424
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Advances on delta 5-unsaturated-polymethylene-interrupted fatty acids: Resources, biosynthesis, and benefits

ORCID Icon, , , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Acheampong, A., N. Leveque, A. Tchapla, and S. Heron. 2011. Simple complementary liquid chromatography and mass spectrometry approaches for the characterization of triacylglycerols in Pinus koraiensis seed oil. Journal of Chromatography A 1218 (31):5087–100. doi: 10.1016/j.chroma.2011.05.064.
  • Asset, G., E. L. Baugé, R. Wolff, J. C. Fruchart, and J. Dallongeville. 2001. Effects of dietary maritime pine seed oil on lipoprotein metabolism and atherosclerosis development in mice expressing human apolipoprotein B. European Journal of Nutrition 40 (6):268–74. doi: 10.1007/s394-001-8355-6.
  • Asset, G., B. Staels, R. L. Wolff, E. Baugé, Z. Madj, J. C. Fruchart, and J. Dallongeville. 1999. Effects of Pinus pinaster and Pinus koraiensis seed oil supplementation on lipoprotein metabolism in the rat. Lipids 34 (1):39–44. doi: 10.1007/s11745-999-335-2.
  • Barnathan, G. 2009. Non-methylene-interrupted fatty acids from marine invertebrates: Occurrence, characterization and biological properties. Biochimie 91 (6):671–8. doi: 10.1016/j.biochi.2009.03.020.
  • Bendini, A., S. Barbieri, E. Valli, K. Buchecker, M. Canavari, and T. G. Toschi. 2011. Quality evaluation of cold pressed sunflower oils by sensory and chemical analysis. European Journal of Lipid Science and Technology 113 (11):1375–84. doi: 10.1002/ejlt.201100095.
  • Berger, A., and J. Remmereit. 2017. WO2017048774-A1; US2018250256-A1.
  • Bhuiya, M. M. K., M. Rasul, M. Khan, N. Ashwath, and M. Mofijur. 2020. Comparison of oil extraction between screw press and solvent (n-hexane) extraction technique from beauty leaf (Calophyllum inophyllum L.) feedstock. Industrial Crops and Products 144:112024. doi: 10.1016/j.indcrop.2019.112024.
  • Blaise, P., V. Tropini, M. Farines, and R. L. Wolff. 1997. Positional distribution of Δ5-acids in triacylglycerols from conifer seeds as determined by partial chemical cleavage. Journal of the American Oil Chemists' Society 74 (2):165–8. doi: 10.1007/s11746-997-0163-4.
  • Calder, P. C. 2015. Comment on Christiansen et al.: When food met pharma. The British Journal of Nutrition 114 (8):1109–10. doi: 10.1017/S0007114515002809.
  • Carballeira, N. M., J. E. Betancourt, E. A. Orellano, and F. A. González. 2002. Total synthesis and biological evaluation of (5Z,9Z)-5,9-hexadecadienoic acid, an inhibitor of human topoisomerase I. Journal of Natural Products 65 (11):1715–8. doi:10.1021/np0202576. PMID:12444712
  • Carballeira, N. M., J. E. Betancourt, E. A. Orellano, and F. A. Gonzalez. 2002. Total synthesis and biological evaluation of (5Z,9Z)-5,9-hexadecadienoic acid, an inhibitor of human topoisomerase I. Journal of Natural Products 65 (11):1715–8. doi: 10.1021/np0202576.
  • Carballeira, N. M., A. Emiliano, and R. Morales. 1994. Positional distribution of octadecadienoic acids in sponge phosphatidylethanolamines. Lipids 29 (7):523–5. doi: 10.1007/BF02578251.
  • Carballeira, N. M., and J. R. Medina. 1994. New delta 5,9 fatty acids in the phospholipids of the sea anemone Stoichactis helianthus . Journal of Natural Products 57 (12):1688–95. doi: 10.1021/np50114a011.
  • Carballeira, N. M., and M. Reye. 1995. Identification of a new 6-bromo-5,9-eicosadienoic acid from the anemone Condylactis gigantea and the zoanthid Palythoa caribaeorum. Journal of Natural Products 58 (11):1689–94. doi: 10.1021/np50125a007.
  • Castro, M. D. L. d., and F. Priego-Capote. 2010. Soxhlet extraction: Past and present panacea. Journal of Chromatography. A 1217 (16):2383–9. doi: 10.1016/j.chroma.2009.11.027.
  • Chen, F., Q. Zhang, H. Gu, and L. Yang. 2016. An approach for extraction of kernel oil from Pinus pumila using homogenate-circulating ultrasound in combination with an aqueous enzymatic process and evaluation of its antioxidant activity. Journal of Chromatography. A 1471:68–79. doi: 10.1016/j.chroma.2016.10.037.
  • Chen, S. J., L. T. Chuang, J. S. Liao, W. C. Huang, and H. H. Lin. 2015. Phospholipid incorporation of non-methylene-interrupted fatty acids (NMIFA) in murine microglial BV-2 cells reduces pro-Inflammatory mediator production. Inflammation 38 (6):2133–45. doi: 10.1007/s10753-015-0196-z.
