849
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Improving the bioavailability and bioactivity of garlic bioactive compounds via nanotechnology

, , , , , , , , , , , , & show all

References

  • Amagase, H., B. L. Petesch, H. Matsuura, S. Kasuga, and Y. Itakura. 2001. Intake of garlic and its bioactive components. The Journal of Nutrition 131 (3s):955S–62S. doi: 10.1093/jn/131.3.955S.
  • Anton, N., and T. F. Vandamme. 2011. Nano-emulsions and micro-emulsions: Clarifications of the critical differences. Pharmaceutical Research 28 (5):978–85. doi: 10.1007/s11095-010-0309-1.
  • Antosiewicz, J., A. Herman-Antosiewicz, S. W. Marynowski, and S. V. Singh. 2006. c-Jun NH(2)-terminal kinase signaling axis regulates diallyl trisulfide-induced generation of reactive oxygen species and cell cycle arrest in human prostate cancer cells . Cancer Research 66 (10):5379–86. doi: 10.1158/0008-5472.CAN-06-0356.
  • Arora, A., K. Seth, and Y. Shukla. 2004. Reversal of P-glycoprotein-mediated multidrug resistance by diallyl sulfide in K562 leukemic cells and in mouse liver. Carcinogenesis 25 (6):941–9. doi: 10.1093/carcin/bgh060.
  • Arunkumar, A., M. R. Vijayababu, P. Kanagaraj, K. Balasubramanian, M. M. Aruldhas, and J. Arunakaran. 2005. Growth suppressing effect of garlic compound diallyl disulfide on prostate cancer cell line (PC-3) in vitro. Biological & Pharmaceutical Bulletin 28 (4):740–3. doi: 10.1248/bpb.28.740.
  • Arunkumar, A., M. R. Vijayababu, N. Srinivasan, M. M. Aruldhas, and J. Arunakaran. 2006. Garlic compound, diallyl disulfide induces cell cycle arrest in prostate cancer cell line PC-3. Molecular and Cellular Biochemistry 288 (1-2):107–13. doi: 10.1007/s11010-006-9126-6.
  • Arunkumar, R., G. Sharmila, P. Elumalai, K. Senthilkumar, S. Banudevi, D. Gunadharini, C. Benson, P. Daisy, and J. Arunakaran. 2012. Effect of diallyl disulfide on insulin-like growth factor signaling molecules involved in cell survival and proliferation of human prostate cancer cells in vitro and in silico approach through docking analysis. Phytomedicine 19 (10):912–23. doi: 10.1016/j.phymed.2012.04.009.
  • Arzanlou, M., and S. Bohlooli. 2010. Introducing of green garlic plant as a new source of allicin. Food Chemistry 120 (1):179–83. doi: 10.1016/j.foodchem.2009.10.004.
  • Asta, M., S. M. Kauzlarich, K. Liu, A. Navrotsky, and F. E. Osterloh. 2007. Inorganic nanoparticles. Unique properties and novel applications. Material Matters (Milwaukee, WI, USA) 2 (1):3–6.
  • Babazadeh, A., M. Zeinali, and H. Hamishehkar. 2018. Nano-phytosome: A developing platform for herbal anti-cancer agents in cancer therapy. Current Drug Targets 19 (2):170–80. doi: 10.2174/1389450118666170508095250.
  • Bagul, M., S. Kakumanu, and T. A. Wilson. 2015. Crude garlic extract inhibits cell proliferation and induces cell cycle arrest and apoptosis of cancer cells in vitro. Journal of Medicinal Food 18 (7):731–7. doi: 10.1089/jmf.2014.0064.
  • Bangham, A. D., and R. Horne. 1964. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. Journal of Molecular Biology 8 (5):660–IN10. doi: 10.1016/S0022-2836(64)80115-7.
  • Bautista, D. M., P. Movahed, A. Hinman, H. E. Axelsson, O. Sterner, E. D. Högestätt, D. Julius, S.-E. Jordt, and P. M. Zygmunt. 2005. Pungent products from garlic activate the sensory ion channel TRPA1. Proceedings of the National Academy of Sciences of the United States of America 102 (34):12248–52. doi: 10.1073/pnas.0505356102.
  • Bayan, L., P. H. Koulivand, and A. Gorji. 2014. Garlic: A review of potential therapeutic effects. Avicenna Journal of Phytomedicine 4 (1):1–14.
  • Bharali, D. J., M. Khalil, M. Gurbuz, T. M. Simone, and S. A. Mousa. 2009. Nanoparticles and cancer therapy: A concise review with emphasis on dendrimers. International Journal of Nanomedicine 4:1–7. doi: 10.2147/IJN.S4241.
  • Borkowska, A., N. Knap, and J. Antosiewicz. 2013. Diallyl trisulfide is more cytotoxic to prostate cancer cells PC-3 than to noncancerous epithelial cell line PNT1A: A possible role of p66Shc signaling axis. Nutrition and Cancer 65 (5):711–7. doi: 10.1080/01635581.2013.789115.
  • Bottone, F. G., Jr, S. J. Baek, J. B. Nixon, and T. E. Eling. 2002. Diallyl disulfide (DADS) induces the antitumorigenic NSAID-activated gene (NAG-1) by a p53-dependent mechanism in human colorectal HCT 116 cells. The Journal of Nutrition 132 (4):773–8. doi: 10.1093/jn/132.4.773.
  • Bozin, B., N. Mimica-Dukic, I. Samojlik, A. Goran, and R. Igic. 2008. Phenolics as antioxidants in garlic (Allium sativum L., Alliaceae). Food Chemistry 111 (4):925–9. doi: 10.1016/j.foodchem.2008.04.071.
  • Bunker, A. 2012. Poly (ethylene glycol) in drug delivery, why does it work, and can we do better? All atom molecular dynamics simulation provides some answers. Physics Procedia 34:24–33. doi: 10.1016/j.phpro.2012.05.004.
  • Bystrická, J., J. Kovarovič, M. Lenková, J. Horváthová, L. Končeková, D. Halmová, and A. Lidiková. 2018. The content of polyphenols, antioxidant activity and macroelements in selected garlic varieties. Journal of Microbiology, Biotechnology and Food Sciences 8 (1):738–40. doi: 10.15414/jmbfs.2018.8.1.738-740.
  • Cárdenas-Castro, A. P., G. del Carmen Perales-Vázquez, A. Laura, V. M. Zamora-Gasga, V. M. Ruiz-Valdiviezo, E. Alvarez-Parrilla, and S. G. Sáyago-Ayerdi. 2019. Sauces: An undiscovered healthy complement in Mexican cuisine. International Journal of Gastronomy and Food Science 17:100154. doi: 10.1016/j.ijgfs.2019.100154.
  • Castro, C., A. G. Lorenzo, A. González, and M. Cruzado. 2010. Garlic components inhibit angiotensin II‐induced cell‐cycle progression and migration: Involvement of cell‐cycle inhibitor p27Kip1 and mitogen‐activated protein kinase. Molecular Nutrition & Food Research 54 (6):781–7. doi: 10.1002/mnfr.200900108.
  • Chan, H. K., and P. C. L. Kwok. 2011. Production methods for nanodrug particles using the bottom-up approach. Advanced Drug Delivery Reviews 63 (6):406–16. doi: 10.1016/j.addr.2011.03.011.
  • Chandra-Kuntal, K., J. Lee, and S. V. Singh. 2013. Critical role for reactive oxygen species in apoptosis induction and cell migration inhibition by diallyl trisulfide, a cancer chemopreventive component of garlic. Breast Cancer Research and Treatment 138 (1):69–79. doi: 10.1007/s10549-013-2440-2.
  • Chen, Y., J. Sun, C. Dou, N. Li, F. Kang, Y. Wang, Z. Cao, X. Yang, and S. Dong. 2016. Alliin attenuated RANKL-induced osteoclastogenesis by scavenging reactive oxygen species through inhibiting Nox1. International Journal of Molecular Sciences 17 (9):1516. doi: 10.3390/ijms17091516.
  • Chen, Y. Y., H. F. Lo, T. F. Wang, M. G. Lin, L. L. Lin, and M. C. Chi. 2015. Enzymatic synthesis of γ-L-glutamyl-S-allyl-L-cysteine, a naturally occurring organosulfur compound from garlic, by Bacillus licheniformis γ-glutamyltranspeptidase. Enzyme and Microbial Technology 75-76:18–24. doi: 10.1016/j.enzmictec.2015.04.011.
  • Cheng, H., and G. Huang. 2018. Extraction, characterisation and antioxidant activity of Allium sativum polysaccharide. International Journal of Biological Macromolecules 114:415–9. doi: 10.1016/j.ijbiomac.2018.03.156.
  • Chhabria, S. V., M. A. Akbarsha, A. P. Li, P. S. Kharkar, and K. B. Desai. 2015. In situ allicin generation using targeted alliinase delivery for inhibition of MIA PaCa-2 cells via epigenetic changes, oxidative stress and cyclin-dependent kinase inhibitor (CDKI) expression. Apoptosis: An International Journal on Programmed Cell Death 20 (10):1388–409. doi: 10.1007/s10495-015-1159-4.
  • Choi, Y. H., and H. S. Park. 2012. Apoptosis induction of U937 human leukemia cells by diallyl trisulfide induces through generation of reactive oxygen species. Journal of Biomedical Science 19 (1):50. doi: 10.1186/1423-0127-19-50.
  • Chong, K., M. Zamora, D. Tilakawardane, N. Buckley, J. Rego, and Y. V. 2015. Investigation of allicin stability in aqueous garlic extract by high performance liquid chromatography method. Journal of Scientific Research and Reports 4 (7):590–8. doi: 10.9734/JSRR/2015/14301.
  • Chu, Q., M. T. Ling, H. Feng, H. W. Cheung, S. W. Tsao, X. Wang, and Y. C. Wong. 2006. A novel anticancer effect of garlic derivatives: Inhibition of cancer cell invasion through restoration of E-cadherin expression. Carcinogenesis 27 (11):2180–9. doi: 10.1093/carcin/bgl054.
