1,382
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Targets and mechanisms of dietary anthocyanins to combat hyperglycemia and hyperuricemia: a comprehensive review

, &

References

  • Abouzed, T. K., M. D. M. Contreras, K. M. Sadek, M. Shukry, D. H. Abdelhady, W. M. Gouda, W. Abdo, N. E. Nasr, R. H. Mekky, A. Segura-Carretero, et al. 2018. Red onion scales ameliorated streptozotocin-induced diabetes and diabetic nephropathy in wistar rats in relation to their metabolite fingerprint. Diabetes Research and Clinical Practice 140:253–64. doi: 10.1016/j.diabres.2018.03.042.
  • Adeva-Andany, M. M., R. Funcasta-Calderón, C. Fernández-Fernández, E. Castro-Quintela, and N. Carneiro-Freire. 2019. Metabolic effects of glucagon in humans. Journal of Clinical & Translational Endocrinology 15:45–53. doi: 10.1016/j.jcte.2018.12.005.
  • Adnan, E., I. A. Rahman, and H. P. Faridin. 2019. Relationship between insulin resistance, metabolic syndrome components and serum uric acid. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 13 (3):2158–62. doi: 10.1016/j.dsx.2019.04.001.
  • Alcalde-Eon, C., M. T. Escribano-Bailón, C. Santos-Buelga, and J. C. Rivas-Gonzalo. 2006. Changes in the detailed pigment composition of red wine during maturity and ageing: A comprehensive study. Analytica Chimica Acta 563 (1-2):238–54. doi: 10.1016/j.aca.2005.11.028.
  • Alderman, M., and K. J. Aiyer. 2004. Uric acid: Role in cardiovascular disease and effects of losartan. Current Medical Research and Opinion 20 (3):369–79. doi: 10.1185/030079904125002982.
  • Alnajjar, M., S. K. Barik, C. Bestwick, F. Campbell, M. Cruickshank, F. Farquharson, G. Holtrop, G. Horgan, P. Louis, K. M. Moar, et al. 2020. Anthocyanin-enriched bilberry extract attenuates glycaemic response in overweight volunteers without changes in insulin. Journal of Functional Foods 64103597. doi: 10.1016/j.jff.2019.:.
  • Alvarado, J. L., A. Leschot, A. Olivera-Nappa, A. M. Salgado, H. Rioseco, C. Lyon, and P. Vigil. 2016. Delphinidin-rich maqui berry extract (delphinol®) lowers fasting and postprandial glycemia and insulinemia in prediabetic individuals during oral glucose tolerance tests. BioMed Research International 2016:9070537–doi: 10. 1155/2016/9070537. doi: 10.1155/2016/9070537.
  • Alzaid, F., H. M. Cheung, V. R. Preedy, and P. A. Sharp. 2013. Regulation of glucose transporter expression in human intestinal Caco-2 cells following exposure to an anthocyanin-rich berry extract. PLoS One. 8 (11):e78932. doi: 10.1371/journal.pone.0078932.
  • American Diabetes Association. 2009. Diagnosis and classification of diabetes mellitus. Diabetes Care 32:S62–S7. doi: 10.2337/dc09-S062.
  • Amin, H. P., C. Czank, S. Raheem, Q. Zhang, N. P. Botting, A. Cassidy, and C. D. Kay. 2015. Anthocyanins and their physiologically relevant metabolites alter the expression of il-6 and vcam-1 in cd40l and oxidized ldl challenged vascular endothelial cells. Molecular Nutrition & Food Research 59 (6):1095–106. doi: 10.1002/mnfr.201400803.
  • Anhe, F. F., D. Roy, G. Pilon, S. Dudonne, S. Matamoros, T. V. Varin, C. Garofalo, Q. Moine, Y. Desjardins, E. Levy, et al. 2015. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased akkermansia spp. Population in the gut microbiota of mice. Gut 64 (6):872–83. doi: 10.1136/gutjnl-2014-307142.
  • Ayoub, H. M., M. R. McDonald, J. A. Sullivan, R. Tsao, and K. A. Meckling. 2018. Proteomic profiles of adipose and liver tissues from an animal model of metabolic syndrome fed purple vegetables. Nutrients 10 (4)456. doi: 10.3390/nu10040:.
  • Azofeifa, G., S. Quesada, L. Navarro, O. Hidalgo, K. Portet, A. M. Pérez, F. Vaillant, P. Poucheret, and A. Michel. 2016. Hypoglycaemic, hypolipidaemic and antioxidant effects of blackberry beverage consumption in streptozotocin-induced diabetic rats. Journal of Functional Foods 26:330–7. doi: 10.1016/j.jff.2016.08.007.
  • Badescu, M., O. Badulescu, L. Badescu, and M. Ciocoiu. 2015. Effects of sambucus nigra and aronia melanocarpa extracts on immune system disorders within diabetes mellitus. Pharmaceutical Biology 53 (4):533–9. doi: 10.3109/13880209.2014.931441.
  • Bardin, T., and P. Richette. 2014. Definition of hyperuricemia and gouty conditions. Current Opinion in Rheumatology 26 (2):186–91. doi: 10.1097/BOR.0000000000000028.
  • Barik, S. K., W. R. Russell, K. M. Moar, M. Cruickshank, L. Scobbie, G. Duncan, and N. Hoggard. 2020. The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting alpha-glucosidase while other phenolics modulate salivary alpha-amylase, glucose uptake and sugar transporters. The Journal of Nutritional Biochemistry 78:108325. doi: 10.1016/j.jnutbio.2019.108325.
  • Bell, P. G., D. C. Gaze, G. W. Davison, T. W. George, M. J. Scotter, and G. Howatson. 2014. Montmorency tart cherry (Prunus cerasus L.) concentrate lowers uric acid, independent of plasma cyanidin-3-O-glucosiderutinoside. Journal of Functional Foods 11:82–90. doi: 10.1016/j.jff.2014.09.004.
  • Bhaswant, M., S. R. Shafie, M. L. Mathai, P. Mouatt, and L. Brown. 2017. Anthocyanins in chokeberry and purple maize attenuate diet-induced metabolic syndrome in rats. Nutrition 41:24–31. doi: 10.1016/j.nut.2016.12.009.
  • Blando, F., and B. D. Oomah. 2019. Sweet and sour cherries: Origin, distribution, nutritional composition and health benefits. Trends in Food Science & Technology 86:517–29. doi: 10.1016/j.tifs.2019.02.052.
  • Boue, S. M., K. W. Daigle, M. H. Chen, H. Cao, and M. L. Heiman. 2016. Antidiabetic potential of purple and red rice (Oryza sativa L.) bran extracts. Journal of Agricultural and Food Chemistry 64 (26):5345–53. doi: 10.1021/acs.jafc.6b01909.
  • Braga, A. R. C., D. C. Murador, L. M. S. Mesquita, and V. V. Rosso. 2018. Bioavailability of anthocyanins: Gaps in knowledge, challenges and future research. Journal of Food Composition and Analysis 68:31–40. doi: 10.1016/j.jfca.2017.07.031.
  • Bresciani, L., D. Angelino, E. I. Vivas, R. L. Kerby, C. Garcia-Viguera, D. Del Rio, F. E. Rey, and P. Mena. 2020. Differential catabolism of an anthocyanin-rich elderberry extract by three gut microbiota bacterial species. Journal of Agricultural and Food Chemistry 68 (7):1837–43. doi: 10.1021/acs.jafc.9b00247.
  • Castro-Acosta, M. L., G. N. Lenihan-Geels, C. P. Corpe, and W. L. Hall. 2016. Berries and anthocyanins: Promising functional food ingredients with postprandial glycaemia-lowering effects. The Proceedings of the Nutrition Society 75 (3):342–55. doi: 10.1017/S0029665116000240.
  • Castro-Acosta, M. L., L. Smith, R. J. Miller, D. I. McCarthy, J. A. Farrimond, and W. L. Hall. 2016. Drinks containing anthocyanin-rich blackcurrant extract decrease postprandial blood glucose, insulin and incretin concentrations. The Journal of Nutritional Biochemistry 38:154–61. doi: 10.1016/j.jnutbio.2016.09.002.