  • Chen, S. J., C. P. Hsu, C. W. Li, J. H. Lu, and L. T. Chuang. 2011. Pinolenic acid inhibits human breast cancer MDA-MB-231 cell metastasis in vitro. Food Chemistry 126 (4):1708–15. doi: 10.1016/j.foodchem.2010.12.064.
  • Chen, S. J., W. C. Huang, T. T. Yang, J. H. Lu, and L. T. Chuang. 2012. Incorporation of sciadonic acid into cellular phospholipids reduces pro-inflammatory mediators in murine macrophages through NF-κB and MAPK signaling pathways. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 50 (10):3687–95. doi: 10.1016/j.fct.2012.07.057.
  • Christiansen, E., K. R. Watterson, C. J. Stocker, E. Sokol, L. Jenkins, K. Simon, M. Grundmann, R. K. Petersen, E. T. Wargent, B. D. Hudson, et al. 2015. Activity of dietary fatty acids on FFA1 and FFA4 and characterisation of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases. The British Journal of Nutrition 113 (11):1677–88. doi: 10.1017/S000711451500118X.
  • Chuang, L. T., P.-J. Tsai, C. L. Lee, and Y. S. Huang. 2009. Uptake and incorporation of pinolenic acid reduces n-6 polyunsaturated fatty acid and downstream prostaglandin formation in murine macrophage. Lipids 44 (3):217–24. doi: 10.1007/s11745-008-3276-0.
  • Cook, H. W., D. M. Byers, F. B. S. C. Palmer, M. W. Spence, H. Rakoff, S. M. Duval, and E. A. Emken. 1991. Alternate pathways in the desaturation and chain elongation of linolenic acid, 18:3(n-3), in cultured glioma cells. Journal of Lipid Research 32 (8):1265–73. doi: 10.1016/S0022-2275(20)41956-X.
  • Cristina, O., M. Pablo, C. Manuel, and H. M. Estela. 2013. Enzymatic interesterification between pine seed oil and a hydrogenated fat to prepare semi-solid fats rich in pinolenic acid and other polyunsaturated fatty acids. Journal of the American Oil Chemists' Society 90 (1):81–90.
  • Das, U. 2011. Essential fatty acids enhance free radical generation and lipid peroxidation to induce apoptosis of tumor cells. Clinical Lipidology 6 (4):463–89. doi: 10.2217/clp.11.34.
  • Destaillats, F., R. L. Wolff, and P. Angers. 2001. A new delta 7-polyunsaturated fatty acid in Taxus spp. seed lipids, dihomotaxoleic (7,11-20:2) acid. Lipids 36 (3):319–21.
  • Dhibi, M., M. Issaoui, F. Brahmi, B. Mechri, A. Mnari, I. Cheraif, F. Skhiri, N. Gazzah, and M. Hammami. 2014. Nutritional quality of fresh and heated Aleppo pine (Pinus halepensis Mill.) seed oil: Trans-fatty acid isomers profiles and antioxidant properties. Journal of Food Science and Technology 51 (8):1442–52. doi: 10.1007/s13197-012-0664-5.
  • Ding, M., H. Lou, W. Chen, Y. Zhou, Z. Zhang, M. Xiao, Z. Wang, Y. Yang, L. Yang, F. Zhang, et al. 2020. Comparative transcriptome analysis of the genes involved in lipid biosynthesis pathway and regulation of oil body formation in Torreya grandis kernels. Industrial Crops and Products 145:112051. doi: 10.1016/j.indcrop.2019.112051.
  • Ells, R., J. L. F. Kock, J. Albertyn, A. Hugo, and C. H. Pohl. 2012. Sciadonic acid modulates prostaglandin E2 production by epithelial cells during infection with C. albicans and C. dubliniensis. Prostaglandins & Other Lipid Mediators 97 (1-2):66–71. doi: 10.1016/j.prostaglandins.2011.12.001.
  • Endo, Y., Y. Osada, F. Kimura, H. Shirakawa, and K. Fujimoto. 2007. Effects of Japanese torreya (Torreya nucifera) Seed oil on the activities and mRNA expression of lipid metabolism-related enzymes in rats. Bioscience, Biotechnology, and Biochemistry 71 (1):231–3. doi: 10.1271/bbb.60350. doi: 10.1271/bbb.60350.
  • Endo, Y., K. Tsunokake, and I. Ikeda. 2009. Effects of non-methylene-interrupted polyunsaturated fatty acid, sciadonic (all-cis-5,11,14-eicosatrienoic acid) on lipid metabolism in rats. Bioscience, Biotechnology, and Biochemistry 73 (3):577–81. doi: 10.1271/bbb.80646.
  • Ferramosca, A., V. Savy, A. W. C. Einerhand, and V. Zara. 2008. Pinus koraiensis seed oil (PinnoThin TM) supplementation reduces body weight gain and lipid concentration in liver and plasma of mice. Journal of Animal and Feed Sciences 17 (4):621–30. doi: 10.22358/jafs/66690/2008.