  • Colín-González, A. L., A. Ortiz-Plata, J. Villeda-Hernández, D. Barrera, E. Molina-Jijón, J. Pedraza-Chaverrí, and P. D. Maldonado. 2011. Aged garlic extract attenuates cerebral damage and cyclooxygenase-2 induction after ischemia and reperfusion in rats. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 66 (4):348–54. doi: 10.1007/s11130-011-0251-3.
  • Colín-González, A. L., R. A. Santana, C. A. Silva-Islas, M. E. Chánez-Cárdenas, A. Santamaría, and P. D. Maldonado. 2012. The antioxidant mechanisms underlying the aged garlic extract- and S-allylcysteine-induced protection. Oxidative Medicine and Cellular Longevity 2012:907162. doi: 10.1155/2012/907162.
  • Corzo-Martínez, M., N. Corzo, and M. Villamiel. 2007. Biological properties of onions and garlic. Trends in Food Science & Technology 18 (12):609–25. doi: 10.1016/j.tifs.2007.07.011.
  • Coukell, A. J., and C. M. Spencer. 1997. Polyethylene glycol-liposomal doxorubicin. A review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in the management of AIDS-related Kaposi's sarcoma. Drugs 53 (3):520–38. doi: 10.2165/00003495-199753030-00011.
  • Das, S., and A. Chaudhury. 2011. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 12 (1):62–76. doi: 10.1208/s12249-010-9563-0.
  • Dasgupta, P., and S. Sengupta. 2013. Role of di-allyl disulfide, a garlic component in NF-κB mediated transient G2-M phase arrest and apoptosis in human leukemic cell-lines. Nutrition and Cancer 65 (4):611–22. doi: 10.1080/01635581.2013.776090.
  • De Greef, D., E. M. Barton, E. N. Sandberg, C. R. Croley, J. Pumarol, T. L. Wong, N. Das, and A. Bishayee. 2020. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Seminars in Cancer Biology. In Press. doi: 10.1016/j.semcancer.2020.11.020.
  • Diretto, G., A. Rubio-Moraga, J. Argandoña, P. Castillo, L. Gómez-Gómez, and O. Ahrazem. 2017. Tissue-specific accumulation of sulfur compounds and saponins in different parts of garlic cloves from purple and white ecotypes. Molecules 22 (8):1359. doi: 10.3390/molecules22081359.
  • Dirsch, V. M., A. L. Gerbes, and A. M. Vollmar. 1998. Ajoene, a compound of garlic, induces apoptosis in human promyeloleukemic cells, accompanied by generation of reactive oxygen species and activation of nuclear factor kappaB. Molecular Pharmacology 53 (3):402–7. doi: 10.1124/mol.53.3.402.
  • Dolatabadi, J. E. N., A. A. Jamali, M. Hasanzadeh, and Y. Omidi. 2011. Quercetin delivery into cancer cells with single walled carbon nanotubes. International Journal of Bioscience, Biochemistry and Bioinformatics 1 (1):21–5. doi: 10.7763/IJBBB.2011.V1.4.
  • Egen-Schwind, C., R. Eckard, and F. Kemper. 1992. Metabolism of garlic constituents in the isolated perfused rat liver. Planta Medica 58 (4):301–5. doi: 10.1055/s-2006-961471.
  • Falagan-Lotsch, P., E. M. Grzincic, and C. J. Murphy. 2017. New advances in nanotechnology-based diagnosis and therapeutics for breast cancer: An assessment of active-targeting inorganic nanoplatforms. Bioconjugate Chemistry 28 (1):135–52. doi: 10.1021/acs.bioconjchem.6b00591.
  • Feng, Y., X. Zhu, Q. Wang, Y. Jiang, H. Shang, L. Cui, and Y. Cao. 2012. Allicin enhances host pro-inflammatory immune responses and protects against acute murine malaria infection. Malaria Journal 11 (1):268. doi: 10.1186/1475-2875-11-268.
  • Ferrari, M. 2005. Cancer nanotechnology: Opportunities and challenges. Nature Reviews. Cancer 5 (3):161–71. doi: 10.1038/nrc1566.
  • Fillebeen, C., L. Descamps, M. P. Dehouck, L. Fenart, M. Benaïssa, G. Spik, R. Cecchelli, and A. Pierce. 1999. Receptor-mediated transcytosis of lactoferrin through the blood-brain barrier. The Journal of Biological Chemistry 274 (11):7011–7. doi: 10.1074/jbc.274.11.7011.
  • Freeman, F., and Y. Kodera. 1995. Garlic chemistry: Stability of S-(2-propenyl)-2-propene-1-sulfinothioate (allicin) in blood, solvents, and simulated physiological fluids. Journal of Agricultural and Food Chemistry 43 (9):2332–8. doi: 10.1021/jf00057a004.
  • Fujisawa, H., K. Suma, K. Origuchi, H. Kumagai, T. Seki, and T. Ariga. 2008. Biological and chemical stability of garlic-derived allicin. Journal of Agricultural and Food Chemistry 56 (11):4229–35. doi: 10.1021/jf8000907.
  • Galbiati, A., C. Tabolacci, B. Morozzo Della Rocca, P. Mattioli, S. Beninati, G. Paradossi, and A. Desideri. 2011. Targeting tumor cells through chitosan-folate modified microcapsules loaded with camptothecin. Bioconjugate Chemistry 22 (6):1066–72. doi: 10.1021/bc100546s.
  • Gao, X., C. Wang, Z. Chen, Y. Chen, R. K. Santhanam, Z. Xue, Q. Ma, Q. Guo, W. Liu, M. Zhang, et al. 2019. Effects of N-trans-feruloyltyramine isolated from laba garlic on antioxidant, cytotoxic activities and H2O2-induced oxidative damage in HepG2 and L02 cells. Food and Chemical Toxicology 130:130–41. doi: 10.1016/j.fct.2019.05.021.
  • Gapter, L. A., O. Z. Yuin, and K-y Ng. 2008. S-Allylcysteine reduces breast tumor cell adhesion and invasion. Biochemical and Biophysical Research Communications 367 (2):446–51. doi: 10.1016/j.bbrc.2007.12.175.
  • Gayathri, R., D. N. Gunadharini, A. Arunkumar, K. Senthilkumar, G. Krishnamoorthy, S. Banudevi, R. C. Vignesh, and J. Arunakaran. 2009. Effects of diallyl disulfide (DADS) on expression of apoptosis associated proteins in androgen independent human prostate cancer cells (PC-3). Molecular and Cellular Biochemistry 320 (1-2):197–203. doi: 10.1007/s11010-008-9903-5.
  • Goncagul, G., and E. Ayaz. 2010a. Antimicrobial effect of garlic (Allium sativum). Recent Patents on anti-Infective Drug Discovery 5 (1):91–3. doi: 10.2174/157489110790112536.
  • Goncagul, G., and E. Ayaz. 2010b. Antimicrobial effect of garlic (Allium sativum) and traditional medicine. Journal of Animal and Veterinary Advances 9 (1):1–4. doi: 10.3923/javaa.2010.1.4.
  • Gong, J., M. Chen, Y. Zheng, S. Wang, and Y. Wang. 2012. Polymeric micelles drug delivery system in oncology. Journal of Controlled Release: Official Journal of the Controlled Release Society 159 (3):312–23. doi: 10.1016/j.jconrel.2011.12.012.
  • Gunadharini, D., A. Arunkumar, G. Krishnamoorthy, R. Muthuvel, M. Vijayababu, P. Kanagaraj, N. Srinivasan, M. Aruldhas, and J. Arunakaran. 2006. Antiproliferative effect of diallyl disulfide (DADS) on prostate cancer cell line LNCaP. Cell Biochemistry and Function 24 (5):407–12. doi: 10.1002/cbf.1262.
  • Harde, H., M. Das, and S. Jain. 2011. Solid lipid nanoparticles: An oral bioavailability enhancer vehicle. Expert Opinion on Drug Delivery 8 (11):1407–24. doi: 10.1517/17425247.2011.604311.
  • Harris, L., G. Batist, R. Belt, D. Rovira, R. Navari, N. Azarnia, L. Welles, E. Winer, and TLC D-99 Study Group. 2002. Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma. Cancer 94 (1):25–36. doi: 10.1002/cncr.10201.
  • Harrison, M., D. Tomlinson, and S. Stewart. 1995. Liposomal-entrapped doxorubicin: An active agent in AIDS-related Kaposi's sarcoma. Journal of Clinical Oncology 13 (4):914–20. doi: 10.1007/BF01366971.
  • Hassan, K. A., and M. A. Mujtaba. 2019. Antibacterial efficacy of garlic oil nano-emulsion. AIMS Agriculture and Food 4 (1):194–205. doi: 10.3934/agrfood.2019.1.194.
  • Hayes, M., T. Rushmore, and M. Goldberg. 1987. Inhibition of hepatocarcinogenic responses to 1,2-dimethylhydrazine by diallyl sulfide, a component of garlic oil. Carcinogenesis 8 (8):1155–7. doi: 10.1093/carcin/8.8.1155.
  • He, X., and H. M. Hwang. 2016. Nanotechnology in food science: Functionality, applicability, and safety assessment. Journal of Food and Drug Analysis 24 (4):671–81. doi: 10.1016/j.jfda.2016.06.001.
  • Herman-Antosiewicz, A., and S. V. Singh. 2005. Checkpoint kinase 1 regulates diallyl trisulfide-induced mitotic arrest in human prostate cancer cells. The Journal of Biological Chemistry 280 (31):28519–28. doi: 10.1074/jbc.M501443200.
