1,034
Views
22
CrossRef citations to date
0
Altmetric
Reviews

The classical and potential novel healthy functions of rice bran protein and its hydrolysates

, , , , &

References

  • Ahn, S., C. O. Chantre, A. R. Gannon, J. U. Lind, P. H. Campbell, T. Grevesse, B. B. O'Connor, and K. K. Parker. 2018. Soy protein/cellulose nanofiber scaffolds mimicking skin extracellular matrix for enhanced wound healing. Advanced Healthcare Materials 7 (9):e1701175. doi: 10.1002/adhm.201701175.
  • Arun, K. B., R. Dhanya, J. Chandran, B. Abraham, S. Satyan, and P. Nisha. 2020. A comparative study to elucidate the biological activities of crude extracts from rice bran and wheat bran in cell line models. Journal of Food Science and Technology 57 (9):3221–31. doi: 10.1007/s13197-020-04353-1.
  • Avogaro, A., and G. P. Fadini. 2014. The effects of dipeptidyl peptidase-4 inhibition on microvascular diabetes complications. Diabetes Care 37 (10):2884–94. doi: 10.2337/dc14-0865.
  • Boonla, O., U. Kukongviriyapan, P. Pakdeechote, V. Kukongviriyapan, P. Pannangpetch, and S. Thawornchinsombut. 2015. Peptides-derived from thai rice bran improves endothelial function in 2K-1C renovascular hypertensive rats. Nutrients 7 (7):5783–99. doi: 10.3390/nu7075252.
  • Boonloh, K., V. Kukongviriyapan, B. Kongyingyoes, U. Kukongviriyapan, S. Thawornchinsombut, and P. Pannangpetch. 2015b. Rice bran protein hydrolysates improve insulin resistance and decrease pro-inflammatory cytokine gene expression in rats fed a high carbohydrate-high fat diet. Nutrients 7 (8):6313–29. doi: 10.3390/nu7085292.
  • Boonloh, K., U. Kukongviriyapan, P. Pannangpetch, B. Kongyingyoes, L. Senggunprai, A. Prawan, S. Thawornchinsombut, and V. Kukongviriyapan. 2015a. Rice bran protein hydrolysates prevented interleukin-6- and high glucose-induced insulin resistance in HepG2 cells. Food & Function 6 (2):566–73. doi: 10.1039/C4FO00872C.
  • Boonloh, K., E. S. Lee, H. M. Kim, M. H. Kwon, Y. M. Kim, P. Pannangpetch, B. Kongyingyoes, U. Kukongviriyapan, S. Thawornchinsombut, E. Y. Lee, et al. 2018. Rice bran protein hydrolysates attenuate diabetic nephropathy in diabetic animal model. European Journal of Nutrition 57 (2):761–72. doi: 10.1007/s00394-016-1366-y.
  • Bray, F., J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 68 (6):394–424. doi: 10.3322/caac.21492.
  • Bray, G. A., G. Fruhbeck, D. H. Ryan, and J. P. Wilding. 2016. Management of obesity. The Lancet 387 (10031):1947–56. doi: 10.1016/S0140-6736(16)00271-3.
  • Caballero, B. 2019. Humans against Obesity: Who Will Win? Advances in Nutrition 10 (suppl_1):S4–S9. doi: 10.1093/advances/nmy055.
  • Cabello-Verrugio, C., F. Simon, C. Trollet, and J. F. Santibanez. 2017. Oxidative stress in disease and aging: mechanisms and therapies 2016. Oxidative Medicine and Cellular Longevity 2017:1–2. doi: 10.1155/2017/4310469.
  • Carvalho, A. d O., and V. M. Gomes. 2007. Role of plant lipid transfer proteins in plant cell physiology-a concise review. Peptides 28 (5):1144–53. doi: 10.1016/j.peptides.2007.03.004.
  • Chandi, G. K. 2008. Effect of extraction temperature on functional properties of rice bran protein concentrates. International Journal of Food Engineering 4:2–19.