  • Gao, G., J. Cao, T. Xu, H. Zhang, Y. Zhang, and K. Hu. 2020. Nuclear magnetic resonance spectroscopy of crude oil as proxies for oil source and thermal maturity based on 1H and 13C spectra. Fuel 271:117622. doi: 10.1016/j.fuel.2020.117622.
  • Go, J. V., T. Řezanka, m Srebnik, and V. M. Dembitsky. 2002. Variability of fatty acid components of marine and freshwater gastropod species from the littoral zone of the red sea, Mediterranean sea, and sea of Galilee. Biochemical Systematics and Ecology 30 (9):819–35. doi: 10.1016/S0305-1978(02)00026-1.
  • Gorman, C., and A. Park. 2004. The Fires Within Inflammation is the body's first defense against infection, but when it goes awry, it can lead to heart attacks, colon cancer, Alzheimer's and a host of other diseases. Time 163 (8):38–46.
  • Gresti, J., C. Mignerot, J. Bezard, and R. L. Wolff. 1996. Distribution of Δ5-olefinic acids in the triacylglycerols from Pinus koraiensis, and Pinus pinaster seed oils. Journal of the American Oil Chemists' Society 73 (11):1539–47. doi: 10.1007/BF02523522.
  • Gu, L.-B., G.-J. Zhang, L. Du, J. Du, K. Qi, X.-L. Zhu, X.-Y. Zhang, and Z.-H. Jiang. 2019. Comparative study on the extraction of Xanthoceras sorbifolia Bunge (yellow horn) seed oil using subcritical n-butane, supercritical CO2, and the Soxhlet method. Lwt 111:548–54. doi: 10.1016/j.lwt.2019.05.078.
  • Gunstone, F. D., S. Seth, and R. L. Wolff. 1995. The distribution of Δ5 polyene acids in some pine seed oils between the α- and β-chains by 13C-NMR spectroscopy. Chemistry and Physics of Lipids 78 (1):89–96. doi: 10.1016/0009-3084(95)02488-5.
  • Gunstone, F. D., and R. L. Wolff. 1996. Conifer seed oils: Distribution of Δ5 acids between α and β chains by 13C nuclear magnetic resonance spectroscopy. Journal of the American Oil Chemists' Society 73 (11):1611–3. doi: 10.1007/BF02523533.
  • Hammann, S., M. Schröder, C. Schmidt, and W. Vetter. 2015. Isolation of two Δ5 polymethylene interrupted fatty acids from Podocarpus falcatus by countercurrent chromatography. Journal of Chromatography A 1394:89–94. doi: 10.1016/j.chroma.2015.03.042.
  • Hase, A., A. P. Maija, S. Kaltia, and J. Matikainen. 1992. Separation and purification of pinolenic acid by the iodolactonization method. Journal of the American Oil Chemists Society 69 (8):832–4. doi: 10.1007/BF02635927.
  • He, Z., H. Zhu, W. Li, M. Zeng, S. Wu, S. Chen, F. Qin, and J. Chen. 2016. Chemical components of cold pressed kernel oils from different Torreya grandis cultivars. Food Chemistry 209:196–202. doi: 10.1016/j.foodchem.2016.04.053.
  • Hou, L., C. Li, and J. Qiu. 2018. Comparison of the physicochemical characteristics of Pinus koraiensis L. nut oils from different extraction technologies. Grain and Oil Science and Technology 1 (3):5–10.
  • Huang, W. C., P. J. Tsai, Y. L. Huang, S. N. Chen, and L. T. Chuang. 2014. PGE2 production is suppressed by chemically-synthesized Δ7-eicosatrienoic acid in macrophages through the competitive inhibition of COX-2. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 66:122–33. doi: 10.1016/j.fct.2014.01.031.
  • Huang, Y. S., C. W. Li, W. C. Huang, and L. T. Chuang. 2011. Eicosadienoic acid differentially modulates production of pro-inflammatory modulators in murine macrophages. Molecular and Cellular Biochemistry 358 (1-2):85–94. doi: 10.1007/s11010-011-0924-0.
  • Hunter, J. E. 2001. Studies on effects of dietary fatty acids as related to their position on triglycerides. Lipids 36 (7):655–68. doi: 10.1007/s11745-001-0770-0.
  • Ibáñez, E., J. Mendiola, and M. Castro-Puyana. 2016. Supercritical fluid extraction. Encyclopedia of food and health. Spain: Academic Press.
  • Ikeda, I., T. Oka, K. Koba, M. Sugano, and M. S. F. L. K. Jie. 1992. 5c,11c,14c-Eicosatrienoic acid and 5c,11c,14c,17c-eicosatetraenoic acid of Biota orientalis seed oil affect lipid metabolism in the rat. Lipids 27 (7):500–4. doi: 10.1007/BF02536130.
  • Incegul, Y., M. Aksu, S. S. Kiralan, M. Kiralan, and G. Ozkan. 2020. Chapter 47 - Cold pressed pine (Pinus koraiensis) nut oil. In Cold pressed oils, ed. M. F. Ramadan, 525–36. Singapore: Academic Press.
  • Irene, G. T., N. Johnathan, and S. Olga. 2016. Engineering synthetic pathways for the production of pharmaceutical sciadonic acid in transgenic oilseed Camelina sativa. New Biotechnology 33S:S46–S46.
