626
Views
7
CrossRef citations to date
0
Altmetric
Reviews

From winery by-product to healthy product: bioavailability, redox signaling and oxidative stress modulation by wine pomace product

, &

References

  • Amico, V., R. Chillemi, S. Mangiafico, C. Spatafora, and C. Tringali. 2008. Polyphenol-enriched fractions from Sicilian grape pomace: HPLC–DAD analysis and antioxidant activity. Bioresource Technology 99 (13):5960–6. doi: 10.1016/j.biortech.2007.10.037.
  • Appeldoorn, M., D. P. Venema, T. H. F. Peters, M. E. Koenen, I. C. W. Arts, J. P. Vincken, H. Gruppen, J. Keijer, and P. C. H. Hollman. 2009. Some phenolic compounds increase the nitric oxide level in endothelial cells in vitro. Journal of Agricultural and Food Chemistry 57 (17):7693–9. doi: 10.1021/jf901381x.
  • Arora, I., M. Sharma, and T. O. Tollefsbol. 2019. Combinatorial epigenetics impact of polyphenols and phytochemicals in cancer prevention and therapy. International Journal of Molecular Sciences 20 (18):4567. doi: 10.3390/ijms20184567.
  • Aryaeian, N., S. K. Sedehi, and T. Arablou. 2017. Polyphenols and their effects on diabetes management: A review. Medical Journal of the Islamic Republic of Iran 31 (1):134–92. doi: 10.14196/mjiri.31.134.
  • Aykin-Burns, N., I. M. Ahmad, Y. Zhu, L. W. Oberley, and D. R. Spitz. 2009. Increased levels of superoxide and hydrogen cancer cells vs. normal cells to glucose deprivation. Biochemical Journal 418 (1):29–35. . doi: 10.1042/BJ20081258.
  • Ayuda-Durán, B., S. González-Manzano, I. Gil-Sánchez, M. Moreno-Arribas, B. Bartolomé, M. Sanz-Buenhombre, A. Guadarrama, C. Santos-Buelga, and A. González-Paramás. 2019. Antioxidant Characterization and Biological Effects of Grape Pomace Extracts Supplementation in Caenorhabditis elegans. Foods 8 (2):75 doi:10.3390/foods8020075.
  • Bak, M. J., M. Jun, and W. S. Jeong. 2012. Procyanidins from wild grape (Vitis amurensis) seeds regulate ARE-mediated enzyme expression via Nrf2 coupled with p38 and PI3K/Akt pathway in HepG2 cells. International Journal of Molecular Sciences 13 (1):801–18. doi: 10.3390/ijms13010801.
  • Balasuriya, B. W. N., and H. P. V. Rupasinghe. 2011. Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Functional Foods in Health Disease 5 (5):172–88. doi: 10.1234/ffhd.v1i5.132.
  • Balea, S. S., A. E. Parvu, M. Parvu, L. Vlase, C. A. Dehelean, and T. I. Pop. 2020. Antioxidant, anti-inflammatory and antiproliferative effects of the Fetească neagră and Pinot noir grape pomace extracts. Frontiers in Pharmacology 11:990. doi: 10.3389/fphar.2020.00990.
  • Balea, Ş. S., A. E. Pârvu, N. Pop, F. Z. Marín, and M. Pârvu. 2018. Polyphenolic compounds, antioxidant, and cardioprotective effects of pomace extracts from Fetească neagră cultivar. Oxidative Medicine and Cellular Longevity 2018:8194721. doi: 10.1155/2018/8194721.
  • Barber, T. M., S. Kabisch, A. F. H. Pfeiffer, and M. O. Weickert. 2020. The health benefits of dietary fibre. Nutrients 12 (10):3209. doi: 10.3390/nu12103209.
  • Battino, M., F. Giampieri, F. Pistollato, A. Sureda, M. R. de Oliveira, V. Pittalà, F. Fallarino, S. F. Nabavi, A. G. Atanasov, and S. M. Nabavi. 2018. Nrf2 as regulator of innate immunity: A molecular Swiss army knife! Biotechnology Advances 36 (2):358–70. doi: 10.1016/j.biotechadv.2017.12.012.
  • Bellezza, I., I. Giambanco, A. Minelli, and R. Donato. 2018. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochimica et Biophysica Acta. Molecular Cell Research 1865 (5):721–33. doi: 10.1016/j.bbamcr.2018.02.010.
  • Bettaieb, A., E. Cremonini, H. Kang, J. Kang, F. Haj, and P. Oteiza. 2016. Anti-inflammatory actions of (−)-epicatechin in the adipose tissue of obese mice. The International Journal of Biochemistry & Cell Biology 81 (Pt B):383–92. doi: 10.1016/j.biocel.2016.08.044.
  • Biesalski, H. K., L. O. Dragsted, I. Elmadfa, R. Grossklaus, M. Müller, D. Schrenk, P. Walter, and P. Weber. 2009. Bioactive compounds: Definition and assessment of activity. Nutrition 25 (11-12):1202–5. doi: 10.1016/j.nut.2009.04.023.
  • Birkett, A. M., G. P. Jones, A. M. De Silva, G. P. Young, and J. G. Muir. 1997. Dietary intake and faecal excretion of carbohydrate by Australians: Importance of achieving stool weights greater than 150 g to improve faecal markers relevant to colon cancer risk. European Journal of Clinical Nutrition 51 (9):625–32. doi: 10.1038/sj.ejcn.1600456.
  • Bjørklund, G., and S. Chirumbolo. 2017. Role of oxidative stress and antioxidants in daily nutrition and human health. Nutrition 33:311–21. doi: 10.1016/j.nut.2016.07.018.
  • Bode, A. M., and Z. Dong. 2013. Signal transduction and molecular targets of selected flavonoids. Antioxidants & Redox Signaling 19 (2):163–80. doi: 10.1089/ars.2013.5251.
  • Bogdan, C. 2015. Nitric oxide synthase in innate and adaptive immunity: An update. Trends in Immunology 36 (3):161–78. doi: 10.1016/j.it.2015.01.003.
  • Burnett, A. 2006. The role of nitric oxide in erectile dysfunction: Implications for medical therapy. Journal of Clinical Hypertension 8 (12 Suppl 4):53–62. doi: 10.1111/j.1524-6175.2006.06026.x.
  • Cani, P. D., M. Osto, L. Geurts, and A. Everard. 2012. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3 (4):279–88. doi: 10.4161/gmic.19625.
  • Cantos, E., J. Espín, and F. Tomás-Barberán. 2002. Varietal differences among the polyphenol profiles of seven table grape cultivars studied by LC − DAD − MS − MS. Journal of Agricultural and Food Chemistry 50 (20):5691–6. doi: 10.1021/jf0204102.
  • Cao, S.-Y., Zhao, C.-N. Gan, R.-Y. Xu, X.-Y. Wei, X.-L. Corke, H. Atanasov, A. G. Li. and H.-B. 2019. Effects and mechanisms of tea and its bioactive compounds for the prevention and treatment of cardiovascular diseases: An updated review. Antioxidants 8 (6):166. doi: 10.3390/antiox8060166.
  • Cao, Y., Y. Zhang, J. Qi, R. Liu, H. Zhang, and L. He. 2015. Ferulic acid inhibits H2O2-induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NADPH oxidase and NF-κB pathway. International Immunopharmacology 28 (2):1018–25. doi: 10.1016/j.intimp.2015.07.037.
  • Carmona-Jiménez, Y., M. Palma, D. A. Guillén-Sánchez, and M. V. García-Moreno. 2021. Study of the cluster thinning grape as a source of phenolic compounds and evaluation of its antioxidant potential. Biomolecules 11 (2):227. doi: 10.3390/biom11020227.
  • Cassidy, A., É. J. O’Reilly, C. Kay, L. Sampson, M. Franz, J. P. Forman, G. Curhan, and E. B. Rimm. 2011. Habitual intake of flavonoid subclasses and incident hypertension in adults. The American Journal of Clinical Nutrition 93 (2):338–47. doi: 10.3945/ajcn.110.006783.
  • Castello, F., G. Costabile, L. Bresciani, M. Tassotti, D. Naviglio, D. Luongo, P. Ciciola, M. Vitale, C. Vetrani, G. Galaverna, et al. 2018. Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans. Archives of Biochemistry and Biophysics 646:1–9. doi: 10.1016/j.abb.2018.03.021.
  • Castillo-Muñoz, N., M. Fernandez-Gonzalez, S. Gomez-Alonso, E. Garcia-Romero, and I. Hermosin-Gutierrez. 2009. Red-color related phenolic composition of Garnacha Tintorera (Vitis vinifera L.) grapes and red wines. Journal of Agricultural and Food Chemistry 57 (17):7883–91.
