780
Views
24
CrossRef citations to date
0
Altmetric
Reviews

Eco-friendly management of postharvest fungal decays in kiwifruit

, , , , , , & show all

References

  • Abdelfattah, A., A. Malacrinò, M. Wisniewski, S. O. Cacciola, and L. Schena. 2018. Metabarcoding: A powerful tool to investigate microbial communities and shape future plant protection strategies. Biological Control 120:1–10. doi: 10.1016/j.biocontrol.2017.07.009.
  • Abdelfattah, A., S. R. Whitehead, D. Macarisin, J. Liu, E. Burchard, S. Freilich, C. Dardick, S. Droby, and M. Wisniewski. 2020. Effect of washing, waxing and low-temperature storage on the postharvest microbiome of apple. Microorganisms 8 (6):944. doi: 10.3390/microorganisms8060944.
  • Amselem, J., C. Cuomo, J. A. L. van Kan, M. Viaud, E. P. Benito, A. Couloux, P. M. Coutinho, R. P. de Vries, P. S. Dyer, S. Fillinger, et al. 2011. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics 7 (8):e1002230. doi: 10.1371/journal.pgen.1002230.
  • An, B., B. Li, H. Li, Z. Zhang, G. Zheng, and S. Tian. 2016. An Aquaporin8 regulates cellular development and reactive oxygen species production, a critical component of virulence in Botrytis cinerea. The New Phytologist 209 (4):1668–80. doi: 10.1111/nph.13721.
  • Ares, A., M. Tacão, D. Figueira, E. Garcia, and J. Costa. 2021. Draft genome resources sequences of six Pseudomonas syringae pv. actinidiae strains isolated from Actinidia chinensis var. deliciosa leaves in Portugal. Phytopathology 111 (1):237–9. doi: 10.1094/PHYTO-05-20-0184-A.
  • Atwell, S., J. A. Corwin, N. E. Soltis, A. Subedy, K. J. Denby, and D. J. Kliebenstein. 2015. Whole genome resequencing of Botrytis cinerea isolates identifies high levels of standing diversity. Frontiers in Microbiology 6:996. doi: 10.3389/fmicb.2015.00996.
  • Auger, J., I. Pérez, and M. Esterio. 2013. Diaporthe ambigua associated with post-harvest fruit rot of kiwifruit in Chile. Plant Disease 97 (6):843. doi: 10.1094/PDIS-10-12-0990-PDN.
  • Bautista-Baños, S., D. Sivakumar, A. Bello-Pérez, R. Villanueva-Arce, and M. Hernández-López. 2013. A review of the management alternatives for controlling fungi on papaya fruit during the postharvest supply chain. Crop Protection 49:8–20. doi: 10.1016/j.cropro.2013.02.011.
  • Bautista-Baños, S., P. G. Long, and S. Ganesh. 1997. Curing of kiwifruit for control of postharvest infection by Botrytis cinerea. Postharvest Biology and Technology 12 (2):137–45. doi: 10.1016/S0925-5214(97)00043-4.
  • Bayer, S. B., R. B. Gearry, and L. N. Drummond. 2018. Putative mechanisms of kiwifruit on maintenance of normal gastrointestinal function. Critical Reviews in Food Science and Nutrition 58 (14):2432–52. doi: 10.1080/10408398.2017.1327841.
  • Bose, S. K., P. Howlader, X. Jia, W. Wang, and H. Yin. 2019. Alginate oligosaccharide postharvest treatment preserve fruit quality and increase storage life via Abscisic acid signaling in strawberry. Food Chemistry 283:665–74. doi: 10.1016/j.foodchem.2019.01.060.
  • Buchholz, F., T. Kostić, A. Sessitsch, and B. Mitter. 2018. The potential of plant microbiota in reducing postharvest food loss. Microbial Biotechnology 11 (6):971–5. doi: 10.1111/1751-7915.13252.
  • Chen, H., Z. Cheng, M. Wisniewski, Y. Liu, and J. Liu. 2015. Ecofriendly hot water treatment reduces postharvest decay and elicits defense response in kiwifruit. Environmental Science and Pollution Research International 22 (19):15037–45. doi: 10.1007/s11356-015-4714-1.
  • Cheng, H., W. Tang, H. Wang, Q. Liu, H. H. Li, and Y. Liu. First report of Geotrichum candidum causing postharvest sour rot on kiwifruits in China. Plant Disease. Forthcoming.   doi: 10.1094/PDIS-09-20-1923-PDN.
  • Cheng, L., X. Nie, C. Jiang, and S. Li. 2019. The combined use of the antagonistic yeast Hanseniaspora uvarum with β-aminobutyric acid for the management of postharvest diseases of kiwifruit. Biological Control 137:104019. doi: 10.1016/j.biocontrol.2019.104019.