  • Castro-Acosta, M. L., S. G. Stone, J. E. Mok, R. K. Mhajan, C. I. Fu, G. N. Lenihan-Geels, C. P. Corpe, and W. L. Hall. 2017. Apple and blackcurrant polyphenol-rich drinks decrease postprandial glucose, insulin and incretin response to a high-carbohydrate meal in healthy men and women. The Journal of Nutritional Biochemistry 49:53–62. doi: 10.1016/j.jnutbio.2017.07.013.
  • Castro-Acosta, M. L., S. G. Stone, J. E. Mok, R. K. Mhajan, C. I. Fu, G. N. Lenihan-Geels, and W. L. Hall. 2016. Acute effects of apple and blackcurrant polyphenol-rich extracts on postprandial glycaemia and vascular function in healthy men and women. Proceedings of the Nutrition Society 75 (OCE2):E45. doi: 10.1017/S0029665116000355.
  • Castro-Acosta, M. L., W. L. Hall, and C. P. Corpe. 2016. Polyphenol-rich blackcurrant and apple extracts inhibit glucose uptake in in vitro models of intestinal sugar transport, but individual anthocyanins have no effect. Proceedings of the Nutrition Society 75 (OCE3):E75. doi: 10.1017/S0029665116000902.
  • Chandra, P., A. S. Rathore, K. L. Kay, J. L. Everhart, P. Curtis, B. Burton-Freeman, A. Cassidy, and C. D. Kay. 2019. Contribution of berry polyphenols to the human metabolome. Molecules 24 (23):4220. doi: 10.3390/molecules24234220.
  • Chang, S., Chun, and W.-C V. Yang. 2016. Hyperglycemia, tumorigenesis, and chronic inflammation. Critical Reviews in Oncology/Hematology 108:146–53. doi: 10.1016/j.critrevonc.2016.11.003.
  • Chen, J., S. Wu, Q. Zhang, Z. Yin, and L. Zhang. 2020. α-Glucosidase inhibitory effect of anthocyanins from cinnamomum camphora fruit: Inhibition kinetics and mechanistic insights through in vitro and in silico studies. International Journal of Biological Macromolecules 143:696–703. doi: 10.1016/j.ijbiomac.2019.09.091.
  • Chen, Z., L. Ye, L. Zhao, Z. Liang, T. Yu, and J. Gao. 2020. Hyperuricemia as a potential plausible risk factor for periodontitis. Medical Hypotheses 137:109591. doi: 10.1016/j.mehy.2020.109591.
  • Cheung, N. W., K. Y. C. Wong, P. Kovoor, and M. McLean. 2019. Stress hyperglycemia: A prospective study examining the relationship between glucose, cortisol and diabetes in myocardial infarction. Journal of Diabetes and Its Complications 33 (4):329–34. doi: 10.1016/j.jdiacomp.2018.12.015.
  • Choi, E.-K., M. Rajasekaran, O.-J. Sul, Y. Joe, H.-T. Chung, R. Yu, and H.-S. Choi. 2018. Impaired insulin signaling upon loss of ovarian function is associated with a reduction of tristetraprolin and an increased stabilization of chemokine in adipose tissue. Molecular and Cellular Endocrinology 461:122–31. doi: 10.1016/j.mce.2017.09.002.
  • Choi, K. H., H. A. Lee, M. H. Park, and J. S. Han. 2017. Cyanidin-3-rutinoside increases glucose uptake by activating the PI3K/Akt pathway in 3T3-L1 adipocytes. Environmental Toxicology and Pharmacology 54:1–6. doi: 10.1016/j.etap.2017.06.007.
  • Choi, K. H., M. H. Park, H. A. Lee, and J. S. Han. 2018. Cyanidin-3-rutinoside protects ins-1 pancreatic beta cells against high glucose-induced glucotoxicity by apoptosis. Zeitschrift Fur Naturforschung. C, Journal of Biosciences 73 (7-8):281–9. doi: 10.1515/znc-2017-0172.
  • Chusak, C.,. P. Pasukamonset, P. Chantarasinlapin, and S. Adisakwattana. 2020. Postprandial glycemia, insulinemia, and antioxidant status in healthy subjects after ingestion of bread made from anthocyanin-rich riceberry rice. Nutrients 12 (3)782. doi: 10.3390/nu12030:.
  • Collins, M. W., K. G. Saag, and J. A. Singh. 2019. Is there a role for cherries in the management of gout? Therapeutic Advances in Musculoskeletal Disease 11:1759720X1984701. doi: 10.1177/1759720X19847018.
  • Cui, L., H. Shi, S. Wu, R. Shu, N. Liu, G. Wang, B. Zhou, K. Sun, P. Yu, J. Wang, et al. 2017. Association of serum uric acid and risk of hypertension in adults: A prospective study of kailuan corporation cohort. Clinical Rheumatology 36 (5):1103–10. doi: 10.1007/s10067-017-3548-2.
  • Curtis, P. J., V. van der Velpen, L. Berends, A. Jennings, M. Feelisch, A. M. Umpleby, M. Evans, B. O. Fernandez, M. S. Meiss, M. Minnion, et al. 2019. Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome-results from a 6-month, double-blind, randomized controlled trial. The American Journal of Clinical Nutrition 109 (6):1535–45. doi: 10.1093/ajcn/nqy380.
  • Czank, C., A. Cassidy, Q. Zhang, D. J. Morrison, T. Preston, P. A. Kroon, N. P. Botting, and C. D. Kay. 2013. Human metabolism and elimination of the anthocyanin, cyanidin-3-glucoside: A 13c-tracer study. The American Journal of Clinical Nutrition 97 (5):995–1003. doi: 10.3945/ajcn.112.049247.
  • Damiano, S., P. Lombari, E. Salvi, M. Papale, A. Giordano, M. Amenta, G. Ballistreri, S. Fabroni, P. Rapisarda, G. Capasso, et al. 2019. A red orange and lemon by-products extract rich in anthocyanins inhibits the progression of diabetic nephropathy. Journal of Cellular Physiology 234 (12):23268–78. doi: 10.1002/jcp.28893.
  • de Sales, N. F. F., L. S. Costa, T. I. A. Carneiro, D. A. Minuzzo, F. L. Oliveira, L. M. C. Cabral, A. G. Torres, and T. El-Bacha. 2018. Anthocyanin-rich grape pomace extract (Vitis vinifera L.) from wine industry affects mitochondrial bioenergetics and glucose metabolism in human hepatocarcinoma HepG2 cells. Molecules 23 (3):611. doi: 10.3390/molecules23030611.
  • De Silva, A. B. K. H., and H. P. V. Rupasinghe. 2020. Polyphenols composition and anti-diabetic properties in vitro of haskap (Lonicera caerulea L.) berries in relation to cultivar and harvesting date. Journal of Food Composition and Analysis 88:103402. doi: 10.1016/j.jfca.2019.103402.
  • Dehghan, A., M. van Hoek, E. J. G. Sijbrands, A. Hofman, and J. C. M. Witteman. 2008. High serum uric acid as a novel risk factor for type 2 diabetes. Diabetes Care 31 (2):361–2. doi: 10.2337/dc07-1276.
  • Desai, T., M. Roberts, and L. Bottoms. 2020. Effects of short-term continuous montmorency tart cherry juice supplementation in participants with metabolic syndrome. European Journal of Nutrition. Advance online publication. doi: 10.1007/s00394-020-02355-5.
  • Desco, M. C., M. Asensi, R. Márquez, J. Martínez-Valls, M. Vento, F. V. Pallardó, J. Sastre, and J. Viña. 2002. Xanthine oxidase is involved in free radical production in type 1 diabetes: Protection by allopurinol. Diabetes 51 (4):1118–24. doi: 10.2337/diabetes.51.4.1118.
  • Dinda, B., A. M. Kyriakopoulos, S. Dinda, V. Zoumpourlis, N. S. Thomaidis, A. Velegraki, C. Markopoulos, and M. Dinda. 2016. Cornus mas L. (cornelian cherry), an important european and asian traditional food and medicine: Ethnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. Journal of Ethnopharmacology 193:670–90. doi: 10.1016/j.jep.2016.09.042.
  • Edwards, M., C. Czank, G. M. Woodward, A. Cassidy, and C. D. Kay. 2015. Phenolic metabolites of anthocyanins modulate mechanisms of endothelial function. Journal of Agricultural and Food Chemistry 63 (9):2423–31. doi: 10.1021/jf5041993.