  • Chambers, E. S., T. Preston, G. Frost, and D. J. Morrison. 2018. Role of gut microbiota-generated short-chain fatty acids in metabolic and cardiovascular health. Current Nutrition Reports 7 (4):198–206. doi: 10.1007/s13668-018-0248-8.
  • Chamorro, S., A. Viveros, I. Alvarez, E. Vega, and A. Brenes. 2012. Changes in polyphenol and polysaccharide content of grape seed extract and grape pomace after enzymatic treatment. Food Chemistry 133 (2):308–14. doi: 10.1016/j.foodchem.2012.01.031.
  • Chedea, V. S., L. M. Palade, D. E. Marin, R. S. Pelmus, M. Habeanu, M. C. Rotar, M. A. Gras, G. C. Pistol, and I. Taranu. 2018. Intestinal absorption and antioxidant activity of grape pomace polyphenols. Nutrients 10 (5):588. doi: 10.3390/nu10050588.
  • Chen, Y., X. Q. Wang, Q. Zhang, J. Y. Zhu, Y. Li, C. F. Xie, X. T. Li, J. S. Wu, S. S. Geng, C. Y, Zhong, et al. 2017. (-)Epigallocatechin-3-gallate inhibits colorectal cancer stem cells by suppressing Wnt/β-catenin pathway. Nutrients 9 (6):572. doi: 10.3390/nu9060572.
  • Chung, S., H. Yao, S. Caito, J. w. Hwang, G. Arunachalam, and I. Rahman. 2010. Regulation of SIRT1 in cellular functions: Role of polyphenols. Archives of Biochemistry and Biophysics 501 (1):79–90. doi: 10.1016/j.abb.2010.05.003.
  • Coleman, H. R., C. C. Chan, F. Ferris, and E. Y. Chew. 2008. Age-related macular degeneration. The Lancet 372 (9652):1835–45. doi: 10.1016/S0140-6736(08)61759-6.
  • Crespy, V., C. Morand, C. Besson, N. Cotelle, H. Vézin, C. Demigne, and C. Rémésy. 2003. The splanchnic metabolism of flavonoids highly differed according to the nature of the compound. American Journal of Physiology-Gastrointestinal and Liver Physiology 284 (6):G980–988. doi: 10.1152/ajpgi.00223.2002.
  • Crimi, E., L. J. Ignarro, and C. Napoli. 2007. Microcirculation and oxidative stress. Free Radical Research 41 (12):1364. doi: 10.1080/10715760701732830.
  • Cueva, C., I. Gil-Sánchez, B. Ayuda-Durán, S. González-Manzano, A. M. González-Paramás, C. Santos-Buelga, B. Bartolomé, and M. V. Moreno-Arribas. 2017. An integrated view of the effects of wine polyphenols and their relevant metabolites on gut and host health. Molecules 22 (1):99–15. doi: 10.3390/molecules22010099.
  • Dai, H., H. B. Deng, Y. H. Wang, and J. J. Guo. 2018. Resveratrol inhibits the growth of gastric cancer via the wnt/β-catenin pathway. Oncology Letters 16 (2):1579–83. doi: 10.3892/ol.2018.8772.
  • Dalle-Donne, I., R. Rossi, R. Colombo, D. Giustarini, and A. Milzani. 2006. Biomarkers of oxidative damage in human disease. Clinical Chemistry 52 (4):601–23. doi: 10.1373/clinchem.2005.061408.
  • Das, A. K., P. K. Nanda, P. Madane, S. Biswas, A. Das, W. Zhang, and J. M. Lorenzo. 2020. A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends in Food Science & Technology 99:323–336. doi: 10.1016/j.tifs.2020.03.010.
  • De Groote, D., K. Van Belleghem, J. Devière, W. Van Brussel, A. Mukaneza, and L. Amininejad. 2012. Effect of the intake of resveratrol, resveratrol phosphate, and catechin-rich grape seed extract on markers of oxidative stress and gene expression in adult obese subjects. Annals of Nutrition & Metabolism 61 (1):15–24. doi: 10.1159/000338634.
  • De Sales, N. F. F., L. S. Da Costa, T. I. A. Carneiro, D. A. Minuzzo, F. L. Oliveira, L. M. C. Cabral, A. G. Torres, and T. El-Bacha. 2018. Anthocyanin-rich grape pomace extract (Vitis vinifera L.) from wine industry affects mitochondrial bioenergetics and glucose metabolism in human hepatocarcinoma HepG2 cells. Molecules 23 (3):611–17. doi: 10.3390/molecules23030611.
  • Del Pino-García, R., G. Gerardi, M. D. Rivero-Pérez, M. L. González-SanJosé, J. García-Lomillo, and P. Muñiz. 2016. Wine pomace seasoning attenuates hyperglycaemia-induced endothelial dysfunction and oxidative damage in endothelial cells. Journal of Functional Foods 22:431–45. doi: 10.1016/j.jff.2016.02.001.
  • Del Pino-García, R., M. L. González-SanJosé, M. D. Rivero-Pérez, J. García-Lomillo, and P. Muñiz. 2016a. Total antioxidant capacity of new natural powdered seasonings after gastrointestinal and colonic digestion. Food Chemistry 211:707–14. doi: 10.1016/j.foodchem.2016.05.127.
  • Del Pino-García, R., M. L. González-SanJosé, M. D. Rivero-Pérez, J. García-Lomillo, and P. Muñiz. 2017. The effects of heat treatment on the phenolic composition and antioxidant capacity of red wine pomace seasonings. Food Chemistry 221:1723–32. doi: 10.1016/j.foodchem.2016.10.113.
  • Del Pino-García, R., M. D. Rivero-Pérez, M. L. González-Sanjosé, P. Castilla-Camina, K. D. Croft, and P. Muñiz. 2016b. Attenuation of oxidative stress in Type 1 diabetic rats supplemented with a seasoning obtained from winemaking by-products and its effect on endothelial function. Food & Function 7 (10):4410–21. doi: 10.1039/c6fo01071g.
  • Del Pino-García, R., M. D. Rivero-Pérez, M. L. González-SanJosé, K. D. Croft, and P. Muñiz. 2016c. Bioavailability of phenolic compounds and antioxidant effects of wine pomace seasoning after oral administration in rats. Journal of Functional Foods 25 (2):486–96. doi: 10.1016/j.jff.2016.06.030.
  • Del Pino-García, R., M. D. Rivero-Pérez, M. L. González-SanJosé, K. D. Croft, and P. Muñiz. 2017a. Antihypertensive and antioxidant effects of supplementation with red wine pomace in spontaneously hypertensive rats. Food & Function 8 (7):2444–54. doi: 10.1039/C7FO00390K.
  • Del Pino-García, R., M. D. Rivero-Pérez, M. L. Gonzalez-Sanjosé, M. Ortega-Heras, J. G. Lomillo, and P. Muñiz. 2017b. Chemopreventive potential of powdered red wine pomace seasonings against colorectal cancer in HT-29 cells. Journal of Agricultural and Food Chemistry 65 (1):66–73. doi: 10.1021/acs.jafc.6b04561.
  • Deng, Q., M. H. Penner, and Y. Zhao. 2011. Chemical composition of dietary fiber and polyphenols of five different varieties of wine grape pomace skins. Food Research International 44 (9):2712–20. doi: 10.1016/j.foodres.2011.05.026.
  • Dikalov, S. I., R. R. Nazarewicz, A. Bikineyeva, L. Hilenski, B. Lassègue, K. K. Griendling, D. G. Harrison, and A. E. Dikalova. 2014. Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxidants & Redox Signaling 20 (2):281–94. doi: 10.1089/ars.2012.4918.
  • Ding, Q., T. Hayashi, A. J. Packiasamy, A. Miyazaki, A. Fukatsu, H. Shiraishi, T. Nomura, and A. Iguchi. 2004. The effect of high glucose on NO and O2-through endothelial GTPCH1 and NADPH oxidase. Life Sciences 75 (26):3185–94. doi: 10.1016/j.lfs.2004.06.005.
  • Domínguez-Avila, A. J., G. A. González-Aguilar, E. Alvarez-Parrilla, and L. A. de la Rosa. 2016. Modulation of PPAR expression and activity in response to polyphenolic compounds in high fat diets. International Journal of Molecular Sciences 17 (7):1002–17. doi: 10.3390/ijms17071002.
