosyan, A. A. Oganesyan, A. R. Penesyan, and A. W. Alfermann. 2003. Effect of various elicitors on lignan biosynthesis in callus cultures of Linum austriacum. Russian Journal of Plant Physiology 50 (3):297–300. doi: 10.1023/A:1023853716376.
  • Velalopoulou, A., S. Tyagi, R. A. Pietrofesa, E. Arguiri, and M. Christofidou-Solomidou. 2015. The flaxseed-derived lignan phenolic secoisolariciresinol diglucoside (SDG) protects non-malignant lung cells from radiation damage. International Journal of Molecular Sciences 17 (1):7. doi: 10.3390/ijms17010007.
  • Venglat, P., D. Xiang, S. Qiu, S. P. Venglat, D. Xiang, S. Qiu, S. L. Stone, C. Tibiche, D. Cram, M. Alting-Mees, et al. 2011. Gene expression analysis of flax seed development. BMC Plant Biology 11:74
  • von Heimendahl, C. B. I., K. M. Schäfer, P. Eklund, R. Sjoholm, T. J. Schmidt, and E. Fuss. 2005 . Pinoresinol-lariciresinol reductases with different stereospecificity from Linum album and Linum usitatissimum. Phytochemistry 66 (11):1254–1263.
  • Wallis, A. F. A. 1998. Structural diversity in lignans and neolignans. Lignin and Lignan Biosynthesis. ACS Symposium 21:323–333.
  • Wada, H., T. Kido, N. Tanaka, T. Murakami, Y. Saiki, and C.-M. Chen. 1992. Chemical and chemotaxonomical studies of ferns. LXXXI. Characteristic lignans of blechnaceous ferns. Chemical & Pharmaceutical BULLETIN 40 (8):2099–2101. doi: 10.1248/cpb.40.2099.
  • Wang, C.-Z., X.-Q. Ma, D.-H. Yang, Z.-R. Guo, G.-R. Liu, G.-X. Zhao, J. Tang, Y.-N. Zhang, M. Ma, S.-Q. Cai, et al. 2010. Production of enterodiol from defatted flaxseeds through biotransformation by human intestinal bacteria. BMC Microbiology 10:115
  • Ward, R. S. 1999. Lignans, neolignans and related compounds. Natural Product Reports 16 (1):75–96. doi: 10.1039/a705992b.
  • Ward, W. E., J. Chen, and L. U. Thompson. 2001. Exposure to flaxseed or its purified lignan during suckling only or continuously does not alter reproductive indices in male and female offspring. Journal of Toxicology and Environmental Health 64 (7):567–577. doi: 10.1080/15287390152627246.
  • Weiss, S. G., M. Tin-Wa, R. E. Perdue, and N. R. Farnsworth. 1975 . Potential anticancer agents II: antitumor and cytotoxic lignans from Linum album (Linaceae)). Journal of Pharmaceutical Sciences 64 (1):95–98.
  • Willfor, S. M., A. I. Smeds, and B. R. Holmbom. 2006. Chromatographic analysis of lignans. Journal of Chromatography A 1112 (1-2):64–77.
  • Xia, Z.-Q., M. A. Costa, H. C. Pélissier, L. B. Davin, and N. G. Lewis. 2001. Secoisolariciresinol dehydrogenase purification, cloning, and functional expression. Implications for human health and protection. The Journal of Biological Chemistry 276 (16):12614–12623. doi: 10.1074/jbc.M008622200.
  • Xu, J., G. Tian, C. Ma, H. Gao, C. Chen, W. Yang, Q. Deng, Q. Huang, Z. Ma, and F. Huang. 2016. Flaxseed lignan secoisolariciresinol diglucoside ameliorates experimental colitis induced by dextran sulphate sodium in mice. Journal of Functional Foods 26:187–195. doi: 10.1016/j.jff.2016.07.013.