  • Chaudhry, F., S. Lavandero, X. Xie, B. Sabharwal, Y. Y. Zheng, A. Correa, J. Narula, and P. Levy. 2020. Manipulation of ACE2 expression in COVID-19. Open Heart 7 (2):e001424. doi: 10.1136/openhrt-2020-001424.
  • Cheetangdee, N. 2014. Effects of rice bran protein hydrolysates on the physicochemical stability of oil-in-water emulsions. Journal of Oleo Science 63 (12):1231–41. doi: 10.5650/jos.ess14030.
  • Cheetangdee, N., and S. Benjakul. 2015. Antioxidant activities of rice bran protein hydrolysates in bulk oil and oil-in-water emulsion. Journal of the Science of Food and Agriculture 95 (7):1461–8. doi: 10.1002/jsfa.6842.
  • Dell'omo, G., G. Penno, L. Pucci, D. Lucchesi, C. Fotino, S. Del Prato, and R. Pedrinelli. 2006. ACE gene insertion/deletion polymorphism modulates capillary permeability in hypertension. Clinical Science 111 (6):357–64. doi: 10.1042/CS20060165.
  • Donoghue, M., F. Hsieh, E. Baronas, K. Godbout, M. Gosselin, N. Stagliano, M. Donovan, B. Woolf, K. Robison, R. Jeyaseelan, et al. 2000. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circulation Research 87 (5):E1–9. doi: 10.1161/01.RES.87.5.e1.
  • Ettehad, D., C. A. Emdin, A. Kiran, S. G. Anderson, T. Callender, J. Emberson, J. Chalmers, A. Rodgers, and K. Rahimi. 2016. Blood pressure lowering for prevention of cardiovascular disease and death: A systematic review and meta-analysis. The Lancet 387 (10022):957–67. doi: 10.1016/S0140-6736(15)01225-8.
  • Fabian, C., and Y. H. Ju. 2011. A review on rice bran protein: Its properties and extraction methods. Critical Reviews in Food Science and Nutrition 51 (9):816–27. doi: 10.1080/10408398.2010.482678.
  • Foong, L. C., M. U. Imam, and M. Ismail. 2015. Iron-binding capacity of defatted rice bran hydrolysate and bioavailability of iron in Caco-2 cells. Journal of Agricultural and Food Chemistry 63 (41):9029–36. doi: 10.1021/acs.jafc.5b03420.
  • Fuchs, C. J., W. J. H. Hermans, A. M. Holwerda, J. S. J. Smeets, J. M. Senden, J. van Kranenburg, A. P. Gijsen, W. Wodzig, H. Schierbeek, L. B. Verdijk, et al. 2019. Branched-chain amino acid and branched-chain ketoacid ingestion increases muscle protein synthesis rates in vivo in older adults: A double-blind, randomized trial. The American Journal of Clinical Nutrition 110 (4):862–72. doi: 10.1093/ajcn/nqz120.
  • Gordon, W. G., W. F. Semmett, R. S. Cable, and M. Morris. 1949. Amino acid composition of α-casein and β-casein. Journal of the American Chemical Society 71 (10):3293–7. doi: 10.1021/ja01178a006.
  • Hamada, J. S. 1999. Use of protease to enhance solubilization of rice bran proteins. Journal of Food Biochemistry 23 (3):307–21. doi: 10.1111/j.1745-4514.1999.tb00022.x.
  • Han, S. W., K. M. Chee, and S. J. Cho. 2015. Nutritional quality of rice bran protein in comparison to animal and vegetable protein. Food Chemistry 172:766–9. doi: 10.1016/j.foodchem.2014.09.127.
  • Hassan, W., H. Noreen, S. Rehman, S. Gul, M. A. Kamal, J. P. Kamdem, B. Zaman, and J. B. T. da Rocha. 2017. Oxidative stress and antioxidant potential of one hundred medicinal plants. Current Topics in Medicinal Chemistry 17 (12):1336–70. doi: 10.2174/1568026617666170102125648.