  • D’Oria, R., Schipani, A. Leonardini, A. Natalicchio, S. Perrini, A. Cignarelli, L. Laviola, and F. Giorgino. 2020. The role of oxidative stress in cardiac disease: From physiological response to injury factor. Oxidative Medicine and Cellular Longevity 2020:5732956.
  • Doshi, P., P. Adsule, K. Banerjee, and D. Oulkar. 2015. Phenolic compounds, antioxidant activity and insulinotropic effect of extracts prepared from grape (Vitis vinifera L) byproducts. Journal of Food Science and Technology 52 (1):181–90. doi: 10.1007/s13197-013-0991-1.
  • Edwards, M., C. Czank, G. M. Woodward, A. Cassidy, and C. D. Kay. 2015. Phenolic metabolites of anthocyanins modulate mechanisms of endothelial function. Journal of Agricultural and Food Chemistry 63 (9):2423–31. doi: 10.1021/jf5041993.
  • Endemann, D. H., and E. L. Schiffrin. 2004. Endothelial dysfunction. Journal of the American Society of Nephrology 15 (8):1983–1992. doi: 10.1097/01.ASN.0000132474.50966.DA.
  • Esmerina, T., J.-J. Michaille, H. Alder, S. Volinia, D. Delmas, N. Latruffe, and C. M. Croce1. 2013. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFβ signaling pathway in SW480 cells. Biochemical Pharmacology 18 (9):1199–216. doi: 10.1016/j.micinf.2011.07.011.Innate.
  • Exner, M., M. Hermann, R. Hofbauer, S. Kapiotis, P. Quehenberger, W. Speiser, I. Held, and B. Gmeiner. 2001. Genistein prevents the glucose autoxidation mediated atherogenic modification of low density lipoprotein. Free Radical Research 34 (1):101–12. doi: 10.1080/10715760100300101.
  • Farooqi, A. A., S. Khalid, and A. Ahmad. 2018. Regulation of cell signaling pathways and miRNAs by resveratrol in different cancers. International Journal of Molecular Sciences 19 (3):652. doi: 10.3390/ijms19030652.
  • Faustino, M., M. Veiga, P. Sousa, E. M. Costa, S. Silva, and M. Pintado. 2019. Agro-food byproducts as a new source of natural food additives. Molecules 24 (6):1056–23. doi: 10.3390/molecules24061056.
  • Fechtner, S., A. Singh, M. Chourasia, and S. Ahmed. 2017. Molecular insights into the differences in anti-inflammatory activities of green tea catechins on IL-1β signaling in rheumatoid arthritis synovial fibroblasts. Toxicology and Applied Pharmacology 329:112–20. doi: 10.1016/j.taap.2017.05.016.
  • Fernandes, I., R. Pérez-Gregorio, S. Soares, N. Mateus, and V. D. Freitas. 2017. Wine flavonoids in health and disease prevention. Molecules 22 (2):292–30. doi: 10.3390/molecules22020292.
  • Fernández-García, E., I. Carvajal-Lérida, and A. Pérez-Gálvez. 2009. In vitro bioaccessibility assessment as a prediction tool of nutritional efficiency. Nutrition Research 29 (11):751–60. doi: 10.1016/j.nutres.2009.09.016.
  • Ferri, M., M. Vannini, M. Ehrnell, L. Eliasson, E. Xanthakis, S. Monari, L. Sisti, P. Marchese, A. Celli, and A. Tassoni. 2020. From winery waste to bioactive compounds and new polymeric biocomposites: A contribution to the circular economy concept. Journal of Advanced Research 24:1–11. doi: 10.1016/j.jare.2020.02.015.
  • Forman, H. J., M. Traber, and F. Ursini. 2014. How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis versus free radical scavenging in vivo. Free Radical Biology and Medicine 66:1–26. . doi: 10.1016/j.freeradbiomed.2013.10.808.
  • Fraga, C. G., K. D. Croft, D. O. Kennedy, and F. A. Tomás-Barberán. 2019. The effects of polyphenols and other bioactives on human health. Food & Function 10 (2):514–28. doi: 10.1039/c8fo01997e.
  • Fraga, C. G., P. I. Oteiza, and M. Galleano. 2018. Plant bioactives and redox signaling: (–)-Epicatechin as a paradigm. Molecular Aspects of Medicine 61:31–40. doi: 10.1016/j.mam.2018.01.007.
  • Fuller, S., E. Beck, H. Salman, and L. Tapsell. 2016. New horizons for the study of dietary fiber and health: A review. Plant Foods for Human Nutrition 71 (1):1–12. doi: 10.1007/s11130-016-0529-6.
  • Furuuchi, R., I. Shimizu, Y. Yoshida, Y. Hayashi, R. Ikegami, M. Suda, G. Katsuumi, T. Wakasugi, M. Nakao, and T. Minamino. 2018. Boysenberry polyphenol inhibits endothelial dysfunction and improves vascular health. PLoS One 13 (8):e0202051. doi: 10.1371/journal.pone.0202051.
  • Galleano, M., I. Bernatova, A. Puzserova, P. Balis, N. Sestakova, O. Pechanova, and C. G. Fraga. 2013. (–)Epicatechin reduces blood pressure and improves vasorelaxation in spontaneously hypertensive rats by NO-mediated mechanism. International Union of Biochemistry and Molecular Biology 65 (8):710–5. doi: 10.1002/iub.1185.
  • García-Lomillo, J., M. L. González-SanJosé, R. Del Pino-García, M. D. Rivero-Pérez, and P. Muñiz-Rodríguez. 2014. Antioxidant and antimicrobial properties of wine byproducts and their potential uses in the food industry. Journal of Agricultural and Food Chemistry 62 (52):12595–602. doi: 10.1021/jf5042678.
  • Garrido, J., and F. Borges. 2013. Wine and grape polyphenols—A chemical perspective. Food Research International 54 (2):1844–58. doi: 10.1016/j.foodres.2013.08.002.
  • Gems, D, and L. Partridge. 2008. Stress-Response Hormesis and Aging: “That which Does Not Kill Us Makes Us Stronger. Cell Metabolism 7 (3):200–3. doi:10.1016/j.cmet.2008.01.001.
  • Gerardi, G., M. Cavia-Saiz, R. del Pino-García, M. D. Rivero-Pérez, M. L. González-SanJosé, and P. Muñiz. 2020. Wine pomace product ameliorates hypertensive and diabetic aorta vascular remodeling through antioxidant and anti-inflammatory actions. Journal of Functional Foods 66:103794. doi: 10.1016/j.jff.2020.103794.
  • Gerardi, G., M. Cavia-Saiz, M. D. Rivero-Pérez, M. L. González-SanJosé, and P. Muñiz. 2019. Modulation of Akt-p38-MAPK/Nrf2/SIRT1 and NF-κB pathways by wine pomace product in hyperglycemic endothelial cell line. Journal of Functional Foods 58:255–65. doi: 10.1016/j.jff.2019.05.003.
  • Gerardi, G., M. Cavia-Saiz, M. D. Rivero-Pérez, M. L. González-SanJosé, and P. Muñiz. 2020a. The dose–response effect on polyphenol bioavailability after intake of white and red wine pomace products by Wistar rats. Food & Function 11 (2):1661–71. doi: 10.1039/C9FO01743G.
  • Gerardi, G., M. Cavia-Saiz, M. D. Rivero-Pérez, M. L. González-SanJosé, and P. Muñiz. 2020b. The protective effects of wine pomace products on the vascular endothelial barrier function. Food & Function 11 (9):7878–91. doi: 10.1039/D0FO01199A.
  • Gerardi, G., M. Cavia-Saiz, M. D. Rivero-Pérez, M. L. González-SanJosé, and P. Muñiz. 2020c. Wine pomace product modulates oxidative stress and microbiota in obesity high-fat diet-fed rats. Journal of Functional Foods 68:103903. doi: 10.1016/j.jff.2020.103903.
  • Gessner, D. K., A. Winkler, C. Koch, G. Dusel, G. Liebisch, R. Ringseis, and K. Eder. 2017. Analysis of hepatic transcript profile and plasma lipid profile in early lactating dairy cows fed grape seed and grape marc meal extract. BMC Genomics 18 (1):253. doi: 10.1186/s12864-017-3638-1.
  • Gil-Sánchez, I., B. Ayuda-Durán, S. González-Manzano, C. Santos-Buelga, C. Cueva, M. A. Martín-Cabrejas, M. Sanz-Buenhombre, A. Guadarrama, M. V. Moreno-Arribas, B. Bartolomé. 2017. Chemical characterization and in vitro colonic fermentation of grape pomace extracts. Journal of the Science of Food and Agriculture 97 (10):3433–44. doi: 10.1002/jsfa.8197.