  • Xu, W.-H., P. Zhao, M. Wang, and Q. Liang. 2019. Naturally occurring furofuran lignans: Structural diversity and biological activities. Natural Product Research 33 (9):1357–1373. doi: 10.1080/14786419.2018.1474467.
  • Yadav, D., N. Masood, S. Luqman, P. Brindha, and M. M. Gupta. 2013. Antioxidant furofuran lignans from Premna integrifolia. Industrial Crops and Products 41:397–402. doi: 10.1016/j.indcrop.2012.04.044.
  • Yang, Y., J. Shah, and D. F. Klessig. 1997. Signal perception and transduction in plant defense responses. Genes & Development 11 (13):1621–1639.
  • Yang, Y.-N., X.-Y. Huang, Z.-M. Feng, J. S. Jiang, and P. C. Zhang. 2014 . Hepatoprotective activity of twelve novel 7'-hydroxy lignan glucosides from Arctii Fructus . Journal of Agricultural and Food Chemistry 62 (37):9095–9102.
  • Yang, B., L. Shi, A. M. Wang, M. Q. Shi, Z. H. Li, F. Zhao, X. J. Guo, and D. Li. 2019. Lowering effects of n-3 fatty acid supplements on blood pressure by reducing plasma angiotensin ii in inner mongolia hypertensive patients: A double-blind randomized controlled trial. Journal of Agricultural and Food Chemistry 67 (1):184–192.
  • Yousefzadi, M., M. Sharifi, M. Behmanesh, E. Moyano, M. Bonfill, R. M. Cusido, and J. Palazon. 2010. Podophyllotoxin: Current approaches to its biotechnological production and future challenges. Engineering in Life Sciences 10 (4):281–292. doi: 10.1002/elsc.201000027.
  • Yousefzadi, M., M. Sharifi, M. Behmanesh, A. Ghasempour, E. Moyano, and J. Palazon. 2010. Salicylic acid improves podophyllotoxin production in cell cultures of Linum album by increasing the expression of genes related with its biosynthesis. Biotechnology Letters 32 (11):1739–1743.
  • Zahir, A., M. Nadeem, W. Ahmad, N. Giglioli-Guivarc’h, C. Hano, and B. H. Abbasi. 2019. Chemogenic silver nanoparticles enhance lignans and neolignans in cell suspension cultures of Linum usitatissimum L. Plant Cell, Tissue and Organ Culture (PCTOC) 136 (3):589–596. doi: 10.1007/s11240-018-01539-6.
  • Zanwar, A., M. Hegde, and S. Bodhankar. 2011. Cardioprotective activity of flax lignan concentrate extracted from seeds of Linum usitatissimum in isoprenalin induced myocardial necrosis in rats. Interdisciplinary Toxicology 4 (2):90–97. doi: 10.2478/v10102-011-0016-8.
  • Zanwar, A. A., M. V. Hegde, S. R. Rojatkar, K. B. Sonawane, P. R. Rajamohanan, and S. L. Bodhankar. 2014. Isolation, characterization and antihyperlipidemic activity of secoisolariciresinol diglucoside in poloxamer407-induced experimental hyperlipidemia. Pharmaceutical Biology 52 (9):1094–1103. doi: 10.3109/13880209.2013.877492.
  • Zhang, W., X. Wang, Y. Liu, H. Tian, B. Flickinger, M. W. Empie, and S. Z. Sun. 2008. Dietary flaxseed lignan extract lowers plasma cholesterol and glucose concentrations in hypercholesterolaemic subjects. British Journal of Nutrition 99 (6):1301–1309. doi: 10.1017/S0007114507871649.
  • Zheng, C.-J., X.-W. Zhang, T. Han, Y.-P. Jiang, J.-Y. Tang, D. Bromme, and L.-P. Qin. 2014. Anti-inflammatory and anti-osteoporotic lignans from Vitex negundo seeds. Fitoterapia 93:31–33.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.