  • Irimescu, R., Y. Iwasaki, and C. T. Hou. 2002. Study of TAG ethanolysis to 2-MAG by immobilized Candida antarcticalipase and synthesis of symmetrically structured TAG. Journal of the American Oil Chemists' Society 79 (9):879–83. doi: 10.1007/s11746-002-0573-8.
  • Jamieson, G. R., and E. H. Reid. 1972a. The component fatty acids of some marine algal lipids. Phytochemistry 11 (4):1423–32. doi: 10.1016/S0031-9422(00)90096-7.
  • Jamieson, G. R., and E. H. Reid. 1972b. The leaf lipids of some conifer species. Phytochemistry 11 (1):269–75. doi: 10.1016/S0031-9422(00)90002-5.
  • Jareonkitmongkol, S., S. Shimizu, and H. Yamada. 1993. Occurrence of two nonmethylene-interrupted Δ5 polyunsaturated fatty acids in a Δ6-desaturase-defective mutant of the fungus Mortierella alpina 1S-4. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 1167 (2):137–41. doi: 10.1016/0005-2760(93)90153-Z.
  • Jefferts, E., R. W. Morales, and C. Litchfield. 1974. Occurrence of cis-5, cis-9-hexacosadienoic and cis-5, cis-9, cis-19-hexacosatrienoic acids in the marine sponge Microciona prolifera. Lipids 9 (4):244–7. doi: 10.1007/BF02532200.
  • Jie, M. S. F. L. K., and M. S. K. S. Rahmatullah. 1995. Enzymatic enrichment of C20 cis-5 polyunsaturated fatty acids from Biota orientalis seed oil. Journal of the American Oil Chemists’ Society 72 (2):245–9. doi: 10.1007/BF02638907.
  • Kawashima, H., and M. Ohnishi. 2006. Occurrence of novel nonmethylene-interrupted C24 polyenoic fatty acids in female gonad lipids of the limpet Cellana grata. Bioscience, Biotechnology, and Biochemistry 70 (10):2575–8. doi: 10.1271/bbb.60282.
  • Kawashima, H., M. Ohnishi, S. Ogawa, and K. Matsui. 2008. Unusual fatty acid isomers of triacylglycerols and polar lipids in female limpet gonads of Cellana grata. Lipids 43 (6):559–67. doi: 10.1007/s11745-008-3179-0.
  • Kim, G. W., and Y. Itabashi. 2012. Non-methylene-interrupted fatty acids with Δ5 unsaturation in Sargassum species. Journal of Oleo Science 61 (6):311–9. doi: 10.5650/jos.61.311.
  • Kim, H., N. Choi, H.-R. Kim, J. Lee, and I.-H. Kim. 2018. Preparation of high purity Δ5-olefinic acids from pine nut oil via repeated lipase-catalyzed esterification. Journal of Oleo Science 67 (11):1435–42. doi: 10.5650/jos.ess18136.
  • Kim, I.-H., and C. G. Hill. 2006. Lipase-catalyzed acidolysis of menhaden oil with pinolenic acid. Journal of the American Oil Chemists' Society 83 (2):109–15. doi: 10.1007/s11746-006-1182-2.
  • Kotnik, T., W. Frey, M. Sack, S. H. Meglic, M. Peterka, and D. Miklavcic. 2015. Electroporation-based applications in biotechnology. Trends in Biotechnology 33 (8):480–8. doi: 10.1016/j.tibtech.2015.06.002.
  • Lee, A. R., and S. N. Han. 2016. Pinolenic acid downregulates lipid anabolic pathway in HepG2 cells. Lipids 51 (7):847–55. doi: 10.1007/s11745-016-4149-6.
  • Lee, B.-M., J.-H. Choi, S. I. Hong, S. W. Yoon, B. H. Kim, C.-T. Kim, C.-J. Kim, Y. Kim, and I.-H. Kim. 2011. Enrichment of pinolenic acid from pine nut oil via lipase-catalyzed ethanolysis with an immobilized Candida antarctica lipase. Biocatalysis and Biotransformation 29 (4):155–60. doi: 10.3109/10242422.2011.590983.
  • Lee, J. W., K. W. Lee, S. W. Lee, I. H. Kim, and C. Rhee. 2004. Selective increase in pinolenic acid (all-cis-5,9,12-18:3) in Korean pine nut oil by crystallization and its effect on LDL-receptor activity. Lipids 39 (4):383–7. doi: 10.1007/s11745-004-1242-2.
  • Li, B., C. Zhang, L. Peng, Z. Liang, X. Yan, Y. Zhu, and Y. Liu. 2015. Comparison of essential oil composition and phenolic acid content of selected Salvia species measured by GC–MS and HPLC methods. Industrial Crops and Products 69:329–34. doi: 10.1016/j.indcrop.2015.02.047.
  • Li, Y., L. Jiang, X. Sui, and S. Wang. 2011. Optimization of the aqueous enzymatic extraction of pine kernel oil by response surface methodology. Procedia Engineering 15:4641–52. doi: 10.1016/j.proeng.2011.08.872.