  • Cheung, N., L. Tian, X. Liu, and X. Li. 2020. The destructive fungal pathogen Botrytis cinerea – insights from genes studied with mutant analysis. Pathogens 9 (11):923. doi: 10.3390/pathogens9110923.
  • Cho, G., M. J. Kim, Y. Kwon, and Y. S. Kwak. 2018. Comparison of endophytic microbial community in kiwifruit plant cultivars. The Plant Pathology Journal 34 (4):341–6. doi: 10.5423/PPJ.NT.12.2017.0284.
  • Choquer, M., E. Fournier, C. Kunz, C. Levis, J. M. Pradier, A. Simon, and M. Viaud. 2007. Botrytis cinerea virulence factors: New insights into a necrotrophic and polyphageous pathogen. FEMS Microbiology Letters 277 (1):1–10. doi: 10.1111/j.1574-6968.2007.00930.x.
  • Cook, D. W. M., P. G. Long, and S. Ganesh. 1999. The combined effect of delayed application of yeast biocontrol agents and fruit curing for the inhibition of the postharvest pathogen Botrytis cinerea in kiwifruit. Postharvest Biology and Technology 16 (3):233–43. doi: 10.1016/S0925-5214(99)00003-4.
  • Corazza, L., L. Luongo, and M. Parisi. 1999. First report of leaf spot caused by Alternaria alternata on kiwifruit in Italy. Plant Disease 83 (5):487. doi: 10.1094/PDIS.1999.83.5.487D.
  • Datson, P., S. Nardozza, K. Manako, J. Herrick, M. Martinez-Sanchez, C. Curtis, and M. Montefiori. 2015. Monitoring the Actinidia germplasm for resistance to Pseudomonas syringae pv. actinidiae. Acta Horticulturae 1095 (1095):181–4. doi: 10.17660/ActaHortic.2015.1095.22.
  • Di Francesco, A., M. Mari, L. Ugolini, and E. Baraldi. 2018. Effect of Aureobasidium pullulans strains against Botrytis cinerea on kiwifruit during storage and on fruit nutritional composition. Food Microbiology 72:67–72. doi: 10.1016/j.fm.2017.11.010.
  • Díaz, G. A., B. A. Latorre, M. Lolas, E. Ferrada, P. Naranjo, and J. P. Zoffoli. 2017. Identification and characterization of Diaporthe ambigua, D. australafricana, D. novem, and D. rudis causing a postharvest fruit rot in kiwifruit. Plant Disease 101 (8):1402–10. doi: 10.1094/PDIS-10-16-1535-RE.
  • Droby, S., and M. Wisniewski. 2018. The fruit microbiome: A new frontier for postharvest biocontrol and postharvest biology. Postharvest Biology and Technology 140:107–12. doi: 10.1016/j.postharvbio.2018.03.004.
  • Droby, S., L. Cohen, A. Daus, B. Weiss, B. Horev, E. Chalutz, H. Katz, M. Keren-Tzur, and A. Shachnai. 1998. Commercial testing of Aspire: A yeast preparation for the biological control of postharvest decay of citrus. Biological Control 12 (2):97–101. doi: 10.1006/bcon.1998.0615.
  • Duarte, G. S., A. A. Pereira, and A. Farah. 2010. Chlorogenic acids and other relevant compounds in Brazilian coffees processed by semi-dry and wet post-harvesting methods. Food Chemistry 118 (3):851–5. doi: 10.1016/j.foodchem.2009.05.042.
  • Erper, I., C. Agustí-Brisach, B. Tunali, and J. Armengol. 2013. Characterization of root rot disease of kiwifruit in the Black Sea region of Turkey. European Journal of Plant Pathology 136 (2):291–300. doi: 10.1007/s10658-012-0163-6.
  • Fatemi, H., S. Mohammadi, and M. H. Aminifard. 2013. Effect of postharvest salicylic acid treatment on fungal decay and some postharvest quality factors of kiwi fruit. Archives of Phytopathology and Plant Protection 46 (11):1338–45. doi: 10.1080/03235408.2013.767013.
  • Gao, Z., R. Zhang, and B. Xiong. 2021. Management of postharvest diseases of kiwifruit with a combination of the biocontrol yeast Candida oleophila and an oligogalacturonide. Biological Control 156:104549. doi: 10.1016/j.biocontrol.2021.104549.