  • Ekpenyong, C. E., and N. Daniel. 2015. Roles of diets and dietary factors in the pathogenesis, management and prevention of abnormal serum uric acid levels. PharmaNutrition 3 (2):29–45. doi: 10.1016/j.phanu.2014.12.001.
  • Eleftheriadis, T., S. Golphinopoulos, G. Pissas, and I. Stefanidis. 2017. Asymptomatic hyperuricemia and chronic kidney disease: Narrative review of a treatment controversial. Journal of Advanced Research 8 (5):555–60. doi: 10.1016/j.jare.2017.05.001.
  • El-Tantawy, W. H. 2019. Natural products for the management of hyperuricaemia and gout: A review. Archives of Physiology and Biochemistry. Advance online publication. doi: 10.1080/13813455.2019.1610779.
  • Esatbeyoglu, T., M. Rodriguez-Werner, A. Schlosser, P. Winterhalter, and G. Rimbach. 2017. Fractionation, enzyme inhibitory and cellular antioxidant activity of bioactives from purple sweet potato (Ipomoea batatas). Food Chemistry 221:447–56. doi: 10.1016/j.foodchem.2016.10.077.
  • Faienza, M. F., F. Corbo, A. Carocci, A. Catalano, M. L. Clodoveo, M. Grano, D. Q. H. Wang, G. D'Amato, M. Muraglia, C. Franchini, et al. 2020. Novel insights in health-promoting properties of sweet cherries. Journal of Functional Foods 69:103945. doi: 10.1016/j.jff.2020.103945.
  • Forbes, J. M., and M. E. Cooper. 2013. Mechanisms of diabetic complications. Physiological Reviews 93 (1):137–88. doi: 10.1152/physrev.00045.2011.
  • Garcia-Conesa, M. T., K. Chambers, E. Combet, P. Pinto, M. Garcia-Aloy, C. Andres-Lacueva, S. de Pascual-Teresa, P. Mena, A. Konic Ristic, W. J. Hollands, et al. 2018. Meta-analysis of the effects of foods and derived products containing ellagitannins and anthocyanins on cardiometabolic biomarkers: Analysis of factors influencing variability of the individual responses. International Journal of Molecular Sciences 19 (3):694. doi: 10.3390/ijms19030.
  • Gonçalves, A. C., C. Bento, B. M. Silva, and L. R. Silva. 2017. Sweet cherries from fundão possess antidiabetic potential and protect human erythrocytes against oxidative damage. Food Research International 95:91–100. doi: 10.1016/j.foodres.2017.02.023.
  • Gowd, V., Z. Jia, and W. Chen. 2017. Anthocyanins as promising molecules and dietary bioactive components against diabetes-a review of recent advances. Trends in Food Science & Technology 68:1–13. doi: 10.1016/j.tifs.2017.07.015.
  • Gowd, V., N. Karim, M. R. I. Shishir, L. Xie, and W. Chen. 2019. Dietary polyphenols to combat the metabolic diseases via altering gut microbiota. Trends in Food Science & Technology 93:81–93. doi: 10.1016/j.tifs.2019.09.005.
  • Habu, Y., I. Yano, A. Takeuchi, H. Saito, M. Okuda, A. Fukatsu, and K. Inui. 2003. Decreased activity of basolateral organic ion transports in hyperuricemic rat kidney: Roles of organic ion transporters, roat1, roat3 and roct2. Biochemical Pharmacology 66 (6):1107–14. doi: 10.1016/S0006-2952(03)00466-0.
  • Hafez, R. M., T. M. Abdel-Rahman, and R. M. Naguib. 2017. Uric acid in plants and microorganisms: Biological applications and genetics - a review. Journal of Advanced Research 8 (5):475–86. doi: 10.1016/j.jare.2017.05.003.
  • Harris, C. S., A. Cuerrier, E. Lamont, P. S. Haddad, J. T. Arnason, S. A. L. Bennett, and T. Johns. 2014. Investigating wild berries as a dietary approach to reducing the formation of advanced glycation endproducts: Chemical correlates of in vitro antiglycation activity. Plant Foods for Human Nutrition 69 (1):71–7. doi: 10.1007/s11130-014-0403-3.
  • Hidalgo, J., S. Teuber, F. J. Morera, C. Ojeda, C. A. Flores, M. A. Hidalgo, L. Nunez, C. Villalobos, and R. A. Burgos. 2017. Delphinidin reduces glucose uptake in mice jejunal tissue and human intestinal cells lines through ffa1/gpr40. International Journal of Molecular Sciences 18 (4):750. doi: 10.3390/ijms18040750.
  • Ho, G. T. T., T. K. Y. Nguyen, E. T. Kase, M. Tadesse, H. Barsett, and H. Wangensteen. 2017. Enhanced glucose uptake in human liver cells and inhibition of carbohydrate hydrolyzing enzymes by nordic berry extracts. Molecules 22 (10)1806. doi: 10.3390/molecules2210:.
  • Ho, G. T., E. T. Kase, H. Wangensteen, and H. Barsett. 2017. Phenolic elderberry extracts, anthocyanins, procyanidins, and metabolites influence glucose and fatty acid uptake in human skeletal muscle cells. Journal of Agricultural and Food Chemistry 65 (13):2677–85. doi: 10.1021/acs.jafc.6b05582.
  • Hoggard, N., M. Cruickshank, K.-M. Moar, C. Bestwick, J. J. Holst, W. Russell, and G. Horgan. 2013. A single supplement of a standardised bilberry (vaccinium myrtillus L.) extract (36% wet weight anthocyanins) modifies glycaemic response in individuals with type 2 diabetes controlled by diet and lifestyle. Journal of Nutritional Science 2:E22. doi: 10.1017/jns.2013.16.
  • Homoki, J. R., A. Nemes, E. Fazekas, G. Gyemant, P. Balogh, F. Gal, J. Al-Asri, J. Mortier, G. Wolber, L. Babinszky, et al. 2016. Anthocyanin composition, antioxidant efficiency, and alpha-amylase inhibitor activity of different hungarian sour cherry varieties (Prunus cerasus L. ). Food Chemistry 194:222–9. doi: 10.1016/j.foodchem.2015.07.130.
  • Houghton, M. J., A. Kerimi, V. Mouly, S. Tumova, and G. Williamson. 2019. Gut microbiome catabolites as novel modulators of muscle cell glucose metabolism. The Faseb Journal 33 (2):1887–98. doi: 10.1096/fj.201801209R.
  • Howatson, G., M. P. McHugh, J. A. Hill, J. Brouner, A. P. Jewell, K. A. Van Someren, R. E. Shave, and S. A. Howatson. 2010. Influence of tart cherry juice on indices of recovery following marathon running. Scandinavian Journal of Medicine & Science in Sports 20 (6):843–52. doi: 10.1111/j.1600-0838.2009.01005.x.
  • Huang, B., Z. Wang, J. H. Park, O. H. Ryu, M. K. Choi, J. Y. Lee, Y. H. Kang, and S. S. Lim. 2015. Anti-diabetic effect of purple corn extract on c57bl/ksj db/db mice. Nutrition Research and Practice 9 (1):22–9. doi: 10.4162/nrp.2015.9.1.22.
  • Huang, W., Z. Yan, D. Li, Y. Ma, J. Zhou, and Z. Sui. 2018. Antioxidant and anti-inflammatory effects of blueberry anthocyanins on high glucose-induced human retinal capillary endothelial cells. Oxidative Medicine and Cellular Longevity 2018:1–10. doi: 10.1155/2018/1862462.
  • Hwa, K. S., D.-M. Chung, Y. C. Chung, and H. K. Chun. 2011. Hypouricemic effects of anthocyanin extracts of purple sweet potato on potassium oxonate-induced hyperuricemia in mice. Phytotherapy Research: PTR 25 (9):1415–7. doi: 10.1002/ptr.3421.
  • Isaka, Y., Y. Takabatake, A. Takahashi, T. Saitoh, and T. Yoshimori. 2016. Hyperuricemia-induced inflammasome and kidney diseases. Nephrology Dialysis Transplantation 31 (6):890–6. doi: 10.1093/ndt/gfv024.
  • Jacob, R. A., G. M. Spinozzi, V. A. Simon, D. S. Kelley, R. L. Prior, H.-P. Betty, and A. A. Kader. 2003. Consumption of cherries lowers plasma urate in healthy women. The Journal of Nutrition 133 (6):1826–9. doi: 10.1093/jn/133.6.1826.