  • Lisa, M., M. Holcapek, T. Rezanka, and N. Kabatova. 2007. High-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry and gas chromatography-flame ionization detection characterization of Δ5-polyenoic fatty acids in triacylglycerols from conifer seed oils. Journal of Chromatography A 1146:67–77. doi: 10.1016/S0021-9673(98)00462-2.
  • Litchfield, C., J. Tyszkiewicz, and V. Dato. 1980. 9,23-triacontatrienoic acid, principal fatty acid of the marine sponge Chondrilla nucula. Lipids 15 (3):200–2. doi: 10.1007/BF02540971.
  • Liu, H., Z. Guo, H. Zheng, S. Wang, Y. Wang, W. Liu, and G. Zhang. 2014. Functional characterization of a Δ5-like fatty acyl desaturase and its expression during early embryogenesis in the noble scallop Chlamys nobilis Reeve. Molecular Biology Reports 41 (11):7437–45. doi: 10.1007/s11033-014-3633-4.
  • Madhumita, M., P. Guha, and A. Nag. 2019. Extraction of betel leaves (Piper betle L.) essential oil and its bio-actives identification: Process optimization, GC-MS analysis and anti-microbial activity. Industrial Crops and Products 138:111578. doi: 10.1016/j.indcrop.2019.111578.
  • Meng, X., D. Xiao, Q. Ye, X. Nie, J. Wu, and L. Song. 2020. Positional distribution of Δ5-olefinic acids in triacylglycerols from Torreya grandis seed oil: Isolation and purification of sciadonic acid. Industrial Crops and Products 143:111917. doi: 10.1016/j.indcrop.2019.111917.
  • Mikkelsen, A. AE., F. Jessen, and N. Z. Ballin. 2014. Species determination of pine nuts in commercial samples causing pine nut syndrome. Food Control 40:19–25. doi: 10.1016/j.foodcont.2013.11.030.
  • Monroig, Ó., F. Hontoria, I. Varó, D. R. Tocher, and J. C. Navarro. 2016. Investigating the essential fatty acids in the common cuttlefish Sepia officinalis (Mollusca, Cephalopoda): Molecular cloning and functional characterisation of fatty acyl desaturase and elongase. Aquaculture 450:38–47. doi: 10.1016/j.aquaculture.2015.07.003.
  • Montañés, F., S. Tallon, and O. Catchpole. 2017. Isolation of non-methylene interrupted or acetylenic fatty acids from seed oils using semi-preparative supercritical chromatography. Journal of the American Oil Chemists' Society 94 (7):981–91. doi: 10.1007/s11746-017-2999-6.
  • Morishige, J., N. Amano, K. Hirano, H. Nishio, T. Tanaka, and K. Satouchi. 2008. Inhibitory effect of juniperonic acid (Delta-5c,11c,14c,17c-20:4, omega-3) on bombesin-induced proliferation of Swiss 3T3 cells. Biological & Pharmaceutical Bulletin 31 (9):1786–9. doi: 10.1248/bpb.31.1786.
  • Nasri, N., A. Khaldi, B. Fady, and S. Triki. 2005. Fatty acids from seeds of Pinus pinea L.: Composition and population profiling. Phytochemistry 66 (14):1729–35. doi: 10.1016/j.phytochem.2005.05.023.
  • Nekrasov, E. V., V. I. Svetashev, O. V. Khrapko, and M. V. Vyssotski. 2019. Variability of fatty acid profiles in ferns: Relation to fern taxonomy and seasonal development. Phytochemistry 162:47–55. doi: 10.1016/j.phytochem.2019.02.015.
  • Nilsson, R., and C. Liljenberg. 1991. The determination of double bond positions in polyunsaturated fatty acids-gas chromatography/mass spectrometry of the diethylamide derivative. Phytochemical Analysis 2 (6):253–9. doi: 10.1002/pca.2800020604.
  • No, D. S., T. T. Zhao, Y. Kim, M. R. Yoon, J. S. Lee, and I. H. Kim. 2015. Preparation of highly purified pinolenic acid from pine nut oil using a combination of enzymatic esterification and urea complexation. Food Chemistry 170:386–93. doi: 10.1016/j.foodchem.2014.08.074.
  • Nokhsorov, V. V., L. V. Dudareva, and K. A. Petrov. 2019. Content and composition of lipids and their fatty acids in needles of Pinus sylvestris L. and Picea obovata Ledeb. upon cold hardening in the Cryolithozone of Yakutia. Russian Journal of Plant Physiology 66 (4):548–294. doi: 10.1134/S1021443719040101.
  • Paradis, M., and B. G. Ackman. 1977. Potential for employing the distribution of anomalous non-methylene-interrupted dienoic fatty acids in several marine invertebrates as part of food web studies. Lipids 12 (2):170–6. doi: 10.1007/BF02533289.
  • Park, H. G., J. Y. Zhang, C. Foster, D. Sudilovsky, D. A. Schwed, J. Mecenas, S. Devapatla, P. Lawrence, K. S. D. Kothapalli, and J. T. Brenna. 2018. A rare eicosanoid precursor analogue, sciadonic acid (5Z,11Z,14Z-20:3), detected in vivo in hormone positive breast cancer tissue. Prostaglandins, Leukotrienes, and Essential Fatty Acids 134:1–6. doi: 10.1016/j.plefa.2018.05.002.