  • Hua, C., K. Kai, W. Bi, W. Shi, Y. Liu, and D. Zhang. 2019a. Curcumin induces oxidative stress in Botrytis cinerea, resulting in a reduction in gray mold decay in kiwifruit. Journal of Agricultural and Food Chemistry 67 (28):7968–76. doi: 10.1021/acs.jafc.9b00539.
  • Hua, C., K. Kai, X. Wang, W. Shi, D. Zhang, and Y. Liu. 2019b. Curcumin inhibits gray mold development in kiwifruit by targeting mitogen activated protein kinase (MAPK) cascades in Botrytis cinerea. Postharvest Biology and Technology 151:152–9. doi: 10.1016/j.postharvbio.2019.02.006.
  • Hua, C., Y. Li, X. Wang, K. Kai, M. Su, W. Shi, D. Zhang, and Y. Liu. 2019c. The effect of low and high molecular weight chitosan on the control of gray mold (Botrytis cinerea) on kiwifruit and host response. Scientia Horticulturae 246:700–9. doi: 10.1016/j.scienta.2018.11.038.
  • Hua, L., C. Yong, Z. Zhanquan, L. Boqiang, Q. Guozheng, and T. Shiping. 2018. Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables. Food Quality and Safety 2 (3):111–9. doi: 10.1093/fqsafe/fyy016.
  • Hur, J. S., S. O. Oh, K. M. Lim, J. S. Jung, J. W. Kim, and Y. J. Koh. 2005. Novel effects of TiO2 photocatalytic ozonation on control of postharvest fungal spoilage of kiwifruit. Postharvest Biology and Technology 35 (1):109–13. doi: 10.1016/j.postharvbio.2004.03.013.
  • Ioi, J. D., T. Zhou, R. Tsao, and M. F. Marcone. 2017. Mitigation of patulin in fresh and processed foods and beverages. Toxins 9 (5):157. doi: 10.3390/toxins9050157.
  • Kai, K., C. Hua, Y. Sui, W. Bi, W. Shi, D. Zhang, and Y. Ye. 2020a. Curcumin triggers the immunity response in kiwifruit against Botrytis cinerea. Scientia Horticulturae 274:109685. doi: 10.1016/j.scienta.2020.109685.
  • Kai, K., W. Bi, Y. Sui, C. Hua, Y. Liu, and D. Zhang. 2020b. Curcumin inhibits Diaporthe phaseolorum and reduces postharvest decay in kiwifruit. Scientia Horticulturae 259:108860. doi: 10.1016/j.scienta.2019.108860.
  • Kim, G. H., Y. J. Koh, J. S. Jung, and J. S. Hur. 2015. Control of postharvest fruit rot diseases of kiwifruit by antagonistic bacterium Bacillus subtilis. Acta Horticulturae 1096 (1096):377–82. doi: 10.17660/ActaHortic.2015.1096.44.
  • Kim, M. J., H. Do, G. Cho, R. D. Jeong, and Y. S. Kwak. 2019. Comparison of microbial community of rhizosphere and endosphere in kiwifruit. The Plant Pathology Journal 35 (6):705–11. doi: 10.5423/PPJ.NT.08.2019.0216.
  • Kisaki, G., S. Tanaka, A. Ishihara, C. Igarashi, T. Morimoto, K. Hamano, A. Endo, S. Sugita-Konishi, M. Tabuchi, K. Gomi, et al. 2018. Evaluation of various cultivars of Actinidia species and breeding source Actinidia rufa for resistance to Pseudomonas syringae pv. actinidiae biovar 3. Journal of General Plant Pathology 84 (6):399–406. doi: 10.1007/s10327-018-0804-5.
  • Kulakiotu, E. K., C. C. Thanassoulopoulos, and E. M. Sfakiotakis. 2004. Postharvest Biological control of Botrytis cinerea on kiwifruit by volatiles of [Isabella] Grapes. Phytopathology 94 (12):1280–5. doi: 10.1094/PHYTO.2004.94.12.1280.
  • Kumar, A., V. K. Zhimo, A. Biasi, O. Feygenberg, S. Salim, M. Wisniewski, and S. Droby. 2021. Impact of packhouse treatments on the peel microbiome of mandarin fruit (cv. Orr. ). Postharvest Biology and Technology 176:111519. doi: 10.1016/j.postharvbio.2021.111519.
  • Kusstatscher, P., C. Zachow, K. Harms, J. Maier, H. Eigner, G. Berg, and T. Cernava. 2019. Microbiome-driven identification of microbial indicators for postharvest diseases of sugar beets. Microbiome. Microbiome 7 (1):112. doi: 10.1186/s40168-019-0728-0.
  • Kwon, J. H., M. G. Cheon, J. Kim, and Y. B. Kwack. 2011. Black rot of kiwifruit caused by Alternaria alternata in Korea. The Plant Pathology Journal 27 (3):298. doi: 10.5423/PPJ.2011.27.3.298.