  • Jang, H. H., H. W. Kim, S. Y. Kim, S. M. Kim, J. B. Kim, and Y. M. Lee. 2019. in vitro and in vivo hypoglycemic effects of cyanidin 3-caffeoyl-p-hydroxybenzoylsophoroside-5-glucoside, an anthocyanin isolated from purple-fleshed sweet potato. Food Chemistry 272:688–93. doi: 10.1016/j.foodchem.2018.08.010.
  • Jayaprakasam, B., L. K. Olson, R. E. Schutzki, M.-H. Tai, and M. G. Nair. 2006. Amelioration of obesity and glucose intolerance in high-fat-fed c57bl/6 mice by anthocyanins and ursolic acid in cornelian cherry (Cornus mas). Journal of Agricultural and Food Chemistry 54 (1):243–8. doi: 10.1021/jf0520342.
  • Jayaprakasam, B., S. K. Vareed, L. K. Olson, and M. G. Nair. 2005. Insulin secretion by bioactive anthocyanins and anthocyanidins present in fruits. Journal of Agricultural and Food Chemistry 53 (1):28–31. doi: 10.1021/jf049018+.
  • Jeon, S.-M. 2016. Regulation and function of AMPK in physiology and diseases. Experimental & Molecular Medicine 48 (7):e245. doi: 10.1038/emm.2016.81.
  • Jiang, T., X. Shuai, J. Li, N. Yang, L. Deng, S. Li, Y. He, H. Guo, Y. Li, and J. He. 2020. Protein-bound anthocyanin compounds of purple sweet potato ameliorate hyperglycemia by regulating hepatic glucose metabolism in high-fat diet/streptozotocin-induced diabetic mice. Journal of Agricultural and Food Chemistry 68 (6):1596–608. doi: 10.1021/acs.jafc.9b06916.
  • Johnson, M. H., and E. G. de Mejia. 2016. Phenolic compounds from fermented berry beverages modulated gene and protein expression to increase insulin secretion from pancreatic beta-cells in vitro. Journal of Agricultural and Food Chemistry 64 (12):2569–81. doi: 10.1021/acs.jafc.6b00239.
  • Johnson, M. H., E. G. de Mejia, J. Fan, M. A. Lila, and G. G. Yousef. 2013. Anthocyanins and proanthocyanidins from blueberry-blackberry fermented beverages inhibit markers of inflammation in macrophages and carbohydrate-utilizing enzymes in vitro. Molecular Nutrition & Food Research 57 (7):1182–97. doi: 10.1002/mnfr.201200678.
  • Jokioja, J.,. K. M. Linderborg, M. Kortesniemi, A. Nuora, J. Heinonen, T. Sainio, M. Viitanen, H. Kallio, and B. Yang. 2020. Anthocyanin-rich extract from purple potatoes decreases postprandial glycemic response and affects inflammation markers in healthy men. Food Chemistry 310:125797. doi: 10.1016/j.foodchem.2019.125797.
  • Kaeswurm, J. A. H., B. Claasen, M.-P. Fischer, and M. Buchweitz. 2019. Interaction of structurally diverse phenolic compounds with porcine pancreatic α-amylase. Journal of Agricultural and Food Chemistry 67 (40):11108–18. doi: 10.1021/acs.jafc.9b04798.
  • Kalita, D., D. G. Holm, D. V. LaBarbera, J. M. Petrash, and S. S. Jayanty. 2018. Inhibition of alpha-glucosidase, alpha-amylase, and aldose reductase by potato polyphenolic compounds. PLoS One 13 (1):e0191025. doi: 10.1371/journal.pone.0191025.
  • Kamiloglu, S., E. Capanoglu, C. Grootaert, and J. V. Camp. 2015. Anthocyanin absorption and metabolism by human intestinal Caco-2 cells-a review. International Journal of Molecular Sciences 16 (9):21555–74. doi: 10.3390/ijms160921555.
  • Kanbay, M., T. Jensen, Y. Solak, M. Le, C. Roncal-Jimenez, C. Rivard, M. A. Lanaspa, T. Nakagawa, and R. J. Johnson. 2016. Uric acid in metabolic syndrome: From an innocent bystander to a central player. European Journal of Internal Medicine 29:3–8. doi: 10.1016/j.ejim.2015.11.026.
  • Kang, D.-H., and W. Chen. 2011. Uric acid and chronic kidney disease: New understanding of an old problem. Seminars in Nephrology 31 (5):447–52. doi: 10.1016/j.semnephrol.2011.08.009.
  • Keen, H. I., W. A. Davis, E. Latkovic, J. J. Drinkwater, J. Nossent, and T. M. E. Davis. 2018. Ultrasonographic assessment of joint pathology in type 2 diabetes and hyperuricemia: The fremantle diabetes study phase ii. Journal of Diabetes and Its Complications 32 (4):400–5. doi: 10.1016/j.jdiacomp.2017.12.015.
  • Khichar, S., S. Choudhary, V. B. Singh, P. Tater, R. V. Arvinda, and V. Ujjawal. 2017. Serum uric acid level as a determinant of the metabolic syndrome: A case control study. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 11 (1):19–23. doi: 10.1016/j.dsx.2016.06.021.
  • Khoshnoud, S., H. M. Kouchesfahani, and M. Nabiuni. 2017. Evaluation of the protective effect of hydro-alcoholic extract of raspberry fruit on aquaporin1 expression in rats kidney treated by methotrexate. Cell Journal 19 (2):306–13. doi: 10.22074/cellj.2016.3957.
  • Kim, W., and J. M. Egan. 2008. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacological Reviews 60 (4):470–512. doi: 10.1124/pr.108.000604.
  • Kirakosyan, A., E. Gutierrez, B. Ramos Solano, E. M. Seymour, and S. F. Bolling. 2018. The inhibitory potential of montmorency tart cherry on key enzymes relevant to type 2 diabetes and cardiovascular disease. Food Chemistry 252:142–6. doi: 10.1016/j.foodchem.2018.01.084.
  • Kochman, P., and T. Stompór. 2016. Gout, hyperuricemia and chronic kidney disease: New treatment possibilities. Polish Annals of Medicine 23 (2):195–201. doi: 10.1016/j.poamed.2016.04.001.
  • Komatsu, M., M. Takei, H. Ishii, and Y. Sato. 2013. Glucose-stimulated insulin secretion: A newer perspective. Journal of Diabetes Investigation 4 (6):511–6. doi: 10.1111/jdi.12094.
  • Kong, J.-M., L.-S. Chia, N.-K. Goh, T.-F. Chia, and R. Brouillard. 2003. Analysis and biological activities of anthocyanins. Phytochemistry 64 (5):923–33. doi: 10.1016/S0031-9422(03)00438-2.
  • Kozuka, M., T. Yamane, Y. Nakano, T. Nakagaki, I. Ohkubo, and H. Ariga. 2015. Identification and characterization of a dipeptidyl peptidase iv inhibitor from aronia juice. Biochemical and Biophysical Research Communications 465 (3):433–6. doi: 10.1016/j.bbrc.2015.08.031.
  • Krishnan, E., B. J. Pandya, L. Chung, A. Hariri, and O. Dabbous. 2012. Hyperuricemia in young adults and risk of insulin resistance, prediabetes, and diabetes: A 15-year follow-up study. American Journal of Epidemiology 176 (2):108–16. doi: 10.1093/aje/kws002.
  • Kuo, C.-Y., E.-S. Kao, K.-C. Chan, H.-J. Lee, T.-F. Huang, and C.-J. Wang. 2012. Hibiscus sabdariffa L. Extracts reduce serum uric acid levels in oxonate-induced rats. Journal of Functional Foods 4 (1):375–81. doi: 10.1016/j.jff.2012.01.007.
  • Lai, D., M. Huang, L. Zhao, Y. Tian, Y. Li, D. Liu, Y. Wu, and F. Deng. 2019. Delphinidin-induced autophagy protects pancreatic β cells against apoptosis resulting from high-glucose stress via AMPK signaling pathway. Acta Biochimica et Biophysica Sinica 51 (12):1242–9. doi: 10.1093/abbs/gmz126.
  • Lazard, D., P. Vardi, and K. Bloch. 2016. Anti-diabetic and neuroprotective effects of pancreatic islet transplantation into the central nervous system. Diabetes/Metabolism Research and Reviews 32 (1):11–20. doi: 10.1002/dmrr.2644.