  • Hirsch, K., M. Danilenko, J. Giat, T. Miron, A. Rabinkov, M. Wilchek, D. Mirelman, J. Levy, and Y. Sharoni. 2000. Effect of purified allicin, the major ingredient of freshly crushed garlic, on cancer cell proliferation. Nutrition and Cancer 38 (2):245–54. doi: 10.1207/S15327914NC382_14.
  • Ho, J. N., M. Kang, S. Lee, J. J. Oh, S. K. Hong, S. E. Lee, and S. S. Byun. 2018. Anticancer effect of S-allyl-L-cysteine via induction of apoptosis in human bladder cancer cells. Oncology Letters 15 (1):623–9. doi: 10.3892/ol.2017.7280.
  • Hong, J. Y., Z. Y. Wang, T. J. Smith, S. Zhou, S. Shi, J. Pan, and C. S. Yang. 1992. Inhibitory effects of diallyl sulfide on the metabolism and tumorigenicity of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in A/J mouse lung. Carcinogenesis 13 (5):901–4. doi: 10.1093/carcin/13.5.901.
  • Hong, Y. S., Y. A. Ham, J. H. Choi, and J. Kim. 2000. Effects of allyl sulfur compounds and garlic extract on the expression of Bcl-2, Bax, and p53 in non small cell lung cancer cell lines. Experimental & Molecular Medicine 32 (3):127–34. doi: 10.1038/emm.2000.22.
  • Hosono, T., T. Fukao, J. Ogihara, Y. Ito, H. Shiba, T. Seki, and T. Ariga. 2005. Diallyl trisulfide suppresses the proliferation and induces apoptosis of human colon cancer cells through oxidative modification of beta-tubulin. The Journal of Biological Chemistry 280 (50):41487–93. doi: 10.1074/jbc.M507127200.
  • Huang, J., B. Yang, T. Xiang, W. Peng, Z. Qiu, J. Wan, L. Zhang, H. Li, H. Li, and G. Ren. 2015. Diallyl disulfide inhibits growth and metastatic potential of human triple‐negative breast cancer cells through inactivation of the β‐catenin signaling pathway. Molecular Nutrition & Food Research 59 (6):1063–75. doi: 10.1002/mnfr.201400668.
  • Huzaifa, U., I. Labaran, A. Bello, and A. Olatunde. 2014. Phytochemical screening of aqueous extract of garlic (Allium sativum) bulbs. Report and Opinion 6:1–4.
  • Jenning, V., A. Lippacher, and S. Gohla. 2002. Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenization. Journal of Microencapsulation 19 (1):1–10. doi: 10.1080/713817583.
  • Jeong, J.-W., S. Park, C. Park, Y.-C. Chang, D.-O. Moon, S. O. Kim, G.-Y. Kim, H.-J. Cha, H.-S. Kim, Y.-W. Choi, et al. 2014. N-benzyl-N-methyldecan-1-amine, a phenylamine derivative isolated from garlic cloves, induces G2/M phase arrest and apoptosis in U937 human leukemia cells. Oncology Reports 32 (1):373–81. doi: 10.3892/or.2014.3215.
  • Jiang, X., X. Zhu, W. Huang, H. Xu, Z. Zhao, S. Li, S. Li, J. Cai, and J. Cao. 2017. Garlic-derived organosulfur compound exerts antitumor efficacy via activation of MAPK pathway and modulation of cytokines in SGC-7901 tumor-bearing mice. International Immunopharmacology 48:135–45. doi: 10.1016/j.intimp.2017.05.004.
  • Jiang, X. Y., X. S. Zhu, H. Y. Xu, Z. X. Zhao, S. Y. Li, S. Z. Li, J. H. Cai, and J. M. Cao. 2017. Diallyl trisulfide suppresses tumor growth through the attenuation of Nrf2/Akt and activation of p38/JNK and potentiates cisplatin efficacy in gastric cancer treatment. Acta Pharmacologica Sinica 38 (7):1048–58. doi: 10.1038/aps.2016.176.
  • Jikihara, H., G. Qi, K. Nozoe, M. Hirokawa, H. Sato, Y. Sugihara, and F. Shimamoto. 2015. Aged garlic extract inhibits 1,2-dimethylhydrazine-induced colon tumor development by suppressing cell proliferation. Oncology Reports 33 (3):1131–40. doi: 10.3892/or.2014.3705.
  • Jurcisek, J. A., A. C. Dickson, M. E. Bruggeman, and L. O. Bakaletz. 2011. In vitro biofilm formation in an 8-well chamber slide. Journal of Visualized Experiments (47):e2481. doi: 10.3791/2481.
  • Khalil, A. M., M. Yasuda, A. S. Farid, M. I. Desouky, M. M. Mohi-Eldin, M. Haridy, and Y. Horii. 2015. Immunomodulatory and antiparasitic effects of garlic extract on Eimeria vermiformis-infected mice. Parasitology Research 114 (7):2735–42. doi: 10.1007/s00436-015-4480-5.
  • Khatibi, S. A., A. Misaghi, M. H. Moosavy, G. Amoabediny, and A. A. Basti. 2014. Effect of preparation methods on the properties of Zataria multiflora Boiss. essential oil loaded nanoliposomes: Characterization of size, encapsulation efficiency and stability. Pharmaceutical Sciences 20 (4):141–8. doi: 10.5681/PS.2015.003.
  • Kim, J. H., S. H. Yu, Y. J. Cho, J. H. Pan, H. T. Cho, J. H. Kim, H. Bong, Y. Lee, M. H. Chang, Y. J. Jeong, et al. 2017. Preparation of S-allylcysteine-enriched black garlic juice and its antidiabetic effects in streptozotocin-induced insulin-deficient mice. Journal of Agricultural and Food Chemistry 65 (2):358–63. doi: 10.1021/acs.jafc.6b04948.
  • Kim, S. H., C. H. Kaschula, N. Priedigkeit, A. V. Lee, and S. V. Singh. 2016. Forkhead box Q1 is a novel target of breast cancer stem cell inhibition by diallyl trisulfide. The Journal of Biological Chemistry 291 (26):13495–508. doi: 10.1074/jbc.M116.715219.
  • Kim, W. T., S.-P. Seo, Y. J. Byun, H.-W. Kang, Y.-J. Kim, S.-C. Lee, P. Jeong, Y. Seo, S. Y. Choe, D.-J. Kim, et al. 2017. Garlic extract in bladder cancer prevention: Evidence from T24 bladder cancer cell xenograft model, tissue microarray, and gene network analysis. International Journal of Oncology 51 (1):204–12. doi: 10.3892/ijo.2017.3993.
  • Kim, Y.-A., D. Xiao, H. Xiao, A. A. Powolny, K. L. Lew, M. L. Reilly, Y. Zeng, Z. Wang, and S. V. Singh. 2007. Mitochondria-mediated apoptosis by diallyl trisulfide in human prostate cancer cells is associated with generation of reactive oxygen species and regulated by Bax/Bak. Molecular Cancer Therapeutics 6 (5):1599–609. doi: 10.1158/1535-7163.MCT-06-0754.
  • Kimura, S., Y. C. Tung, M. H. Pan, N. W. Su, Y. J. Lai, and K. C. Cheng. 2017. Black garlic: A critical review of its production, bioactivity, and application. Journal of Food and Drug Analysis 25 (1):62–70. doi: 10.1016/j.jfda.2016.11.003.
  • Krishnan, V., C. Loganathan, and P. Thayumanavan. 2019. Green synthesized selenium nanoparticle as carrier and potent delivering agent of s-allyl glutathione: Anticancer effect against hepatocarcinoma cell line (HepG2) through induction of cell cycle arrest and apoptosis. Journal of Drug Delivery Science and Technology 53:101207. doi: 10.1016/j.jddst.2019.101207.
  • Kurmi, B. D., P. Patel, R. Paliwal, and S. R. Paliwal. 2020. Molecular approaches for targeted drug delivery towards cancer: A concise review with respect to nanotechnology. Journal of Drug Delivery Science and Technology 57:101682. doi: 10.1016/j.jddst.2020.101682.
  • Kwon, G. S., M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka. 1995. Physical entrapment of adriamycin in AB block copolymer micelles. Pharmaceutical Research 12 (2):192–5. doi: 10.1023/A:1016266523505.
  • Kyo, E., N. Uda, A. Suzuki, M. Kakimoto, M. Ushijima, S. Kasuga, and Y. Itakura. 1998. Immunomodulation and antitumor activities of aged garlic extract. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 5 (4):259–67. doi: 10.1016/S0944-7113(98)80064-0.
  • Lai, K. C., C. L. Kuo, H. C. Ho, J. S. Yang, C. Y. Ma, H. F. Lu, H. Y. Huang, F. S. Chueh, C. C. Yu, and J. G. Chung. 2012. Diallyl sulfide, diallyl disulfide and diallyl trisulfide affect drug resistant gene expression in colo 205 human colon cancer cells in vitro and in vivo. Phytomedicine 19 (7):625–30. doi: 10.1016/j.phymed.2012.02.004.
  • Lan, X., H. Sun, J. Liu, Y. Lin, Z. Zhu, X. Han, X. Sun, X. Li, H. Zhang, and Z. Tang. 2013. Effects of garlic oil on pancreatic cancer cells. Asian Pacific Journal of Cancer Prevention: APJCP 14 (10):5905–10. doi: 10.7314/apjcp.2013.14.10.5905.
  • Langer, R. 1990. New methods of drug delivery. Science (New York, N.Y.) 249 (4976):1527–33. doi: 10.1126/science.2218494.
  • Lanzotti, V. 2006. The analysis of onion and garlic. Journal of Chromatography. A 1112 (1-2):3–22. doi: 10.1016/j.chroma.2005.12.016.
  • Lanzotti, V., G. Bonanomi, and F. Scala. 2013. What makes Allium species effective against pathogenic microbes? Phytochemistry Reviews 12 (4):751–72. doi: 10.1007/s11101-013-9295-3.