  • Lastochkina, O., M. Seifikalhor, S. Aliniaeifard, A. Baymiev, L. Pusenkova, S. Garipova, D. Kulabuhova, and I. Maksimov. 2019. Bacillus spp.: Efficient biotic strategy to control postharvest diseases of fruits and vegetables. Plants 8 (4):97. doi: 10.3390/plants8040097.
  • Li, B., Y. Chen, Z. Zhang, G. Qin, T. Chen, and S. Tian. 2020a. Molecular basis and regulation of pathogenicity and patulin biosynthesis in Penicillium expansum. Comprehensive Reviews in Food Science and Food Safety 19 (6):3416–38. doi: 10.1111/1541-4337.12612.
  • Li, B., Y. Zong, Z. Du, Y. Chen, Z. Zhang, G. Qin, W. Zhao, and S. Tian. 2015. Genomic characterization reveals insights into patulin biosynthesis and pathogenicity in Penicillium species. Molecular Plant-Microbe Interactions 28 (6):635–47. doi: 10.1094/MPMI-12-14-0398-FI.
  • Li, G., M. Chi, H. Chen, Y. Sui, Y. Li, Y. Liu, X. Zhang, Z. Sun, G. Liu, Q. Wang, et al. 2016a. Stress tolerance and biocontrol performance of the yeast antagonist, Candida diversa, change with morphology transition. Environmental Science and Pollution Research International 23 (3):2962–7. doi: 10.1007/s11356-015-5769-8.
  • Li, H., Z. Zhang, G. Qin, C. He, B. Li, and S. Tian. 2020b. Actin Is required for cellular development and virulence of Botrytis cinerea via the mediation of secretory proteins. mSystems 5 (1):19. e00732-doi: 10.1128/mSystems.00732-19.
  • Li, L., H. Pan, M. Y. Chen, and C. H. Zhong. 2016b. First report of Diaporthe lithocarpus causing postharvest rot of liwifruit in Sichuan Province. Plant Disease 100 (11):2327–2327. doi: 10.1094/PDIS-04-16-0488-PDN.
  • Li, L., H. Pan, W. Liu, M. Y. Chen, and C. H. Zhong. 2017. First report of Alternaria alternata causing postharvest rot of kiwifruit in China. Plant Disease 101 (6):1046. doi: 10.1094/PDIS-11-16-1611-PDN.
  • Li, L., H. Pan, Y. F. Liu, D. W. Li, Q. Zhang, L. Deng, M. Y. Chen, and C. H. Zhong. 2018. First report of Nigrospora sphaerica causing kiwifruit postharvest rot disease in China. Plant Disease 102 (8):1666. doi: 10.1094/PDIS-12-17-1886-PDN.
  • Liu, J., J. F. Kennedy, X. Zhang, Y. Heng, W. Chen, Z. Chen, X. Wu, and X. Wu. 2020. Preparation of alginate oligosaccharide and its effects on decay control and quality maintenance of harvested kiwifruit. Carbohydrate Polymers 242:116462. doi: 10.1016/j.carbpol.2020.116462.
  • Liu, J., Y. Sui, H. Chen, Y. Liu, and Y. Liu. 2018. Proteomic analysis of kiwifruit in response to the postharvest pathogen, Botrytis cinerea. Frontiers in Plant Science 9:158.
  • Liu, J., Z. Sun, Y. Zou, W. Li, F. He, X. Huang, C. Lin, Q. Cai, M. Wisniewski, and X. Wu. Pre- and postharvest measures used to control decay and mycotoxigenic fungi in potato (Solanum tuberosum L.) during storage. Critical Reviews in Food Science and Nutrition. Forthcoming.   doi: 10.1080/10408398.2020.1818688.
  • Luciano-Rosario, D., N. P., Keller, and W. M. Jurick II. 2020. Penicillium expansum: Biology, omics, and management tools for a global postharvest pathogen causing blue mould of pome fruit. Molecular Plant Pathology 21 (11):1391–404. doi: 10.1111/mpp.12990.
  • Luo, A., J. Bai, R. Li, Y. Fang, L. Li, D. Wang, L. Zhang, J. Liang, T. Huang, and L. Kou. 2019a. Effects of ozone treatment on the quality of kiwifruit during postharvest storage affected by Botrytis cinerea and Penicillium expansum. Journal of Phytopathology 167 (7–8):470–8. doi: 10.1111/jph.12819.