  • Pedrono, F., N. Boulier-Monthean, F. Boissel, J. Ossemond, and F. L. L. Devehat. 2018. The hypotriglyceridemic effect of sciadonic acid is mediated by the inhibition of Δ9-desaturase expression and activity. Molecular Nutrition & Food Research 62 (4):1700567. doi: 10.1002/mnfr.201700567.
  • Pereira, C. G., and M. A. A. Meireles. 2010. Supercritical fluid extraction of bioactive compounds: Fundamentals, applications and economic perspectives. Food and Bioprocess Technology 3 (3):340–72. doi: 10.1007/s11947-009-0263-2.
  • Ponphaiboon, J., S. Limmatvapirat, A. Chaidedgumjorn, and C. Limmatvapirat. 2018. Optimization and comparison of GC-FID and HPLC-ELSD methods for determination of lauric acid, mono-, di-, and trilaurins in modified coconut oil. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 1099:110–6. doi: 10.1016/j.jchromb.2018.09.023.
  • Rai, A., B. Mohanty, and R. Bhargava. 2015. Modeling and response surface analysis of supercritical extraction of watermelon seed oil using carbon dioxide. Separation and Purification Technology 141:354–65. doi: 10.1016/j.seppur.2014.12.016.
  • Rakhmatullin, I. Z., S. V. Efimov, B. Y. Margulis, and V. V. Klochkov. 2017. Qualitative and quantitative analysis of oil samples extracted from some Bashkortostan and Tatarstan oilfields based on NMR spectroscopy data. Journal of Petroleum Science and Engineering 156:12–8. doi: 10.1016/j.petrol.2017.04.041.
  • Remmereit, J., and A. Berger. 2020. US 10537542.
  • Sahin, N., C. C. Akoh, and A. Karaali. 2005. Lipase-catalyzed acidolysis of tripalmitin with hazelnut oil fatty acids and stearic acid to produce human milk fat substitutes. Journal of Agricultural and Food Chemistry 53 (14):5779–83. doi: 10.1021/jf050465e.
  • Saito, H. 2007. Identification of novel n-4 series polyunsaturated fatty acids in a deep-sea clam, Calyptogena phaseoliformis. Journal of Chromatography A 1163 (1-2):247–59. doi: 10.1016/j.chroma.2007.06.016.
  • Saito, T., and H. Ochiai. 1996. Identification of a novel all-cis-5,9,12-heptadecatrienoic acid in the cellular slime mold Polysphondylium pallidum. Lipids 31 (4):445–7. doi: 10.1007/BF02522934.
  • Salinas, F., R. Vardanega, C. Espinosa-Álvarez, D. Jimenéz, W. B. Muñoz, M. C. Ruiz-Domínguez, M. A. A. Meireles, and P. Cerezal- Mezquita. 2020. Supercritical fluid extraction of chanar (Geoffroea decorticans) almond oil: Global yield, kinetics and oil characterization. The Journal of Supercritical Fluids 161:104824. doi: 10.1016/j.supflu.2020.104824.
  • Sayanova, O., R. Haslam, M. V. Caleron, and J. A. Napier. 2007. Cloning and characterization of unusual fatty acid desaturases from Anemone leveillei: Identification of an acyl-coenzyme A C20 delta5-desaturase responsible for the synthesis of sciadonic acid. Plant Physiology 144 (1):455–67. doi: 10.1104/pp.107.098202.
  • Schweizer, E., and J. Hofmann. 2004. Microbial type I fatty acid synthases (FAS): Major players in a network of cellular FAS systems. Microbiology and Molecular Biology Reviews: MMBR 68 (3):501–17. doi: 10.1128/MMBR.68.3.501-517.2004.
  • Senrayan, J., and S. Venkatachalam. 2020. Ultrasonic acoustic-cavitation as a novel and emerging energy efficient technique for oil extraction from kapok seeds. Innovative Food Science & Emerging Technologies 62:102347. doi: 10.1016/j.ifset.2020.102347.
  • Shi, L. K., J. H. Mao, L. Zheng, C. W. Zhao, Q. Z. Jin, and X. G. Wang. 2018. Chemical characterization and free radical scavenging capacity of oils obtained from Torreya grandis Fort. ex. Lindl. and Torreya grandis Fort. var. Merrillii: A comparative study using chemometrics. Industrial Crops and Products 115:250–60. doi: 10.1016/j.indcrop.2018.02.037.
  • Shorstkii, I., D. Khudyakov, and M. S. Mirshekarloo. 2020. Pulsed electric field assisted sunflower oil pilot production: Impact on oil yield, extraction kinetics and chemical parameters. Innovative Food Science & Emerging Technologies 60:102309. doi: 10.1016/j.ifset.2020.102309.
  • Smith, S. 1994. The animal fatty acid synthase: One gene, one polypeptide, seven enzymes. The FASEB Journal 8 (15):1248–59. doi: 10.1096/fasebj.8.15.8001737.