  • Lanzotti, V., F. Scala, and G. Bonanomi. 2014. Compounds from Allium species with cytotoxic and antimicrobial activity. Phytochemistry Reviews 13 (4):769–91. doi: 10.1007/s11101-014-9366-0.
  • Lasic, D. D. 1998. Novel applications of liposomes. Trends in Biotechnology 16 (7):307–21. doi: 10.1016/S0167-7799(98)01220-7.
  • Lasic, D., F. Martin, A. Gabizon, S. Huang, and D. Papahadjopoulos. 1991. Sterically stabilized liposomes: A hypothesis on the molecular origin of the extended circulation times. Biochimica et Biophysica Acta (Bba) - Biomembranes 1070 (1):187–92. doi: 10.1016/0005-2736(91)90162-2.
  • Lawson, L. D., and B. G. Hughes. 1992. Characterization of the formation of allicin and other thiosulfinates from garlic. Planta Medica 58 (4):345–50. doi: 10.1055/s-2006-961482.
  • Lawson, L. D., and S. M. Hunsaker. 2018. Allicin bioavailability and bioequivalence from garlic supplements and garlic foods. Nutrients 10 (7):812. doi: 10.3390/nu10070812.
  • Lee, H. J., J. H. Jeong, and J. H. Ryu. 2019. Anti-pancreatic cancer activity of Z-ajoene from garlic: An inhibitor of the Hedgehog/Gli/FoxM1 axis. Journal of Functional Foods 56:102–9. doi: 10.1016/j.jff.2019.03.010.
  • Lee, S. Y., D. S. Kim, and K. H. Kyung. 2014. Factors influencing the stability of garlic thiosulfinates. Food Science and Biotechnology 23 (5):1593–600. doi: 10.1007/s10068-014-0216-z.
  • Lee, Y. 2008. Induction of apoptosis by S-allylmercapto-L-cysteine, a biotransformed garlic derivative, on a human gastric cancer cell line. International Journal of Molecular Medicine 21 (6):765–70. doi: 10.3892/ijmm.21.6.765.
  • Lee, Y., H. Kim, J. Lee, and K. Kim. 2011. Anticancer activity of S-allylmercapto-L-cysteine on implanted tumor of human gastric cancer cell. Biological & Pharmaceutical Bulletin 34 (5):677–81. doi: 10.1248/bpb.34.677.
  • Lee, Y. M., O. C. Gweon, Y. J. Seo, J. Im, M. J. Kang, M. J. Kim, and J. I. Kim. 2009. Antioxidant effect of garlic and aged black garlic in animal model of type 2 diabetes mellitus. Nutrition Research and Practice 3 (2):156–61. doi: 10.4162/nrp.2009.3.2.156.
  • Lefer, D. J. 2007. A new gaseous signaling molecule emerges: Cardioprotective role of hydrogen sulfide. Proceedings of the National Academy of Sciences 104 (46):17907–8. doi: 10.1073/pnas.0709010104.
  • Lestari, S. R., M. F. Atho’illah, Y. I. Christina, and M. Rifa’i. 2020. Single garlic oil modulates T cells activation and proinflammatory cytokine in mice with high fat diet. Journal of Ayurveda and Integrative Medicine 11 (4):414–20. doi: 10.1016/j.jaim.2020.06.009.
  • Li, M., Y. X. Yan, Q. T. Yu, Y. Deng, D. T. Wu, Y. Wang, Y. Z. Ge, S. P. Li, and J. Zhao. 2017. Comparison of immunomodulatory effects of fresh garlic and black garlic polysaccharides on RAW 264.7 macrophages. Journal of Food Science 82 (3):765–71. doi: 10.1111/1750-3841.13589.
  • Li, S., G. Yang, X. Zhu, L. Cheng, Y. Sun, and Z. Zhao. 2017. Combination of rapamycin and garlic-derived S-allylmercaptocysteine induces colon cancer cell apoptosis and suppresses tumor growth in xenograft nude mice through autophagy/p62/Nrf2 pathway. Oncology Reports 38 (3):1637–44. doi: 10.3892/or.2017.5849.
  • Li, W., H. Tian, L. Li, S. Li, W. Yue, Z. Chen, L. Qi, W. Hu, Y. Zhu, B. Hao, et al. 2012. Diallyl trisulfide induces apoptosis and inhibits proliferation of A549 cells in vitro and in vivo. Acta Biochimica et Biophysica Sinica 44 (7):577–83. doi: 10.1093/abbs/gms033.
  • Li, X., J. Ni, Y. Tang, X. Wang, H. Tang, H. Li, S. Zhang, and X. Shen. 2019. Allicin inhibits mouse colorectal tumorigenesis through suppressing the activation of STAT3 signaling pathway. Natural Product Research 33 (18):2722–5. doi: 10.1080/14786419.2018.1465425.
  • Li, Y., Z. Wang, J. Li, and X. Sang. 2019. Diallyl disulfide suppresses FOXM1‐mediated proliferation and invasion in osteosarcoma by upregulating miR‐134. Journal of Cellular Biochemistry 120 (5):7286–96. doi: 10.1002/jcb.28003.
  • Li, Y., J. Zhang, L. Zhang, M. Si, H. Yin, and J. Li. 2013. Diallyl trisulfide inhibits proliferation, invasion and angiogenesis of osteosarcoma cells by switching on suppressor microRNAs and inactivating of Notch-1 signaling. Carcinogenesis 34 (7):1601–10. doi: 10.1093/carcin/bgt065.
  • Lim, S. B., A. Banerjee, and H. Önyüksel. 2012. Improvement of drug safety by the use of lipid-based nanocarriers. Journal of Controlled Release: Official Journal of the Controlled Release Society 163 (1):34–45. doi: 10.1016/j.jconrel.2012.06.002.
  • Lin, J. J., T. Chang, W. K. Cai, Z. Zhang, Y. X. Yang, C. Sun, Z. Y. Li, and W. X. Li. 2015. Post-injury administration of allicin attenuates ischemic brain injury through sphingosine kinase 2: In vivo and in vitro studies. Neurochemistry International 89:92–100. doi: 10.1016/j.neuint.2015.07.022.
  • Ling, H., J. He, H. Tan, L. Yi, F. Liu, X. Ji, Y. Wu, H. Hu, X. Zeng, X. Ai, et al. 2017. Identification of potential targets for differentiation in human leukemia cells induced by diallyl disulfide. International Journal of Oncology 50 (2):697–707. doi: 10.3892/ijo.2017.3839.
  • Ling, H., L. Y. Zhang, Q. Su, Y. Song, Z. Y. Luo, X. T. Zhou, X. Zeng, J. He, H. Tan, and J. P. Yuan. 2006. Erk is involved in the differentiation induced by diallyl disulfide in the human gastric cancer cell line MGC803. Cellular & Molecular Biology Letters 11 (3):408–23. doi: 10.2478/s11658-006-0034-2.
  • Liu, F., and D. Liu. 1995. Long-circulating emulsions (oil-in-water) as carriers for lipophilic drugs. Pharmaceutical Research 12 (7):1060–4. doi: 10.1023/A:1016274801930.
  • Liu, P., R. Weng, X. Sheng, X. Wang, W. Zhang, Y. Qian, and J. Qiu. 2020. Profiling of organosulfur compounds and amino acids in garlic from different regions of China. Food Chemistry 305:125499. doi: 10.1016/j.foodchem.2019.125499.
  • Liu, Y., P. Zhu, Y. Wang, Z. Wei, L. Tao, Z. Zhu, X. Sheng, S. Wang, J. Ruan, Z. Liu, et al. 2015. Antimetastatic therapies of the polysulfide diallyl trisulfide against triple-negative breast cancer (TNBC) via suppressing MMP2/9 by blocking NF-κB and ERK/MAPK signaling pathways. PLoS One 10 (4):e0123781. doi: 10.1371/journal.pone.0123781.
  • Liu, Z., M. Li, K. Chen, J. Yang, R. Chen, T. Wang, J. Liu, W. Yang, and Z. Ye. 2012. S-allylcysteine induces cell cycle arrest and apoptosis in androgen-independent human prostate cancer tate cancer cells. Molecular Medicine Reports 5 (2):439–43. doi: 10.3892/mmr.2011.658.
  • Lu, H., C. Sue, C. Yu, S. Chen, G. Chen, and J. G. Chung. 2004. Diallyl disulfide (DADS) induced apoptosis undergo caspase-3 activity in human bladder cancer T24 cells. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 42 (10):1543–52. doi: 10.1016/j.fct.2003.06.001.
  • Lu, X., N. Li, X. Qiao, Z. Qiu, and P. Liu. 2017. Composition analysis and antioxidant properties of black garlic extract. Journal of Food and Drug Analysis 25 (2):340–9. doi: 10.1016/j.jfda.2016.05.011.
  • Majewski, M. 2014. Allium sativum: Facts and myths regarding human health. Roczniki Panstwowego Zakladu Higieny 65 (1):1–8.
  • Malki, A., M. El-Saadani, and A. S. Sultan. 2009. Garlic constituent diallyl trisulfide induced apoptosis in MCF7 human breast cancer cells. Cancer Biology & Therapy 8 (22):2174–84. doi: 10.4161/cbt.8.22.9882.
  • Manchanda, G., and N. Garg. 2011. Alleviation of salt-induced ionic, osmotic and oxidative stresses in Cajanus cajan nodules by AM inoculation. Plant Biosystems - An International Journal Dealing with All Aspects of Plant Biology 145 (1):88–97. doi: 10.1080/11263504.2010.539851.
  • Matsuura, N., Y. Miyamae, K. Yamane, Y. Nagao, Y. Hamada, N. Kawaguchi, T. Katsuki, K. Hirata, S.-I. Sumi, and H. Ishikawa. 2006. Aged garlic extract inhibits angiogenesis and proliferation of colorectal carcinoma cells. The Journal of Nutrition 136 (3 Suppl):842S–6S. doi: 10.1093/jn/136.3.842S.