  • Hatanaka, T., Y. Inoue, J. Arima, Y. Kumagai, H. Usuki, K. Kawakami, M. Kimura, and T. Mukaihara. 2012. Production of dipeptidyl peptidase IV inhibitory peptides from defatted rice bran. Food Chemistry 134 (2):797–802. doi: 10.1016/j.foodchem.2012.02.183.
  • Hayta, M., B. Benli, E. M. İşçimen, and A. Kaya. 2021. Antioxidant and antihypertensive protein hydrolysates from rice bran: Optimization of microwave assisted extraction. Journal of Food Measurement and Characterization 15 (3):2904–14. doi: 10.1007/s11694-021-00856-3.
  • Hoffmann, M., H. Kleine-Weber, S. Schroeder, N. Kruger, T. Herrler, S. Erichsen, T. S. Schiergens, G. Herrler, N. H. Wu, A. Nitsche, et al. 2020. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181 (2):271–80 e278. doi: 10.1016/j.cell.2020.02.052.
  • Iqbal, S., M. Ismail, and F. Chee. 2013. Effects of supercritical fluid extraction conditions on yield of protein from defatted rice bran. Journal- Chemical Society of Pakistan 35:192–7.
  • Jan-On, G., W. Sangartit, P. Pakdeechote, V. Kukongviriyapan, K. Senaphan, O. Boonla, C. Thongraung, and U. Kukongviriyapan. 2020. Antihypertensive effect and safety evaluation of rice bran hydrolysates from Sang-Yod rice. Plant Foods for Human Nutrition 75 (1):89–95. doi: 10.1007/s11130-019-00789-9.
  • Jarunrattanasri, A., C. Theerakulkait, and K. R. Cadwallader. 2007. Aroma components of acid-hydrolyzed vegetable protein made by partial hydrolysis of rice bran protein. Journal of Agricultural and Food Chemistry 55 (8):3044–50. doi: 10.1021/jf0631474.
  • Johnson, T. R., B. I. Gomez, M. K. McIntyre, M. A. Dubick, R. J. Christy, S. E. Nicholson, and D. M. Burmeister. 2018. The cutaneous microbiome and wounds: New molecular targets to promote wound healing. International Journal of Molecular Sciences 19 (9):2699. doi: 10.3390/ijms19092699.
  • Kalman, D. S. 2014. Amino acid composition of an organic brown rice protein concentrate and isolate compared to soy and whey concentrates and isolates. Foods 3 (3):394–402. doi: 10.3390/foods3030394.
  • Kalpanadevi, C., V. Singh, and R. Subramanian. 2018. Influence of milling on the nutritional composition of bran from different rice varieties. Journal of Food Science and Technology 55 (6):2259–69. doi: 10.1007/s13197-018-3143-9.
  • Kannan, A., N. Hettiarachchy, M. G. Johnson, and R. Nannapaneni. 2008. Human colon and liver cancer cell proliferation inhibition by peptide hydrolysates derived from heat-stabilized defatted rice bran. Journal of Agricultural and Food Chemistry 56 (24):11643–7. doi: 10.1021/jf802558v.
  • Kannan, A., N. S. Hettiarachchy, J. O. Lay, and R. Liyanage. 2010. Human cancer cell proliferation inhibition by a pentapeptide isolated and characterized from rice bran. Peptides 31 (9):1629–34. doi: 10.1016/j.peptides.2010.05.018.
  • Kannan, A., N. Hettiarachchy, and M. Mahadevan. 2012. Peptides derived from rice bran protect cells from obesity and Alzheimer’s disease. International Journal of Biomedical Research 3 (3):131–5. doi: 10.7439/ijbr.v3i3.299.
  • Kannan, A., N. Hettiarachchy, and S. Narayan. 2009. Colon and breast anti-cancer effects of peptide hydrolysates derived from rice bran. The Open Bioactive Compounds Journal 2 (1):17–20. doi: 10.2174/1874847300902010017.