  • Luo, A., J. Bai, R. Li, Z. Liu, Y. Fang, D. Wang, T. Huang, L. Zhang, J. Liang, and L. Kou. 2019b. Difference of resistance to postharvest blue mold between Hongyang and Qihong kiwifruits. Food Chemistry 285:389–96. doi: 10.1016/j.foodchem.2019.01.112.
  • Ma, T., T. Lan, T. Geng, Y. Ju, G. Cheng, Z. Que, G. Gao, Y. Fang, and X. Sun. 2019. Nutritional properties and biological activities of kiwifruit (Actinidia) and kiwifruit products under simulated gastrointestinal in vitro digestion. Food & Nutrition Research 63:1674. doi: 10.29219/fnr.v63.1674.
  • Massart, S., and M. H. Jijakli. 2014. Pichia anomala and Candida oleophila in biocontrol of postharvest diseases of fruits: 20 years of fundamental and practical research. In Plant Pathology in the 21st Century, eds. D. Prusky, and M. L. Gullino, vol. 7, 111–22. Dordrecht: Springer.
  • Michailides, T. J., and P. A. G. Elmer. 2000. Botrytis gray mold of kiwifruit caused by Botrytis cinerea in the United States and New Zealand. Plant Disease 84 (3):208–23. doi: 10.1094/PDIS.2000.84.3.208.
  • Michielse, C. B., M. Becker, J. Heller, J. Moraga, I. G. Collado, and P. Tudzynski. 2011. The Botrytis cinerea Reg1 protein, a putative transcriptional regulator, is required for pathogenicity, conidiogenesis, and the production of secondary metabolites. Molecular Plant-Microbe Interactions 24 (9):1074–85. doi: 10.1094/MPMI-01-11-0007.
  • Ming, X., Y. Wang, and Y. Sui. 2020. Pretreatment of the antagonistic yeast, Debaryomyces hansenii, with mannitol and sorbitol improves stress tolerance and biocontrol efficacy. Frontiers in Microbiology 11:601. doi: 10.3389/fmicb.2020.00601.
  • Moghadamtousi, S. Z., H. A. Kadir, P. Hassandarvish, H. Tajik, and S. Abubakar. 2014. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Research International 2014:186864.
  • Mori, G. D., G. Zaina, B. Franco-Orozco, R. Testolin, E. D. Paoli, and G. Cipriani. 2020. Targeted mutagenesis of the female-suppressor SyGI gene in tetraploid kiwifruit by CRISPR/CAS9. Plants 10 (1):62. doi: 10.3390/plants10010062.
  • Neri, F., I. Donati, F. Veronesi, D. Mazzoni, and M. Mari. 2010. Evaluation of Penicillium expansum isolates for aggressiveness, growth and patulin accumulation in usual and less common fruit hosts. International Journal of Food Microbiology 143 (3):109–17. doi: 10.1016/j.ijfoodmicro.2010.08.002.
  • Pan, L., X. Zhao, M. Chen, Y. Fu, M. Xiang, and J. Chen. 2020. Effect of exogenous methyl jasmonate treatment on disease resistance of postharvest kiwifruit. Food Chemistry 305:125483. doi: 10.1016/j.foodchem.2019.125483.
  • Pang, L., B. Xia, X. Liu, Y. Yi, L. Jiang, C. Chen, P. Li, M. Zhang, X. Deng, and R. Wang. 2021. Improvement of antifungal activity of a culture filtrate of endophytic Bacillus amyloliquefaciens isolated from kiwifruit and its effect on postharvest quality of kiwifruit. Journal of Food Biochemistry 45 (1):e13551. doi: 10.1111/jfbc.13551.
  • Pei, Y. G., Q. J. Tao, X. J. Zheng, Y. Li, X. F. Sun, Z. F. Li, X. B. Qi, J. Xu, M. Zhang, H. B. Chen, et al. 2019. Phenotypic and genetic characterization of Botrytis cinerea population from kiwifruit in Sichuan Province. Plant Disease 103 (4):748–58. doi: 10.1094/PDIS-04-18-0707-RE.
  • Prodromou, I., T. Thomidis, and A. Zambounis. 2018. First report of Penicillium expansum (Link) Thom. causing postharvest fruit rot of kiwifruit in Northern Greece. Plant Disease 102 (9):1851–1851. doi: 10.1094/PDIS-11-17-1804-PDN.
  • Purahong, W., L. Orrù, I. Donati, G. Perpetuini, A. Cellini, A. Lamontanara, v Michelotti, G. Tacconi, and F. Spinelli. 2018. Plant microbiome and its link to plant health: Host species, organs and Pseudomonas syringae pv. actinidiae infection shaping bacterial phyllosphere communities of kiwifruit plants. Frontiers in Plant Science 9:1563. doi: 10.3389/fpls.2018.01563.