  • Sun, D., C. Cao, B. Li, H. Chen, J. Li, P. Cao, and Y. Liu. 2018. Antarctic krill lipid extracted by subcritical n-butane and comparison with supercritical CO2 and conventional solvent extraction. LWT-Food Science and Technology 94:1–7. doi: 10.1016/j.lwt.2018.04.024.
  • Sun, S., S. Zhu, and Y. Bi. 2014. Solvent-free enzymatic synthesis of feruloylated structured lipids by the transesterification of ethyl ferulate with castor oil. Food Chemistry 158:292–5. doi: 10.1016/j.foodchem.2014.02.146.
  • Suzuki, K., F. Shono, H. Kai, T. Uno, and M. Uyeda. 2000. Inhibition of topoisomerases by fatty acids. Journal of Enzyme Inhibition 15 (4):357–66. doi: 10.1080/14756360009040693.
  • Takagi, T., and Y. Itabashi. 1982. Cis-5-Olefinic unusual fatty acids in seed lipids of Gymnospermae and their distribution in triacylglycerols. Lipids 17 (10):716–23. doi: 10.1007/BF02534657.
  • Tanaka, T., T. Hattori, M. Kouchi, K. Hirano, and K. Satouchi. 1998. Methylene-interrupted double bond in polyunsaturated fatty acid is an essential structure for metabolism by the fatty acid chain elongation system of rat liver. Biochimica et Biophysica Acta 1393 (2-3):299–306. doi: 10.1016/S0005-2760(98)00084-8.
  • Tanaka, T., J-i Morishige, D. Iwawaki, T. Fukuhara, N. Hamamura, K. Hirano, T. Osumi, and K. Satouchi. 2007. Metabolic pathway that produces essential fatty acids from polymethylene-interrupted polyunsaturated fatty acids in animal cells. The FEBS Journal 274 (11):2728–37. doi: 10.1111/j.1742-4658.2007.05807.x.
  • Tanaka, T., J. Morishige, T. Takimoto, Y. Takai, and K. Satouchi. 2001. Metabolic characterization of sciadonic acid (5c,11c,14c-eicosatrienoic acid) as an effective substitute for arachidonate of phosphatidylinositol. European Journal of Biochemistry 268 (18):4928–39. doi: 10.1046/j.0014-2956.2001.02423.x.
  • Tanaka, T., T. Takimoto, J. Morishige, Y. Kikuta, T. Sugiura, and K. Satouchi. 1999. Non-methylene-interrupted polyunsaturated fatty acids: Effective substitute for arachidonate of phosphatidylinositol. Biochemical and Biophysical Research Communications 264 (3):683–8. doi: 10.1006/bbrc.1999.1559.
  • Tanaka, T., S. Uozumi, K. Morito, T. Osumi, and A. Tokumura. 2014. Metabolic conversion of C20 polymethylene-interrupted polyunsaturated fatty acids to essential fatty acids. Lipids 49 (5):423–9. doi: 10.1007/s11745-014-3896-5.
  • Tasdemir, D., B. Topaloglu, R. Perozzo, R. Brun, R. O'Neill, N. M. Carballeira, X. Zhang, P. J. Tonge, A. Linden, and P. Rüedi. 2007. Marine natural products from the Turkish sponge Agelas oroides that inhibit the enoyl reductases from Plasmodium falciparum, Mycobacterium tuberculosis and Escherichia coli. Bioorganic & Medicinal Chemistry 15 (21):6834–45. doi: 10.1016/j.bmc.2007.07.032.
  • Tsai, P. J., W. C. Huang, S. W. Lin, S. N. Chen, H. J. Shen, H. Chang, and L. T. Chuang. 2018. Juniperonic acid incorporation into the phospholipids of murine macrophage cells modulates pro-inflammatory mediator production. Inflammation 41 (4):1200–15. doi: 10.1007/s10753-018-0767-x.
  • Ullman, D., and H. Sprecher. 1971. An in vitro and in vivo study of the conversion of eicosa-11, 14-dienoic acid to eicosa-5,11,14-trienoic acid and of the conversion of eicosa-11-enoic acid to eicosa-5,11-dienoic acid in the rat. Biochimica et Biophysica Acta. 248 (2):186–97. doi: 10.1016/0005-2760(71)90006-3.
  • Vázquez, L., I. M. Prados, G. Reglero, and C. F. Torres. 2017. Identification and quantification of ethyl carbamate occurring in urea complexation processes commonly utilized for polyunsaturated fatty acid concentration. Food Chemistry 229:28–34. doi: 10.1016/j.foodchem.2017.01.123.
  • Ventrella, V., M. Pirini, A. Pagliarani, F. Trombetti, M. P. Manuzzi, and A. R. Borgatti. 2008. Effect of temporal and geographical factors on fatty acid composition of M. galloprovincialis from the Adriatic sea. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 149 (2):241–50. doi: 10.1016/j.cbpb.2007.09.012.
  • Vik, A., T. V. Hansen, A. K. Holmeide, and L. Skattebøl. 2010. Synthesis of juniperonic acid. Tetrahedron Letters 51 (21):2852–4. doi: 10.1016/j.tetlet.2010.03.085.