  • Kayashima, T., Y. Okazaki, T. Katayama, and K. Hori. 2005. Dietary lectin lowers serum cholesterol and raises fecal neutral sterols in cholesterol-fed rats. Journal of Nutritional Science and Vitaminology 51 (5):343–8. doi: 10.3177/jnsv.51.343.
  • Kubglomsong, S., C. Theerakulkait, R. L. Reed, L. Yang, C. S. Maier, and J. F. Stevens. 2018. Isolation and identification of tyrosinase-inhibitory and copper-chelating peptides from hydrolyzed rice-bran-derived albumin. Journal of Agricultural and Food Chemistry 66 (31):8346–54. doi: 10.1021/acs.jafc.8b01849.
  • Kumar, S., A. K. Verma, M. Das, and P. D. Dwivedi. 2012. Allergenic diversity among plant and animal food proteins. Food Reviews International 28 (3):277–98. doi: 10.1080/87559129.2011.635391.
  • Liang, Y., Q. Lin, P. Huang, Y. Wang, J. Li, L. Zhang, and J. Cao. 2018. Rice bioactive peptide binding with TLR4 to overcome H2O2-induced injury in human umbilical vein endothelial cells through NF-kappaB Signaling. Journal of Agricultural and Food Chemistry 66 (2):440–8. doi: 10.1021/acs.jafc.7b04036.
  • Ligeon, L. A., M. Pena-Francesch, L. D. Vanoaica, N. G. Nunez, D. Talwar, T. P. Dick, and C. Munz. 2021. Oxidation inhibits autophagy protein deconjugation from phagosomes to sustain MHC class II restricted antigen presentation. Nature Communications 12 (1):1508. doi: 10.1038/s41467-021-21829-6.
  • Li, E. C., B. S. Heran, and J. M. Wright. 2014. Angiotensin converting enzyme (ACE) inhibitors versus angiotensin receptor blockers for primary hypertension. The Cochrane Database of Systematic Reviews: 10 (10):CD009096.
  • Li, R., N. Hettiarachchy, and M. Mahadevan. 2014a. Rice bran derived pentapeptide-induced apoptosis in human breast cancer cell models (MCF-7 and MDA-MB-231). International Journal of Biomedical Research 5 (10):599–605. doi: 10.7439/ijbr.v5i10.513.
  • Li, R., N. Hettiarachchy, and M. Mahendran. 2014b. Apoptotic pathways in human breast cancer cell models (MCF-7 and MDA-MB-231) induced by rice bran derived pentapeptide. International J of Research in Medical and Health Sciences 4:13–21.
  • Liu, Y. Q., P. Strappe, W. T. Shang, and Z. K. Zhou. 2019. Functional peptides derived from rice bran proteins. Critical Reviews in Food Science and Nutrition 59 (2):349–56. doi: 10.1080/10408398.2017.1374923.
  • Ma, Y., Z. Na, W. Cheng, and X. Wang. 2017. Study on phosphorylation of rice bran glutelin. Journal of Biobased Materials and Bioenergy 11 (4):313–20. doi: 10.1166/jbmb.2017.1668.
  • Maraschin Jde, F. 2012. Classification of diabetes. Advances in Experimental Medicine and Biology 771:12–9.
  • Molnar, J. A., L. G. Vlad, and T. Gumus. 2016. Nutrition and Chronic Wounds: Improving Clinical Outcomes. Plastic and Reconstructive Surgery 138:71S–81S. doi: 10.1097/PRS.0000000000002676.
  • Moritani, C., K. Kawakami, A. Fujita, K. Kawakami, T. Hatanaka, and S. Tsuboi. 2017. Anti-oxidative activity of hydrolysate from rice bran protein in HepG2 Cells. Biological & Pharmaceutical Bulletin 40 (7):984–91. doi: 10.1248/bpb.b16-00971.
  • Niu, L., L. Wu, and J. Xiao. 2017. Inhibition of gelatinized rice starch retrogradation by rice bran protein hydrolysates. Carbohydrate Polymers 175:311–9. doi: 10.1016/j.carbpol.2017.07.070.