  • McClements, D. J., E. A. Decker, and J. Weiss. 2007. Emulsion-based delivery systems for lipophilic bioactive components. Journal of Food Science 72 (8):R109–24. doi: 10.1111/j.1750-3841.2007.00507.x.
  • McNiff, B. L. 1977. Clinical use of 10% soybean oil emulsion. American Journal of Hospital Pharmacy 34 (10):1080–6. doi: 10.1093/ajhp/34.10.1080.
  • Mehnert, W., and K. Mäder. 2012. Solid lipid nanoparticles: Production, characterization and applications. Advanced Drug Delivery Reviews 64:83–101. doi: 10.1016/j.addr.2012.09.021.
  • Miean, K. H., and S. Mohamed. 2001. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. Journal of Agricultural and Food Chemistry 49 (6):3106–12. doi: 10.1021/jf000892m.
  • Misra, R., S. Acharya, and S. K. Sahoo. 2010. Cancer nanotechnology: Application of nanotechnology in cancer therapy. Drug Discovery Today 15 (19-20):842–50. doi: 10.1016/j.drudis.2010.08.006.
  • Molina-Calle, M., V. S. de Medina, F. Priego-Capote, and M. D. L. de Castro. 2017. Establishing compositional differences between fresh and black garlic by a metabolomics approach based on LC–QTOF MS/MS analysis. Journal of Food Composition and Analysis 62:155–63. doi: 10.1016/j.jfca.2017.05.004.
  • Mollazade, M., K. Nejati-Koshki, A. Akbarzadeh, N. Zarghami, M. Nasiri, R. Jahanban-Esfahlan, and A. Alibakhshi. 2013. PAMAM dendrimers augment inhibitory effects of curcumin on cancer cell proliferation: Possible inhibition of telomerase. Asian Pacific Journal of Cancer Prevention: APJCP 14 (11):6925–8. doi: 10.7314/apjcp.2013.14.11.6925.
  • Momekova, D., S. Rangelov, S. Yanev, E. Nikolova, S. Konstantinov, B. Romberg, G. Storm, and N. Lambov. 2007. Long-circulating, pH-sensitive liposomes sterically stabilized by copolymers bearing short blocks of lipid-mimetic units. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences 32 (4-5):308–17. doi: 10.1016/j.ejps.2007.08.009.
  • Morales-González, J. A., E. Madrigal-Bujaidar, M. Sánchez-Gutiérrez, J. A. Izquierdo-Vega, M. D. C. Valadez-Vega, I. Álvarez-González, Á. Morales-González, and E. Madrigal-Santillán. 2019. Garlic (Allium sativum L.): A brief review of its antigenotoxic effects. Foods 8 (8):343. doi: 10.3390/foods8080343.
  • Mozafari, M. 2010. Nanoliposomes: Preparation and analysis. Methods in Molecular Biology (Clifton, N.J.) 605:29–50. doi: 10.1007/978-1-60327-360-2_2.
  • Mozafari, M., A. Pardakhty, S. Azarmi, J. Jazayeri, A. Nokhodchi, and A. Omri. 2009. Role of nanocarrier systems in cancer nanotherapy. Journal of Liposome Research 19 (4):310–21. doi: 10.3109/08982100902913204.
  • Mu, L., and S. Feng. 2003. A novel controlled release formulation for the anticancer drug paclitaxel (Taxol®): PLGA nanoparticles containing vitamin E TPGS. Journal of Controlled Release 86 (1):33–48. doi: 10.1016/S0168-3659(02)00320-6.
  • Müller, A., J. Eller, F. Albrecht, P. Prochnow, K. Kuhlmann, J. E. Bandow, A. J. Slusarenko, and L. I. O. Leichert. 2016. Allicin induces thiol stress in bacteria through S-allylmercapto modification of protein cysteines. The Journal of Biological Chemistry 291 (22):11477–90. doi: 10.1074/jbc.M115.702308.
  • Müller, R. H., K. Mäder, and S. Gohla. 2000. Solid lipid nanoparticles (SLN) for controlled drug delivery - A review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 50 (1):161–77. doi: 10.1016/S0939-6411(00)00087-4.
  • Müller, R. H., S. Maassen, H. Weyhers, and W. Mehnert. 1996. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. Journal of Drug Targeting 4 (3):161–70. doi: 10.3109/10611869609015973.
  • Mun, S., E. A. Decker, and D. J. McClements. 2005. Influence of droplet characteristics on the formation of oil-in-water emulsions stabilized by surfactant-chitosan layers. Langmuir: The ACS Journal of Surfaces and Colloids 21 (14):6228–34. doi: 10.1021/la050502w.
  • Na, H. K., E. H. Kim, M. A. Choi, J. M. Park, D. H. Kim, and Y. J. Surh. 2012. Diallyl trisulfide induces apoptosis in human breast cancer cells through ROS-mediated activation of JNK and AP-1. Biochemical Pharmacology 84 (10):1241–50. doi: 10.1016/j.bcp.2012.08.024.
  • Nagabhushan, M., D. Line, P. J. Polverini, and D. B. Solt. 1992. Anticarcinogenic action of diallyl sulfide in hamster buccal pouch and forestomach. Cancer Letters 66 (3):207–16. doi: 10.1016/0304-3835(92)90249-U.
  • Nagae, S., M. Ushijima, S. Hatono, J. Imai, S. Kasuga, H. Matsuura, Y. Itakura, and Y. Higashi. 1994. Pharmacokinetics of the garlic compound S-allylcysteine. Planta Medica 60 (3):214–7. doi: 10.1055/s-2006-959461.
  • Nagi, A., B. Iqbal, S. Kumar, S. Sharma, J. Ali, and S. Baboota. 2017. Quality by design based silymarin nanoemulsion for enhancement of oral bioavailability. Journal of Drug Delivery Science and Technology 40:35–44. doi: 10.1016/j.jddst.2017.05.019.
  • Nakagawa, H., K. Tsuta, K. Kiuchi, H. Senzaki, K. Tanaka, K. Hioki, and A. Tsubura. 2001. Growth inhibitory effects of diallyl disulfide on human breast cancer cell lines. Carcinogenesis 22 (6):891–7. doi: 10.1093/carcin/22.6.891.
  • Nazari, M., B. Ghanbarzadeh, H. S. Kafil, M. Zeinali, and H. Hamishehkar. 2019. Garlic essential oil nanophytosomes as a natural food preservative: Its application in yogurt as food model. Colloid and Interface Science Communications 30:100176. doi: 10.1016/j.colcom.2019.100176.
  • Newman, G. C., and C. H. Huang. 1975. Structural studies on phophatidylcholine-cholesterol mixed vesicles. Biochemistry 14 (15):3363–70. doi: 10.1021/bi00686a012.
  • Ng, K. T. P., D. Y. Guo, Q. Cheng, W. Geng, C. C. Ling, C. X. Li, X. B. Liu, Y. Y. Ma, C. M. Lo, R. T. P. Poon, et al. 2012. A garlic derivative, S-allylcysteine (SAC), suppresses proliferation and metastasis of hepatocellular carcinoma. PLoS One 7 (2):e31655. doi: 10.1371/journal.pone.0031655.
  • Nian, H., B. Delage, J. T. Pinto, and R. H. Dashwood. 2008. Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21WAF1 promoter. Carcinogenesis 29 (9):1816–24. doi: 10.1093/carcin/bgn165.
  • Nkrumah-Elie, Y. M., J. S. Reuben, A. Hudson, E. Taka, R. Badisa, T. Ardley, B. Israel, S. Y. Sadrud-Din, E. Oriaku, and S. F. Darling-Reed. 2012. Diallyl trisulfide as an inhibitor of benzo (a) pyrene-induced precancerous carcinogenesis in MCF-10A cells. Food and Chemical Toxicology 50 (7):2524–30. doi: 10.1016/j.fct.2012.04.010.
  • Oerlemans, C., W. Bult, M. Bos, G. Storm, J. F. W. Nijsen, and W. E. Hennink. 2010. Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharmaceutical Research 27 (12):2569–89. doi: 10.1007/s11095-010-0233-4.
  • Pan, A., H. Zhang, Y. Li, T-y Lin, F. Wang, J. Lee, M. Cheng, M. Dall’Era, T. Li, R. deVere White, et al. 2016. Disulfide-crosslinked nanomicelles confer cancer-specific drug delivery and improve efficacy of paclitaxel in bladder cancer. Nanotechnology 27 (42):425103. doi: 10.1088/0957-4484/27/42/425103.
  • Papahadjopoulos, D., T. Allen, A. Gabizon, E. Mayhew, K. Matthay, S. Huang, K. Lee, M. Woodle, D. Lasic, and C. Redemann. 1991. Sterically stabilized liposomes: Improvements in pharmacokinetics and antitumor therapeutic efficacy. Proceedings of the National Academy of Sciences 88 (24):11460–4. doi: 10.1073/pnas.88.24.11460.
  • Parmar, B., S. Mandal, K. Petkar, L. Patel, and K. Sawant. 2011. Valsartan loaded solid lipid nanoparticles: Development, characterization and in vitro and ex vivo evaluation. International Journal of Pharmaceutical Sciences and Nanotechnology 4 (3):1483–90. doi: 10.37285/ijpsn.2011.4.3.11.
  • Pham, D. T., N. Saelim, and W. Tiyaboonchai. 2019. Alpha mangostin loaded crosslinked silk fibroin-based nanoparticles for cancer chemotherapy. Colloids and Surfaces. B, Biointerfaces 181:705–13. doi: 10.1016/j.colsurfb.2019.06.011.
  • Pinilla, C. M. B., and A. Brandelli. 2016. Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innovative Food Science & Emerging Technologies 36:287–93. doi: 10.1016/j.ifset.2016.07.017.
  • Pinnamaneni, S., N. Das, and S. Das. 2003. Comparison of oil-in-water emulsions manufactured by microfluidization and homogenization. Die Pharmazie-An International Journal of Pharmaceutical Sciences 58 (8):554–8. doi: 10.1080/1478641031000137004.
