1,659
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Chemical and biological properties of cocoa beans affected by processing: a review

, &

References

  • Abdullahi, G., R. Muhamad, O. Dzolkhifli, and U. R. Sinniah. 2018. Analysis of quality retentions in cocoa beans exposed to solar heat treatment in cardboard solar heater box. Cogent Food & Agriculture 4 (1):1483061. doi: 10.1080/23311932.2018.1483061.
  • Adeyeye, E. I. 2016. Proximate, mineral and antinutrient compositions of natural cocoa cake, cocoa liquor and alkalized cocoa powders sourced in Nigeria. Journal of Advanced Pharmaceutical Science and Technology 1:12–28.
  • Adeyeye, E. I., R. O. Akinyeye, I. Ogunlade, O. Olaofe, and J. O. Boluwade. 2010. Effect of farm and industrial processing on the amino acid profile of cocoa beans. Food Chemistry 118 (2):357–63. doi: 10.1016/j.foodchem.2009.04.127.
  • Adi-Dako, O., K. Ofori-Kwakye, S. Frimpong Manso, M. E. L. Boakye-Gyasi, C. Sasu, and M. Pobee. 2016. Physicochemical and antimicrobial properties of cocoa pod husk pectin intended as a versatile pharmaceutical excipient and nutraceutical. Journal of Pharmaceutics 2016:1–12. doi: 10.1155/2016/7608693.
  • Afoakwa, E. O., E. Ofosu-Ansah, J. F. Takrama, A. S. Budu, and H. Mensah-Brown. 2014. Changes in chemical quality of cocoa butter during roasting of pulp preconditioned and fermented cocoa (Theobroma cacao) beans. International Food Research Journal 21:2221–7.
  • Afoakwa, E. O., J. Quao, J. Takrama, A. S. Budu, and F. K. Saalia. 2013. Chemical composition and physical quality characteristics of Ghanaian cocoa beans as affected by pulp pre-conditioning and fermentation. Journal of Food Science and Technology 50 (6):1097–105. doi: 10.1007/s13197-011-0446-5.
  • Agus, B. A. P., N. N. Mohamad, and N. Hussain. 2018. Composition of unfermented, unroasted, roasted cocoa beans and cocoa shells from Peninsular Malaysia. Journal of Food Measurement and Characterization 12 (4):2581–9. doi: 10.1007/s11694-018-9875-4.
  • Ahmed, S., N. Ahmed, A. Rungatscher, D. Linardi, B. Kulsoom, G. Innamorati, S. A. Meo, M. A. Gebrie, R. Mani, F. Merigo, et al. 2020. Cocoa flavonoids reduce inflammation and oxidative stress in a myocardial ischemia-reperfusion experimental model. Antioxidants 9 (2):167. doi: 10.3390/antiox9020167.
  • Alasti, F. M., N. Asefi, R. Maleki, and S. S. SeiiedlouHeris. 2020. The influence of three different types and dosage of alkaline on the inherent properties in cocoa powder. Journal of Food Science and Technology 57 (7):2561–71. doi: 10.1007/s13197-020-04293-w.
  • Albertini, B., A. Schoubben, D. Guarnaccia, F. Pinelli, M. D. Vecchia, M. Ricci, G. C. D. Renzo, and P. Blasi. 2015. Effect of fermentation and drying on cocoa polyphenols. Journal of Agricultural and Food Chemistry 63 (45):9948–53. doi: 10.1021/acs.jafc.5b01062.
  • Álvarez-Cilleros, D., M. E. López-Oliva, M. A. Martín, and S. Ramos. 2019. Cocoa ameliorates renal injury in Zucker diabetic fatty rats by preventing oxidative stress, apoptosis and inactivation of autophagy. Food & Function 10 (12):7926–39. doi: 10.1039/C9FO01806A.
  • Álvarez-Cilleros, D., S. Ramos, M. E. López-Oliva, F. Escrivá, C. Álvarez, E. Fernández-Millán, and M. Á. Martín. 2020. Cocoa diet modulates gut microbiota composition and improves intestinal health in Zucker diabetic rats. Food Research International 132:109058. doi: 10.1016/j.foodres.2020.109058.
  • Aprotosoaie, A. C., S. V. Luca, and A. Miron. 2016. Flavor chemistry of cocoa and cocoa products – An overview. Comprehensive Reviews in Food Science and Food Safety 15 (1):73–91. doi: 10.1111/1541-4337.12180.
  • Aremu, C. Y., M. A. Agiang, and J. O. I. Ayatse. 1995. Nutrient and antinutrient profiles of raw and fermented cocoa beans. Plant Foods for Human Nutrition 48 (3):217–23. doi: 10.1007/BF01088443.
  • Atanasov, A. G., S. B. Zotchev, V. M. Dirsch, and C. T. Supuran. 2021. Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery 20 (3):200–16. doi: 10.1038/s41573-020-00114-z.
  • Azam, S., N. Hadi, N. U. Khan, and S. M. Hadi. 2003. Antioxidant and prooxidant properties of caffeine, theobromine and xanthine. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 9 (9):BR325–330.
  • Bangerter, U., B. H. Beh, A. B. Callis, and I. J. Pilkington. 1991. Improved cocoa fermentation. EP0442421A2.
  • Baranowska, M., K. Suliborska, V. Todorovic, B. Kusznierewicz, W. Chrzanowski, S. Sobajic, and A. Bartoszek. 2020. Interactions between bioactive components determine antioxidant, cytotoxic and nutrigenomic activity of cocoa powder extract. Free Radical Biology and Medicine 154:48–61. doi: 10.1016/j.freeradbiomed.2020.04.022.
  • Bauer, D., J. P. de Abreu, H. S. S. Oliveira, A. Goes-Neto, M. G. B. Koblitz, and A. J. Teodoro. 2016. Antioxidant activity and cytotoxicity effect of cocoa beans subjected to different processing conditions in human lung carcinoma cells. Oxidative Medicine and Cellular Longevity 2016:7428515. doi: 10.1155/2016/7428515.
  • Bendokas, V., K. Skemiene, S. Trumbeckaite, V. Stanys, S. Passamonti, V. Borutaite, and J. Liobikas. 2020. Anthocyanins: From plant pigments to health benefits at mitochondrial level. Critical Reviews in Food Science and Nutrition 60 (19):3352–65. doi: 10.1080/10408398.2019.1687421.
  • Brito, B. D. d. C., R. C. Chisté, R. da Silva Pena, M. B. A. Gloria, and A. S. Lopes. 2017. Bioactive amines and phenolic compounds in cocoa beans are affected by fermentation. Food Chemistry 228:484–90.
  • Caligiani, A., D. Acquotti, Cirlini, M., and G. Palla. 2010. 1H NMR study of fermented cocoa (Theobroma cacao L.) beans. Journal of Agriculture and Food Chemistry 58:12105–11.
  • Campbell, C. L., E. A. Foegeding, and G. K. Harris. 2016. Cocoa and whey protein differentially affect markers of lipid and glucose metabolism and satiety. Journal of Medicinal Food 19 (3):219–27. doi: 10.1089/jmf.2015.0044.
  • CAOBISCO/ECA/FCC. 2015. Cocoa beans: Chocolate and cocoa industry quality requirements. Brussels: CAOBISCO.