  • O’Driscoll, M., G. Ribeiro Dos Santos, L. Wang, D. A. T. Cummings, A. S. Azman, J. Paireau, A. Fontanet, S. Cauchemez, and H. Salje. 2021. Age-specific mortality and immunity patterns of SARS-CoV-2. Nature 590 (7844):140–5. doi: 10.1038/s41586-020-2918-0.
  • Ochiai, A., S. Tanaka, T. Tanaka, and M. Taniguchi. 2016. Rice bran protein as a potent source of Antimelanogenic peptides with Tyrosinase inhibitory activity. Journal of Natural Products 79 (10):2545–51. doi: 10.1021/acs.jnatprod.6b00449.
  • Ogawa, Y., N. Shobako, I. Fukuhara, H. Satoh, E. Kobayashi, T. Kusakari, M. Suwa, M. Matsumoto, and A. Ishikado. 2019. Rice bran supplement containing a functional substance, the novel peptide Leu-Arg-Ala, has anti-hypertensive effects: A double-blind, randomized, placebo-controlled study. Nutrients 11 (4):726. doi: 10.3390/nu11040726.
  • Oz, M., D. E. Lorke, and N. Kabbani. 2021. A comprehensive guide to the pharmacologic regulation of angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor. Pharmacology & Therapeutics 221:107750. doi: 10.1016/j.pharmthera.2020.107750.
  • Pal, Y. P., and A. P. Pratap. 2017. Rice bran oil: A versatile source for edible and industrial applications. Journal of Oleo Science 66 (6):551–6. doi: 10.5650/jos.ess17061.
  • Patel, V. B., J. C. Zhong, M. B. Grant, and G. Y. Oudit. 2016. Role of the ACE2/Angiotensin 1-7 axis of the renin-angiotensin system in heart failure. Circulation Research 118 (8):1313–26. doi: 10.1161/CIRCRESAHA.116.307708.
  • Phongthai, S., S. D'Amico, R. Schoenlechner, W. Homthawornchoo, and S. Rawdkuen. 2018. Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Food Chemistry 240:156–64. doi: 10.1016/j.foodchem.2017.07.080.
  • Phongthai, S., S.-T. Lim, and S. Rawdkuen. 2017. Ultrasonic-assisted extraction of rice bran protein using response surface methodology. Journal of Food Biochemistry 41 (2):e12314. doi: 10.1111/jfbc.12314.
  • Piotrowicz, I. B. B., M. Garces-Rimon, S. Moreno-Fernandez, A. Aleixandre, M. Salas-Mellado, and M. Miguel-Castro. 2020. Antioxidant, angiotensin-converting enzyme inhibitory properties and blood-pressure-lowering effect of rice bran protein hydrolysates. Foods 9 (6):812. doi: 10.3390/foods9060812.
  • Popkin, B. M., S. Du, W. D. Green, M. A. Beck, T. Algaith, C. H. Herbst, R. F. Alsukait, M. Alluhidan, N. Alazemi, and M. Shekar. 2020. Individuals with obesity and COVID-19: A global perspective on the epidemiology and biological relationships. Obesity Reviews 21 (11):e13128. doi: 10.1111/obr.13128.
  • Pu, C., and W. Tang. 2017. The antibacterial and antibiofilm efficacies of a liposomal peptide originating from rice bran protein against Listeria monocytogenes. Food & Function 8 (11):4159–69. doi: 10.1039/C7FO00994A.
  • Ren, G., J. Zhang, M. Li, Z. Tang, Z. Yang, G. Cheng, and J. Wang. 2021. Gut microbiota composition influences outcomes of skeletal muscle nutritional intervention via blended protein supplementation in posttransplant patients with hematological malignancies. Clinical Nutrition 40 (1):94–102. doi: 10.1016/j.clnu.2020.04.030.