  • Lee, D., J. Ham, K. S. Kang, and H.-J. Lee. 2016. Cyanidin 3-O-glucoside isolated from lonicera caerulea fruit improves glucose response in ins-1 cells by improving insulin secretion and signaling. Bulletin of the Korean Chemical Society 37 (12):2015–8. doi: 10.1002/bkcs.11017.
  • Lee, H. J., K. H. Jeong, Y. G. Kim, J. Y. Moon, S. H. Lee, C. G. Ihm, J. Y. Sung, and T. W. Lee. 2014. Febuxostat ameliorates diabetic renal injury in a streptozotocin-induced diabetic rat model. American Journal of Nephrology 40 (1):56–63. doi: 10.1159/000363421.
  • Lee, J. S., Y. R. Kim, I. G. Song, S. J. Ha, Y. E. Kim, N. I. Baek, and E. K. Hong. 2015. Cyanidin-3-glucoside isolated from mulberry fruit protects pancreatic beta-cells against oxidative stress-induced apoptosis. International Journal of Molecular Medicine 35 (2):405–12. doi: 10.3892/ijmm.2014.2013.
  • Lee, J. S., Y. R. Kim, J. M. Park, Y. E. Kim, N. I. Baek, and E. K. Hong. 2015. Cyanidin-3-glucoside isolated from mulberry fruits protects pancreatic beta-cells against glucotoxicity-induced apoptosis. Molecular Medicine Reports 11 (4):2723–8. doi: 10.3892/mmr.2014.3078.
  • Li, A., R. Xiao, S. He, X. An, Y. He, C. Wang, S. Yin, B. Wang, X. Shi, and J. He. 2019. Research advances of purple sweet potato anthocyanins: Extraction, identification, stability, bioactivity, application, and biotransformation. Molecules 24 (21):3816. doi: 10.3390/molecules24213816.
  • Li, C., M.-C. Hsieh, and S.-J. Chang. 2013. Metabolic syndrome, diabetes, and hyperuricemia. Current Opinion in Rheumatology 25 (2):210–6. doi: 10.1097/BOR.0b013e32835d951e.
  • Li, D., Y. Zhang, Y. Liu, R. Sun, and M. Xia. 2015. Purified anthocyanin supplementation reduces dyslipidemia, enhances antioxidant capacity, and prevents insulin resistance in diabetic patients. The Journal of Nutrition 145 (4):742–8. doi: 10.3945/jn.114.205674.
  • Li, X.-Q., D. Kalita, D. G. Holm, D. V. LaBarbera, J. M. Petrash, and S. S. Jayanty. 2018. Inhibition of α-glucosidase, α-amylase, and aldose reductase by potato polyphenolic compounds. Plos One 13 (1):e0191025. doi: 10.1371/journal.pone.0191025.
  • Linderborg, K. M., J. E. Salo, M. Kalpio, A. L. Vuorinen, M. Kortesniemi, M. Griinari, M. Viitanen, B. Yang, and H. Kallio. 2015. Comparison of the postprandial effects of purple-fleshed and yellow-fleshed potatoes in healthy males with chemical characterization of the potato meals. International Journal of Food Sciences and Nutrition 67 (5):581–91. doi: 10.1080/09637486.2016.1181157.
  • Liu, A., P. Xu, C. Gong, Y. Zhu, H. Zhang, W. Nie, X. Zhou, X. Liang, Y. Xu, C. Huang, et al. 2020. High serum concentration of selenium, but not calcium, cobalt, copper, iron, and magnesium, increased the risk of both hyperglycemia and dyslipidemia in adults: A health examination center based cross-sectional study. Journal of Trace Elements in Medicine and Biology 59:126470. doi: 10.1016/j.jtemb.2020.126470.
  • Liu, J., F. Gao, B. Ji, R. Wang, J. Yang, H. Liu, and F. Zhou. 2015. Anthocyanins-rich extract of wild chinese blueberry protects glucolipotoxicity-induced ins832/13 β-cell against dysfunction and death. Journal of Food Science and Technology 52 (5):3022–9. doi: 10.1007/s13197-014-1379-6.
  • Liu, Y., D. Li, Y. Zhang, R. Sun, and M. Xia. 2014. Anthocyanin increases adiponectin secretion and protects against diabetes-related endothelial dysfunction. American Journal of Physiology. Endocrinology and Metabolism 306 (8):E975–E88. doi: 10.1152/ajpendo.00699.2013.
  • Luo, C. L., Q. Zhou, Z. W. Yang, R. D. Wang, and J. L. Zhang. 2018. Evaluation of structure and bioprotective activity of key high molecular weight acylated anthocyanin compounds isolated from the purple sweet potato (Ipomoea batatas L. Cultivar Eshu no.8). Food Chemistry 241:23–31. doi: 10.1016/j.foodchem.2017.08.073.
  • Madsbad, S. 2016. Impact of postprandial glucose control on diabetes-related complications: How is the evidence evolving? Journal of Diabetes and Its Complications 30 (2):374–85. doi: 10.1016/j.jdiacomp.2015.09.019.
  • Manna, P., J. Das, J. Ghosh, and P. C. Sil. 2010. Contribution of type 1 diabetes to rat liver dysfunction and cellular damage via activation of NOS, PARP, IκBα/NF-κB, MAPKs, and mitochondria-dependent pathways: Prophylactic role of arjunolic acid. Free Radical Biology & Medicine 48 (11):1465–84. doi: 10.1016/j.freeradbiomed.2010.02.025.
  • Marine-Casado, R., C. Domenech-Coca, J. M. Del Bas, C. Blade, A. Caimari, and L. Arola. 2019. Cherry consumption out of season alters lipid and glucose homeostasis in normoweight and cafeteria-fed obese fischer 344 rats. The Journal of Nutritional Biochemistry 63:72–86. doi: 10.1016/j.jnutbio.2018.09.013.
  • Marín-Peñalver, J. J., I. Martín-Timón, C. Sevillano-Collantes, and F. J. Del Cañizo-Gómez. 2016. Update on the treatment of type 2 diabetes mellitus. World Journal of Diabetes 7 (17):354–95. doi: 10.4239/wjd.v7.i17.354.
  • Martin, K. R., and K. M. Coles. 2019. Consumption of 100% tart cherry juice reduces serum urate in overweight and obese adults. Current Developments in Nutrition 3 (5):nzz011. doi: 10.1093/cdn/nzz011.
  • Matout, M., A. S. Halme, and J. Wiseman. 2019. A case of acute kidney injury secondary to black cherry concentrate in a patient with chronic kidney disease secondary to type 2 diabetes mellitus. CEN Case Reports 8 (3):212–5. doi: 10.1007/s13730-019-00396-2.
  • Matsui, T., S. Ebuchi, M. Kobayashi, K. Fukui, K. Sugita, N. Terahara, and K. Matsumoto. 2002. Anti-hyperglycemic effect of diacylated anthocyanin derived from ipomoea batatas cultivar ayamurasaki can be achieved through the α-glucosidase inhibitory action. Journal of Agricultural and Food Chemistry 50 (25):7244–8. doi: 10.1021/jf025913m.
  • Matsukawa, T., T. Inaguma, J. Han, M. O. Villareal, and H. Isoda. 2015. Cyanidin-3-glucoside derived from black soybeans ameliorate type 2 diabetes through the induction of differentiation of preadipocytes into smaller and insulin-sensitive adipocytes. The Journal of Nutritional Biochemistry 26 (8):860–7. doi: 10.1016/j.jnutbio.2015.03.006.
  • McGhie, T. K., and M. C. Walton. 2007. The bioavailability and absorption of anthocyanins: Towards a better understanding. Molecular Nutrition & Food Research 51 (6):702–13. doi: 10.1002/mnfr.200700092.
  • Mehmood, A., L. Zhao, C. Wang, M. Nadeem, A. Raza, N. Ali, and A. A. Shah. 2019. Management of hyperuricemia through dietary polyphenols as a natural medicament: A comprehensive review. Critical Reviews in Food Science and Nutrition 59 (9):1433–55. doi: 10.1080/10408398.2017.1412939.