  • Gil-Sánchez, I., A. Esteban-Fernández, D. G. de Llano, M. Sanz-Buenhombre, A. Guadarrana, N. Salazar, M. Gueimondec, C. G. de los Reyes-Gavilánce, L. Martín Gómez, M. L. García Bermejo, et al. 2018. Supplementation with grape pomace in healthy women: Changes in biochemical parameters, gut microbiota and related metabolic biomarkers. Journal of Functional Foods 45:34–46. doi: 10.1016/j.jff.2018.03.031.
  • Gómez-Guzmán, M., R. Jiménez, M. Sánchez, M. J. Zarzuelo, P. Galindo, A. M. Quintela, R. López-Sepúlveda, M. Romero, J. Tamargo, F. Vargas, et al. 2012. Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension. Free Radical Biology & Medicine 52 (1):70–9. doi: 10.1016/j.freeradbiomed.2011.09.015.
  • Goñi, I., N. Martı́n, and F. Saura-Calixto. 2005. In vitro digestibility and intestinal fermentation of grape seed and peel. Food Chemistry 90 (1-2):281–6. doi: 10.1016/j.foodchem.2004.03.057.
  • Gonzales, G. B., G. Smagghe, C. Grootaert, M. Zotti, K. Raes, and J. Van Camp. 2015. Flavonoid interactions during digestion, absorption, distribution and metabolism: A sequential structure-activity/property relationship-based approach in the study of bioavailability and bioactivity. Drug Metabolism Reviews 47 (2):175–90. doi: 10.3109/03602532.2014.1003649.
  • González-Paramás, A. M., S. Esteban-Ruano, C. Santos-Buelga, S. De Pascual-Teresa, and J. C. Rivas-Gonzalo. 2004. Flavanol content and antioxidant activity in winery byproducts. Journal of Agricultural and Food Chemistry 52 (2):234–8. doi: 10.1021/jf0348727.
  • Goutzourelas, N., D. Stagos, A. Housmekeridou, C. Karapouliou, E. Kerasioti, N. Aligiannis, A. L. Skaltsounis, D. A. Spandidos, A. M. Tsatsakis, and D. Kouretas. 2015. Grape pomace extract exerts antioxidant effects through an increase in GCS levels and GST activity in muscle and endothelial cells. International Journal of Molecular Medicine 36 (2):433–441. doi: 10.3892/ijmm.2015.2246.
  • Groh, I. A. M., T. Bakuradze, G. Pahlke, E. Richling, and D. Marko. 2020. Consumption of anthocyanin-rich beverages affects Nrf2 and Nrf2-dependent gene transcription in peripheral lymphocytes and DNA integrity of healthy volunteers. BMC Chemistry 14 (1):1–10. doi: 10.1186/s13065-020-00690-6.
  • Guaita, M., and A. Bosso. 2019. Polyphenolic characterization of grape skins and seeds of four italian red cultivars at harvest and after fermentative maceration. Foods 8 (9):395. doi: 10.3390/foods8090395.
  • Guzik, T. J., and R. M. Touyz. 2017. Oxidative stress, inflammation, and vascular aging in hypertension. Hypertension 70 (4):660–7. doi: 10.1161/HYPERTENSIONAHA.117.07802.
  • He, J. 2017. Bioactivity-guided fractionation of pine needle reveals catechin as an anti-hypertension agent via inhibiting angiotensin-converting enzyme. Scientific Reports 7 (1):1–9. doi: 10.1038/s41598-017-07748-x.
  • Hegazy, A. M., El-Sayed, E. M. Ibrahim, K. S. Abdel-Azeem. and A. S. 2019. Dietary antioxidant for disease prevention corroborated by the Nrf2 pathway. Journal of Complementary and Integrative Medicine 16 (3). doi: 10.1515/jcim-2018-0161.
  • Higashi, Y., K. Noma, M. Yoshizumi, and Y. Kihara. 2009. Endothelial function and oxidative stress in cardiovascular diseases. Circulation Journal 73 (3):411–8. http://www.ncbi.nlm.nih.gov/pubmed/19194043. doi: 10.1253/circj.cj-08-1102.
  • Hsu, C.-L., C.-H. Wu, S.-L. Huang, and G.-C. Yen. 2009. Phenolic compounds rutin and o-coumaric acid ameliorate obesity induced by high-fat diet in rats. Journal of Agricultural and Food Chemistry 57 (2):425–31. doi: 10.1021/jf802715t.
  • Huang, K., X. Gao, and W. Wei. 2017. The crosstalk between Sirt1 and Keap1/Nrf2/ARE anti-oxidative pathway forms a positive feedback loop to inhibit FN and TGF-β1 expressions in rat glomerular mesangial cells. Experimental Cell Research 361 (1):63–72. doi: 10.1016/j.yexcr.2017.09.042.
  • Hunt, J. V., R. T. Dean, and S. P. Wolff. 1988. Hydroxyl radical production and autoxidative glycosylation. Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. The Biochemical Journal 256 (1):205–12. doi: 10.1042/bj2560205.
  • Hunyadi, A. 2019. The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Medicinal Research Reviews 39 (6):2505–29. doi: 10.1002/med.21592.
  • Hussain, T., B. Tan, Y. Yin, F. Blachier, M. C. B. Tossou, and N. Rahu. 2016. Oxidative stress and inflammation: What polyphenols can do for us? Oxidative Medicine and Cellular Longevity 2016:7432797. doi: 10.1155/2016/7432797.
  • Jara-Palacios, M. J., S. González-Manzano, M. L. Escudero-Gilete, D. Hernanz, M. Dueñas, A. M. González-Paramás, F. J. Heredia, and C. Santos-Buelga. 2013. Study of Zalema Grape Pomace: Phenolic Composition and Biological Effects in Caenorhabditis elegans. Journal of Agricultural and Food Chemistry 61 (21):5114–21. doi:10.1021/jf400795s.
  • Jara-Palacios, M., D. Hernanz, T. Cifuentes-Gomez, M. L. Escudero-Gilete, F. J. Heredia, and J. P. E. Spencer. 2015. Assessment of white grape pomace from winemaking as source of bioactive compounds, and its antiproliferative activity. Food Chemistry 183:78–82. doi: 10.1016/j.foodchem.2015.03.022.
  • Jara-Palacios, M., D. Hernanz, M. L. Escudero-Gilete, and F. J. Heredia. 2014. Antioxidant potential of white grape pomaces: Phenolic composition and antioxidant capacity measured by spectrophotometric and cyclic voltammetry methods. Food Research International 66:150–7. doi: 10.1016/j.foodres.2014.09.009.
  • Jara-Palacios, M., D. Hernanz, M. L.Escudero-Gilete, and F. J. Heredia. 2016. The use of grape seed byproducts rich in flavonoids to improve the antioxidant potential of red wines. Molecules 21 (11):1526. doi: 10.3390/molecules21111526.
  • Javkhedkar, A. A., Y. Quiroz, B. Rodriguez-Iturbe, N. D. Vaziri, M. F. Lokhandwala, and A. A. Banday. 2015. Resveratrol restored Nrf2 function, reduced renal inflammation, and mitigated hypertension in spontaneously hypertensive rats. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 308 (10):R840–6. doi: 10.1152/ajpregu.00308.2014.
  • Jin, Q., J. O’Hair, A. C. Stewart, S. F. O’Keefe, A. P. Neilson, Y. T. Kim, M. McGuire, A. Lee, G. Wilder, and H. Huang. 2019. Compositional characterization of different industrial white and red grape pomaces in Virginia and the potential valorization of the major components. Foods 8 (12):667. doi: 10.3390/foods8120667.
  • Jin, T., Z. Song, J. Weng, and I. G. Fantus. 2018. Curcumin and other dietary polyphenols: Potential mechanisms of metabolic actions and therapy for diabetes and obesity. American Journal of Physiology. Endocrinology and Metabolism 314 (3):E201–5. doi: 10.1152/ajpendo.00285.2017.
  • Kabir, F., M. S. Sultana, and H. Kurnianta. 2015. Polyphenolic contents and antioxidant activities of underutilized grape (Vitis vinifera L.) pomace extracts. Preventive Nutrition and Food Science 20 (3):210–4. doi: 10.3746/pnf.2015.20.3.210.
  • Kadouh, H. C., S. Sun, W. Zhu, and K. Zhou. 2016. α-Glucosidase inhibiting activity and bioactive compounds of six red wine grape pomace extracts. Journal of Functional Foods 26:577–84. doi: 10.1016/j.jff.2016.08.022.