  • Ristic-Medic, D., S. Suzic, V. Vucic, M. Takic, J. Tepsic, and M. Glibetic. 2009. Serum and erythrocyte membrane phospholipids fatty acid composition in hyperlipidemia: Effects of dietary intervention and combined diet and fibrate therapy. General Physiology and Biophysics 28:190–9.
  • Senaphan, K., W. Sangartit, P. Pakdeechote, V. Kukongviriyapan, P. Pannangpetch, S. Thawornchinsombut, S. E. Greenwald, and U. Kukongviriyapan. 2018. Rice bran protein hydrolysates reduce arterial stiffening, vascular remodeling and oxidative stress in rats fed a high-carbohydrate and high-fat diet. European Journal of Nutrition 57 (1):219–30. doi: 10.1007/s00394-016-1311-0.
  • Senkal, N., R. Meral, A. Medetalibeyoglu, H. Konyaoglu, M. Kose, and T. Tukek. 2020. Association between chronic ACE inhibitor exposure and decreased odds of severe disease in patients with COVID-19. Anatolian Journal of Cardiology 24:21–9.
  • Shobako, N., A. Ishikado, Y. Ogawa, Y. Sono, T. Kusakari, M. Suwa, M. Matsumoto, and K. Ohinata. 2019. Vasorelaxant and antihypertensive effects that are dependent on the endothelial NO system exhibited by rice bran-derived tripeptide. Journal of Agricultural and Food Chemistry 67 (5):1437–42. doi: 10.1021/acs.jafc.8b06341.
  • Shobako, N., Y. Ogawa, A. Ishikado, K. Harada, E. Kobayashi, H. Suido, T. Kusakari, M. Maeda, M. Suwa, M. Matsumoto, et al. 2018. A novel antihypertensive peptide identified in thermolysin-digested rice bran. Molecular Nutrition & Food Research 62 (4):1700732. doi: 10.1002/mnfr.201700732.
  • Singh, T. P., R. A. Siddiqi, and D. S. Sogi. 2021. Enzymatic modification of rice bran protein: Impact on structural, antioxidant and functional properties. LWT 138:110648. doi: 10.1016/j.lwt.2020.110648.
  • Singh, T. P., and D. S. Sogi. 2018. Comparative study of structural and functional characterization of bran protein concentrates from superfine, fine and coarse rice cultivars. International Journal of Biological Macromolecules 111:281–8. doi: 10.1016/j.ijbiomac.2017.12.161.
  • Soares, J. D. P., S. L. Howell, F. J. Teixeira, and G. D. Pimentel. 2020. Dietary amino acids and immunonutrition supplementation in cancer-induced skeletal muscle mass depletion: A mini-review. Current Pharmaceutical Design 26 (9):970–8. doi: 10.2174/1381612826666200218100420.
  • Sohail, M., A. Rakha, M. S. Butt, M. J. Iqbal, and S. Rashid. 2017. Rice bran nutraceutics: A comprehensive review. Critical Reviews in Food Science and Nutrition 57 (17):3771–80. doi: 10.1080/10408398.2016.1164120.
  • Stechmiller, J. K. 2010. Understanding the role of nutrition and wound healing. Nutrition in Clinical Practice 25 (1):61–8. doi: 10.1177/0884533609358997.
  • Swinburn, B. A., G. Sacks, K. D. Hall, K. McPherson, D. T. Finegood, M. L. Moodie, and S. L. Gortmaker. 2011. The global obesity pandemic: Shaped by global drivers and local environments. The Lancet 378 (9793):804–14. doi: 10.1016/S0140-6736(11)60813-1.
  • Tang, S., N. S. Hettiarachchy, and T. H. Shellhammer. 2002. Protein extraction from heat-stabilized defatted rice bran. 1. Physical processing and enzyme treatments. Journal of Agricultural and Food Chemistry 50 (25):7444–8. doi: 10.1021/jf025771w.
  • Taniguchi, M., M. Kameda, T. Namae, A. Ochiai, E. Saitoh, and T. Tanaka. 2017. Identification and characterization of multifunctional cationic peptides derived from peptic hydrolysates of rice bran protein. Journal of Functional Foods 34:287–96. doi: 10.1016/j.jff.2017.04.046.