  • Reddy, K. R., D. Spadaro, A. Lore, M. L. Gullino, and A. Garibaldi. 2010. Potential of patulin production by Penicillium expansum strains on various fruits. Mycotoxin Research 26 (4):257–65. doi: 10.1007/s12550-010-0064-5.
  • Ren, W., N. Liu, C. Sang, D. Shi, M. Zhou, C. Chen, Q. Qin, and W. Chen. 2018. The autophagy gene BcATG8 regulates the vegetative differentiation and pathogenicity of Botrytis cinerea. Applied and Environmental Microbiology 84 (11):e02455-17. doi: 10.1128/AEM.02455-17.
  • Richardson, D. P., J. Ansell, and L. N. Drummond. 2018. The nutritional and health attributes of kiwifruit: A review. European Journal of Nutrition 57 (8):2659–76. doi: 10.1007/s00394-018-1627-z.
  • Romanazzi, G., E. Feliziani, S. B. Baños, and D. Sivakumar. 2017. Shelf life extension of fresh fruit and vegetables by chitosan treatment. Critical Reviews in Food Science and Nutrition 57 (3):579–601. doi: 10.1080/10408398.2014.900474.
  • Romanazzi, G., J. L. Smilanick, E. Feliziani, and S. Droby. 2016. Integrated management of postharvest gray mold on fruit crops. Postharvest Biology and Technology 113:69–76. doi: 10.1016/j.postharvbio.2015.11.003.
  • Romeis, J., S. E. Naranjo, M. Meissle, and A. M. Shelton. 2019. Genetically engineered crops help support conservation biological control. Biological Control 130:136–154. doi: 10.1016/j.biocontrol.2018.10.001.
  • Segmüller, N., L. Kokkelink, S. Giesbert, D. Odinius, J. van Kan, and P. Tudzynski. 2008. NADPH oxidases are involved in differentiation and pathogenicity in Botrytis cinerea. Molecular Plant-Microbe Interactions 21 (6):808–19. doi: 10.1094/MPMI-21-6-0808.
  • Segmüller, N., U. Ellendorf, B. Tudzynski, and P. Tudzynski. 2007. BcSAK1, a stress-activated mitogen-activated protein kinase, is involved in vegetative differentiation and pathogenicity in Botrytis cinerea. Eukaryotic Cell 6 (2):211–21. doi: 10.1128/EC.00153-06.
  • Siegmund, U., R. Marschall, and P. Tudzynski. 2015. Bcnoxd, a putative ER protein, is a new component of the NADPH oxidase complex in Botrytis cinerea. Molecular Microbiology 95 (6):988–1005. doi: 10.1111/mmi.12869.
  • Song, C., F. Zhu, V. J. Carrión, and V. Cordovez. 2020. Beyond plant microbiome composition: Exploiting microbial functions and plant traits via integrated approaches. Frontiers in Bioengineering and Biotechnology 8:896. doi: 10.3389/fbioe.2020.00896.
  • Staats, M., and J. A. L. van Kan. 2012. Genome update of Botrytis cinerea strains B05.10 and T4. Eukaryotic Cell 11 (11):1413–4. doi: 10.1128/EC.00164-12.
  • Sui, Y., and J. Liu. 2014. Effect of glucose on thermotolerance and biocontrol efficacy of the antagonistic yeast Pichia guilliermondii. Biological Control 74:59–64. doi: 10.1016/j.biocontrol.2014.04.003.
  • Sui, Y., M. Wisniewski, S. Droby, E. Piombo, X. Wu, and J. Yue. 2020a. Genome sequence, assembly, and characterization of the antagonistic yeast Candida oleophila used as a biocontrol agent against post-harvest diseases. Frontiers in Microbiology 11:295. doi: 10.3389/fmicb.2020.00295.
  • Sui, Y., M. Wisniewski, S. Droby, J. Norelli, and J. Liu. 2016. Recent advances and current status of the use of heat treatments in postharvest disease management systems: Is it time to turn up the heat? Trends in Food Science & Technology 51:34–40. doi: 10.1016/j.tifs.2016.03.004.
  • Sui, Y., Z. Sun, Y. Zou, W. Li, M. Jiang, Y. Luo, W. Liao, Y. Wang, X. Gao, J. Liu, et al. 2020b. The Rlm1 transcription factor in Candida oleophila contributes to abiotic stress resistance and biocontrol efficacy against postharvest gray mold of kiwifruit. Postharvest Biology and Technology 166:111222. doi: 10.1016/j.postharvbio.2020.111222.