  • Pinto, J. T., C. Qiao, J. Xing, R. Rivlin, M. Protomastro, M. Weissler, Y. Tao, H. Thaler, and W. Heston. 1997. Effects of garlic thioallyl derivatives on growth, glutathione concentration, and polyamine formation of human prostate carcinoma cells in culture. The American Journal of Clinical Nutrition 66 (2):398–405. doi: 10.1093/ajcn/66.2.398.
  • Pinto, J. T., C. Qiao, J. Xing, B. P. Suffoletto, K. B. Schubert, R. S. Rivlin, R. F. Huryk, D. J. Bacich, and W. D. Heston. 2000. Alterations of prostate biomarker expression and testosterone utilization in human LNCaP prostatic carcinoma cells by garlic‐derived S‐allylmercaptocysteine. The Prostate 45 (4):304–14. doi: 10.1002/1097-0045(20001201)45:4<304::AID-PROS4>3.0.CO;2-9.
  • Poole Jr, C. P., and F. J. Owens. 2003. Introduction to nanotechnology. Hoboken, NJ: John Wiley & Sons.
  • Porter, C. J., N. L. Trevaskis, and W. N. Charman. 2007. Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs. Nature Reviews. Drug Discovery 6 (3):231–48. doi: 10.1038/nrd2197.
  • Press, M., H. Kikuchi, T. Shimoyama, and G. Thompson. 1974. Diagnosis and treatment of essential fatty acid deficiency in man. British Medical Journal 2 (5913):247–50. doi: 10.1136/bmj.2.5913.247.
  • Puri, A., K. Loomis, B. Smith, J.-H. Lee, A. Yavlovich, E. Heldman, and R. Blumenthal. 2009. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Critical Reviews in Therapeutic Drug Carrier Systems 26 (6):523–80. doi: 10.1615/CritRevTherDrugCarrierSyst.v26.i6.10.
  • Putnik, P., D. Gabrić, S. Roohinejad, F. J. Barba, D. Granato, K. Mallikarjunan, J. M. Lorenzo, and D. B. Kovačević. 2019. An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties. Food Chemistry 276:680–91. doi: 10.1016/j.foodchem.2018.10.068.
  • Quintero-Fabián, S., D. Ortuño-Sahagún, M. Vázquez-Carrera, and R. I. López-Roa. 2013. Alliin, a garlic (Allium sativum) compound, prevents LPS-induced inflammation in 3T3-L1 adipocytes. Mediators of Inflammation 2013:381815. doi: 10.1155/2013/381815.
  • Raeesi, S. 2020. The effect of rutin nanocrystals on VDR gene expression in oral cancer cells (HN5). Tabriz University of Medical Sciences, School of Dentistry.
  • Raeisi, S., S. M. Ojagh, S. Y. Quek, P. Pourashouri, and F. Salaün. 2019. Nano-encapsulation of fish oil and garlic essential oil by a novel composition of wall material: Persian gum-chitosan. LWT 116:108494. doi: 10.1016/j.lwt.2019.108494.
  • Ragavan, G., Y. Muralidaran, B. Sridharan, R. N. Ganesh, and P. Viswanathan. 2017. Evaluation of garlic oil in nano-emulsified form: Optimization and its efficacy in high-fat diet induced dyslipidemia in Wistar rats. Food and Chemical Toxicology 105:203–13. doi: 10.1016/j.fct.2017.04.019.
  • Rahman, K. 2007. Effects of garlic on platelet biochemistry and physiology. Molecular Nutrition & Food Research 51 (11):1335–44. doi: 10.1002/mnfr.200700058.
  • Reza Mozafari, M., C. Johnson, S. Hatziantoniou, and C. Demetzos. 2008. Nanoliposomes and their applications in food nanotechnology. Journal of Liposome Research 18 (4):309–27. doi: 10.1080/08982100802465941.
  • Sakamoto, K., L. D. Lawson, and J. A. Milner. 1997. Allyl sulfides from garlic suppress the in vitro proliferation of human A549 lung tumor cells. Nutrition and Cancer 29 (2):152–6. doi: 10.1080/01635589709514617.
  • Salehi, B., P. Zucca, I. E. Orhan, E. Azzini, C. O. Adetunji, S. A. Mohammed, S. K. Banerjee, F. Sharopov, D. Rigano, J. Sharifi-Rad, et al. 2019. Allicin and health: A comprehensive review. Trends in Food Science & Technology 86:502–16. doi: 10.1016/j.tifs.2019.03.003.
  • Salvia-Trujillo, L., C. Qian, O. Martín-Belloso, and D. J. McClements. 2013. Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions. Food Chemistry 141 (2):1472–80. doi: 10.1016/j.foodchem.2013.03.050.
  • Sanna, V., N. Pala, and M. Sechi. 2014. Targeted therapy using nanotechnology: Focus on cancer. International Journal of Nanomedicine 9:467–83. doi: 10.2147/IJN.S36654.
  • Santhosha, S., P. Jamuna, and S. Prabhavathi. 2013. Bioactive components of garlic and their physiological role in health maintenance: A review. Food Bioscience 3:59–74. doi: 10.1016/j.fbio.2013.07.001.
  • Saud, S. M., W. Li, Z. Gray, M. S. Matter, N. H. Colburn, M. R. Young, and Y. S. Kim. 2016. Diallyl disulfide (DADS), a constituent of garlic, inactivates NF-κB and prevents colitis-induced colorectal cancer by inhibiting GSK-3β. Cancer Prevention Research (Philadelphia, Pa.) 9 (7):607–15. doi: 10.1158/1940-6207.CAPR-16-0044.
  • Shankar, S., Q. Chen, S. Ganapathy, K. P. Singh, and R. K. Srivastava. 2008. Diallyl trisulfide increases the effectiveness of TRAIL and inhibits prostate cancer growth in an orthotopic model: Molecular mechanisms. Molecular Cancer Therapeutics 7 (8):2328–38. doi: 10.1158/1535-7163.MCT-08-0216.
  • Sharma, P., and S. Garg. 2010. Pure drug and polymer based nanotechnologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs. Advanced Drug Delivery Reviews 62 (4-5):491–502. doi: 10.1016/j.addr.2009.11.019.
  • Shi, L., Q. Lin, X. Li, Y. Nie, S. Sun, X. Deng, L. Wang, J. Lu, Y. Tang, and F. Luo. 2017. Alliin, a garlic organosulfur compound, ameliorates gut inflammation through MAPK‐NF‐κB/AP‐1/STAT‐1 inactivation and PPAR‐γ activation. Molecular Nutrition & Food Research 61 (9):1601013. doi: 10.1002/mnfr.201601013.
  • Shih, W. L., C. D. Chang, H. T. Chen, and K. K. Fan. 2018. Antioxidant activity and leukemia initiation prevention in vitro and in vivo by N-acetyl-L-cysteine. Oncology Letters 16 (2):2046–52. doi: 10.3892/ol.2018.8864.
  • Shin, D. Y., G. Y. Kim, H. J. Hwang, W. J. Kim, and Y. H. Choi. 2014. Diallyl trisulfide-induced apoptosis of bladder cancer cells is caspase-dependent and regulated by PI3K/Akt and JNK pathways. Environmental Toxicology and Pharmacology 37 (1):74–83. doi: 10.1016/j.etap.2013.11.002.
  • Shin, D. Y., G. Y. Kim, J. H. Lee, B. T. Choi, Y. H. Yoo, and Y. H. Choi. 2012. Apoptosis induction of human prostate carcinoma DU145 cells by diallyl disulfide via modulation of JNK and PI3K/AKT signaling pathways. International Journal of Molecular Sciences 13 (11):14158–71. doi: 10.3390/ijms131114158.
  • Shin, I., D. Mirelman, L. Weiner, E. Villar, V. L. Shnyrov, and A. Rabinkov. 2018. Stabilization of alliinase from garlic by osmolytes and the mannose-specific lectin ASAI. Journal of Pharmacy and Pharmacology 6:437–47. doi: 10.17265/2328-2150/2018.05.001.
  • Shirzad, H., F. Taji, and M. Rafieian-Kopaei. 2011. Correlation between antioxidant activity of garlic extracts and WEHI-164 fibrosarcoma tumor growth in BALB/c mice. Journal of Medicinal Food 14 (9):969–74. doi: 10.1089/jmf.2011.1594.
  • Shoji, Y., and H. Nakashima. 2004. Nutraceutics and delivery systems. Journal of Drug Targeting 12 (6):385–91. doi: 10.1080/10611860400003817.
  • Siddhartha, V. T., S. K. S. Pindiprolu, P. K. Chintamaneni, S. Tummala, and S. Nandha Kumar. 2018. RAGE receptor targeted bioconjuguate lipid nanoparticles of diallyl disulfide for improved apoptotic activity in triple negative breast cancer: In vitro studies. Artificial Cells, Nanomedicine, and Biotechnology 46 (2):387–97. doi: 10.1080/21691401.2017.1313267.
  • Sigounas, G., J. Hooker, A. Anagnostou, and M. Steiner. 1997. S-allylmercaptocysteine inhibits cell proliferation and reduces the viability of erythroleukemia, breast, and prostate cancer cell lines . Nutrition and Cancer 27 (2):186–91. doi: 10.1080/01635589709514523.
  • Singh, R., and K. Singh. 2019. Garlic: A spice with wide medicinal actions. Journal of Pharmacognosy and Phytochemistry 8 (1):1349–55.
  • Singh, T., S. Shukla, P. Kumar, V. Wahla, V. K. Bajpai, and I. A. Rather. 2017. Application of nanotechnology in food science: Perception and overview. Frontiers in Microbiology 8:1501. doi: 10.3389/fmicb.2017.01501.
  • Singh, V. K., and D. K. Singh. 2008. Pharmacological effects of garlic (Allium sativum L.). Annual Review of Biomedical Sciences 10 (0):6–26. doi: 10.5016/1806-8774.2008.v10p6.