  • Kalli, E., I. Lappa, P. Bouchagier, P. A. Tarantilis, and E. Skotti. 2018. Novel application and industrial exploitation of winery by-products. Bioresources and Bioprocessing 5 (1):46. doi: 10.1186/s40643-018-0232-6.
  • Kammerer, D., A. Claus, R. Carle, and A. Schieber. 2004. Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. Journal of Agricultural and Food Chemistry 52 (14):4360–7. doi: 10.1021/jf049613b.
  • Karbach, S., P. Wenzel, A. Waisman, T. Munzel, and A. Daiber. 2014. eNOS uncoupling in cardiovascular diseases—The role of oxidative stress and inflammation. Current Pharmaceutical Design 20 (22):3579–94. doi: 10.2174/13816128113196660748.
  • Kårlund, A., M. Reinisalo, A. Kårlund, A. Koskela, K. Kaarniranta, and R. O. Karjalainen. 2015. Polyphenol stilbenes: Molecular mechanisms of defence against oxidative stress and aging-related diseases. Oxidative medicine and cellular longevity 2015:340520. doi: 10.1155/2015/340520.
  • Katalinić, V., S. S. Možina, D. Skroza, I. Generalić, H. Abramovič, M. Miloš, I. Ljubenkov, S. Piskernik, I. Pezo, P, Terpinc, et al. 2010. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chemistry 119 (2):715–23. doi: 10.1016/j.foodchem.2009.07.019.
  • Kim, D. H., H. Khan, H. Ullah, S. T. S. Hassan, K. Šmejkal, T. Efferth, M. F. Mahomoodally, S. Xu, S. Habtemariam, R. Filosa, et al. 2019. MicroRNA targeting by quercetin in cancer treatment and chemoprotection. Pharmacological Research 147:104346. doi: 10.1016/j.phrs.2019.104346.
  • Kuo, K. L., S. C. Hung, T. S. Lee, and D. C. Tarng. 2014. Iron sucrose accelerates early atherogenesis by increasing superoxide production and upregulating adhesion molecules in CKD. Journal of the American Society of Nephrology 25 (11):2596–606. doi: 10.1681/ASN.2013080838.
  • Ky, I., B. Lorrain, N. Kolbas, A. Crozier, and P. L. Teissedre. 2014. Wine by-products: Phenolic characterization and antioxidant activity evaluation of grapes and grape pomaces from six different French grape varieties. Molecules 19 (1):482–506. doi: 10.3390/molecules19010482.
  • Larivière, R., G. Thibault, and E. L. Schiffrin. 1993. Increased endothelin-1 content in blood vessels of deoxycorticosterone acetate-salt hypertensive but not in spontaneously hypertensive rats. Hypertension 21 (3):294–300. doi: 10.1161/01.HYP.21.3.294.
  • Lavelli, V., L. Torri, G. Zeppa, L. Fiori, and G. Spigno. 2016. Recovery of winemaking by-products. Italian Journal of Food Science 28 (4):542–64.
  • Lecumberri, E., L. Goya, R. Mateos, M. Alía, D. Ph, S. Ramos, M. Izquierdo-Pulido, and L. Bravo. 2007. A diet rich in dietary fiber from cocoa improves lipid profile and reduces malondialdehyde in hypercholesterolemic rats. Nutrition 23 (4):332–41. doi: 10.1016/j.nut.2007.01.013.
  • Lee, H. J., J. J. Lee, M. O. Jung, J. S. Choi, J. T. Jung, Y. I. Choi, and J. K. Lee. 2017. Meat quality and storage characteristics of pork loin marinated in grape pomace. Korean Journal for Food Science of Animal Resources 37 (5):726–34. doi: 10.5851/kosfa.2017.37.5.726.
  • Llobera, A., and J. Cañellas. 2007. Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera): Pomace and stem. Food Chemistry 101 (2):659–66. doi: 10.1016/j.foodchem.2006.02.025.
  • Loft, S., P. H. Danielsen, L. Mikkelsen, L. Risom, L. Forchhammer, and P. Møller. 2008. Biomarkers of oxidative damage to DNA and repair. Biochemical Society Transactions 36 (Pt 5):1071–6. doi: 10.1042/BST0361071.
  • Lubecka, K., A. Kaufman-Szymczyk, B. Cebula-Obrzut, P. Smolewski, J. Szemraj, and K. Fabianowska-Majewska. 2018. Novel clofarabine-based combinations with polyphenols epigenetically reactivate retinoic acid receptor beta, inhibit cell growth, and induce apoptosis of breast cancer cells. International Journal of Molecular Sciences 19 (12):3970–23. doi: 10.3390/ijms19123970.
  • Lugrin, J., N. Rosenblatt-Velin, R. Parapanov, and L. Liaudet. 2014. The role of oxidative stress during inflammatory processes. Biological Chemistry 395 (2):203–30. doi: 10.1515/hsz-2013-0241.
  • Maaliki, D., A. A. Shaito, G. Pintus, A. El-Yazbi, and A. H. Eid. 2019. Flavonoids in hypertension: A brief review of the underlying mechanisms. Current Opinion in Pharmacology 45:57–65. doi: 10.1016/j.coph.2019.04.014.
  • Machado, N. F. L., and R. Domínguez-Perles. 2017. Addressing facts and gaps in the phenolics chemistry of winery by-products. Molecules 22 (2):286–48. doi: 10.3390/molecules22020286.
  • Makris, D. P., G. Boskou, and N. K. Andrikopoulos. 2007. Recovery of antioxidant phenolics from white vinification solid by-products employing water/ethanol mixtures. Bioresource Technology 98 (15):2963–7. doi: 10.1016/j.biortech.2006.10.003.
  • Maleki, S. J., J. F. Crespo, and B. Cabanillas. 2019. Anti-inflammatory effects of flavonoids. Food Chemistry 299:125124. doi: 10.1016/j.foodchem.2019.125124.
  • Manach, C., A. Scalbert, C. Morand, C. Rémésy, and L. Jiménez. 2004. Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition 79 (5):727–747. doi: 10.1093/ajcn/79.5.727.
  • Manna, P., and S. K. Jain. 2015. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: Causes and therapeutic strategies. Metabolic Syndrome and Related Disorders 13 (10):423–44. doi: 10.1089/met.2015.0095.
  • Marín, L., E. M. Miguélez, C. J. Villar, and F. Lombó. 2015. Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed Research International 2015:905215. doi: 10.1155/2015/905215.
  • Martín Ortega, A. M., and M. R. Segura Campos. 2019. Bioactive compounds as therapeutic alternatives. In Bioactive compounds ed. M. R. Segura Campos, 247–264. Woodhead Publishing. doi: 10.1016/b978-0-12-814774-0.00013-x.
  • Martins, I. M., B. S. Roberto, J. B. Blumberg, C. O. Chen, and G. A. Macedo. 2016. Enzymatic biotransformation of polyphenolics increases antioxidant activity of red and white grape pomace. Food Research International 89 (Pt 1):533–539. doi: 10.1016/j.foodres.2016.09.009.
  • Mateen, S., S. Moin, A. Zafar, and A. Q. Khan. 2016. Redox signaling in rheumatoid arthritis and the preventive role of polyphenols. Clinica Chimica Acta; International Journal of Clinical Chemistry 463:4–10. doi: 10.1016/j.cca.2016.10.007.
  • Medina-Remón, A., A. Tresserra-Rimbau, A. Pons, J. A. Tur, M. Martorell, E. Ros, P. Buil-Cosiales, E. Sacanella, M. I. Covas, D. Corella, et al. 2015. Effects of total dietary polyphenols on plasma nitric oxide and blood pressure in a high cardiovascular risk cohort. The PREDIMED randomized trial. Nutrition, Metabolism, and Cardiovascular Diseases 25 (1):60–7. doi: 10.1016/j.numecd.2014.09.001.
  • Milenkovic, D., C. Deval, and E. Gouranton. 2012. Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: A new mechanism of the action of polyphenols. PLoS One 7 (1):e29837. doi: 10.1371/journal.pone.0029837.
  • Moldogazieva, N. T., I. M. Mokhosoev, N. B. Feldman, and S. V. Lutsenko. 2018. ROS and RNS signalling: Adaptive redox switches through oxidative/nitrosative protein modifications. Free Radical Research 52 (5):507–43. doi: 10.1080/10715762.2018.1457217.
  • Moreno, A. D., M. Ballesteros, and M. J. Negro. 2020. Biorefineries for the valorization of food processing waste. The interaction of food industry and environment, 155–90. London, UK: Academic Press.