  • Sui, Y., Z. Wang, D. Zhang, and Q. Wang. 2021. Oxidative stress adaptation of the antagonistic yeast, Debaryomyces hansenii, increases fitness in the microenvironment of kiwifruit wound and biocontrol efficacy against postharvest diseases. Biological Control 152 (104428):104428. doi: 10.1016/j.biocontrol.2020.104428.
  • Tang, J., Y. Liu, H. Li, L. Wang, K. Huang, and Z. Chen. 2015. Combining an antagonistic yeast with harpin treatment to control postharvest decay of kiwifruit. Biological Control 89:61–7. doi: 10.1016/j.biocontrol.2015.04.025.
  • ten Have, A., W. Mulder, J. Visser, and J. A. van Kan. 1998. The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea. Molecular Plant-Microbe Interactions 11 (10):1009–16. doi: 10.1094/MPMI.1998.11.10.1009.
  • Upadhyay, R., and L. J. Mohan Rao. 2013. An outlook on chlorogenic acids-occurrence, chemistry, technology, and biological activities. Critical Reviews in Food Science and Nutrition 53 (9):968–84. doi: 10.1080/10408398.2011.576319.
  • Valette-Collet, O., A. Cimerman, P. Reignault, C. Levis, and M. Boccara. 2003. Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants. Molecular Plant-Microbe Interactions : MPMI 16 (4):360–7. doi: 10.1094/MPMI.2003.16.4.360.
  • van Kan, J. A., J. H. Stassen, A. Mosbach, T. A. Van Der Lee, L. Faino, A. D. Farmer, D. G. Papasotiriou, S. Zhou, M. F. Seidl, E. Cottam, et al. 2017. A gapless genome sequence of the fungus Botrytis cinerea. Molecular Plant Pathology 18 (1):75–89. doi: 10.1111/mpp.12384.
  • Wang, C. W., J. Ai, H. Y. Lv, H. Y. Qin, Y. M. Yang, Y. X. Liu, and S. T. Fan. 2015. First report of Penicillium expansum causing postharvest decay on stored kiwifruit (Actinidia arguta) in China. Plant Disease 99 (7):1037–1037. doi: 10.1094/PDIS-12-14-1274-PDN.
  • Wang, M., A. Weiberg, E. Dellota, Jr., D. Yamane, and H. Jin. 2017a. Botrytis small RNA Bc-siR37 suppresses plant defense genes by cross-kingdom RNAi. RNA Biology 14 (4):421–8. doi: 10.1080/15476286.2017.1291112.
  • Wang, S. Y., X. C. Shi, F. Q. Liu, and P. Laborda. 2021a. Effects of exogenous methyl jasmonate on quality and preservation of postharvest fruits: A review. Food Chemistry 353:129482. doi: 10.1016/j.foodchem.2021.129482.
  • Wang, S., J. Yao, B. Zhou, J. Yang, M. T. Chaudry, M. Wang, F. Xiao, Y. Li, and W. Yin. 2018a. Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and Its antibacterial mechanism in vitro. Journal of Food Protection 81 (1):68–78. doi: 10.4315/0362-028X.JFP-17-214.
  • Wang, S., Y. Qiu, and F. Zhu. 2021b. Kiwifruit (Actinidia spp.): A review of chemical diversity and biological activities. Food Chemistry 350:128469. doi: 10.1016/j.foodchem.2020.128469.
  • Wang, X., H. Dong, J. Lan, Y. Liu, K. Liang, Q. Lu, Z. Fang, and P. Liu. 2021c. High-quality genome resource of the pathogen of Diaporthe (Phomopsis) phragmitis causing kiwifruit soft rot. Molecular Plant-Microbe Interactions 34 (2):218–21. doi: 10.1094/MPMI-08-20-0236-A.
  • Wang, Y., L. Zhai, S. Wen, Z. Yang, G. Wang, and N. Hong. 2020. Molecular characterization of a novel emaravrius infecting Actinidia spp. in China. Virus Research 275:197736. doi: 10.1016/j.virusres.2019.197736.
  • Wang, Y., T. Shan, Y. Yuan, Z. Zhang, C. Guo, and T. Yue. 2017b. Evaluation of Penicillium expansum for growth, patulin accumulation, nonvolatile compounds and volatile profile in kiwi juices of different cultivars. Food Chemistry 228:211– 8. doi: 10.1016/j.foodchem.2017.01.086.
  • Wang, Y., Y. Luo, Y. Sui, Z. Xie, Y. Liu, M. Jiang, and J. Liu. 2018b. Exposure of Candida oleophila to sublethal salt stress induces an antioxidant response and improves biocontrol efficacy. Biological Control 127:109–15. doi: 10.1016/j.biocontrol.2018.09.002.