  • Sobenin, I. A., V. A. Myasoedova, M. I. Iltchuk, D. W. Zhang, and A. N. Orekhov. 2019. Therapeutic effects of garlic in cardiovascular atherosclerotic disease. Chinese Journal of Natural Medicines 17 (10):721–8. doi: 10.1016/S1875-5364(19)30088-3.
  • Sobolewska, D., K. Michalska, I. Podolak, and K. Grabowska. 2016. Steroidal saponins from the genus Allium. Phytochemistry Reviews: Proceedings of the Phytochemical Society of Europe 15:1–35. doi: 10.1007/s11101-014-9381-1.
  • Steiner, M., and W. Li. 2001. Aged garlic extract, a modulator of cardiovascular risk factors: A dose-finding study on the effects of AGE on platelet functions. The Journal of Nutrition 131 (3):980S–4S. doi: 10.1093/jn/131.3.980S.
  • Suleria, H. A. R., M. S. Butt, N. Khalid, S. Sultan, A. Raza, M. Aleem, and M. Abbas. 2015. Garlic (Allium sativum): Diet based therapy of 21st century–A review. Asian Pacific Journal of Tropical Disease 5 (4):271–8. doi: 10.1016/S2222-1808(14)60782-9.
  • Sundaram, S. G., and J. A. Milner. 1996. Diallyl disulfide inhibits the proliferation of human tumor cells in culture. Biochimica et Biophysica Acta (Bba) - Molecular Basis of Disease 1315 (1):15–20. doi: 10.1016/0925-4439(95)00088-7.
  • Szychowski, K. A., K. Rybczyńska-Tkaczyk, K. Gaweł-Bęben, M. Świeca, M. Karaś, A. Jakubczyk, M. Matysiak, U. E. Binduga, and J. Gmiński. 2018. Characterization of active compounds of different garlic (Allium sativum L.) cultivars. Polish Journal of Food and Nutrition Sciences 68 (1):73–81. doi: 10.1515/pjfns-2017-0005.
  • Tadros, T., P. Izquierdo, J. Esquena, and C. Solans. 2004. Formation and stability of nano-emulsions. Advances in Colloid and Interface Science 108-109:303–18. doi: 10.1016/j.cis.2003.10.023.
  • Tang, H., Y. Kong, J. Guo, Y. Tang, X. Xie, L. Yang, Q. Su, and X. Xie. 2013. Diallyl disulfide suppresses proliferation and induces apoptosis in human gastric cancer through Wnt-1 signaling pathway by up-regulation of miR-200b and miR-22. Cancer Letters 340 (1):72–81. doi: 10.1016/j.canlet.2013.06.027.
  • Tang, S., D. Gao, T. Zhao, J. Zhou, and X. Zhao. 2013. An evaluation of the anti-tumor efficacy of oleanolic acid-loaded PEGylated liposomes. Nanotechnology 24 (23):235102. doi: 10.1088/0957-4484/24/23/235102.
  • Thomson, M., and M. Ali. 2003. Garlic [Allium sativum]: A review of its potential use as an anti-cancer agent. Current Cancer Drug Targets 3 (1):67–81. doi: 10.2174/1568009033333736.
  • Torchilin, V. P. 2001. Structure and design of polymeric surfactant-based drug delivery systems. Journal of Controlled Release: Official Journal of the Controlled Release Society 73 (2-3):137–72. doi: 10.1016/S0168-3659(01)00299-1.
  • Torchilin, V. P. 2007. Micellar nanocarriers: Pharmaceutical perspectives. Pharmaceutical Research 24 (1):1–16. doi: 10.1007/s11095-006-9132-0.
  • Torres-Palazzolo, C. A., D. A. Ramírez, V. H. Beretta, and A. B. Camargo. 2021. Matrix effect on phytochemical bioaccessibility. The case of organosulfur compounds in garlic preparations. LWT 136:110301. doi: 10.1016/j.lwt.2020.110301.
  • Tsiaganis, M. C., K. Laskari, and E. Melissari. 2006. Fatty acid composition of Allium species lipids. Journal of Food Composition and Analysis 19 (6-7):620–7. doi: 10.1016/j.jfca.2005.06.003.
  • Üner, M. 2006. Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Their benefits as colloidal drug carrier systems. Die Pharmazie-An International Journal of Pharmaceutical Sciences 61 (5):375–86. doi: 10.1248/jhs.55.946.
  • Vijayakumar, S., B. Malaikozhundan, K. Saravanakumar, E. F. Durán-Lara, M.-H. Wang, and B. Vaseeharan. 2019. Garlic clove extract assisted silver nanoparticle – Antibacterial, antibiofilm, antihelminthic, anti-inflammatory, anticancer and ecotoxicity assessment. Journal of Photochemistry and Photobiology. B, Biology 198:111558. doi: 10.1016/j.jphotobiol.2019.111558.
  • Von White, G., P. Kerscher, R. M. Brown, J. D. Morella, W. McAllister, D. Dean, and C. L. Kitchens. 2012. Green synthesis of robust, biocompatible silver nanoparticles using garlic extract. Journal of Nanomaterials 2012:1–12. doi: 10.1155/2012/730746.
  • Wallace, G. C., C. P. Haar, W. A. Vandergrift, P. Giglio, Y. N. Dixon-Mah, A. K. Varma, S. K. Ray, S. J. Patel, N. L. Banik, and A. Das. 2013. Multi-targeted DATS prevents tumor progression and promotes apoptosis in ectopic glioblastoma xenografts in SCID mice via HDAC inhibition. Journal of Neuro-Oncology 114 (1):43–50. doi: 10.1007/s11060-013-1165-8.
  • Wallock-Richards, D., C. J. Doherty, L. Doherty, D. J. Clarke, M. Place, J. R. Govan, and D. J. Campopiano. 2014. Garlic revisited: Antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacia complex. PLoS One 9 (12):e112726. doi: 10.1371/journal.pone.0112726.
  • Wang, H., X. Li, X. Liu, D. Shen, Y. Qiu, X. Zhang, and J. Song. 2015. Influence of pH, concentration and light on stability of allicin in garlic (Allium sativum L.) aqueous extract as measured by UPLC. Journal of the Science of Food and Agriculture 95 (9):1838–44. doi: 10.1002/jsfa.6884.
  • Wang, H., N. Sun, X. Li, K. Li, J. Tian, and J. Li. 2016. Diallyl trisulfide induces osteosarcoma cell apoptosis through reactive oxygen species-mediated downregulation of the PI3K/Akt pathway. Oncology Reports 35 (6):3648–58. doi: 10.3892/or.2016.4722.
  • Wang, H. C., S. C. Hsieh, J. H. Yang, S. Y. Lin, and L. Y. Sheen. 2012. Diallyl trisulfide induces apoptosis of human basal cell carcinoma cells via endoplasmic reticulum stress and the mitochondrial pathway. Nutrition and Cancer 64 (5):770–80. doi: 10.1080/01635581.2012.676142.
  • Wang, Y. F., J. J. Shao, Z. L. Wang, and Z. X. Lu. 2012. Study of allicin microcapsules in β-cyclodextrin and porous starch mixture. Food Research International 49 (2):641–7. doi: 10.1016/j.foodres.2012.09.033.
  • Wang, Y. L., X. Y. Guo, W. He, R. J. Chen, and R. Zhuang. 2017. Effects of alliin on LPS-induced acute lung injury by activating PPARγ. Microbial Pathogenesis 110:375–9. doi: 10.1016/j.micpath.2017.07.019.
  • Wang, Z., Q. Xia, J. Cui, Y. Diao, and J. Li. 2014. Reversion of P-glycoprotein-mediated multidrug resistance by diallyl trisulfide in a human osteosarcoma cell line. Oncology Reports 31 (6):2720–6. doi: 10.3892/or.2014.3154.
  • Wargovich, M. J. 1987. Diallyl sulfide, a flavor component of garlic (Allium sativum), inhibits dimethylhydrazine-induced colon cancer. Carcinogenesis 8 (3):487–9. doi: 10.1093/carcin/8.3.487.
  • Weisberger, A. S., and J. Pensky. 1957. Tumor-inhibiting effects derived from an active principle of garlic (Allium sativum). Science (New York, N.Y.) 126 (3283):1112–4. doi: 10.1126/science.126.3283.1112-a.
  • Weisberger, A. S., and J. Pensky. 1958. Tumor inhibition by a sulfhydryl-blocking agent related to an active principle of garlic (Allium sativum). Cancer Research 18 (11):1301–8.
  • Woodle, M. C., and D. D. Lasic. 1992. Sterically stabilized liposomes. Biochimica et Biophysica Acta (Bba) - Reviews on Biomembranes 1113 (2):171–99. doi: 10.1016/0304-4157(92)90038-C.
  • Wu, J., S. Zhao, J. Zhang, X. Qu, S. Jiang, Z. Zhong, F. Zhang, Y. Wong, and H. Chen. 2016. Over-expression of survivin is a factor responsible for differential responses of ovarian cancer cells to S-allylmercaptocysteine (SAMC). Experimental and Molecular Pathology 100 (2):294–302. doi: 10.1016/j.yexmp.2016.02.003.
  • Wu, X. J., F. Kassie, and V. Mersch-Sundermann. 2005. The role of reactive oxygen species (ROS) production on diallyl disulfide (DADS) induced apoptosis and cell cycle arrest in human A549 lung carcinoma cells. Mutation Research 579 (1-2):115–24. doi: 10.1016/j.mrfmmm.2005.02.026.
  • Xia, Q., Z. Y. Wang, H. Q. Li, Y. T. Diao, X. L. Li, J. Cui, X. L. Chen, and H. Li. 2012. Reversion of p-glycoprotein-mediated multidrug resistance in human leukemic cell line by diallyl trisulfide. Evidence-Based Complementary and Alternative Medicine: eCAM 2012:719805. doi: 10.1155/2012/719805.