  • Carrageta, D. F., T. R. Dias, M. G. Alves, P. F. Oliveira, M. P. Monteiro, and B. M. Silva. 2018. Anti-obesity potential of natural methylxanthines. Journal of Functional Foods 43:84–94. doi: 10.1016/j.jff.2018.02.001.
  • Cevallos-Cevallos, J. M., L. Gysel, M. G. Maridueña-Zavala, and M. J. Molina-Miranda. 2018. Time-related changes in volatile compounds during fermentation of bulk and fine-flavor cocoa (Theobroma cacao) beans. Journal of Food Quality 2018:1758381.
  • Chen, D., Q. Shao, L. Yin, A. Younis, and B. Zheng. 2018. Polyamine function in plants: Metabolism, regulation on development, and roles in abiotic stress responses. Frontiers in Plant Science 9:1945. doi: 10.3389/fpls.2018.01945.
  • Chin, E., K. B. Miller, M. J. Payne, W. J. Hurst, and D. A. Stuart. 2013. Comparison of antioxidant activity and flavanol content of cacao beans processed by modern and traditional Mesoamerican methods. Heritage Science 1 (1):9. doi: 10.1186/2050-7445-1-9.
  • Ciaramelli, C., A. Palmioli, A. De Luigi, L. Colombo, G. Sala, M. Salmona, and C. Airoldi. 2021. NMR-based Lavado cocoa chemical characterization and comparison with fermented cocoa varieties: Insights on cocoa’s anti-amyloidogenic activity. Food Chemistry 341:128249. doi: 10.1016/j.foodchem.2020.128249.
  • Collado-González, J., T. Durand, F. Ferreres, S. Medina, A. Torrecillas, and Á. Gil-Izquierdo. 2015. Phytoprostanes. Lipid Technology 27 (6):127–30. doi: 10.1002/lite.201500020.
  • Cordero-Herrera, I., M. Á. Martín, E. Fernández-Millán, C. Álvarez, L. Goya, and S. Ramos. 2015. Cocoa and cocoa flavanol epicatechin improve hepatic lipid metabolism in in vivo and in vitro models. Role of PKCζ. Journal of Functional Foods 17:761–73. doi: 10.1016/j.jff.2015.06.033.
  • Cordero-Herrera, I., M. Á. Martín, L. Goya, and S. Ramos. 2014. Cocoa flavonoids attenuate high glucose-induced insulin signalling blockade and modulate glucose uptake and production in human HepG2 cells. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 64:10–9. doi: 10.1016/j.fct.2013.11.014.
  • Corti, R., A. J. Flammer, N. K. Hollenberg, and T. F. Lüscher. 2009. Cocoa and cardiovascular health. Circulation 119 (10):1433–41. doi: 10.1161/CIRCULATIONAHA.108.827022.
  • Coupland, J. N., and J. E. Hayes. 2014. Physical approaches to masking bitter taste: Lessons from food and pharmaceuticals. Pharmaceutical Research 31 (11):2921–39. doi: 10.1007/s11095-014-1480-6.
  • D’Souza, R. N., A. Grimbs, S. Grimbs, B. Behrends, M. Corno, M. S. Ullrich, and N. Kuhnert. 2018. Degradation of cocoa proteins into oligopeptides during spontaneous fermentation of cocoa beans. Food Research International 109:506–16. doi: 10.1016/j.foodres.2018.04.068.
  • D’Souza, R. N., S. Grimbs, B. Behrends, H. Bernaert, M. S. Ullrich, and N. Kuhnert. 2017. Origin-based polyphenolic fingerprinting of Theobroma cacao in unfermented and fermented beans. Food Research International 99:550–9. doi: 10.1016/j.foodres.2017.06.007.
  • Dario, A., and A. Eskes. 2009. Process for the fermentation of cocoa beans to modify their aromatic profile. WO2009/103137A2.
  • De Bruijn, J. M., A. P. G. Kieboom, and H. van Bekkum. 1987. Alkaline degradation of monosaccharides V: Kinetics of the alkaline isomerization and degradation of monosaccharides. Recueil Des Travaux Chimiques Des Pays-Bas 106 (2):35–43. doi: 10.1002/recl.19871060201.
  • De Taeye, C., V. J. Eyamo Evina, G. Caullet, N. Niemenak, and S. Collin. 2016. Fate of anthocyanins through cocoa fermentation. Emergence of new polyphenolic dimers. Journal of Agricultural and Food Chemistry 64 (46):8876–85. doi: 10.1021/acs.jafc.6b03892.
  • De Vuyst, L. and S. Weckx. 2016. The cocoa bean fermentation process: From ecosystem analysis to starter culture development. Journal of Applied Microbiology 121:5–17.
  • Deka, H., P. P. Sarmah, A. Devi, P. Tamuly, and T. Karak. 2021. Changes in major catechins, caffeine, and antioxidant activity during CTC processing of black tea from North East India. RSC Advances 11 (19):11457–67. doi: 10.1039/D0RA09529J.
  • Del Prete, M., and A. Samoggia. 2020. Chocolate consumption and purchasing behaviour review: Research issues and insights for future research. Sustainability 12 (14):5586. doi: 10.3390/su12145586.
  • Di Mattia, C. D., G. Sacchetti, D. Mastrocola, and M. Serafini. 2017. From cocoa to chocolate: The impact of processing on in vitro antioxidant activity and the effects of chocolate on antioxidant markers in vivo. Frontiers in Immunology 8:1207. doi: 10.3389/fimmu.2017.01207.
  • Djikeng, F. T., W. T. Teyomnou, N. Tenyang, B. Tiencheu, A. T. Morfor, B. A. H. Touko, S. N. Houketchang, G. T. Boungo, M. S. L. Karuna, F. C. Ngoufack, et al. 2018. Effect of traditional and oven roasting on the physicochemical properties of fermented cocoa beans. Heliyon 4 (2):e00533. doi: 10.1016/j.heliyon.2018.e00533.
  • Donadini, G., M. D. Fumi, and M. Lambri. 2012. The hedonic response to chocolate and beverage pairing: A preliminary study. Food Research International 48 (2):703–11. doi: 10.1016/j.foodres.2012.06.009.
  • Drewnowski, A., and C. Gomez-Carneros. 2000. Bitter taste, phytonutrients, and the consumer: A review. The American Journal of Clinical Nutrition 72 (6):1424–35. doi: 10.1093/ajcn/72.6.1424.
  • Elwers, S., A. Zambrano, C. Rohsius, and R. Lieberei. 2009. Differences between the content of phenolic compounds in Criollo, Forastero and Trinitario cocoa seed (Theobroma cacao L.). European Food Research and Technology 229 (6):937–48. doi: 10.1007/s00217-009-1132-y.
  • Escobar, C., E. Espitia-Bautista, M. A. Guzmán-Ruiz, N. N. Guerrero-Vargas, M. Á. Hernández-Navarrete, M. Ángeles-Castellanos, B. Morales-Pérez, and R. M. Buijs. 2020. Chocolate for breakfast prevents circadian desynchrony in experimental models of jet-lag and shift-work. Scientific Reports 10 (1):6243. doi: 10.1038/s41598-020-63227-w.
  • Fang, Z., and B. Bhandari. 2010. Encapsulation of polyphenols – A review. Trends in Food Science & Technology 21 (10):510–23. doi: 10.1016/j.tifs.2010.08.003.