  • Taniguchi, M., K. Saito, R. Aida, A. Ochiai, E. Saitoh, and T. Tanaka. 2019. Wound healing activity and mechanism of action of antimicrobial and lipopolysaccharide-neutralizing peptides from enzymatic hydrolysates of rice bran proteins. Journal of Bioscience and Bioengineering 128 (2):142–8. doi: 10.1016/j.jbiosc.2019.02.002.
  • Theerakulkait, C., S. Chaiseri, and S. Mongkolkanchanasiri. 2006. Extraction and some functional properties of protein extract from rice bran. Kasetsart Journal - Natural Science 40:209–14.
  • Tsuda, K., T. Nakatani, J. Sugama, M. Okuwa, and H. Sanada. 2010. Influence of the timing of switching a protein-free to a protein-containing diet on the wound healing process in a rat all-layer skin defect. International Wound Journal 7 (3):135–46. doi: 10.1111/j.1742-481X.2010.00674.x.
  • Uraipong, C., and J. Zhao. 2016. Rice bran protein hydrolysates exhibit strong in vitro alpha-amylase, beta-glucosidase and ACE-inhibition activities. Journal of the Science of Food and Agriculture 96 (4):1101–10. doi: 10.1002/jsfa.7182.
  • Uraipong, C., and J. Zhao. 2018. In vitro digestion of rice bran proteins produces peptides with potent inhibitory effects on alpha-glucosidase and angiotensin I converting enzyme. Journal of the Science of Food and Agriculture 98 (2):758–66. doi: 10.1002/jsfa.8523.
  • Van Buren, P. N., and R. Toto. 2013. Current update in the management of diabetic nephropathy. Current Diabetes Reviews 9 (1):62–77. doi: 10.2174/157339913804143207.
  • Wang, M., N. S. Hettiarachchy, M. Qi, W. Burks, and T. Siebenmorgen. 1999. Preparation and functional properties of rice bran protein isolate. Journal of Agricultural and Food Chemistry 47 (2):411–6. doi: 10.1021/jf9806964.
  • Wang, J., M. Shimada, Y. Kato, M. Kusada, and S. Nagaoka. 2015. Cholesterol-lowering effect of rice bran protein containing bile acid-binding proteins. Bioscience, Biotechnology, and Biochemistry 79 (3):456–61. doi: 10.1080/09168451.2014.978260.
  • Wang, J., M. Shimada, and S. Nagaoka. 2017. Identification of the active protein in rice bran protein having an inhibitory activity of cholesterol micellar solubility. Bioscience, Biotechnology, and Biochemistry 81 (6):1216–9. doi: 10.1080/09168451.2017.1282811.
  • Wattanasiritham, L., C. Theerakulkait, S. Wickramasekara, C. S. Maier, and J. F. Stevens. 2016. Isolation and identification of antioxidant peptides from enzymatically hydrolyzed rice bran protein. Food Chemistry 192:156–62. doi: 10.1016/j.foodchem.2015.06.057.
  • Wu, W., F. Li, and X. Wu. 2021. Effects of rice bran rancidity on oxidation, structural characteristics and interfacial properties of rice bran globulin. Food Hydrocolloids 110:106123. doi: 10.1016/j.foodhyd.2020.106123.
  • Yang, S. C., W. C. Huang, X. E. Ng, M. C. Lee, Y. J. Hsu, C. C. Huang, H. H. Wu, C. L. Yeh, H. Shirakawa, S. Budijanto, et al. 2019. Rice bran reduces weight gain and modulates lipid metabolism in rats with high-energy-diet-induced obesity. Nutrients 11. doi: 10.3390/nu11092033.
  • Yu, Y. H., J. J. Zhang, J. Wang, and B. G. Sun. 2019. The anti-cancer activity and potential clinical application of rice bran extracts and fermentation products. RSC Advances 9 (31):18060–9. doi: 10.1039/C9RA02439E.