  • Mena-Sánchez, G., N. Babio, N. Becerra-Tomás, M. Á. Martínez-González, A. Díaz-López, D. Corella, M. D. Zomeño, D. Romaguera, J. Vioque, Á. M. Alonso-Gómez, et al. 2020. Association between dairy product consumption and hyperuricemia in an elderly population with metabolic syndrome. Nutrition, Metabolism and Cardiovascular Diseases 30 (2):214–22. doi: 10.1016/j.numecd.2019.09.023.
  • Milutinović, M., R. V. Radovanović, K. Šavikin, S. Radenković, M. Arvandi, M. Pešić, M. Kostić, B. Miladinović, S. Branković, and D. Kitić. 2019. Chokeberry juice supplementation in type 2 diabetic patients-impact on health status. Journal of Applied Biomedicine 17 (4):218–24. doi: 10.32725/jab.2019.020.
  • Moser, S., I. Aragon, A. Furrer, J. W. Van Klinken, M. Kaczmarczyk, B. H. Lee, J. George, B. R. Hamaker, R. Mattes, and M. G. Ferruzzi. 2018. Potato phenolics impact starch digestion and glucose transport in model systems but translation to phenolic rich potato chips results in only modest modification of glycemic response in humans. Nutrition Research 52:57–70. doi: 10.1016/j.nutres.2018.02.001.
  • Moser, S., J. Lim, M. Chegeni, J. D. Wightman, B. R. Hamaker, and M. G. Ferruzzi. 2016. Concord and niagara grape juice and their phenolics modify intestinal glucose transport in a coupled in vitro digestion/Caco-2 human intestinal model. Nutrients 8 (7):414. doi: 10.3390/nu8070414.
  • Nakatsu, Y., Y. Seno, A. Kushiyama, H. Sakoda, M. Fujishiro, A. Katasako, K. Mori, Y. Matsunaga, T. Fukushima, R. Kanaoka, et al. 2015. The xanthine oxidase inhibitor febuxostat suppresses development of nonalcoholic steatohepatitis in a rodent model. American Journal of Physiology-Gastrointestinal and Liver Physiology 309 (1):G42–51. doi: 10.1152/ajpgi.00443.2014.
  • Nishikawa, T., N. Nagata, T. Shimakami, T. Shirakura, C. Matsui, Y. Ni, F. Zhuge, L. Xu, G. Chen, M. Nagashimada, et al. 2020. Xanthine oxidase inhibition attenuates insulin resistance and diet-induced steatohepatitis in mice. Scientific Reports 10 (1):815. doi: 10.1038/s41598-020-57784-3.
  • Oliveira, H., R. Perez-Gregorio, V. de Freitas, N. Mateus, and I. Fernandes. 2019. Comparison of the in vitro gastrointestinal bioavailability of acylated and non-acylated anthocyanins: Purple-fleshed sweet potato vs red wine. Food Chemistry 276:410–8. doi: 10.1016/j.foodchem.2018.09.159.
  • Ongkowijoyo, P., D. A. Luna-Vital, and E. Gonzalez de Mejia. 2018. Extraction techniques and analysis of anthocyanins from food sources by mass spectrometry: An update. Food Chemistry 250:113–26. doi: 10.1016/j.foodchem.2018.01.055.
  • Ostberg-Potthoff, J. J., K. Berger, E. Richling, and P. Winterhalter. 2019. Activity-guided fractionation of red fruit extracts for the identification of compounds influencing glucose metabolism. Nutrients 11 (5):1166. doi: 10.3390/nu11051166.
  • Park, E., I. Edirisinghe, H. Wei, L. P. Vijayakumar, K. Banaszewski, J. C. Cappozzo, and B. Burton-Freeman. 2016. A dose–response evaluation of freeze-dried strawberries independent of fiber content on metabolic indices in abdominally obese individuals with insulin resistance in a randomized, single-blinded, diet-controlled crossover trial. Molecular Nutrition & Food Research 60 (5):1099–109. doi: 10.1002/mnfr.201500845.
  • Park, M. J., D. H. Ryu, J. Y. Cho, D. G. Lee, J. N. Lee, and Y.-H. Kang. 2020. Potential for antioxidant and antihyperglycemic activities of four everbearing strawberry cultivars. Horticulture, Environment, and Biotechnology 61 (3):615–23. doi: 10.1007/s13580-020-00240-y.
  • Patil, M., N. J. Deshmukh, M. Patel, and G. V. Sangle. 2020. Glucagon-based therapy: Past, present and future. Peptides 127:170296. doi: 10.1016/j.peptides.2020.170296.
  • Paul, S. K., M. S. Islam, M. M. Hasibuzzaman, F. Hossain, A. Anjum, Z. Alam Saud, M. M. Haque, P. Sultana, A. Haque, K. B. Andric, et al. 2019. Higher risk of hyperglycemia with greater susceptibility in females in chronic arsenic-exposed individuals in bangladesh. The Science of the Total Environment 668:1004–12. doi: 10.1016/j.scitotenv.2019.03.029.
  • Perez-Gomez, M. V., L.-A. Bartsch, E. Castillo-Rodriguez, R. Fernandez-Prado, M. Kanbay, and A. Ortiz. 2019. Potential dangers of serum urate-lowering therapy. The American Journal of Medicine 132 (4):457–67. doi: 10.1016/j.amjmed.2018.12.010.
  • Popović, B. M., B. Blagojević, R. Ždero Pavlović, N. Mićić, S. Bijelić, B. Bogdanović, A. Mišan, C. M. M. Duarte, and A. T. Serra. 2020. Comparison between polyphenol profile and bioactive response in blackthorn (Prunus spinosa L.) genotypes from north serbia-from raw data to pca analysis. Food Chemistry 302:125373. doi: 10.1016/j.foodchem.2019.125373.
  • Qian, X., X. Wang, J. Luo, Y. Liu, J. Pang, H. Zhang, Z. Xu, J. Xie, X. Jiang, and W. Ling. 2019. Hypouricemic and nephroprotective roles of anthocyanins in hyperuricemic mice. Food & Function 10 (2):867–78. doi: 10.1039/C8FO02124D.
  • Reyes-Farias, M., K. Vasquez, F. Fuentes, A. Ovalle-Marin, C. Parra-Ruiz, O. Zamora, M. T. Pino, V. Quitral, P. Jimenez, L. Garcia, et al. 2016. Extracts of chilean native fruits inhibit oxidative stress, inflammation and insulin-resistance linked to the pathogenic interaction between adipocytes and macrophages. Journal of Functional Foods 27:69–83. doi: 10.1016/j.jff.2016.08.052.
  • Richette, P., and T. Bardin. 2010. Gout. The Lancet 375 (9711):318–28. doi: 10.1016/S0140-6736(09)60883-7.
  • Röder, P. V., B. Wu, Y. Liu, and W. Han. 2016. Pancreatic regulation of glucose homeostasis. Experimental & Molecular Medicine 48 (3):e219. doi: 10.1038/emm.2016.6.
  • Saeedi, P., I. Petersohn, P. Salpea, B. Malanda, S. Karuranga, N. Unwin, S. Colagiuri, L. Guariguata, A. A. Motala, K. Ogurtsova, IDF Diabetes Atlas Committee, et al. 2019. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the international diabetes federation diabetes atlas, 9th edition. Diabetes Research and Clinical Practice 157:107843. doi: 10.1016/j.diabres.2019.107843.
  • Samuel, V. T., and G. I. Shulman. 2016. The pathogenesis of insulin resistance: Integrating signaling pathways and substrate flux. The Journal of Clinical Investigation 126 (1):12–22. doi: 10.1172/JCI77812.
  • Sancho, R. A. S., and G. M. Pastore. 2012. Evaluation of the effects of anthocyanins in type 2 diabetes. Food Research International 46 (1):378–86. doi: 10.1016/j.foodres.2011.11.021.
  • Sandhu, A. K., M. G. Miller, N. Thangthaeng, T. M. Scott, B. Shukitt-Hale, I. Edirisinghe, and B. Burton-Freeman. 2018. Metabolic fate of strawberry polyphenols after chronic intake in healthy older adults. Food & Function 9 (1):96–106. doi: 10.1039/C7FO01843F.
  • Sandhu, A. K., Y. Huang, D. Xiao, E. Park, I. Edirisinghe, and B. Burton-Freeman. 2016. Pharmacokinetic characterization and bioavailability of strawberry anthocyanins relative to meal intake. Journal of Agricultural and Food Chemistry 64 (24):4891–9. doi: 10.1021/acs.jafc.6b00805.