  • Wang, Z., Y. Sui, J. Li, X. Tian, and Q. Wang. Biological control of postharvest fungal decays in citrus: A review. Critical Reviews in Food Science and Nutrition. Forthcoming. doi: 10.1080/10408398.2020.1829542.
  • Weiberg, A., M. Wang, F. M. Lin, H. Zhao, Z. Zhang, I. Kaloshian, H. D. Huang, and H. Jin. 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science (New York, N.Y.) 342 (6154):118–23. doi: 10.1126/science.1239705.
  • Wurms, K. V., P. G. Long, K. R. Sharrock, and D. R. Greenwood. 1999. The potential for resistance to Botrytis cinerea by kiwifruit. Crop Protection 18 (7):427–35. doi: 10.1016/S0261-2194(99)00047-2.
  • Yadav, D., S. K. Yadav, R. K. Khar, M. Mujeeb, and M. Akhtar. 2013. Turmeric (Curcuma longa L.): A promising spice for phytochemical and pharmacological activities. International Journal of Green Pharmacy 7 (2):85–9. doi: 10.4103/0973-8258.116375.
  • Yu, L., N. Qiao, J. Zhao, H. Zhang, F. Tian, Q. Zhai, and W. Chen. 2020. Postharvest control of Penicillium expansum in fruits: A review. Food Bioscience 36:100633. doi: 10.1016/j.fbio.2020.100633.
  • Zambounis, A., I. Ganopoulos, D. Valasiadis, L. Karapetsi, and P. Madesis. 2020. RNA sequencing-based transcriptome analysis of kiwifruit infected by Botrytis cinerea. Physiological and Molecular Plant Pathology 111:101514. doi: 10.1016/j.pmpp.2020.101514.
  • Zhang, D., W. Bi, K. Kai, Y. Ye, and J. Liu. 2020. Effect of chlorogenic acid on controlling kiwifruit postharvest decay caused by Diaporthe sp. LWT - Food Science and Technology 132:109805. doi: 10.1016/j.lwt.2020.109805.
  • Zhang, H., R. Li, and W. Liu. 2011. Effects of chitin and its derivative chitosan on postharvest decay of fruits: A review. International Journal of Molecular Sciences 12 (2):917–34. doi: 10.3390/ijms12020917.
  • Zhang, M., L. Xu, L. Zhang, Y. Guo, X. Qi, and L. He. 2018. Effects of quercetin on postharvest blue mold control in kiwifruit. Scientia Horticulturae 228:18–25. doi: 10.1016/j.scienta.2017.09.029.
  • Zhang, Y. H., H. Yin, H. Liu, W. X. Wang, L. S. Wu, X. M. Zhao, and Y. G. Du. 2013. Alginate oligosaccharides regulate nitrogen metabolism via calcium in Brassica campestris L. var. utilis Tsen et Lee. The Journal of Horticultural Science and Biotechnology 88 (4):502–8. doi: 10.1080/14620316.2013.11512998.
  • Zhang, Z., G. Qin, B. Li, and S. Tian. 2014. Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence. Molecular Plant-Microbe Interactions 27 (6):590–600. doi: 10.1094/MPMI-10-13-0314-R.
  • Zhao, Z., J. Chen, X. Gao, D. Zhang, J. Zhang, J. Wen, H. Qin, M. Guo, and L. Huang. 2019. Comparative genomics reveal pathogenicity-related loci in Pseudomonas syringae pv. actinidiae biovar 3. Molecular Plant Pathology 20 (7):923–42. doi: 10.1111/mpp.12803.
  • Zheng, F., W. Zheng, L. Li, S. Pan, M. Liu, W. Zhang, H. Liu, and C. Zhu. 2017a. Chitosan controls postharvest decay and elicits defense response in kiwifruit. Food and Bioprocess Technology 10 (11):1937–45. doi: 10.1007/s11947-017-1957-5.
  • Zheng, Y., B. Navarro, G. Wang, Y. Wang, Z. Yang, W. Xu, C. Zhu, L. Wang, F. D. Serio, and N. Hong. 2017b. Actinidia chlorotic ringspot-associated virus: A novel emaravirus infecting kiwifruit plants. Molecular Plant Pathology 18 (4):569–81. doi: 10.1111/mpp.12421.
  • Zhimo, V. Y., A. Kumar, A. Biasi, S. Salim, O. Feygenberg, M. A. Toamy, A. Abdelfattaah, S. Medina, S. Freilich, M. Wisniewski, et al. 2021. Compositional shifts in the strawberry fruit microbiome in response to near-harvest application of Metschnikowia fructicola. a Yeast Biocontrol Agent. Postharvest Biology and Technology 175:111469.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.