  • Negro, C., L. Tommasi, and A. Miceli. 2003. Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresource Technology 87 (1):41–4. doi: 10.1016/S0960-8524(02)00202-X.
  • Neilson, A. P., and M. G. Ferruzzi. 2011. Influence of formulation and processing on absorption and metabolism of Flavan-3-Ols from tea and cocoa. Annual Review of Food Science and Technology 2 (1):125–51. doi: 10.1146/annurev-food-022510-133725.
  • Niki, E. 2016. Oxidative stress and antioxidants: Distress or eustress? Archives of Biochemistry and Biophysics 595:19–24. doi: 10.1016/j.abb.2015.11.017.
  • Nishizuka, T., Y. Fujita, Y. Sato, A. Nakano, A. Kakino, S. Ohshima, T. Kanda, R. Yoshimoto, and T. Sawamura. 2011. Procyanidins are potent inhibitors of LOX-1: A new player in the French Paradox. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences 87 (3):104–13. doi: 10.2183/pjab.87.104.
  • Oh, H., H. Kim, D. Lee, A. Lee, E. Giovannucci, S. Kang, and N. Keum. 2019. Different dietary fibre sources and risks of colorectal cancer and adenoma: A dose–response meta-analysis of prospective studies. British Journal of Nutrition 122 (6):605–15. doi: 10.1017/S0007114519001454.
  • O’Rourke, M. F., and J. Hashimoto. 2007. Mechanical factors in arterial aging: A clinical perspective. Journal of the American College of Cardiology 50 (1):1–13. doi: 10.1016/j.jacc.2006.12.050.
  • Otsuka, K., Y. Yamamoto, and T. Ochiya. 2018. Regulatory role of resveratrol, a microRNA-controlling compound, in HNRNPA1 expression, which is associated with poor prognosis in breast cancer. Oncotarget 9 (37):24718–30. doi: 10.18632/oncotarget.25339.
  • Ozdal, T., D. A. Sela, J. Xiao, D. Boyacioglu, F. Chen, and E. Capanoglu. 2016. The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8 (2):78–36. doi: 10.3390/nu8020078.
  • Pal, S., M. Naissides, and J. Mamo. 2004. Polyphenolics and fat absorption. International Journal of Obesity and Related Metabolic Disorders 28 (2):324–6. doi: 10.1038/sj.ijo.0802577.
  • Palafox-Carlos, H., J. F. Ayala-Zavala, and G. A. González-Aguilar. 2011. The role of dietary fiber in the bioaccessibility and bioavailability of fruit and vegetable antioxidants. Journal of Food Science 76 (1):R6–15. doi: 10.1111/j.1750-3841.2010.01957.x.
  • Paredes, M. D., P. Romecín, N. M. Atucha, F. O’Valle, J. Castillo, M. C. Ortiz, and J. García-Estañ. 2018. Beneficial effects of different flavonoids on vascular and renal function in L-NAME hypertensive rats. Nutrients 10 (4):484–15. doi: 10.3390/nu10040484.
  • Patel, H., J. Chen, K. C. Das, and M. Kavdia. 2013. Hyperglycemia induces differential change in oxidative stress at gene expression and functional levels in HUVEC and HMVEC. Cardiovascular Diabetology 12 (1):142–14. doi: 10.1186/1475-2840-12-142.
  • Peixoto, C. M., M. I. Dias, M. J. Alves, R. C. Calhelha, L. Barros, S. P. Pinho, and I. C. F. R. Ferreira. 2018. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chemistry 253:132–8. doi: 10.1016/j.foodchem.2018.01.163.
  • Pérez-Navarro, J., G. Cazals, C. Enjalbal, P. M. Izquierdo-Cañas, S. Gómez-Alonso, and C. Saucier. 2019. Flavanol glycoside content of grape seeds and skins of vitis vinifera varieties grown in Castilla-la Mancha, Spain. Molecules 24 (21):4001. doi: 10.3390/molecules24214001.
  • Pizzino, G., N. Irrera, M. Cucinotta, G. Pallio, F. Mannino, V. Arcoraci, F. Squadrito, D. Altavilla, and A. Bitto. 2017. Oxidative Stress: Harms and Benefits for Human Health. Oxidative Medicine and Cellular Longevity 2017:1–13. doi:10.1155/2017/8416763.
  • Price, J. M., A. Hellermann, G. Hellermann, and E. T. Sutton. 2004. Aging enhances vascular dysfunction induced by the Alzheimer’s peptide β-amyloid. Neurological Research 26 (3):305–11. doi: 10.1179/016164104225014003.
  • Rahman, I., S. K. Biswas, and P. A. Kirkham. 2006. Regulation of inflammation and redox signaling by dietary polyphenols. Biochemical Pharmacology 72 (11):1439–52. doi: 10.1016/j.bcp.2006.07.004.
  • Ramos-Romero, S., A. Léniz, D. Martínez‐Maqueda, S. Amézqueta, A. Fernández‐Quintela, M. Hereu, J. L. Torres, M. P. Portillo, and J. Pérez‐Jiménez. 2021. Inter‐individual variability in insulin response after grape pomace supplementation in subjects at high cardiometabolic risk: Role of microbiota and miRNA. Molecular Nutrition & Food Research 65 (2):2000113. doi: 10.1002/mnfr.202000113.
  • Rasines-Perea, Z., I. Ky, G. Cros, A. Crozier, and P.-L. Teissedre. 2018. Against hypertension and metabolites characterization after intake. Diseases 6 (3):60. doi: 10.3390/diseases6030060.
  • Ratovitski, E. 2017. Anticancer natural compounds as epigenetic modulators of gene expression. Current Genomics 18 (2):175–205. doi: 10.2174/1389202917666160803165229.
  • Reho, J. J., and K. Rahmouni. 2017. Oxidative and inflammatory signals in obesity-associated vascular abnormalities. Clinical Science 131 (14):1689–700. doi: 10.1042/CS20170219.
  • Rein, M. J., M. Renouf, C. Cruz-Hernandez, L. Actis-Goretta, S. K. Thakkar, and M. da Silva Pinto. 2013. Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. British Journal of Clinical Pharmacology 75 (3):588–602. doi: 10.1111/j.1365-2125.2012.04425.x.
  • Rivera, K., F. Salas-Pérez, G. Echeverría, I. Urquiaga, S. Dicenta, D. Pérez, P. de la Cerda, L. González, M. E. Andia, S., Uribe, et al. 2019. Red wine grape pomace attenuates atherosclerosis and myocardial damage and increases survival in association with improved plasma antioxidant activity in a murine model of lethal ischemic heart disease. Nutrients 11 (9):2135. doi: 10.3390/nu11092135.
  • Rockenbach, I. I., E. Rodrigues, L. V. Gonzaga, V. Caliari, M. I. Genovese, A. E. d S. S. Gonçalves, and R. Fett. 2011. Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brazil. Food Chemistry 127 (1):174–9. doi: 10.1016/j.foodchem.2010.12.137.
  • Rodriguez Lanzi, C., D. J. Perdicaro, A. Antoniolli, P. Piccoli, M. A. Vazquez Prieto, and A. Fontana. 2018. Phenolic metabolites in plasma and tissues of rats fed with a grape pomace extract as assessed by liquid chromatography-tandem mass spectrometry. Archives of Biochemistry and Biophysics 651:28–33. doi: 10.1016/j.abb.2018.05.021.
  • Rodríguez-Morgado, B., M. Candiracci, C. Santa-María, E. Revilla, B. Gordillo, J. Parrado, and A. Castaño. 2015. Obtaining from grape pomace an enzymatic extract with anti-inflammatory properties. Plant Foods for Human Nutrition 70 (1):42–9. doi: 10.1007/s11130-014-0459-0.
  • Rodriguez-Rodriguez, R., M. L. Justo, C. M. Claro, E. Vila, J. Parrado, M. D. Herrera, and M. Alvarez De Sotomayor. 2012. Endothelium-dependent vasodilator and antioxidant properties of a novel enzymatic extract of grape pomace from wine industrial waste. Food Chemistry 135 (3):1044–51. doi: 10.1016/j.foodchem.2012.05.089.
  • Romano, M. R., and M. D. Lograno. 2009. Epigallocatechin-3-gallate relaxes the isolated bovine ophthalmic artery: Involvement of phosphoinositide 3-kinase-Akt-nitric oxide/cGMP signalling pathway. European Journal of Pharmacology 608 (1-3):48–53. doi: 10.1016/j.ejphar.2009.02.034.