  • Sandoval-Ramirez, B. A., U. Catalan, S. Fernandez-Castillejo, A. Pedret, E. Llaurado, and R. Sola. 2020. Cyanidin-3-glucoside as a possible biomarker of anthocyanin-rich berry intake in body fluids of healthy humans: A systematic review of clinical trials. Nutrition Reviews 78 (7):597–610. doi: 10.1093/nutrit/nuz083.
  • Santos, H. O., R. Genario, G. K. Gomes, and B. J. Schoenfeld. 2020. Cherry intake as a dietary strategy in sport and diseases: A review of clinical applicability and mechanisms of action. Critical Reviews in Food Science and Nutrition. Advance online publication. doi: 10.1080/10408398.2020.1734912.
  • Scheen, A. J. 2019. An update on the safety of sglt2 inhibitors. Expert Opinion on Drug Safety 18 (4):295–311. doi: 10.1080/14740338.2019.1602116.
  • Seth, R., A. S. R. Kydd, R. Buchbinder, C. Bombardier, and C. J. Edwards. 2014. Allopurinol for chronic gout. Cochrane Database of Systematic Reviews 10:CD006077. doi: 10.1002/14651858.CD006077.pub3.
  • Shapiro, J., A. D. Cohen, M. David, E. Hodak, G. Chodik, A. Viner, E. Kremer, and A. Heymann. 2007. The association between psoriasis, diabetes mellitus, and atherosclerosis in israel: A case-control study. Journal of the American Academy of Dermatology 56 (4):629–34. doi: 10.1016/j.jaad.2006.09.017.
  • Shishehbor, F., A. Mansoori, and F. Shirani. 2017. Vinegar consumption can attenuate postprandial glucose and insulin responses; a systematic review and meta-analysis of clinical trials. Diabetes Research and Clinical Practice 127:1–9. doi: 10.1016/j.diabres.2017.01.021.
  • Solverson, P. M., W. V. Rumpler, J. L. Leger, B. W. Redan, M. G. Ferruzzi, D. J. Baer, T. W. Castonguay, and J. A. Novotny. 2018. Blackberry feeding increases fat oxidation and improves insulin sensitivity in overweight and obese males. Nutrients 10 (8):1048. doi: 10.3390/nu1008.
  • Song, R. 2016. Mechanism of metformin: A tale of two sites. Diabetes Care 39 (2):187–9. doi: 10.2337/dci15-0013.
  • Speer, H., N. M. D’Cunha, N. I. Alexopoulos, A. J. McKune, and N. Naumovski. 2020. Anthocyanins and human health-a focus on oxidative stress, inflammation and disease. Antioxidants 9 (5):366. doi: 10.3390/antiox9050366.
  • Spinola, V., E. J. Llorent-Martinez, and P. C. Castilho. 2019. Polyphenols of myrica faya inhibit key enzymes linked to type ii diabetes and obesity and formation of advanced glycation end-products (in vitro): Potential role in the prevention of diabetic complications. Food Research International 116:1229–38. doi: 10.1016/j.foodres.2018.10.010.
  • Spinola, V., J. Pinto, E. J. Llorent-Martinez, H. Tomas, and P. C. Castilho. 2019. Evaluation of Rubus grandifolius L. (wild blackberries) activities targeting management of type-2 diabetes and obesity using in vitro models. Food and Chemical Toxicology 123:443–52. doi: 10.1016/j.fct.2018.11.006.
  • Stamp, L. K., and P. T. Chapman. Forthcoming. Allopurinol hypersensitivity: Pathogenesis and prevention. Best Practice & Research Clinical Rheumatology. doi: 10.1016/j.berh.2020.101501.
  • Strugała, P., O. Dzydzan, I. Brodyak, A. Z. Kucharska, P. Kuropka, M. Liuta, K. Kaleta-Kuratewicz, A. Przewodowska, D. Michałowska, J. Gabrielska, et al. 2019. Antidiabetic and antioxidative potential of the blue congo variety of purple potato extract in streptozotocin-induced diabetic rats. Molecules 24 (17):3126. doi: 10.3390/molecules24173126.
  • Su, H., L. Xie, Y. Xu, H. Ke, T. Bao, Y. Li, and W. Chen. 2019. Pelargonidin-3-O-glucoside derived from wild raspberry exerts antihyperglycemic effect by inducing autophagy and modulating gut microbiota. Journal of Agricultural and Food Chemistry. Advance online publication. doi: 10.1021/acs.jafc.9b03338.
  • Suantawee, T., S. Elazab, W. Hsu, S. Yao, H. Cheng, and S. Adisakwattana. 2017. Cyanidin stimulates insulin secretion and pancreatic beta-cell gene expression through activation of L-type voltage-dependent Ca2+ channels. Nutrients 9 (8):814. doi: 10.3390/nu9080814.
  • Sui, X., Y. Zhang, and W. Zhou. 2016. in vitro and in silico studies of the inhibition activity of anthocyanins against porcine pancreatic α-amylase. Journal of Functional Foods 21:50–7. doi: 10.1016/j.jff.2015.11.042.
  • Talagavadi, V., P. Rapisarda, F. Galvano, P. Pelicci, and M. Giorgio. 2016. Cyanidin-3-O-β-glucoside and protocatechuic acid activate AMPK/mTOR/S6k pathway and improve glucose homeostasis in mice. Journal of Functional Foods 21:338–48. doi: 10.1016/j.jff.2015.12.007.
  • Umpierrez, G. E., R. Hellman, M. T. Korytkowski, M. Kosiborod, G. A. Maynard, V. M. Montori, J. J. Seley, and G. Van den Berghe, Endocrine Society 2012. Management of hyperglycemia in hospitalized patients in non-critical care setting: An endocrine society clinical practice guideline. The Journal of Clinical Endocrinology and Metabolism 97 (1):16–38. doi: 10.1210/jc.2011-2098.
  • Wan, X., C. Xu, C. Lu, H. Zhu, C. Yu, and Y. Li. 2015. Su1795 uric acid regulates hepatic steatosis and insulin resistance through the NLRP3 inflammasome dependent mechanism. Gastroenterology 148 (4):S-1053. doi: 10.1016/S0016-5085(15)33592-7.
  • Wang, L., Y. Zhao, Q. Zhou, C. L. Luo, A. P. Deng, Z. C. Zhang, and J. L. Zhang. 2017. Characterization and hepatoprotective activity of anthocyanins from purple sweet potato (Ipomoea batatas L. Cultivar Eshu no. 8. ). Journal of Food and Drug Analysis 25 (3):607–18. doi: 10.1016/j.jfda.2016.10.009.
  • Wangensteen, H., M. Bräunlich, V. Nikolic, K. E. Malterud, R. Slimestad, H. Barsett, 2014. Anthocyanins, proanthocyanidins and total phenolics in four cultivars of aronia: Antioxidant and enzyme inhibitory effects. Journal of Functional Foods 7 (4):746–52. doi: 10.1016/j.jff.2014.02.006.
  • Xiao, D. L. Zhu, I. Edirisinghe, J. Fareed, Y. Brailovsky, and B. Burton-Freeman. 2019. Attenuation of postmeal metabolic indices with red raspberries in individuals at risk for diabetes: A randomized controlled trial. Obesity 27 542:–50. doi: 10.1002/oby.22406.
  • Wu, Y., Q. Zhou, X. Y. Chen, X. Li, Y. Wang, and J. L. Zhang. 2017. Comparison and screening of bioactive phenolic compounds in different blueberry cultivars: Evaluation of anti-oxidation and alpha-glucosidase inhibition effect. Food Research International ( International 100 (Pt 1):312–24. doi: 10.1016/j.foodres.2017.07.004.
  • Xie, L., J. Mo, J. Ni, Y. Xu, H. Su, J. Xie, and W. Chen. 2020. Structure-based design of human pancreatic amylase inhibitors from the natural anthocyanin database for type 2 diabetes. Food & Function 11 (4):2910–23. doi: 10.1039/C9FO02885D.
  • Xu, C., X. Wan, L. Xu, H. Weng, M. Yan, M. Miao, Y. Sun, G. Xu, S. Dooley, Y. Li, et al. 2015. Xanthine oxidase in non-alcoholic fatty liver disease and hyperuricemia: One stone hits two birds. Journal of Hepatology 62 (6):1412–9. doi: 10.1016/j.jhep.2015.01.019.