  • Zhang, X., G. Li, D. Wu, Y. Yu, N. Hu, H. Wang, X. Li, and Y. Wu. 2020. Emerging strategies for the activity assay and inhibitor screening of alpha-glucosidase. Food & Function 11 (1):66–82. doi: 10.1039/C9FO01590F.
  • Zhang, J., W. Li, Z. Ying, D. Zhao, G. Yi, H. Li, and X. Liu. 2020a. Soybean protein-derived peptide nutriment increases negative nitrogen balance in burn injury-induced inflammatory stress response in aged rats through the modulation of white blood cells and immune factors. Food & Nutrition Research 64. doi: 10.29219/fnr.v64.3677.
  • Zhang, H., J. Wang, Y. Liu, L. Gong, and B. Sun. 2016. Rice bran proteins and their hydrolysates modulate cholesterol metabolism in mice on hypercholesterolemic diets. Food & Function 7 (6):2747–53. doi: 10.1039/C6FO00044D.
  • Zhang, H., W. H. Yokoyama, and H. Zhang. 2012. Concentration-dependent displacement of cholesterol in micelles by hydrophobic rice bran protein hydrolysates. Journal of the Science of Food and Agriculture 92 (7):1395–401. doi: 10.1002/jsfa.4713.
  • Zhang, J., Y. Yu, and J. Wang. 2020b. Protein nutritional support: The classical and potential new mechanisms in the prevention and therapy of Sarcopenia. Journal of Agricultural and Food Chemistry 68 (14):4098–108. doi: 10.1021/acs.jafc.0c00688.
  • Zhang, P., L. Zhu, J. Cai, F. Lei, J. J. Qin, J. Xie, Y. M. Liu, Y. C. Zhao, X. Huang, L. Lin, et al. 2020. Association of inpatient use of angiotensin-converting enzyme inhibitors and Angiotensin II receptor blockers with mortality among patients with hypertension hospitalized with COVID-19. Circulation Research 126 (12):1671–81. doi: 10.1161/CIRCRESAHA.120.317134.
  • Zhao, F., W. Liu, Y. H. Yu, X. Q. Liu, H. N. Yin, L. Y. Liu, and G. F. Yi. 2019. Effect of small molecular weight soybean protein-derived peptide supplementation on attenuating burn injury-induced inflammation and accelerating wound healing in a rat model. RSC Advances 9 (3):1247–59. doi: 10.1039/C8RA09036J.
  • Zhao, F., Y. Yu, W. Liu, J. Zhang, X. Liu, L. Liu, and H. Yin. 2018. Small molecular weight soybean protein-derived peptides nutriment attenuates rat burn injury-induced muscle atrophy by modulation of ubiquitin-proteasome system and autophagy signaling pathway. Journal of Agricultural and Food Chemistry 66 (11):2724–34. doi: 10.1021/acs.jafc.7b05387.
  • Zhou, Z., J. Xu, Y. Liu, D. Meng, X. Sun, H. Yi, Y. Gao, G. Sun, P. Strappe, C. Blanchard, et al. 2017. Thermal stability improvement of rice bran albumin protein incorporated with epigallocatechin gallate. Journal of Food Science 82 (2):350–7. doi: 10.1111/1750-3841.13609.
  • Zhou, P., X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang, H. R. Si, Y. Zhu, B. Li, C. L. Huang, et al. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579 (7798):270–3. doi: 10.1038/s41586-020-2012-7.
  • Zou, X., K. Chen, J. Zou, P. Han, J. Hao, and Z. Han. 2020. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Frontiers of Medicine 14 (2):185–92. doi: 10.1007/s11684-020-0754-0.
  • Zou, Y., X. Ju, W. Chen, J. Yuan, Z. Wang, R. E. Aluko, and R. He. 2020. Rice bran attenuated obesity via alleviating dyslipidemia, browning of white adipocytes and modulating gut microbiota in high-fat diet-induced obese mice. Food & Function 11 (3):2406–17. doi: 10.1039/C9FO01524H.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.