  • Ruberto, G., A. Renda, C. Daquino, V. Amico, C. Spatafora, C. Tringali, and N. D. Tommasi. 2007. Polyphenol constituents and antioxidant activity of grape pomace extracts from five Sicilian red grape cultivars. Food Chemistry 100 (1):203–10. doi: 10.1016/j.foodchem.2005.09.041.
  • Sandoval-Acuña, C., J. Ferreira, and H. Speisky. 2014. Polyphenols and mitochondria: An update on their increasingly emerging ROS-scavenging independent actions. Archives of Biochemistry and Biophysics 559:75–90. doi: 10.1016/j.abb.2014.05.017.
  • Sapwarobol, S., S. Adisakwattana, S. Changpeng, W. Ratanawachirin, K. Tanruttana-Wong, and W. Boonyarit. 2012. Postprandial blood glucose response to grape seed extract in healthy participants: A pilot study. Pharmacognosy Magazine 8 (31):192. doi: 10.4103/0973-1296.99283.
  • Sarsour, E. H., A. L. Kalen, and P. C. Goswami. 2014. Manganese superoxide dismutase regulates a redox cycle within the cell cycle. Antioxidants & Redox Signaling 20 (10):1618–27. doi: 10.1089/ars.2013.5303.
  • Saura-Calixto, F. 2011. Dietary fiber as a carrier of dietary antioxidants: An essential physiological function. Journal of Agricultural and Food Chemistry 59 (1):43–49. doi: 10.1021/jf1036596.
  • Saura-Calixto, F., J. Serrano, and I. Goñi. 2007. Intake and bioaccessibility of total polyphenols in a whole diet. Food Chemistry 101 (2):492–501. doi: 10.1016/j.foodchem.2006.02.006.
  • Saura-Calixto, F., J. Pérez‐Jiménez, S. Touriño, J. Serrano, E. Fuguet, J. L. Torres, and I. Goñi. 2010. Proanthocyanidin metabolites associated with dietary fibre from in vitro colonic fermentation and proanthocyanidin metabolites in human plasma. Molecular Nutrition & Food Research 54 (7):939–946. doi: 10.1002/mnfr.200900276.
  • Scalbert, C., Morand, C. Manach, and C. Rémésy. 2002. Absorption and metabolism of polyphenols in the gut and impact on health. Biomedicine & Pharmacotherapy 56:276–82. doi: 10.1109/CCST.2012.6393568.
  • Schieber, M., and N. S. Chandel. 2014. ROS function in redox signaling and oxidative stress. Current Biology 24 (10):R453–62. . doi: 10.1016/j.cub.2014.03.034.
  • Schiffrin, E. L. 2012. Vascular remodeling in hypertension: Mechanisms and treatment. Hypertension 59 (2):367–74. doi: 10.1161/HYPERTENSIONAHA.111.187021.
  • Seo, K. H., G. E. Bartley, C. Tam, H. S. Kim, D. H. Kim, J. W. Chon, H. Kim, and W. Yokoyama. 2016. Chardonnay grape seed flour ameliorates hepatic steatosis and insulin resistance via altered hepatic gene expression for oxidative stress, inflammation, and lipid and ceramide synthesis in diet-induced obese mice. PLoS One 11 (12):e0167680. doi: 10.1371/journal.pone.0167680.
  • Serino, A., and G. Salazar. 2018. Protective role of polyphenols against vascular inflammation, aging and cardiovascular disease. Nutrients 11 (1):53–23. doi: 10.3390/nu11010053.
  • Shanmugam, M. K., R. Kannaiyan, and G. Sethi. 2011. Targeting cell signaling and apoptotic pathways by dietary agents: Role in the prevention and treatment of cancer. Nutrition and Cancer 63 (2):161–73. doi: 10.1080/01635581.2011.523502.
  • Sheng, J., W. Shi, H. Guo, W. Long, Y. Wang, J. Qi, J. Liu, and Y. Xu. 2019. The inhibitory effect of (-)-Epigallocatechin-3-gallate on breast cancer progression via reducing SCUBE2 methylation and DNMT activity. Molecules 24 (16):1–15. doi: 10.3390/molecules24162899.
  • Sheng, K., H. Qu, C. Liu, L. Yan, J. You, S. Shui, and L. Zheng. 2017. A comparative assess of high hydrostatic pressure and superfine grinding on physicochemical and antioxidant properties of grape pomace. International Journal of Food Science & Technology 52 (9):2106–14.
  • Sies, H. 2018. On the history of oxidative stress: Concept and some aspects of current development. Current Opinion in Toxicology 7:122–6. doi: 10.1016/j.cotox.2018.01.002.
  • Son, P. S., S. A. Park, H. K. Na, D. M. Jue, S. Kim, and Y. J. Surh. 2010. Piceatannol, a catechol-type polyphenol, inhibits phorbol ester-induced NF-κB activation and cyclooxygenase-2 expression in human breast epithelial cells: Cysteine 179 of IKKβ as a potential target. Carcinogenesis 31 (8):1442–9. doi: 10.1093/carcin/bgq099.
  • Spinetti, G., N. Kraenkel, C. Emanueli, and P. Madeddu. 2010. Diabetes and vessel wall remodelling: From mechanistic insights to regenerative therapies. Cardiovascular Research 78 (2):1–19. doi: 10.1093/cvr/cvn039.
  • Stangl, V., H. Dreger, K. Stangl, and M. Lorenz. 2007. Molecular targets of tea polyphenols in the cardiovascular system. Cardiovascular Research 73 (2):348–58. doi: 10.1016/j.cardiores.2006.08.022.
  • Steven, S., K. Frenis, M. Oelze, S. Kalinovic, M. Kuntic, M. T. Bayo Jimenez, K. Vujacic-Mirski, J. Helmstädter, S. Kröller-Schön, T. Münzel, et al. 2019. Vascular inflammation and oxidative stress: Major triggers for cardiovascular disease. Oxidative Medicine and Cellular Longevity 2019:1–26. doi: 10.1155/2019/7092151.
  • Stewart, M. L., S. D. Nikhanj, D. A. Timm, W. Thomas, and J. L. Slavin. 2010. Evaluation of the effect of four fibers on laxation, gastrointestinal tolerance and serum markers in healthy humans. Annals of Nutrition and Metabolism 56 (2):91–8. doi: 10.1159/000275962.
  • Su, X., Zhang, J. Wang, H. Xu, J. He, J. Liu, L. Zhang, T. Chen, R. Kang. and J. 2017. Phenolic acid profiling, antioxidant, and anti-inflammatory activities, and miRNA regulation in the polyphenols of 16 blueberry samples from China. Molecules 22 (2):312. doi: 10.3390/molecules22020312.
  • Takada, Y., A. Mukhopadhyay, G. C. Kundu, G. H. Mahabeleshwar, S. Singh, and B. B. Aggarwal. 2003. Hydrogen peroxide activates NF-κB through tyrosine phosphorylation of IκBα and serine phosphorylation of p65. Journal of Biological Chemistry 278 (26):24233–41. doi: 10.1074/jbc.M212389200.
  • Tang, S. Y., and B. Halliwell. 2010. Medicinal plants and antioxidants: What do we learn from cell culture and Caenorhabditis elegans studies?. Biochemical and Biophysical Research Communications 394 (1):1–5. doi:10.1016/j.bbrc.2010.02.137.
  • Tang, Y., Y. Chen, H. Jiang, and D. Nie. 2011. The role of short-chain fatty acids in orchestrating two types of programmed cell death in colon cancer. Autophagy 7 (2):235–7. doi:10.4161/auto.7.2.14277.
  • Tang, J., Y. Du, J. M. Petrash, N. Sheibani, and T. S. Kern. 2013. Deletion of aldose reductase from mice inhibits diabetes-induced retinal capillary degeneration and superoxide generation. PLoS One 8 (4):5–10. doi: 10.1371/journal.pone.0062081.
  • Teixeira, A., N. Baenas, R. Dominguez-Perles, A. Barros, E. Rosa, D. A. Moreno, and C. Garcia-Viguera. 2014. Natural bioactive compounds from winery by-products as health promoters: A review. International Journal of Molecular Sciences 15 (9):15638. doi: 10.3390/ijms150915638.
  • Teng, H., and L. Chen. 2019. Polyphenols and bioavailability: An update. Critical Reviews in Food Science and Nutrition 59 (13):2040–51. doi: 10.1080/10408398.2018.1437023.
  • Touyz, R., and E. L. Schiffrin. 2004. Reactive oxygen species in vascular biology: Implications in hypertension. Histochemistry Cell Biology 122:339–52.
  • Tu, W., H. Wang, S. Li, Q. Liu, and H. Sha. 2019. The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging and Disease 10 (3):637–51. doi: 10.14336/AD.2018.0513.
  • Urquiaga, I., S. D’Acuña, D. Pérez, S. Dicenta, G. Echeverría, A. Rigotti, and F. Leighton. 2015. Wine grape pomace flour improves blood pressure, fasting glucose and protein damage in humans: A randomized controlled trial. Biological Research 48 (1):1–10. doi: 10.1186/s40659-015-0040-9.
  • U.S. Department of Health and Human Services, Food and Drug Administration (FaDA). 2002. Guidance for industry: Bioavailability and bioequivalence studies for orally administrated drug products – General considerations. Rockville, MD: Center for Drug Evaluation.
  • Valko, M., D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser. 2007. Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology 39 (1):44–84. doi: 10.1016/j.biocel.2006.07.001.
  • Van Varik, B. J., R. J. M. W. Rennenberg, C. P. Reutelingsperger, A. A. Kroon, P. W. De Leeuw, and L. J. Schurgers. 2012. Mechanisms of arterial remodeling: Lessons from genetic diseases. Frontiers in Genetics 3:1–10. doi: 10.3389/fgene.2012.00290.
  • Vargas, F., P. Romecín, A. I. García-Guillén, R. Wangesteen, P. Vargas-Tendero, M. D. Paredes, N. M. Atucha, E. Lambert, and B. J. Morris. 2018. Flavonoids in kidney health and disease. Frontiers in Physiology 9:1–12. doi: 10.3389/fphys.2018.00394.
  • Verstraeten, S. V., G. G. Mackenzie, P. I. Oteiza, and C. G. Fraga. 2008. (-)-Epicatechin and related procyanidins modulate intracellular calcium and prevent oxidation in Jurkat T cells. Free Radical Research 42 (10):864–72. doi: 10.1080/10715760802471452.
  • Veskoukis, A. S., A. Kyparos, M. G. Nikolaidis, D. Stagos, N. Aligiannis, M. Halabalaki, K. Chronis, N. Goutzourelas, L. Skaltsounis, and D. Kouretas. 2012. The Antioxidant Effects of a Polyphenol-Rich Grape Pomace Extract In Vitro Do Not Correspond In Vivo Using Exercise as an Oxidant Stimulus. Oxidative Medicine and Cellular Longevity 2012:1–14. doi:10.1155/2012/185867.
  • Vezza, T., A. Rodríguez-Nogales, F. Algieri, M. P. Utrilla, M. E. Rodriguez-Cabezas, and J. Galvez. 2016. Flavonoids in inflammatory bowel disease: A review. Nutrients 8 (4):211. doi: 10.3390/nu8040211.
  • Vogels, N., and M. S. Plantenga. 2004. The effect of grape-seed extract on 24h energy intake in humans. European Journal of Clinical Nutrition 58:667–73.
  • Wang, Z.-M., C.-Y. Zhong, and G.-J. Zhao. 2017. Polyphenol epigallocatechin-3-gallate alleviates high glucose-induced H9C2 cell damage through PI3K/Akt pathway. European Review for Medical and Pharmacological Sciences 21 (18):4236–42.
  • Wardyn, J. D., A. H. Ponsford, and C. M. Sanderson. 2015. Dissecting molecular cross-talk between Nrf2 and NF-κB response pathways. Biochemical Society Transactions 43 (4):621–6. doi: 10.1042/BST20150014.
  • Wei, Z., J. Luo, Y. Huang, W. Guo, Y. Zhang, H. Guan, C. Xu, and J. Lu. 2017. Profile of polyphenol compounds of five muscadine grapes cultivated in the United States and in newly adapted locations in China. International Journal of Molecular Sciences 18 (3):1–18. doi: 10.3390/ijms18030631.
  • Welch, W. J. 2008. Angiotensin II-dependent superoxide: Effects on hypertension and vascular dysfunction. Hypertension 52 (1):51–6. doi: 10.1161/HYPERTENSIONAHA.107.090472.
  • Weng, C. J., and G. C. Yen. 2012. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: Phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treatment Reviews 38 (1):76–87. doi: 10.1016/j.ctrv.2011.03.001.
  • Williamson, G., and M. N.Clifford. 2010. Colonic metabolites of berry polyphenols: The missing link to biological activity? British Journal of Nutrition 104 (SUPPL.3):48–66. doi: 10.1017/S0007114510003946.
  • Wolff, S. P., and R. T. Dean. 1987. Glucose autoxidation and protein modification. The potential role of “autoxidative glycosylation” in diabetes. Biochemical Journal 245 (1):243–50. doi: 10.1042/bj2450243.
  • Xu, S., and R. M. Touyz. 2006. Reactive oxygen species and vascular remodelling in hypertension: Still alive. Canadian Journal of Cardiology 22 (11):947–51.
  • Yahfoufi, N., N. Alsadi, M. Jambi, and C. Matar. 2018. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 10 (1618):1–23. doi: 10.3390/nu10111618.
  • Yang, X. Z., Y. Chang, and W. Wei. 2016. Endothelial dysfunction and inflammation: Immunity in rheumatoid arthritis. Mediators of Inflammation 2016. 2016:6813016 doi: 10.1155/2016/6813016.
  • Yin, Z., M. Machius, E. J. Nestler, and G. Rudenko. 2017. Activator protein-1: Redox switch controlling structure and DNA-binding. Nucleic Acids Research 45 (19):11425–36. doi: 10.1093/nar/gkx795.
  • Yu, J., and M. Ahmedna. 2013. Functional components of grape pomace: Their composition, biological properties and potential applications. International Journal of Food Science and Technology 48 (2):221–37. doi: 10.1111/j.1365-2621.2012.03197.x.
  • Zhang, A., Y. Fang, H. Wang, H. Li, and Z. Zhang. 2011. Free-radical scavenging properties and reducing power of grape cane extracts from 11 selected grape cultivars widely grown in China. Molecules 16 (12):10104. doi: 10.3390/molecules161210104.
  • Zhang, H., and R. Tsao. 2016. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science 8:33–42. doi: 10.1016/j.cofs.2016.02.002.
  • Zhang, H. Z., D. W. Chen, J. He, P. Zheng, J. Yu, X. B. Mao, Z. Q. Huang, Y. H. Luo, J. Q. Luo, and B. Yu. 2019a. Long-term dietary resveratrol supplementation decreased serum lipids levels, improved intramuscular fat content, and changed the expression of several lipid metabolism-related miRNAs and genes in growing-finishing pigs. Journal of Animal Science 97 (4):1745–56. doi: 10.1093/jas/skz057.
  • Zhang, L., Y. Wang, D. Li, C. T. Ho, J. Li, and X. Wan. 2016. The absorption, distribution, metabolism and excretion of procyanidins. Food and Function 7 (3):1273–81. doi: 10.1039/c5fo01244a.
  • Zhang, L., X. Wang, R. Cueto, C. Effi, Y. Zhang, H. Tan, X. Qin, Y. Ji, X. Yang, and H. Wang. 2019b. Biochemical basis and metabolic interplay of redox regulation. Redox Biology 26 (July):101284. doi: 10.1016/j.redox.2019.101284.
  • Zhang, Y. J., R. Y. Gan, S. Li, Y. Zhou, A. N. Li, D. P. Xu, H. B. Li, and D. D. Kitts. 2015. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 20 (12):21138–56. doi: 10.3390/molecules201219753.
  • Zhao, Y., B. Chen, J. Shen, L. Wan, Y. Zhu, T. Yi, and Z. Xiao. 2017. The beneficial effects of quercetin, curcumin, and resveratrol in obesity. Oxidative Medicine and Cellular Longevity 2017:1–8. doi: 10.1155/2017/1459497.
  • Zhou, J., Y. Lei, J. Chen, and X. Zhou. 2018. Potential ameliorative effects of epigallocatechin‑3‑gallate against testosterone-induced benign prostatic hyperplasia and fibrosis in rats. International Immunopharmacology 64:162–9. doi: 10.1016/j.intimp.2018.08.038.
  • Zhu, F., B. Du, L. Zheng, and J. Li. 2015. Advance on the bioactivity and potential applications of dietary fibre from grape pomace. Food Chemistry 186:207–12. doi: 10.1016/j.foodchem.2014.07.057.
  • Zhu, L., Y. Zhang, J. Deng, H. Li, and J. Lu. 2012. Phenolic concentrations and antioxidant properties of wines made from North American grapes grown in China. Molecules 17 (3):3304. doi: 10.3390/molecules17033304.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.