  • Xiao, D., and S. V. Singh. 2006. Diallyl trisulfide, a constituent of processed garlic, inactivates Akt to trigger mitochondrial translocation of BAD and caspase-mediated apoptosis in human prostate cancer cells. Carcinogenesis 27 (3):533–40. doi: 10.1093/carcin/bgi228.
  • Xiao, D., S. Choi, D. E. Johnson, V. G. Vogel, C. S. Johnson, D. L. Trump, Y. J. Lee, and S. V. Singh. 2004. Diallyl trisulfide-induced apoptosis in human prostate cancer cells involves c-Jun N-terminal kinase and extracellular-signal regulated kinase-mediated phosphorylation of Bcl-2. Oncogene 23 (33):5594–606. doi: 10.1038/sj.onc.1207747.
  • Xiao, J., F. Xing, Y. Liu, Y. Lv, X. Wang, M.-T. Ling, H. Gao, S. Ouyang, M. Yang, J. Zhu, et al. 2018. Garlic-derived compound S-allylmercaptocysteine inhibits hepatocarcinogenesis through targeting LRP6/Wnt pathway. Acta Pharmaceutica Sinica. B 8 (4):575–86. doi: 10.1016/j.apsb.2017.10.003.
  • Xiao, X., B. Chen, X. Liu, P. Liu, G. Zheng, F. Ye, H. Tang, and X. Xie. 2014. Diallyl disulfide suppresses SRC/Ras/ERK signaling-mediated proliferation and metastasis in human breast cancer by up-regulating miR-34a. PLoS One 9 (11):e112720. doi: 10.1371/journal.pone.0112720.
  • Xie, F., N. Yao, Y. Qin, Q. Zhang, H. Chen, M. Yuan, J. Tang, X. Li, W. Fan, and Q. Zhang. 2012. Investigation of glucose-modified liposomes using polyethylene glycols with different chain lengths as the linkers for brain targeting. International Journal of Nanomedicine 7:163–75. doi: 10.2147/IJN.S23771.
  • Xiong, T., X. W. Liu, X. L. Huang, X. F. Xu, W. Q. Xie, S. J. Zhang, and J. Tu. 2018. Tristetraprolin: A novel target of diallyl disulfide that inhibits the progression of breast cancer. Oncology Letters 15 (5):7817–27. doi: 10.3892/ol.2018.8299.
  • Xu, J., W. Zhao, Y. Ning, M. Bashari, F. Wu, H. Chen, N. Yang, Z. Jin, B. Xu, L. Zhang, et al. 2013. Improved stability and controlled release of ω3/ω6 polyunsaturated fatty acids by spring dextrin encapsulation. Carbohydrate Polymers 92 (2):1633–40. doi: 10.1016/j.carbpol.2012.11.037.
  • Xu, L., J. Yu, D. Zhai, D. Zhang, W. Shen, L. Bai, Z. Cai, and C. Yu. 2014. Role of JNK activation and mitochondrial Bax translocation in allicin-induced apoptosis in human ovarian cancer SKOV3 cells. Evidence-Based Complementary and Alternative Medicine: eCAM 2014:378684. doi: 10.1155/2014/378684.
  • Xu, Y., D. Su, L. Zhu, S. Zhang, S. Ma, K. Wu, Q. Yuan, and N. Lin. 2018. S-allylcysteine suppresses ovarian cancer cell proliferation by DNA methylation through DNMT1. Journal of Ovarian Research 11 (1):39. doi: 10.1186/s13048-018-0412-1.
  • Xu, Y. S., J. G. Feng, D. Zhang, B. Zhang, M. Luo, D. Su, and N. M. Lin. 2014. S-allylcysteine, a garlic derivative, suppresses proliferation and induces apoptosis in human ovarian cancer cells in vitro. Acta Pharmacol Sin 35 (2):267–74. doi: 10.1038/aps.2013.176.
  • Xu, Z., W. Gu, J. Huang, H. Sui, Z. Zhou, Y. Yang, Z. Yan, and Y. Li. 2005. In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. International Journal of Pharmaceutics 288 (2):361–8. doi: 10.1016/j.ijpharm.2004.10.009.
  • Yang, Y., Y. Long, Y. Wang, K. Ren, M. Li, Z. Zhang, B. Xiang, and Q. He. 2020. Enhanced anti-tumor and anti-metastasis therapy for triple negative breast cancer by CD44 receptor-targeted hybrid self-delivery micelles. International Journal of Pharmaceutics 577:119085. doi: 10.1016/j.ijpharm.2020.119085.
  • Yoo, M., S. Lee, S. Lee, H. Seog, and D. Shin. 2010. Validation of high performance liquid chromatography methods for determination of bioactive sulfur compounds in garlic bulbs. Food Science and Biotechnology 19 (6):1619–26. https://doi.org/10.1016/0731-7085(95)01700-3. doi: 10.1007/s10068-010-0229-1.
  • Yue, L.-J., X.-Y. Zhu, R.-S. Li, H.-J. Chang, B. Gong, C.-C. Tian, C. Liu, Y.-X. Xue, Q. Zhou, T.-S. Xu, et al. 2019. S‑allyl‑cysteine sulfoxide (alliin) alleviates myocardial infarction by modulating cardiomyocyte necroptosis and autophagy. International Journal of Molecular Medicine 44 (5):1943–51. doi: 10.3892/ijmm.2019.4351.
  • Yue, Z., X. Guan, R. Chao, C. Huang, D. Li, P. Yang, S. Liu, T. Hasegawa, J. Guo, and M. Li. 2019. Diallyl disulfide induces apoptosis and autophagy in human osteosarcoma MG-63 cells through the PI3K/Akt/mTOR pathway. Molecules 24 (14):2665. doi: 10.3390/molecules24142665.
  • Zhai, B., C. Zhang, Y. Sheng, C. Zhao, X. He, W. Xu, K. Huang, and Y. Luo. 2018. Hypoglycemic and hypolipidemic effect of S-allyl-cysteine sulfoxide (alliin) in DIO mice. Scientific Reports 8 (1):3527. doi: 10.1038/s41598-018-21421-x.
  • Zhang, Q., X.-T. Li, Y. Chen, J.-Q. Chen, J.-Y. Zhu, Y. Meng, X.-Q. Wang, Y. Li, S.-S. Geng, C.-F. Xie, et al. 2018. Wnt/β-catenin signaling mediates the suppressive effects of diallyl trisulfide on colorectal cancer stem cells. Cancer Chemotherapy and Pharmacology 81 (6):969–77. doi: 10.1007/s00280-018-3565-0.
  • Zhang, W., M. Ha, Y. Gong, Y. Xu, N. Dong, and Y. Yuan. 2010. Allicin induces apoptosis in gastric cancer cells through activation of both extrinsic and intrinsic pathways. Oncology Reports 24 (6):1585–92. doi: 10.3892/or_00001021.
  • Zhang, Y. K., X. H. Zhang, J. M. Li, D. S. Sun, Q. Yang, and D. M. Diao. 2009. A proteomic study on a human osteosarcoma cell line Saos-2 treated with diallyl trisulfide. Anti-Cancer Drugs 20 (8):702–12. doi: 10.1097/CAD.0b013e32832e89c7.
  • Zhang, Y., W. P. Xie, Y. K. Zhang, Y. Q. Chen, D. L. Wang, G. Li, and D. H. Guan. 2018. Experimental study of inhibitory effects of diallyl trisulfide on the growth of human osteosarcoma Saos-2 cells by downregulating expression of glucose-regulated protein 78. OncoTargets and Therapy 11:271–7. doi: 10.2147/OTT.S150933.
  • Zhang, Z., and S. S. Feng. 2006. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials 27 (21):4025–33. doi: 10.1016/j.biomaterials.2006.03.006.
  • Zhang, Z. M., X. Y. Yang, S. H. Deng, X. Wei, and H. Q. Gao. 2007. Anti-tumor effects of polybutylcyanoacrylate nanoparticles of diallyl trisulfide on orthotopic transplantation tumor model of hepatocellular carcinoma in BALB/c nude mice. Chinese Medical Journal 120 (15):1336–42. doi: 10.1186/1741-7015-5-22.
  • Zhao, R., E. Xie, X. Yang, and B. Gong. 2019. Alliin alleviates myocardial ischemia-reperfusion injury by promoting autophagy. Biochemical and Biophysical Research Communications 512 (2):236–43. doi: 10.1016/j.bbrc.2019.03.046.
  • Zheng, H. M., H. B. Li, D. W. Wang, and D. Liu. 2013. Preparation methods for monodispersed garlic oil microspheres in water using the microemulsion technique and their potential as antimicrobials. Journal of Food Science 78 (8):N1301–N1306. doi: 10.1111/1750-3841.12208.
  • Zheng, Y., I. S. Haworth, Z. Zuo, M. S. Chow, and A. H. Chow. 2005. Physicochemical and structural characterization of quercetin-beta-cyclodextrin complexes. Journal of Pharmaceutical Sciences 94 (5):1079–89. doi: 10.1002/jps.20325.
  • Zhu, X., X. Jiang, A. Li, Y. Sun, Y. Liu, X. Sun, X. Feng, S. Li, and Z. Zhao. 2017. S-allylmercaptocysteine suppresses the growth of human gastric cancer xenografts through induction of apoptosis and regulation of MAPK and PI3K/Akt signaling pathways. Biochemical and Biophysical Research Communications 491 (3):821–6. doi: 10.1016/j.bbrc.2017.06.107.
  • Zou, Y., Y. Song, W. Yang, F. Meng, H. Liu, and Z. Zhong. 2014. Galactose-installed photo-crosslinked pH-sensitive degradable micelles for active targeting chemotherapy of hepatocellular carcinoma in mice. Journal of Controlled Release: Official Journal of the Controlled Release Society 193:154–61. doi: 10.1016/j.jconrel.2014.05.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.