  • Vlahov, G. 2006. 13C nuclear magnetic resonance spectroscopy to determine olive oil grades. Analytica Chimica Acta 577 (2):281–7. doi: 10.1016/j.aca.2006.06.044.
  • Waller, R. F., P. J. Keeling, R. G. Donald, B. Striepen, E. Handman, N. Lang-Unnasch, A. F. Cowman, G. S. Besra, D. S. Roos, and G. I. McFadden. 1998. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America 95 (21):12352–7. doi: 10.1073/pnas.95.21.12352.
  • Wanasundara, U. N., and F. Shahidi. 1999. Concentration of omega 3-polyunsaturated fatty acids of seal blubber oil by urea complexation: Optimization of reaction conditions. Food Chemistry 65 (1):41–9. doi: 10.1016/S0308-8146(98)00153-8.
  • Wang, D. H., Z. Wang, J. R. Cortright, K. P. Le, L. Liu, K. S. D. Kothapalli, and J. T. Brenna. 2020. Identification of polymethylene-interrupted polyunsaturated fatty acids (PMI-PUFA) by solvent-mediated covalent adduct chemical ionization triple quadrupole tandem mass spectrometry. Analytical Chemistry 92 (12):8209–17. doi: 10.1021/acs.analchem.0c00425.
  • Wang, H., Y. Suo, X. Wang, Y. Li, J. You, and X. Zhao. 2007. Extraction of Nitraria tangutorum seed oil by supercritical carbon dioxide and determination of free fatty acids by HPLC/APCI/MS with fluorescence detection. Separation and Purification Technology 56 (3):371–7. doi: 10.1016/j.seppur.2007.02.008.
  • Wang, Y. 2010. PPARs: Diverse regulators in energy metabolism and metabolic diseases. Cell Research 20 (2):124–37. doi: 10.1038/cr.2010.13.
  • Wolff, R. L. 1998. Sources of 5,11,14-20:3 (sciadonic) acid, a structural analog of arachidonic acid. Journal of the American Oil Chemists' Society 75 (12):1901–2. doi: 10.1007/s11746-998-0349-4.
  • Wolff, R. L., and W. W. Christie. 2002. Structures, practical sources (gymnosperm seeds), gas-liquid chromatographic dat (equivalent chain lengths), and mass spectrometric characteristics of all-cis Δ5-olefinic acids. European Journal of Lipid Science and Technology 104 (4):234–44. doi: 10.1002/1438-9312(200204)104:4<234::AID-EJLT234>3.0.CO;2-H.
  • Wolff, R. L., W. W. Christie, K. Aizetmuller, E. Pasquier, F. Pedrono, F. Destaillats, and A. M. Marpeau. 2000. Arachidonic and eicosapentaenoic acids in Araucariaceae, a unique feature among seed plants. Oléagineux, Corps Gras, Lipides 7 (1):113–7..0113. doi: 10.1051/ocl.2000.
  • Wolff, R. L., W. W. Christie, F. Pédrono, and A. M. Marpeau. 1999. Arachidonic, eicosapentaenoic, and biosynthetically related fatty acids in the seed lipids from a primitive gymnosperm, Agathis robusta. Lipids 34 (10):1083–97. doi: 10.1007/s11745-999-0460-y.
  • Wolff, R. L., W. W. Christie, F. Pédrono, A. M. Marpeau, N. Tsevegsüren, K. Aitzetmüller, and F. D. Gunstone. 1999. Delta5-olefinic acids in the seed lipids from four Ephedra species and their distribution between the alpha and beta positions of triacylglycerols. Characteristics common to coniferophytes and cycadophytes . Lipids 34 (8):855–64. doi: 10.1007/s11745-999-0433-1.
  • Wolff, R. L., E. Dareville, and J. C. Martin. 1997. Positional distribution of Δ5-olefinic acids in triacylglycerols from conifer seed oils: General and specific enrichment in the sn-3 position. Journal of the American Oil Chemists' Society 74 (5):515–23. doi: 10.1007/s11746-997-0174-1.
  • Wolff, R. L., L. G. Deluc, and A. M. Marpeau. 1996. Conifer seeds: Oil content and fatty acid composition. Journal of the American Oil Chemists' Society 73 (6):765–71. doi: 10.1007/BF02517953.
  • Wolff, R. L., L. G. Deluc, A. M. Marpeau, and B. Comps. 1997. Chemotaxonomic differentiation of conifer families and genera based on the seed oil fatty acid compositions: Multivariate analyses. Trees 12 (2):57–65. doi: 10.1007/s004680050122.
  • Wolff, R. L., O. Lavialle, F. Pédrono, E. Pasquier, L. G. Deluc, A. M. Marpeau, and K. Aitzetmüller. 2001. Fatty acid composition of pinaceae as taxonomic markers. Lipids 36 (5):439–51. doi: 10.1007/s11745-001-0741-5.
  • Wolff, R. L., O. Lavialle, F. Pédrono, E. Pasquier, F. Destaillats, A. M. Marpeau, P. Angers, and K. Aitzetmüller. 2002. Abietoid seed fatty acid compositions-a review of the genera Abies, