4,366
Views
56
CrossRef citations to date
0
Altmetric
Reviews

Food additives: From functions to analytical methods

, , , , &

References

  • Abdel-Moemin, A. R., J. M. Regenstein, and M. K. Abdel-Rahman. 2018. New Food Products for Sensory-Compromised Situations. Comprehensive Reviews in Food Science and Food Safety 17 (6):1625–39. doi: 10.1111/1541-4337.12399.
  • Abid, M., H. Yaich, H. Hidouri, H. Attia, and M. A. Ayadi. 2018. Effect of substituted gelling agents from pomegranate peel on colour, textural and sensory properties of pomegranate jam. Food Chemistry 239:1047–54. doi: 10.1016/j.foodchem.2017.07.006.
  • Aghdam, A. A., M. R. Majidi, H. Veladi, and Y. Omidi. 2019. Microfluidic-based separation and detection of synthetic antioxidants by integrated gold electrodes followed by HPLC-DAD. Microchemical Journal 149:104059. doi: 10.1016/j.microc.2019.104059.
  • Ai, Y.-J., P. Liang, Y.-X. Wu, Q.-M. Dong, J.-B. Li, Y. Bai, B.-J. Xu, Z. Yu, and D. Ni. 2018. Rapid qualitative and quantitative determination of food colorants by both Raman spectra and Surface-enhanced Raman Scattering (SERS). Food Chemistry 241:427–33. doi: 10.1016/j.foodchem.2017.09.019.
  • Amchova, P., H. Kotolova, and J. Ruda-Kucerova. 2015. Health safety issues of synthetic food colorants. Regulatory Toxicology and Pharmacology : RTP 73 (3):914–22. doi: 10.1016/j.yrtph.2015.09.026.
  • Anand, S. P., and N. Sati. 2013. Artificial preservatives and their harmful effects: Looking toward nature for safer alternatives. International Journal of Pharmaceutical Sciences and Research 4 (7):2496.
  • Anderson, D. M. W. 1986. Evidence for the safety of gum arabic (Acacia senegal (L.) Willd.) as a food additive-a brief review. Food Additives and Contaminants 3 (3):225–30. doi: 10.1080/02652038609373584.
  • Antczak-Chrobot, A., P. Bąk, and M. Wojtczak. 2018. The use of ionic chromatography in determining the contamination of sugar by-products by nitrite and nitrate. Food Chemistry 240:648–54. doi: 10.1016/j.foodchem.2017.07.158.
  • Bathinapatla, A., S. Kanchi, P. Singh, M. I. Sabela, and K. Bisetty. 2015. Fabrication of copper nanoparticles decorated multiwalled carbon nanotubes as a high performance electrochemical sensor for the detection of neotame. Biosensors & Bioelectronics 67:200–7. doi: 10.1016/j.bios.2014.08.017.
  • Bavol, D., A. Economou, J. Zima, J. Barek, and H. Dejmkova. 2018. Simultaneous determination of tert-butylhydroquinone, propyl gallate, and butylated hydroxyanisole by flow-injection analysis with multiple-pulse amperometric detection. Talanta 178:231–6. doi: 10.1016/j.talanta.2017.09.032.
  • Becerra-Herrera, M., V. Miranda, D. Arismendi, and P. Richter. 2018. Chemometric optimization of the extraction and derivatization of parabens for their determination in water samples by rotating-disk sorptive extraction and gas chromatography mass spectrometry. Talanta 176:551–7. doi: 10.1016/j.talanta.2017.08.071.
  • Branen, A. L. 1975. Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. Journal of the American Oil Chemists' Society 52 (2):59. doi: 10.1007/BF02901825.
  • Cao, W., Y. Wang, Q. Zhuang, L. Wang, and Y. Ni. 2019. Developing an electrochemical sensor for the detection of tert-butylhydroquinone. Sensors and Actuators B: Chemical 293:321–8. doi: 10.1016/j.snb.2019.05.012.
  • Carocho, M., M. F. Barreiro, P. Morales, and I. C. Ferreira. 2014. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Comprehensive Reviews in Food Science and Food Safety 13 (4):377–99. doi: 10.1111/1541-4337.12065.
  • Carocho, M., and I. C. Ferreira. 2013. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 51:15–25. doi: 10.1016/j.fct.2012.09.021.
  • Carocho, M., P. Morales, and I. C. Ferreira. 2015. Natural food additives: Quo vadis? Trends in Food Science & Technology 45 (2):284–95. doi: 10.1016/j.tifs.2015.06.007.
  • Carocho, M., P. Morales, and I. C. Ferreira. 2018. Antioxidants: Reviewing the chemistry, food applications, legislation and role as preservatives. Trends in Food Science & Technology 71:107–20. doi: 10.1016/j.tifs.2017.11.008.
  • Chen, H.-C., C.-H. Chen, C.-S. Hsu, T.-L. Chen, M.-Y. Liao, C.-C. Wang, C.-F. Tsai, and H. M. Chen. 2018. In situ creation of surface-enhanced raman scattering active Au-AuO x nanostructures through electrochemical process for pigment detection. ACS Omega 3 (12):16576–84. doi: 10.1021/acsomega.8b02677.
  • Clarke, A. D. 2017. Measurement of total sodium alginate in restructured fish products using fourier transform infrared spectroscopy. EC Nutrition 11:33–45.
  • Codex Alimentarius Commission. 1989. Class names and the international numbering system for food additives. CAC/GL :36–1989.
  • Coultate, T., and R. S. Blackburn. 2018. Food colorants: Their past, present and future. Coloration Technology 134 (3):165–86. doi: 10.1111/cote.12334.
  • de Jesus, F. F. S., A. G. Coelho, L. de Assis Pallos, J. A. F. da Silva, D. Daniel, and D. P. de Jesus. 2018. Simple and fast method for simultaneous determination of propionate and sorbate in bread by capillary electrophoresis with UV spectrophotometric detection. Journal of Food Composition and Analysis 72:93–6. doi: 10.1016/j.jfca.2018.06.010.
  • de Lima, L. F., C. C. Maciel, A. L. Ferreira, J. C. de Almeida, and M. Ferreira. 2019. Nickel (II) phthalocyanine-tetrasulfonic-Au nanoparticles nanocomposite film for tartrazine electrochemical sensing. Materials Letters 262:127186.
  • Deroco, P. B., R. A. Medeiros, R. C. Rocha-Filho, and O. Fatibello-Filho. 2018. Selective and simultaneous determination of indigo carmine and allura red in candy samples at the nano-concentration range by flow injection analysis with multiple pulse amperometric detection. Food Chemistry 247:66–72. doi: 10.1016/j.foodchem.2017.12.006.
  • Devi, R., S. Gogoi, S. Barua, H. S. Dutta, M. Bordoloi, and R. Khan. 2019. Electrochemical detection of monosodium glutamate in foodstuffs based on Au@MoS2/chitosan modified glassy carbon electrode. Food Chemistry 276:350–7. doi: 10.1016/j.foodchem.2018.10.024.
  • Elekima, I., O. E. Nwachuku, D. Ukwukwu, H. U. Nwanjo, and N. Nduka. 2019. Biochemical and histological changes associated with azo food dye (Tartrazine) in male albino rats. Asian Journal of Research in Biochemistry 5:1–14. doi: 10.9734/ajrb/2019/v5i130083.
  • Emam, S., A. Adedoyin, X. Geng, M. Zaeimbashi, J. Adams, A. Ekenseair, E. Podlaha-Murphy, and N. X. Sun. 2018. A molecularly imprinted electrochemical gas sensor to sense butylated hydroxytoluene in air. Journal of Sensors 2018:1–9. doi: 10.1155/2018/3437149.
  • Europe Food Safety Authority (EFSA). 2014. Scientific opinion on the re-evaluation of indigo carmine (E 132) as a food additive. EFSA. Journal 12 (7:3768):1–57.
  • Guadalupe, C., A. F. Fernanda Souza de Jesus, L. de Assis Pallos, J. Alberto Fracassi da Silva, and D. Pereira de Jesus. 2018. Capillary electrophoresis with capacitively coupled contactless conductivity detection for the determination of propionate and sorbate in bread. Journal of Separation Science 41 (20):3932–7. doi: 10.1002/jssc.201800705.
  • Heider, E. C., D. Valenti, R. L. Long, A. Garbou, M. Rex, and J. K. Harper. 2018. Quantifying sucralose in a water-treatment wetlands: Service-learning in the analytical chemistry laboratory. Journal of Chemical Education 95 (4):535–42. doi: 10.1021/acs.jchemed.7b00490.
  • He, Q., J. Liu, X. Liu, G. Li, P. Deng, and J. Liang. 2018b. Manganese dioxide Nanorods/electrochemically reduced graphene oxide nanocomposites modified electrodes for cost-effective and ultrasensitive detection of Amaranth. Colloids and Surfaces. B, Biointerfaces 172:565–72. doi: 10.1016/j.colsurfb.2018.09.005.
  • He, Q., J. Liu, X. Liu, G. Li, P. Deng, J. Liang, and D. Chen. 2018a. Sensitive and selective detection of tartrazine based on TiO2-electrochemically reduced graphene oxide composite-modified electrodes. Sensors 18 (6):1911. doi: 10.3390/s18061911.
  • Ishidate, M., Jr, T. Sofuni, K. Yoshikawa, M. Hayashi, T. Nohmi, M. Sawada, and A. Matsuoka. 1984. Primary mutagenicity screening of food additives currently used in Japan. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 22 (8):623–36. doi: 10.1016/0278-6915(84)90271-0.
  • Ito, N., S. Fukushima, A. Hagiwara, M. Shibata, and T. Ogiso. 1983. Carcinogenicity of butylated hydroxyanisole in F344 rats. Journal of the National Cancer Institute 70 (2):343–52.
  • Jagne, J., D. White, and F. Jefferson. 2016. Endocrine-disrupting chemicals: Adverse effects of bisphenol A and parabens to women’s health. Water, Air, & Soil Pollution 227 (6):182. doi: 10.1007/s11270-016-2785-3.
  • Javanmardi, F., J. Rahmani, F. Ghiasi, H. Hashemi Gahruie, and A. Mousavi Khaneghah. 2019. The Association between the Preservative Agents in Foods and the Risk of Breast Cancer. Nutrition and Cancer 71 (8):1229–40. doi:10.1080/01635581.2019.1608266. PMC:31044613
  • Jiang, K., D. Nie, Q. Huang, K. Fan, Z. Tang, Y. Wu, and Z. Han. 2019. Thin-layer MoS2 and thionin composite-based electrochemical sensing platform for rapid and sensitive detection of zearalenone in human biofluids. Biosensors & Bioelectronics 130:322–9. doi: 10.1016/j.bios.2019.02.003.
  • Joshi, V., and K. Pancharatna. 2019. Food colorant Sunset Yellow (E110) intervenes developmental profile of zebrafish (Danio rerio). Journal of Applied Toxicology: JAT 39 (4):571–81. doi: 10.1002/jat.3747.
  • Karimi-Maleh, H., R. Farahmandfar, R. Hosseinpour, J. Alizadeh, and A. Abbaspourrad. 2019. Determination of ferulic acid in the presence of butylated hydroxytoluene as two phenolic antioxidants using a highly conductive food nanostructure electrochemical sensor. Chemical Papers 73 (10):2441–7. doi:10.1007/s11696-019-00793-y.
  • Kibi, M., S. Nishiumi, T. Kobayashi, Y. Kodama, and M. Yoshida. 2019. GC/MS and LC/MS-based tissue metabolomic analysis detected increased levels of antioxidant metabolites in colorectal cancer. Kobe Journal of Medical Sciences 65 (1):E19.
  • Kivilompolo, M., V. Obůrka, and T. Hyötyläinen. 2007. Comparison of GC–MS and LC–MS methods for the analysis of antioxidant phenolic acids in herbs. Analytical and Bioanalytical Chemistry 388 (4):881–7. doi: 10.1007/s00216-007-1298-8.
  • Le, A. V., Y. L. Su, and S. H. Cheng. 2019. A novel electrochemical assay for aspartame determination via nucleophilic reactions with caffeic acid ortho-quinone. Electrochimica Acta 300:67–76. doi: 10.1016/j.electacta.2019.01.020.
  • Lechner, M., B. Reiter, and E. Lorbeer. 1999. Determination of tocopherols and sterols in vegetable oils by solid-phase extraction and subsequent capillary gas chromatographic analysis. Journal of Chromatography. A 857 (1–2):231–8. doi: 10.1016/s0021-9673(99)00751-7.
  • Lin, S. L., J. W. Hsu, and M. R. Fuh. 2019. Simultaneous determination of nitrate and nitrite in vegetables by poly (vinylimidazole-co-ethylene dimethacrylate) monolithic capillary liquid chromatography with UV detection. Talanta 205:120082. doi: 10.1016/j.talanta.2019.06.082.
  • Lipskikh, O. I., E. I. Korotkova, Y. P. Khristunova, J. Barek, and B. Kratochvil. 2018. Sensors for voltammetric determination of food azo dyes-A critical review. Electrochimica Acta 260:974–85. doi: 10.1016/j.electacta.2017.12.027.
  • Liu, L., Z. Mi, H. Li, C. Li, Q. Hu, and F. Feng. 2019. Highly selective and sensitive detection of amaranth by using carbon dots-based nanosensor. RSC Advances 9 (45):26315–20. doi: 10.1039/C9RA04494A.
  • Liu, C. C., Y. N. Wang, L. M. Fu, and K. L. Chen. 2018. Microfluidic paper-based chip platform for benzoic acid detection in food. Food Chemistry 249:162–7. doi: 10.1016/j.foodchem.2018.01.004.
  • Liu, Y., X. Wu, Y. Tahara, H. Ikezaki, and K. Toko. 2020. A quantitative method for Acesulfame K using the taste sensor. Sensors 20 (2):400. doi: 10.3390/s20020400.
  • Li, Q., J. Yang, X. Tan, Z. Zhang, X. Hu, and M. Yang. 2016. A simple and rapid resonance Rayleigh scattering method for detection of indigo carmine in soft drink. Luminescence: The Journal of Biological and Chemical Luminescence 31 (5):1152–7. doi: 10.1002/bio.3085.
  • Li, L., H. Zheng, L. Guo, L. Qu, and L. Yu. 2019a. Construction of novel electrochemical sensors based on bimetallic nanoparticle functionalized graphene for determination of sunset yellow in soft drink. Journal of Electroanalytical Chemistry 833:393–400. doi: 10.1016/j.jelechem.2018.11.059.
  • Li, L., H. Zheng, L. Guo, L. Qu, and L. Yu. 2019b. A sensitive and selective molecularly imprinted electrochemical sensor based on Pd-Cu bimetallic alloy functionalized graphene for detection of amaranth in soft drink. Talanta 197:68–76. doi: 10.1016/j.talanta.2019.01.009.
  • Lorenzo, J. M., M. Pateiro, R. Domínguez, F. J. Barba, P. Putnik, D. B. Kovačević, A. Shpigelman, D. Granato, and D. Franco. 2018. Berries extracts as natural antioxidants in meat products: A review. Food Research International (Ottawa, ON) 106:1095–104. doi: 10.1016/j.foodres.2017.12.005.
  • Manjunatha, J. G. G. 2018. A novel poly (glycine) biosensor towards the detection of indigo carmine: A voltammetric study. Journal of Food and Drug Analysis 26 (1):292–9. doi: 10.1016/j.jfda.2017.05.002.
  • Martyn, D., M. Darch, A. Roberts, H. Y. Lee, T. Yaqiong Tian, N. Kaburagi, and P. Belmar. 2018. Low-/no-calorie sweeteners: A review of global intakes. Nutrients 10 (3):357. doi: 10.3390/nu10030357.
  • McClements, D. J., and S. M. Jafari. 2018. Improving emulsion formation, stability and performance using mixed emulsifiers: A review. Advances in Colloid and Interface Science 251:55–79. doi: 10.1016/j.cis.2017.12.001.
  • Meher, A. K., N. Labhsetwar, and A. Bansiwal. 2018. An improved method for direct estimation of free cyanide in drinking water by ion chromatography-pulsed amperometry detection (IC-PAD) on gold working electrode. Food Chemistry 240:131–8. doi: 10.1016/j.foodchem.2017.07.041.
  • Nair, M. S., D. V. Nair, A. K. Johny, and K. Venkitanarayanan. 2020. Use of food preservatives and additives in meat and their detection techniques. In Meat quality analysis, 187–213. UK: Elsevier Science.
  • Nguyen, T. H., and A. L. Waterhouse. 2019. A production-accessible method: Spectrophotometric iron speciation in wine using ferrozine and ethylenediaminetetraacetic acid. Journal of Agricultural and Food Chemistry 67 (2):680–7. doi: 10.1021/acs.jafc.8b04497.
  • Ntrallou, K., H. Gika, and E. Tsochatzis. 2020. Analytical and sample preparation techniques for the determination of food colorants in food matrices. Foods 9 (1):58. doi: 10.3390/foods9010058.
  • O’Donnell, K. 2012. Aspartame, neotame and advantame. In Sweeteners and Sugar Alternatives in Food Technology, 117–36.
  • Oellig, C., K. Link, and W. Schwack. 2020. Characterization of E 472 food emulsifiers by high-performance thin-layer chromatography with fluorescence detection and mass spectrometry. Journal of Chromatography A 1618:460874. doi: 10.1016/j.chroma.2020.460874.
  • Oplatowska-Stachowiak, M, and C. T. Elliott. 2017. Food colors: Existing and emerging food safety concerns. Critical Reviews in Food Science and Nutrition 57 (3):524–48. doi:10.1080/10408398.2014.889652.
  • Ou, Y., X. Wang, K. Lai, Y. Huang, B. A. Rasco, and Y. Fan. 2018. Gold nanorods as surface-enhanced Raman spectroscopy substrates for rapid and sensitive analysis of allura red and sunset yellow in beverages. Journal of Agricultural and Food Chemistry 66 (11):2954–61. doi: 10.1021/acs.jafc.8b00007.
  • Öztekin, N. 2018. Simultaneous determination of benzoic acid and sorbic acid in food products by capillary electrophoresis. Food and Health 4 (3):176–82.
  • Papetti, A., and R. Colombo. 2019. High-performance capillary electrophoresis for food quality evaluation. In Evaluation technologies for food quality, 301–77. Cambridge, UK: Elsevier.
  • Parthasarathy, D. K., and N. S. Bryan. 2012. Sodium nitrite: The “cure” for nitric oxide insufficiency. Meat Science 92 (3):274–9. doi: 10.1016/j.meatsci.2012.03.001.
  • Pedroso, M. M., M. V. Foguel, D. H. S. Silva, M. D. P. T. Sotomayor, and H. Yamanaka. 2017. Electrochemical sensor for dodecyl gallate determination based on electropolymerized molecularly imprinted polymer. Sensors and Actuators B: Chemical 253:180–6. doi: 10.1016/j.snb.2017.06.127.
  • Piri, S., F. Piri, M. R. Yaftian, and A. Zamani. 2018. Imprinted Azorubine electrochemical sensor based upon composition of MnO2 and 1-naphthylamine on graphite nanopowder. Journal of the Iranian Chemical Society 15 (12):2713–20. doi: 10.1007/s13738-018-1459-z.
  • Poms, R. E., C. L. Klein, and E. Anklam. 2004. Methods for allergen analysis in food: A review. Food Additives and Contaminants 21 (1):1–31. doi: 10.1080/02652030310001620423.
  • Riman, D., M. I. Prodromidis, D. Jirovsky, and J. Hrbac. 2019. Low-cost pencil graphite-based electrochemical detector for HPLC with near-coulometric efficiency. Sensors and Actuators B: Chemical 296:126618. doi: 10.1016/j.snb.2019.05.095.
  • Roca-Saavedra, P., V. Mendez-Vilabrille, J. M. Miranda, C. Nebot, A. Cardelle-Cobas, C. M. Franco, and A. Cepeda. 2018. Food additives, contaminants and other minor components: Effects on human gut microbiota-a review. Journal of Physiology and Biochemistry 74 (1):69–83. doi: 10.1007/s13105-017-0564-2.
  • Rodero, A. B., L. de Souza Rodero, and R. Azoubel. 2009. Toxicity of Sucralose in Humans: A Review. International Journal of Morphology 27 (1): 239–244. doi: 10.4067/S0717-95022009000100040.
  • Seyinde, D. O., I. P. Ejidike, and S. Ayejuyo. 2019. HPLC determination of benzoic acid, saccharin, and caffeine in carbonated soft drinks. International Journal of ChemTech Research 12 (4):15–23. doi: 10.20902/IJCTR.2019.120403.
  • Sierra-Rosales, P., C. Toledo-Neira, and J. A. Squella. 2017. Electrochemical determination of food colorants in soft drinks using MWCNT-modified GCEs. Sensors and Actuators B: Chemical 240:1257–64. doi: 10.1016/j.snb.2016.08.135.
  • Silva, T. A., A. Wong, and O. Fatibello-Filho. 2019. Electrochemical sensor based on ionic liquid and carbon black for voltammetric determination of Allura red colorant at nanomolar levels in soft drink powders. Talanta 209: 120588.
  • Sivasankaran, U., and K. G. Kumar. 2019. Communication—Electrochemical sensing of synthetic antioxidant propyl gallate: A cost effective strategy using nanoparticles. Journal of the Electrochemical Society 166 (2):B92–B94. doi: 10.1149/2.0791902jes.
  • Sivasankaran, U., J. Radecki, H. Radecka, and K. Girish Kumar. 2019. Copper nanoclusters: An efficient fluorescence sensing platform for quinoline yellow. Luminescence: The Journal of Biological and Chemical Luminescence 34 (2):243–8. doi: 10.1002/bio.3601.
  • Sivasankaran, U., A. E. Vikraman, D. Thomas, and K. G. Kumar. 2016. Nanomolar level determination of octyl gallate in fats and oils. Food Analytical Methods 9 (7):2115–23. doi: 10.1007/s12161-015-0356-7.
  • Squissato, A. L., E. M. Richter, and R. A. Munoz. 2019. Voltammetric determination of copper and tert-butylhydroquinone in biodiesel: A rapid quality control protocol. Talanta 201:433–40. doi: 10.1016/j.talanta.2019.04.030.
  • Stefan-van Staden, R. I., A. Moscalu-Lungu, and J. F. van Staden. 2019. Pattern recognition of sweeteners in biological fluids, beverages, and ketchup using stochastic sensors. Electroanalysis 31:1–8.
  • Sýs, M., B. Švecová, I. Švancara, and R. Metelka. 2017. Determination of vitamin E in margarines and edible oils using square wave anodic stripping voltammetry with a glassy carbon paste electrode. Food Chemistry 229:621–7. doi: 10.1016/j.foodchem.2017.02.068.
  • Taghdisi, S. M., N. M. Danesh, M. A. Nameghi, M. Ramezani, M. Alibolandi, and K. Abnous. 2019. An electrochemical sensing platform based on ladder-shaped DNA structure and label-free aptamer for ultrasensitive detection of ampicillin. Biosensors & Bioelectronics 133:230–5. doi: 10.1016/j.bios.2019.03.044.
  • Teixeira, A. Z. A. 2018. Sodium content and food additives in major brands of Brazilian children’s foods. Ciência & Saúde Coletiva 23 (12):4065–75. doi: 10.1590/1413-812320182312.21812016.
  • Tekin Pulatsü, E., S. Sahin, and G. Sumnu. 2018. Characterization of different double-emulsion formulations based on food-grade emulsifiers and stabilizers. Journal of Dispersion Science and Technology 39 (7):996–1002. doi: 10.1080/01932691.2017.1379021.
  • Tezcan, F. 2018. A sample stacking-capillary electrophoresis method for simultaneous determination of nitrate and thiocyanate ions of ultra-heat-treated milk samples. Turkish Journal of Chemistry 42 (4):1184–90. doi: 10.3906/kim-1801-15.
  • Timofeeva, I., D. Kanashina, K. Stepanova, and A. Bulatov. 2019. A simple and highly-available microextraction of benzoic and sorbic acids in beverages and soy sauce samples for high performance liquid chromatography with ultraviolet detection. Journal of Chromatography. A 1588:1–7. doi: 10.1016/j.chroma.2018.12.030.
  • Tiwari, S., and M. K. Deb. 2019. Modified silver nanoparticles-enhanced single drop microextraction of tartrazine in food samples coupled with diffuse reflectance Fourier transform infrared spectroscopic analysis. Analytical Methods 11 (28):3552–62. doi: 10.1039/C9AY00713J.
  • Tran, Q. T., T. T. Phung, Q. T. Nguyen, T. G. Le, and C. Lagrost. 2019. Highly sensitive and rapid determination of sunset yellow in drinks using a low-cost carbon material-based electrochemical sensor. Analytical and Bioanalytical Chemistry 411 (28):7539–49. doi: 10.1007/s00216-019-02155-9.
  • Urdea, M., L. A. Penny, S. S. Olmsted, M. Y. Giovanni, P. Kaspar, A. Shepherd, P. Wilson, C. A. Dahl, S. Buchsbaum, G. Moeller, et al. 2006. Requirements for high impact diagnostics in the developing world. Nature 444 (S1):73–9. doi: 10.1038/nature05448.
  • Van der Heijden, C. A., P. J. C. M. Janssen, and J. J. T. W. A. Strik. 1986. Toxicology of gallates: A review and evaluation. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 24 (10–11):1067–70. doi: 10.1016/0278-6915(86)90290-5.
  • Van Esch, G. J. 1986. Toxicology of tert-butylhydroquinone (TBHQ). Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 24 (10–11):1063–5. doi: 10.1016/0278-6915(86)90289-9.
  • Van Overmeire, I., K. Vrijens, T. Nawrot, A. Van Nieuwenhuyse, J. Van Loco, and T. Reyns. 2019. Simultaneous determination of parabens, bisphenols and alkylphenols in human placenta by ultra-high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1121:96–102. doi: 10.1016/j.jchromb.2019.05.012.
  • Vikraman, A. E., Z. Rasheed, L. Rajith, L. A. Lonappan, and G. K. Krishnapillai. 2013. MWCNT-modified gold electrode sensor for the determination of propyl gallate in vegetable oils. Food Analytical Methods 6 (3):775–80. doi: 10.1007/s12161-012-9485-4.
  • Voss, S., E. Newman, and J. P. Miller-Schulze. 2019. Quantification of sucralose in groundwater well drinking water by silylation derivatization and gas chromatography-mass spectrometry. Analytical Methods 11 (21):2790–9. doi: 10.1039/C9AY00442D.
  • Walton, K., R. Walker, J. J. van de Sandt, J. V. Castell, A. G. Knapp, G. Kozianowski, M. Roberfroid, and B. Schilter. 1999. The application of in vitro data in the derivation of the acceptable daily intake of food additives. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 37 (12):1175–97. doi: 10.1016/s0278-6915(99)00107-6.
  • Wiley, D., and C. N. Y. Nee. 2020. Food ingredients. In Food and Society, 377–91.Elsevier: UK.
  • Williams, G. M., M. J. Iatropoulos, and J. Whysner. 1999. Safety assessment of butylated hydroxyanisole and butylated hydroxytoluene as antioxidant food additives. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 37 (9–10):1027–38. doi: 10.1016/S0278-6915(99)00085-X.
  • Wissgott, U., and K. Bortlik. 1996. Prospects for new natural food colorants. Trends in Food Science & Technology 7 (9):298–302. doi: 10.1016/0924-2244(96)20007-X.
  • Wu, L., W. Yin, K. Tang, D. Li, K. Shao, Y. Zuo, J. Ma, J. Liu, and H. Han. 2016. Enzymatic biosensor of horseradish peroxidase immobilized on Au-Pt nanotube/Au-graphene for the simultaneous determination of antioxidants. Analytica Chimica Acta 933:89–96. doi: 10.1016/j.aca.2016.06.020.
  • Xie, Y., T. Chen, Y. Guo, Y. Cheng, H. Qian, and W. Yao. 2019. Rapid SERS detection of acid orange II and brilliant blue in food by using Fe3O4@Au core–shell substrate. Food Chemistry 270:173–80. doi: 10.1016/j.foodchem.2018.07.065.
  • Yamjala, K., M. S. Nainar, and N. R. Ramisetti. 2016. Methods for the analysis of azo dyes employed in food industry-A review. Food Chemistry 192:813–24. doi: 10.1016/j.foodchem.2015.07.085.
  • Yao, Y., W. Wang, K. Tian, W. M. Ingram, J. Cheng, L. Qu, H. Li, and C. Han. 2018. Highly reproducible and sensitive silver nanorod array for the rapid detection of Allura Red in candy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 195:165–71. doi: 10.1016/j.saa.2018.01.072.
  • Yue, X., X. Luo, Z. Zhou, and Y. Bai. 2019. Selective electrochemical determination of tertiary butylhydroquinone in edible oils based on an in-situ assembly molecularly imprinted polymer sensor. Food Chemistry 289:84–94. doi: 10.1016/j.foodchem.2019.03.044.
  • Zou, Q., Y. Yao, W. Wang, J. Li, C. Yan, and C. Han. 2018. Study on detection of pigment Amaranth based on surface-enhanced Raman scattering. In 2018 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), pp. 1–3. IEEE. doi: 10.1109/CSQRWC.2018.8455384.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.