  • Xu, Y., L. Xie, J. Xie, Y. Liu, and W. Chen. 2018. Pelargonidin-3-O-rutinoside as a novel alpha-glucosidase inhibitor for improving postprandial hyperglycemia. Chemical Communications 55 (1):39–42. doi: 10.1039/C8CC07985D.
  • Yamane, T., M. Imai, S. Handa, K. Yamada, T. Sakamoto, T. Ishida, H. Inui, Y. Yamamoto, T. Nakagaki, and Y. Nakano. 2019. Reduction of blood glucose and HbA1c levels by cyanidin 3,5-diglucoside in KKAy mice. Journal of Functional Foods 58:21–6. doi: 10.1016/j.jff.2019.04.038.
  • Yamane, T., M. Kozuka, D. Konda, Y. Nakano, T. Nakagaki, I. Ohkubo, and H. Ariga. 2016. Improvement of blood glucose levels and obesity in mice given aronia juice by inhibition of dipeptidyl peptidase iv and alpha-glucosidase. The Journal of Nutritional Biochemistry 31:106–12. doi: 10.1016/j.jnutbio.2016.02.004.
  • Yan, F., G. Dai, and X. Zheng. 2016. Mulberry anthocyanin extract ameliorates insulin resistance by regulating PI3K/Akt pathway in HepG2 cells and db/db mice. The Journal of Nutritional Biochemistry 36:68–80. doi: 10.1016/j.jnutbio.2016.07.004.
  • Yan, F., J. Zhang, L. Zhang, and X. Zheng. 2016. Mulberry anthocyanin extract regulates glucose metabolism by promotion of glycogen synthesis and reduction of gluconeogenesis in human HepG2 cells. Food & Function 7 (1):425–33. doi: 10.1039/C5FO00841G.
  • Yan, F., X. Chen, and X. Zheng. 2017. Protective effect of mulberry fruit anthocyanin on human hepatocyte cells (Lo2) and caenorhabditis elegans under hyperglycemic conditions. Food Research International 102:213–24. doi: 10.1016/j.foodres.2017.10.009.
  • Yan, F., Y. Chen, R. Azat, and X. Zheng. 2017. Mulberry anthocyanin extract ameliorates oxidative damage in HepG2 cells and prolongs the lifespan of caenorhabditis elegans through mapk and nrf2 pathways. Oxidative Medicine and Cellular Longevity 2017:1–12. doi: 10.1155/2017/7956158.
  • Yang, L. P., W. H. Ling, Z. C. Du, Y. M. Chen, D. Li, S. Z. Deng, Z. M. Liu, and L. L. Yang. 2017. Effects of anthocyanins on cardiometabolic health: A systematic review and meta-analysis of randomized controlled trials. Advances in Nutrition: An International Review Journal 8 (5):684–93. doi: 10.3945/an.116.014852.
  • Yan, F., and X. Zheng. 2017. Anthocyanin-rich mulberry fruit improves insulin resistance and protects hepatocytes against oxidative stress during hyperglycemia by regulating AMPK/ACC/mTOR pathway. Journal of Functional Foods 30:270–81. doi: 10.1016/j.jff.2017.01.027.
  • Yuan, Y. Z., M. K. Ikram, S. F. Jiang, H. D. Lin, L. M. Ren, H. M. Yan, J. H. Sheng, X. S. Chen, and X. Gao. 2011. Hyperuricemia accompanied with changes in the retinal microcirculation in a chinese high-risk population for diabetes. Biomedical and Environmental Sciences 24 (2):146–54. doi: 10.3967/0895-3988.2011.02.009.
  • Zhang, C., X. Lu, Y. Tan, B. Li, X. Miao, L. Jin, X. Shi, X. Zhang, L. Miao, X. Li, et al. 2012. Diabetes-induced hepatic pathogenic damage, inflammation, oxidative stress, and insulin resistance was exacerbated in zinc deficient mouse model. PLoS One. 7 (12):e49257. doi: 10.1371/journal.pone.0049257.
  • Zhang, J., L. Sun, Y. Dong, Z. Fang, T. Nisar, T. Zhao, Z.-C. Wang, and Y. Guo. 2019. Chemical compositions and α-glucosidase inhibitory effects of anthocyanidins from blueberry, blackcurrant and blue honeysuckle fruits. Food Chemistry 299:125102. doi: 10.1016/j.foodchem.2019.125102.
  • Zhang, Y., T. Neogi, C. Chen, C. Chaisson, D. J. Hunter, and H. K. Choi. 2012. Cherry consumption and decreased risk of recurrent gout attacks. Arthritis & Rheumatism 64 (12):4004–11. doi: 10.1002/art.34677.
  • Zhang, Z. C., G. H. Su, C. L. Luo, Y. L. Pang, L. Wang, X. Li, J. H. Wen, and J. L. Zhang. 2015. Effects of anthocyanins from purple sweet potato (Ipomoea batatas L. Cultivar Eshu no. 8) on the serum uric acid level and xanthine oxidase activity in hyperuricemic mice. Food & Function 6 (9):3045–55. doi: 10.1039/C5FO00499C.
  • Zhang, Z. C., Q. Zhou, Y. Yang, Y. Wang, and J. L. Zhang. 2019. Highly acylated anthocyanins from purple sweet potato (Ipomoea batatas L.) alleviate hyperuricemia and kidney inflammation in hyperuricemic mice: Possible attenuation effects on allopurinol. Journal of Agricultural and Food Chemistry 67 (22):6202–11. doi: 10.1021/acs.jafc.9b01810.
  • Zhang, Z. F., J. Lu, Y. L. Zheng, D. M. Wu, B. Hu, Q. Shan, W. Cheng, M. Q. Li, and Y. Y. Sun. 2013. Purple sweet potato color attenuates hepatic insulin resistance via blocking oxidative stress and endoplasmic reticulum stress in high-fat-diet-treated mice. The Journal of Nutritional Biochemistry 24 (6):1008–18. doi: 10.1016/j.jnutbio.2012.07.009.
  • Zhang, Z. C., H. B. Wang, Q. Zhou, B. Hu, J. H. Wen, and J. L. Zhang. 2017. Screening of effective xanthine oxidase inhibitors in dietary anthocyanins from purple sweet potato (Ipomoea batatas L. Cultivar Eshu no. 8) and deciphering of the underlying mechanisms in vitro. Journal of Functional Foods 36:102–11. doi: 10.1016/j.jff.2017.06.048.
  • Zhao, C. L., Y. Q. Yu, Z. J. Chen, G. S. Wen, F. G. Wei, Q. Zheng, C. D. Wang, and X. L. Xiao. 2017. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chemistry 214:119–28. doi: 10.1016/j.foodchem.2016.07.073.
  • Zhu, F. 2018. Anthocyanins in cereals: Composition and health effects. Food Research International ( International 109:232–49. doi: 10.1016/j.foodres.2018.04.015.
  • Zhu, Y., B. J. Pandya, and H. K. Choi. 2011. Prevalence of gout and hyperuricemia in the US general population: The national health and nutrition examination survey 2007–2008. Arthritis and Rheumatism 63 (10):3136–41. doi: 10.1002/art.30520.
  • Zhu, Y., Y. Hu, T. Huang, Y. Zhang, Z. Li, C. Luo, Y. Luo, H. Yuan, I. Hisatome, T. Yamamoto, et al. 2014. High uric acid directly inhibits insulin signalling and induces insulin resistance. Biochemical and Biophysical Research Communications 447 (4):707–14. doi: 10.1016/j.bbrc.2014.04.080.
  • Zhong, S., A. Sandhu, I. Edirisinghe, and B. Burton-Freeman. 2017. Characterization of wild blueberry polyphenols bioavailability and kinetic profile in plasma over 24-h period in human subjects. Molecular Nutrition & Food Research 61 (12):1700405. doi: 10.1002/mnfr.201700405.
  • Zielińska-Wasielica, J., A. Olejnik, K. Kowalska, M. Olkowicz, and R. Dembczyński. 2019. Elderberry (Sambucus nigra L.) fruit extract alleviates oxidative stress, insulin resistance, and inflammation in hypertrophied 3T3-L1 adipocytes and activated RAW 264.7 macrophages. Foods 8 (8):326. doi: 10.3390/foods8080326.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.