  • Febrianto, N. A., and F. Zhu. 2019a. Diversity in composition of bioactive compounds among 26 cocoa genotypes. Journal of Agricultural and Food Chemistry 67 (34):9501–9. doi: 10.1021/acs.jafc.9b03448.
  • Febrianto, N. A., and F. Zhu. 2019b. Intravariety diversity of bioactive compounds in Trinitario cocoa beans with different degrees of fermentation. Journal of Agricultural and Food Chemistry 67 (11):3150–8. doi: 10.1021/acs.jafc.8b06418.
  • Febrianto, N. A., and F. Zhu. 2020. Changes in the composition of methylxanthines, polyphenols, and volatiles and sensory profiles of cocoa beans from the Sul 1 genotype affected by fermentation. Journal of Agricultural and Food Chemistry 68 (32):8658–75. doi: 10.1021/acs.jafc.0c02909.
  • Figueroa-Hernández, C., J. Mota-Gutierrez, I. Ferrocino, Z. J. Hernández-Estrada, O. González-Ríos, L. Cocolin, and M. L. Suárez-Quiroz. 2019. The challenges and perspectives of the selection of starter cultures for fermented cocoa beans. International Journal of Food Microbiology 301:41–50. doi: 10.1016/j.ijfoodmicro.2019.05.002.
  • FoodDrinkEurope. 2019. Acrylamide toolbox 2019. Brussels: FoodDrinkEurope.
  • Foubert, I., P. Vanrolleghem, O. Thas, and K. Dewettinck. 2006. Influence of chemical composition on the isothermal cocoa butter crystallization. Journal of Food Science 69 (9):E478–487. doi: 10.1111/j.1365-2621.2004.tb09933.x.
  • Frauendorfer, F., and P. Schieberle. 2019. Key aroma compounds in fermented Forastero cocoa beans and changes induced by roasting. European Food Research and Technology 245 (9):1907–15. doi: 10.1007/s00217-019-03292-2.
  • Gadd, G. M. 2010. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology (Reading, England) 156 (Pt 3):609–43. [Database] doi: 10.1099/mic.0.037143-0.
  • García, D. V., É. P. Esteve, and J. M. B. Baviera. 2020. Changes in cocoa properties induced by the alkalization process: A review. Comprehensive Reviews in Food Science and Food Safety 19:2200–21.
  • García-Merino, J. A., D. Moreno-Pérez, B. de Lucas, M. G. Montalvo-Lominchar, E. Muñoz, L. Sánchez, F. Naclerio, K. M. Herrera-Rocha, M. R. Moreno-Jiménez, N. E. Rocha-Guzmán, et al. 2020. Chronic flavanol-rich cocoa powder supplementation reduces body fat mass in endurance athletes by modifying the follistatin/myostatin ratio and leptin levels. Food & Function 11 (4):3441–50. doi: 10.1039/D0FO00246A.
  • Giacometti, J., D. Muhvić, A. Pavletić, and L. Ðudarić. 2016. Cocoa polyphenols exhibit antioxidant, anti-inflammatory, anticancerogenic, and anti-necrotic activity in carbon tetrachloride-intoxicated mice. Journal of Functional Foods 23:177–87. doi: 10.1016/j.jff.2016.02.036.
  • Gigl, M., O. Frank, J. Barz, A. Gabler, C. Hegmanns, and T. Hofmann. 2021. Identification and quantitation of reaction products from quinic acid, quinic acid lactone, and chlorogenic acid with Strecker aldehydes in roasted coffee. Journal of Agricultural and Food Chemistry 69 (3):1027–38. doi: 10.1021/acs.jafc.0c06887.
  • González-Barrio, R., V. Nuñez-Gomez, E. Cienfuegos-Jovellanos, F. J. García-Alonso, and M. J. Periago-Castón. 2020. Improvement of the flavanol profile and the antioxidant capacity of chocolate using a phenolic rich cocoa powder. Foods 9 (2):189. doi: 10.3390/foods9020189.
  • Grassia, M., G. Salvatori, M. Roberti, D. Planeta, and L. Cinquanta. 2019. Polyphenols, methylxanthines, fatty acids and minerals in cocoa beans and cocoa products. Journal of Food Measurement and Characterization 13 (3):1721–8. doi: 10.1007/s11694-019-00089-5.
  • Guzmán-Ortiz, F. A., J. Castro-Rosas, C. A. Gómez-Aldapa, R. Mora-Escobedo, A. Rojas-León, M. L. Rodríguez-Marín, R. N. Falfán-Cortés, and A. D. Román-Gutiérrez. 2019. Enzyme activity during germination of different cereals: A review. Food Reviews International 35 (3):177–200. doi: 10.1080/87559129.2018.1514623.
  • Hansen, C. E., A. Klueppel, E. Raetz. 1995. Enzymatic treatments of cocoa. US5888562A.
  • Hansen, C. E., C. Budwig, S. Kochhar, M. A. Jullerat, J.-C. Spandone, P. Nicolas, R. Redgwell, E. Armstrong, and D. Sievert. 2004. Chocolate flavor manipulation. US 2004/0191403 A1.
  • Hegmann, E., W. Niether, C. Rohsius, W. Phillips, and R. Lieberei. 2020. Besides variety, also season and ripening stage have a major influence on fruit pulp aroma of cacao (Theobroma cacao L.). Journal of Applied Botany and Food Quality 93:266–75.
  • Hernández-Hernández, C., I. Viera-Alcaide, A. M. Morales-Sillero, J. Fernández-Bolaños, and G. Rodríguez-Gutiérrez. 2018. Bioactive compounds in Mexican genotypes of cocoa cotyledon and husk. Food Chemistry 240:831–9. doi: 10.1016/j.foodchem.2017.08.018.
  • Hinneh, M., E. Semanhyia, D. Van de Walle, A. De Winne, D. A. Tzompa-Sosa, G. L. L. Scalone, B. De Meulenaer, K. Messens, J. Van Durme, E. O. Afoakwa, et al. 2018. Assessing the influence of pod storage on sugar and free amino acid profiles and the implications on some Maillard reaction related flavor volatiles in Forastero cocoa beans. Food Research International 111:607–20. doi: 10.1016/j.foodres.2018.05.064.
  • Huynh, N. K., D. H. M. Nguyen, and H. V. H. Nguyen. 2020. Reduction of soluble oxalate in cocoa powder by the addition of calcium and ultrasonication. Journal of Food Composition and Analysis 93:103593. doi: 10.1016/j.jfca.2020.103593.
  • Ioannone, F., C. D. Di Mattia, M. De Gregorio, M. Sergi, M. Serafini, and G. Sacchetti. 2015. Flavanols, proanthocyanidins and antioxidant activity changes during cocoa (Theobroma cacao L.) roasting as affected by temperature and time of processing. Food Chemistry 174:256–62. doi: 10.1016/j.foodchem.2014.11.019.
  • Jackson, S. E., L. Smith, J. Firth, I. Grabovac, P. Soysal, A. Koyanagi, L. Hu, B. Stubbs, J. Demurtas, N. Veronese, et al. 2019. Is there a relationship between chocolate consumption and symptoms of depression? A cross-sectional survey of 13,626 US adults. Depression and Anxiety 36 (10):987–95. doi: 10.1002/da.22950.
  • Jaeger, S. R., L. G. Axten, M. W. Wohlers, and D. Sun-Waterhouse. 2009. Polyphenol-rich beverages: Insights from sensory and consumer science. Journal of the Science of Food and Agriculture 89 (14):2356–63. doi: 10.1002/jsfa.3721.
  • John, W. A., N. L. Böttcher, M. Aßkamp, A. Bergounhou, N. Kumari, P.-W. Ho, R. N. D'Souza, E. Nevoigt, and M. S. Ullrich. 2019. Forcing fermentation: Profiling proteins, peptides and polyphenols in lab-scale cocoa bean fermentation. Food Chemistry 278:786–94. doi:10.1016/j.foodchem.2018.11.108.
  • John, W. A., N. L. Böttcher, B. Behrends, M. Corno, R. N. D'souza, N. Kuhnert, and M. S. Ullrich. 2020. Experimentally modelling cocoa bean fermentation reveals key factors and their influences. Food Chemistry 302:125335. doi: 10.1016/j.foodchem.2019.125335.
  • Júnior, P. C. G., V. B. dos Santos, A. S. Lopes, J. P. I. de Souza, J. R. S. Pina, G. C. A. Chagas Júnior, and P. S. B. Marinho. 2020. Determination of theobromine and caffeine in fermented and unfermented Amazonian cocoa (Theobroma cacao L.) beans using square wave voltammetry after chromatographic separation. Food Control 108:106887. doi: 10.1016/j.foodcont.2019.106887.
  • Kadow, D. 2020. The biochemistry of cocoa flavor – A holistic analysis of its development along the processing chain. Journal of Applied Botany and Food Quality 93:300–12.
  • Katz, D. L., K. Doughty, and A. Ali. 2011. Cocoa and chocolate in human health and disease. Antioxidants & Redox Signaling 15 (10):2779–811. doi: 10.1089/ars.2010.3697.
  • Kelm, M. A., J. C. Johnson, R. J. Robbins, J. F. Hammerstone, and H. H. Schmitz. 2006. High-performance liquid chromatography separation and purification of cacao (Theobroma cacao L.) procyanidins according to degree of polymerization using a diol stationary phase. Journal of Agricultural and Food Chemistry 54 (5):1571–6. doi: 10.1021/jf0525941.
  • Khan, N., and H. Mukhtar. 2018. Tea polyphenols in promotion of human health. Nutrients 11 (1):39. doi: 10.3390/nu11010039.
  • Kim, J.-E., D. Song, J. Kim, J. Choi, J. R. Kim, H.-S. Yoon, J.-S. Bae, M. Han, S. Lee, J. S. Hong, et al. 2016. Oral supplementation with cocoa extract reduces UVB-induced wrinkles in hairless mouse skin. Journal of Investigative Dermatology 136 (5):1012–21. doi: 10.1016/j.jid.2015.11.032.
  • Kim, K., and R. M. Brothers. 2020. Acute consumption of flavanol-rich cocoa beverage improves attenuated cutaneous microvascular function in healthy young African Americans. Microvascular Research 128:103931. doi: 10.1016/j.mvr.2019.103931.
  • Kongor, J. E., M. Hinneh, D. Van de Walle, E. O. Afoakwa, P. Boeckx, and K. Dewettinck. 2016. Factors influencing quality variation in cocoa (Theobroma cacao) bean flavor profile – A review. Food Research International 82:44–52. doi: 10.1016/j.foodres.2016.01.012.
  • Kouadio, P. A., B. K. Attioua, F. A. Kabran, B. A. Kassi, R. A. Yao, H. K. Yeboue, M. N. Kasse, and E. K. Amoikon. 2020. Comparative physico-chemical study of fermented and unfermented cocoa beans from Côte d’Ivoire. International Journal of Biosciences 16:355–62.
  • Kramer, K., M. Yeboah-Awudzi, N. Magazine, J. M. King, Z. Xu, and J. N. Losso. 2019. Procyanidin B2 rich cocoa extracts inhibit inflammation in Caco-2 cell model of in vitro celiac disease by down-regulating interferon-gamma- or gliadin peptide 31-43-induced transglutaminase-2 and interleukin-15. Journal of Functional Foods 57:112–20. doi: 10.1016/j.jff.2019.03.039.
  • Kratzer, U., R. Frank, H. Kalbacher, B. Biehl, J. Wöstemeyer, and J. Voigt. 2009. Subunit structure of the vicilin-like globular storage protein of cocoa seeds and the origin of cocoa- and chocolate-specific aroma precursors. Food Chemistry 113 (4):903–13. doi: 10.1016/j.foodchem.2008.08.017.
  • Kühn, J., A. Schröter, B. M. Hartmann, and G. I. Stangl. 2018. Cocoa and chocolate are sources of vitamin D2. Food Chemistry 269:318–20. doi: 10.1016/j.foodchem.2018.06.098.
  • Kumari, N., A. Grimbs, R. N. D'Souza, S. K. Verma, M. Corno, N. Kuhnert, and M. S. Ullrich. 2018. Origin and varietal based proteomic and peptidomic fingerprinting of Theobroma cacao in non-fermented and fermented cocoa beans. Food Research International (Ottawa, Ont.) 111:137–47. doi: 10.1016/j.foodres.2018.05.010.
  • Kumari, N., K. J. Kofi, S. Grimbs, R. N. D'Souza, N. Kuhnert, G. Vrancken, and M. S. Ullrich. 2016. Biochemical fate of vicilin storage protein during fermentation and drying of cocoa beans. Food Research International (Ottawa, Ont.) 90:53–65. doi: 10.1016/j.foodres.2016.10.033.
  • Lavefve, L., L. R. Howard, and F. Carbonero. 2020. Berry polyphenols metabolism and impact on human gut microbiota and health. Food & Function 11 (1):45–65. doi: 10.1039/c9fo01634a.
  • Lawal, T. O., T. A. Olorunnipa, and B. A. Adeniyi. 2014. Susceptibility testing and bactericidal activities of Theobroma cacao Linn. (cocoa) on Helicobacter pylori in an in vitro study. Journal of Herbal Medicine 4 (4):201–7. doi: 10.1016/j.hermed.2014.09.004.
  • Lebot, V., M. Melteras, A. Pilecki, and J.-P. Labouisse. 2020. Chemometric evaluation of cocoa (Theobroma cacao L.) and coffee (Coffea spp.) germplasm using HPTLC. Genetic Resources and Crop Evolution 67 (4):895–911. doi: 10.1007/s10722-020-00888-6.
  • Lecumberri, E., R. Mateos, M. Izquierdo-Pulido, P. Rupérez, L. Goya, and L. Bravo. 2007. Dietary fibre composition, antioxidant capacity and physico-chemical properties of a fibre-rich product from cocoa (Theobroma cacao L.). Food Chemistry 104 (3):948–54. doi: 10.1016/j.foodchem.2006.12.054.
  • Lee, A. H., A. P. Neilson, S. F. O’Keefe, J. A. Ogejo, H. Huang, M. Ponder, H. S. S. Chu, Q. Jin, G. Pilot, and A. C. Stewart. 2019. A laboratory-scale model cocoa fermentation using dried, unfermented beans and artificial pulp can simulate the microbial and chemical changes of on-farm cocoa fermentation. European Food Research and Technology 245 (2):511–9. doi: 10.1007/s00217-018-3171-8.
  • Lefeber, T., Z. Papalexandratou, W. Gobert, N. Camu, and V. L. De. 2012. On-farm implementation of a starter culture for improved cocoa bean fermentation and its influence on the flavor of chocolates produced thereof. Food Microbiology 30 (2):379–92. doi: 10.1016/j.fm.2011.12.021.
  • León-Perez, D., S. Medina, J. Londoño-Londoño, M. Cano-Lamadrid, Á. Carbonell-Barrachina, T. Durand, A. Guy, C. Oger, J. M. Galano, F. Ferreres, et al. 2019. Comparative study of different cocoa (Theobroma cacao L.) clones in terms of their phytoprostanes and phytofurans contents. Food Chemistry 280:231–9. doi: 10.1016/j.foodchem.2018.12.072.
  • Li, Y., Y. Feng, S. Zhu, C. Luo, J. Ma, and F. Zhong. 2012. The effect of alkalization on the bioactive and flavor related components in commercial cocoa powder. Journal of Food Composition and Analysis 25 (1):17–23. doi: 10.1016/j.jfca.2011.04.010.
  • Liendo, R., F. C. Padilla, and A. Quintana. 1997. Characterization of cocoa butter extracted from Criollo cultivars of Theobroma cacao L. Food Research International 30 (9):727–31. doi: 10.1016/S0963-9969(98)00025-8.
  • Liou, B.-K., Y.-M. Jaw, G. C.-C. Chuang, N. N. J. Yau, Z.-Y. Zhuang, and L.-F. Wang. 2020. Important sensory, association, and postprandial perception attributes influencing young Taiwanese consumers’ acceptance for Taiwanese specialty teas. Foods 9 (1):100. doi: 10.3390/foods9010100.
  • Lipp, M., and E. Anklam. 1998. Review of cocoa butter and alternative fats for use in chocolate – Part A. Compositional data. Food Chemistry 62 (1):73–97. doi: 10.1016/S0308-8146(97)00160-X.
  • Lustig, R. H., L. A. Schmidt, and C. D. Brindis. 2012. The toxic truth about sugar. Nature 482 (7383):27–9. [Database] doi: 10.1038/482027a.
  • Luximon-Ramma, A., T. Bahorun, A. Crozier, V. Zbarsky, K. P. Datla, D. T. Dexter, and O. I. Aruoma. 2005. Characterization of the antioxidant functions of flavonoids and proanthocyanidins in Mauritian black teas. Food Research International 38 (4):357–67. doi: 10.1016/j.foodres.2004.10.005.
  • Martínez-Pinilla, E., A. Oñatibia-Astibia, and R. Franco. 2015. The relevance of theobromine for the beneficial effects of cocoa consumption. Frontiers in Pharmacology 6:30. doi: 10.3389/fphar.2015.00030.
  • Marty, S., and A. G. Marangoni. 2009. Effects of cocoa butter origin, tempering procedure, and structure on oil migration kinetics. Crystal Growth & Design 9 (10):4415–23. doi: 10.1021/cg9004505.
  • Mat, S. A., I. S. M. Daud, M. H. M. Rojie, N. Hussain, and Y. Rukayadi. 2016. Effects of Candida sp. and Blastobotrys sp. starter on fermentation of cocoa (Theobroma cacao L.) beans and its antibacterial activity. Journal of Pure and Applied Microbiology 10 (4):2501–10. doi: 10.22207/JPAM.10.4.04.
  • McDermott, M. M., M. H. Criqui, K. Domanchuk, L. Ferrucci, J. M. Guralnik, M. R. Kibbe, K. Kosmac, C. M. Kramer, C. Leeuwenburgh, L. Li, et al. 2020. Cocoa to improve walking performance in older people with peripheral artery disease: The COCOA-PAD pilot randomized clinical trial. Circulation Research 126 (5):589–99. doi: 10.1161/CIRCRESAHA.119.315600.
  • Megías-Pérez, R., S. Grimbs, R. N. D'Souza, H. Bernaert, and N. Kuhnert. 2018. Profiling, quantification and classification of cocoa beans based on chemometric analysis of carbohydrates using hydrophilic interaction liquid chromatography coupled to mass spectrometry. Food Chemistry 258:284–94. doi: 10.1016/j.foodchem.2018.03.026.
  • Melo, C. W. B. D., M. D. J. Bandeira, L. F. Maciel, E. d. S. Bispo, C. O. D. Souza, and S. E. Soares. 2020. Chemical composition and fatty acids profile of chocolates produced with different cocoa. Food Science and Technology 40 (2):326–33. doi: 10.1590/fst.43018.
  • Messaoudi, M., J.-F. Bisson, A. Nejdi, P. Rozan, and H. Javelot. 2008. Antidepressant-like effects of a cocoa polyphenolic extract in Wistar-Unilever rats. Nutritional Neuroscience 11 (6):269–76. doi: 10.1179/147683008X344165.
  • Midttun, H. L. E., A. Ramsay, I. Mueller-Harvey, and A. R. Williams. 2018. Cocoa procyanidins modulate transcriptional pathways linked to inflammation and metabolism in human dendritic cells. Food & Function 9 (5):2883–90. doi: 10.1039/c8fo00387d.
  • Misnawi, J. S., B. Jamilah, and S. Nazamid. 2003. Effects of incubation and polyphenol oxidase enrichment on colour, fermentation index, procyanidins and astringency of unfermented and partly fermented cocoa beans. International Journal of Food Science and Technology 38 (3):285–95. doi: 10.1046/j.1365-2621.2003.00674.x.
  • Misnawi, J. S., S. Nazamid, and B. Jamilah. 2002. Activation of remaining key enzymes in dried under-fermented cocoa beans and its effect on aroma precursor formation. Food Chemistry 78:407–17.
  • Misnawi. 2012. Effect of cocoa bean drying methods on polycyclic aromatic hydrocarbons contamination in cocoa butter. International Food Research Journal 19:1589–94.
  • Mota-Gutierrez, J., C. Botta, I. Ferrocino, M. Giordano, M. Bertolino, P. Dolci, M. Cannoni, and L. Cocolin. 2018. Dynamics and Biodiversity of Bacterial and Yeast Communities during Fermentation of Cocoa Beans. Applied and Environmental Microbiology 84 (19). doi:10.1128/AEM.01164-18.
  • Mota-Gutierrez, J., L. Barbosa-Pereira, I. Ferrocino, and L. Cocolin. 2019. Traceability of functional volatile compounds generated on inoculated cocoa fermentation and its potential health benefits. Nutrients 11:884.
  • Mudenuti, N. V., de R, A. C. de Camargo, F. Shahidi, T. B. Madeira, E. Y. Hirooka, and M. V. E. Grossmann. 2018. Soluble and insoluble-bound fractions of phenolics and alkaloids and their antioxidant activities in raw and traditional chocolate: A comparative study. Journal of Functional Foods 50:164–71. doi: 10.1016/j.jff.2018.10.003.
  • Mulyawanti, I., T. Hidayat, and N. F. N. Risfaheri. 2018. Pengaruh jenis fermentor terhadap mutu biji kakao kering non fermentasi [The influences of fermentor type on quality of dried unfermented cocoa bean]. Jurnal Penelitian Pascapanen Pertanian 15 (2):91–8. In Indonesian. doi: 10.21082/jpasca.v15n2.2018.91-98.
  • Muñoz, M. S., J. R. Cortina, F. E. Vaillant, and S. E. Parra. 2020. An overview of the physical and biochemical transformation of cocoa seeds to beans and to chocolate: Flavor formation. Critical Reviews in Food Science and Nutrition 60 (10):1593–613. doi: 10.1080/10408398.2019.1581726.
  • Nazaruddin, R., L. K. Seng, O. Hassan, and M. Said. 2006. Effect of pulp preconditioning on the content of polyphenols in cocoa beans (Theobroma cacao) during fermentation. Industrial Crops and Products 24 (1):87–94. doi: 10.1016/j.indcrop.2006.03.013.
  • Netea, S. A., S. A. Janssen, M. Jaeger, T. Jansen, L. Jacobs, G. Miller-Tomaszewska, T. S. Plantinga, M. G. Netea, and L. A. B. Joosten. 2013. Chocolate consumption modulates cytokine production in healthy individuals. Cytokine 62 (1):40–3. doi: 10.1016/j.cyto.2013.02.003.
  • Nguyễn, H. V. H., H. M. Lê, and G. P. Savage. 2018. Effects of maturity at harvesting and primary processing of cocoa beans on oxalate contents of cocoa powder. Journal of Food Composition and Analysis 67:86–90. doi: 10.1016/j.jfca.2018.01.007.
  • Niemenak, N., V. Jos, A. S. D. Mouafi, A. G. T. Ngouambe, C. Bernhardt, R. Lieberei, and B. Bisping. 2020. Assessment of the profile of free amino acids and reducing sugars of cacao beans from local Cameroonian Trinitario (SNK varieties) and Forastero (TIKO varieties) using fermentation-like incubation. Journal of Applied Botany and Food Quality 93:321–9.
  • Nijveldt, R. J., van Nood, E. D. E. C. van Hoorn, P. G. Boelens, K. van Norren, and P. A. M. van Leeuwen. 2001. Flavonoids: A review of probable mechanisms of action and potential applications. The American Journal of Clinical Nutrition 74 (4):418–25. doi: 10.1093/ajcn/74.4.418.
  • Oduro-Mensah, D., A. Ocloo, S. T. Lowor, C. Mingle, L. K. N. A. Okine, and N. A. Adamafio. 2018. Bio-detheobromination of cocoa pod husks: Reduction of ochratoxin A content without change in nutrient profile. Microbial Cell Factories 17 (1):79. doi: 10.1186/s12934-018-0931-x.
  • Olas, B. 2018. Berry phenolic antioxidants – Implications for human health? Frontiers in Pharmacology 9:78. doi: 10.3389/fphar.2018.00078.
  • Oliveira, H. S. S., M. E. O. Mamede, A. Góes-Neto, and M. G. B. Koblitz. 2011. Chocolate flavor in poor-quality cocoa almonds by enzymatic treatment. Journal of Food Science 76 (5):C755–759. doi: 10.1111/j.1750-3841.2011.02168.x.
  • Oracz, J., and D. Zyzelewicz. 2019. In vitro antioxidant activity and FTIR characterization of high-molecular weight melanoidin fractions from different types of cocoa beans. Antioxidants 8:560. doi: 10.3390/antiox8110560.
  • Oracz, J., and E. Nebesny. 2014. Influence of roasting conditions on the biogenic amine content in cocoa beans of different Theobroma cacao cultivars. Food Research International 55:1–10. doi: 10.1016/j.foodres.2013.10.032.
  • Oracz, J., and E. Nebesny. 2019. Effect of roasting parameters on the physicochemical characteristics of high-molecular-weight Maillard reaction products isolated from cocoa beans of different Theobroma cacao L. groups. European Food Research and Technology 245 (1):111–28. doi: 10.1007/s00217-018-3144-y.
  • Oracz, J., E. Nebesny, and D. Żyżelewicz. 2014. Effect of roasting conditions on the fat, tocopherol, and phytosterol content and antioxidant capacity of the lipid fraction from cocoa beans of different Theobroma cacao L. cultivars. European Journal of Lipid Science and Technology 116 (8):1002–14. doi: 10.1002/ejlt.201300474.
  • Padilla, F. C., R. Liendo, and A. Quintana. 2000. Characterization of cocoa butter extracted from hybrid cultivars of Theobroma cacao L. Archivos Latinoamericanos De Nutricion 50 (2):200–5. PMC:11048595
  • Pandurangan, A. K., Z. Saadatdoust, N. M. Esa, H. Hamzah, and A. Ismail. 2015. Dietary cocoa protects against colitis-associated cancer by activating the Nrf2/Keap1 pathway. BioFactors (Oxford, England) 41 (1):1–14. doi: 10.1002/biof.1195.
  • Pedan, V., N. Fischer, and S. Rohn. 2016. An online NP-HPLC-DPPH method for the determination of the antioxidant activity of condensed polyphenols in cocoa. Food Research International 89:890–900. doi: 10.1016/j.foodres.2015.10.030.
  • Peng, M., U. Aryal, B. Cooper, and D. Biswas. 2015. Metabolites produced during the growth of probiotics in cocoa supplementation and the limited role of cocoa in host-enteric bacterial pathogen interactions. Food Control 53:124–33. doi: 10.1016/j.foodcont.2015.01.014.
  • Pereyra-Vergara, F., Olivares-Corichi, I. M. A. G. Perez-Ruiz, J. P. Luna-Arias, and J. R. García-Sánchez. 2020. Apoptosis induced by (−)-epicatechin in human breast cancer cells is mediated by reactive oxygen species. Molecules 25 (5):1020. doi: 10.3390/molecules25051020.
  • Pham, V. T. T., T. Ismail, M. Mishyna, K. S. Appiah, Y. Oikawa, and Y. Fujii. 2019. Caffeine: The allelochemical responsible for the plant growth inhibitory activity of Vietnamese tea (Camellia sinensis L. Kuntze). Agronomy 9 (7):396. doi: 10.3390/agronomy9070396.
  • Quiroz-Reyes, C. N., and V. Fogliano. 2018. Design cocoa processing towards healthy cocoa products: The role of phenolics and melanoidins. Journal of Functional Foods 45:480–90. doi: 10.1016/j.jff.2018.04.031.
  • Ramos, S., M. A. Martín, and L. Goya. 2017. Effects of cocoa antioxidants in type 2 diabetes mellitus. Antioxidants 6 (4):84. doi: 10.3390/antiox6040084.
  • Rasines-Perea, Z., and P.-L. Teissedre. 2017. Grape polyphenols’ effects in human cardiovascular diseases and diabetes. Molecules 22 (1):68. doi: 10.3390/molecules22010068.
  • Raters, M., and R. Matissek. 2014. Quantitation of polycyclic aromatic hydrocarbons (PAH4) in cocoa and chocolate samples by an HPLC-FD method. Journal of Agricultural and Food Chemistry 62 (44):10666–71. doi: 10.1021/jf5028729.
  • Raters, M., and R. Matissek. 2018. Acrylamide in cocoa: A survey of acrylamide levels in cocoa and cocoa products sourced from the German market. European Food Research and Technology 244 (8):1381–8. doi: 10.1007/s00217-018-3051-2.
  • Ravindranath, M. H., T. S. Saravanan, C. C. Monteclaro, N. Presser, X. Ye, S. R. Selvan, and S. Brosman. 2006. Epicatechins purified from green tea (Camellia sinensis) differentially suppress growth of gender-dependent human cancer cell lines. Evidence-Based Complementary and Alternative Medicine: eCAM 3 (2):237–47. doi: 10.1093/ecam/nel003.
  • Redgwell, R. J., V. Trovato, and D. Curti. 2003. Cocoa bean carbohydrates: Roasting-induced changes and polymer interactions. Food Chemistry 80 (4):511–6. doi: 10.1016/S0308-8146(02)00320-5.
  • Robbins, R. J., J. Leonczak, J. Li, J. C. Johnson, T. Collins, C. Kwik-Uribe, H. H. Schmitz, J. Austad, S. Bhandari, T. Cifuentes, et al. 2013. Flavanol and procyanidin content (by degree of polymerization 1-10) of chocolate, cocoa liquors, cocoa powders, and cocoa extracts: First action 2012.24. Journal of AOAC International 96 (4):705–11., doi: 10.5740/jaoacint.13-109.
  • Rodriguez-Campos, J., H. B. Escalona-Buendía, S. M. Contreras-Ramos, I. Orozco-Avila, E. Jaramillo-Flores, and E. Lugo-Cervantes. 2012. Effect of fermentation time and drying temperature on volatile compounds in cocoa. Food Chemistry 132 (1):277–88. doi: 10.1016/j.foodchem.2011.10.078.
  • Rodríguez-Carrasco, Y., A. Gaspari, G. Graziani, A. Santini, and A. Ritieni. 2018. Fast analysis of polyphenols and alkaloids in cocoa-based products by ultra-high performance liquid chromatography and orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap-MS/MS). Food Research International 111:229–36. doi: 10.1016/j.foodres.2018.05.032.
  • Rojo-Poveda, O., L. Barbosa-Pereira, G. Zeppa, and C. Stévigny. 2020. Cocoa bean shell – A by-product with nutritional properties and biofunctional potential. Nutrients 12 (4):1123. doi: 10.3390/nu12041123.
  • Rovati, L. C. 2016. Purified cocoa beans extracts, production and use thereof for the treatment of central and peripheric human diseases. WO 2016/020854.
  • Ryan, C., L. Ye, S. O’Keefe, and A. P. Neilson. 2016. Unfermented and fermented cocoa extracts as inhibitors of pancreatic α-amylase, α-glucosidase, and pancreatic lipase. The FASEB Journal 30: 691.30.
  • Sacchetti, G., F. Ioannone, M. De Gregorio, C. D. Mattia, M. Serafini, and D. Mastrocola. 2016. Non enzymatic browning during cocoa roasting as affected by processing time and temperature. Journal of Food Engineering 169:44–52. doi: 10.1016/j.jfoodeng.2015.08.018.
  • Sajadimajd, S., R. Bahramsoltani, A. Iranpanah, J. Kumar Patra, G. Das, S. Gouda, R. Rahimi, E. Rezaeiamiri, H. Cao, F. Giampieri, et al. 2020. Advances on natural polyphenols as anticancer agents for skin cancer. Pharmacological Research 151:104584.
  • Salazar, E., R. Valenzuela, M. Aguilar, N. Aranda, A. Sotelo, G. C. Chire-Fajardo, and M. Ureña. 2020. Physicochemical properties and microbial group behavior of postharvest Peruvian cocoa bean. Enfoque Ute 11 (4):48–56. doi: 10.29019/enfoqueute.v11n4.602.
  • Santos, D. S., R. P. Rezende, T. F. Dos Santos, E. d. L. S. Marques, A. C. R. Ferreira, A. B. d. C. e Silva, C. C. Romano, D. W. da Cruz Santos, J. C. T. Dias, and J. D. T. Bisneto. 2020. Fermentation in fine cocoa type Scavina: Change in standard quality as the effect of use of starters yeast in fermentation. Food Chemistry 328:127110. doi: 10.1016/j.foodchem.2020.127110.
  • Sari, N., Y. Katanasaka, H. Honda, Y. Miyazaki, Y. Sunagawa, M. Funamoto, K. Shimizu, S. Shimizu, H. Wada, K. Hasegawa, et al. 2020. Cacao bean polyphenols inhibit cardiac hypertrophy and systolic dysfunction in pressure overload-induced heart failure model mice. Planta Medica 86 (17):1304–12. doi: 10.1055/a-1191-7970.
  • Scalone, G. L. L., K. Textoris-Taube, B. D. Meulenaer, N. D. Kimpe, J. Wöstemeyer, and J. Voigt. 2019. Cocoa-specific flavor components and their peptide precursors. Food Research International (Ottawa, Ont.) 123:503–15. doi: 10.1016/j.foodres.2019.05.019.
  • Schmiederand, R. L., and G. Keeney. 1980. Characterization and quantification of starch in cocoa beans and chocolate products. Journal of Food Science 45 (3):555–7. doi: 10.1111/j.1365-2621.1980.tb04099.x.
  • Schroder, T., L. Vanhanen, and G. P. Savage. 2011. Oxalate content in commercially produced cocoa and dark chocolate. Journal of Food Composition and Analysis 24 (7):916–22. doi: 10.1016/j.jfca.2011.03.008.
  • Scollo, E., D. C. A. Neville, M. J. Oruna-Concha, M. Trotin, and R. Cramer. 2020. UHPLC–MS/MS analysis of cocoa bean proteomes from four different genotypes. Food Chemistry 303:125244. doi: 10.1016/j.foodchem.2019.125244.
  • Sepúlveda, W. S., M. T. Maza, P. Uldemolins, E. G. Cantos-Zambrano, and I. Ureta. 2021. Linking dark chocolate product attributes, consumer preferences, and consumer utility: Impact of quality labels, cocoa content, chocolate origin, and price. Journal of International Food & Agribusiness Marketing. doi: 10.1080/08974438.2021.1908924.
  • Serafini, M., I. Peluso, and A. Raguzzini. 2010. Flavonoids as anti-inflammatory agents. The Proceedings of the Nutrition Society 69:273–8.
  • Servent, A., R. Boulanger, F. Davrieux, M.-N. Pinot, E. Tardan, N. Forestier-Chiron, and C. Hue. 2018. Assessment of cocoa (Theobroma cacao L.) butter content and composition throughout fermentations. Food Research International (Ottawa, Ont.) 107:675–82. doi: 10.1016/j.foodres.2018.02.070.
  • Shi, H., B. Wang, and X. Xu. 2017. Antidepressant effect of vitamin D: A literature review. Neuropsychiatry 7:337–41.
  • Sirbu, D., A. Grimbs, M. Corno, M. S. Ullrich, and N. Kuhnert. 2018. Variation of triacylglycerol profiles in unfermented and dried fermented cocoa beans of different origins. Food Research International (Ottawa, Ont.) 111:361–70. doi: 10.1016/j.foodres.2018.05.025.
  • Stark, T., S. Bareuther, and T. Hofmann. 2006. Molecular definition of the taste of roasted cocoa nibs (Theobroma cacao) by means of quantitative studies and sensory experiments. Journal of Agricultural and Food Chemistry 54 (15):5530–9. doi: 10.1021/jf0608726.
  • Szopa, A., E. Poleszak, E. Wyska, A. Serefko, S. Wośko, A. Wlaź, M. Pieróg, A. Wróbel, and P. Wlaź. 2016. Caffeine enhances the antidepressant-like activity of common antidepressant drugs in the forced swim test in mice. Naunyn-Schmiedeberg's Archives of Pharmacology 389 (2):211–21. doi: 10.1007/s00210-015-1189-z.
  • Taş, N. G., and V. Gökmen. 2016. Effect of alkalization on the Maillard reaction products formed in cocoa during roasting. Food Research International 89:930–6. doi: 10.1016/j.foodres.2015.12.021.
  • Todorovic, V., M. Milenkovic, B. Vidovic, Z. Todorovic, and S. Sobajic. 2017. Correlation between antimicrobial, antioxidant activity, and polyphenols of alkalized/nonalkalized cocoa powders. Journal of Food Science 82 (4):1020–7. doi: 10.1111/1750-3841.13672.
  • Torres-Moreno, M., E. Torrescasana, J. Salas-Salvadó, and C. Blanch. 2015. Nutritional composition and fatty acids profile in cocoa beans and chocolates with different geographical origin and processing conditions. Food Chemistry 166:125–32. doi: 10.1016/j.foodchem.2014.05.141.
  • Tuenter, E., C. Delbaere, A. De Winne, S. Bijttebier, D. Custers, K. Foubert, J. V. Durme, K. Messens, K. Dewettinck, and L. Pieters. 2020. Non-volatile and volatile composition of West African bulk and Ecuadorian fine-flavor cocoa liquor and chocolate. Food Research International (Ottawa, Ont.) 130:108943. doi: 10.1016/j.foodres.2019.108943.
  • Ullah, H., A. De Filippis, C. Santarcangelo, and M. Daglia. 2020. Epigenetic regulation by polyphenols in diabetes and related complications. Mediterranean Journal of Nutrition and Metabolism 13 (4):289–310. doi: 10.3233/MNM-200489.
  • Urbańska, B., Derewiaka, D. A. Lenart, and J. Kowalska. 2019. Changes in the composition and content of polyphenols in chocolate resulting from pre-treatment method of cocoa beans and technological process. European Food Research and Technology 245 (10):2101–12. doi: 10.1007/s00217-019-03333-w.
  • Valiente, C., R. M. Esteban, E. Mollá, and F. J. López-Andréu. 1994. Roasting effects on dietary fiber composition of cocoa beans. Journal of Food Science 59 (1):123–4. doi: 10.1111/j.1365-2621.1994.tb06914.x.
  • Visintin, S., L. Ramos, N. Batista, P. Dolci, F. Schwan, and L. Cocolin. 2017. Impact of Saccharomyces cerevisiae and Torulaspora delbrueckii starter cultures on cocoa beans fermentation. International Journal of Food Microbiology 257:31–40. doi: 10.1016/j.ijfoodmicro.2017.06.004.
  • Voigt, J., K. Textoris-Taube, and J. Wöstemeyer. 2018. pH-Dependency of the proteolytic formation of cocoa- and nutty-specific aroma precursors. Food Chemistry 255:209–15. doi: 10.1016/j.foodchem.2018.02.045.
  • Wang, X., S. Hu, X. Wan, and C. Pan. 2005. Effect of microbial fermentation on caffeine content of tea leaves. Journal of Agricultural and Food Chemistry 53 (18):7238–42. doi: 10.1021/jf050495h.
  • Wickramasuriya, A. M., and J. M. Dunwell. 2018. Cacao biotechnology: Current status and future prospects. Plant Biotechnology Journal 16 (1):4–17. doi: 10.1111/pbi.12848.
  • Ye, N., S. Belli, F. Caruso, G. Roy, and M. Rossi. 2021. Antioxidant studies by hydrodynamic voltammetry and DFT, quantitative analyses by HPLC-DAD of clovamide. Food Chemistry 341 (Pt 2):128260. doi: 10.1016/j.foodchem.2020.128260.
  • Zarrillo, S., N. Gaikwad, C. Lanaud, T. Powis, C. Viot, I. Lesur, O. Fouet, X. Argout, E. Guichoux, F. Salin, et al. 2018. The use and domestication of Theobroma cacao during the mid-Holocene in the upper Amazon. Nature Ecology & Evolution 2 (12):1879–88. doi: 10.1038/s41559-018-0697-x.
  • Zhu, F. 2018. Interactions between cell wall polysaccharides and polyphenols. Critical Reviews in Food Science and Nutrition 58 (11):1808–31. doi: 10.1080/10408398.2017.1287659.
  • Ziegleder, G. 2017. Flavour development in cocoa and chocolate. In Beckett’s industrial chocolate manufacture and use, ed. S. T. Beckett, M. S. Fowler, and G. R. Ziegler, 5th ed., 185–215. Chichester: John Wiley and Sons Ltd.
  • Żyżelewicz, D., M. Bojczuk, G. Budryn, Z. Zduńczyk, J. Juśkiewicz, A. Jurgoński, and J. Oracz. 2018. Influence of diet based on bread supplemented with raw and roasted cocoa bean extracts on physiological indices of laboratory rats. Food Research International (Ottawa, Ont.) 112:209–16. doi: 10.1016/j.foodres.2018.06.039.
  • Żyżelewicz, D., G. Budryn, W. Krysiak, J. Oracz, E. Nebesny, and M. Bojczuk. 2014. Influence of roasting conditions on fatty acid composition and oxidative changes of cocoa butter extracted from cocoa bean of Forastero variety cultivated in Togo. Food Research International 63:328–43. doi: 10.1016/j.foodres.2014.04.053.
  • Żyżelewicz, D., W. Krysiak, J. Oracz, D. Sosnowska, G. Budryn, and E. Nebesny. 2016. The influence of the roasting process conditions on the polyphenol content in cocoa beans, nibs and chocolates. Food Research International 89:918–29. doi: 10.1016/j.foodres.2016.03.026.
  • Żyżelewicz, D., J. Oracz, M. Bojczuk, G. Budryn, A. Jurgoński, J. Juśkiewicz, and Z. Zduńczyk. 2020. Effects of raw and roasted cocoa bean extracts supplementation on intestinal enzyme activity, biochemical parameters, and antioxidant status in rats fed a high-fat diet. Nutrients 12 (4):889. doi: 10.3390/nu12040889.
  • Żyżelewicz, D., J. Oracz, W. Krysiak, G. Budryn, and E. Nebesny. 2017. Effects of various roasting conditions on acrylamide, acrolein, and polycyclic aromatic hydrocarbons content in cocoa bean and the derived chocolates. Drying Technology 35 (3):363–74. doi: 10.1080/07373937.2016.1175470.
  • Zzaman, W., R. Bhat, and T. A. Yang. 2017. Impact of convectional and superheated-steam roasting on the physycochemical and microstructural properties of cocoa butter extracted from cocoa beans. Journal of Food Processing and Preservation 41 (4):e13005. doi: 10.1111/jfpp.13005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.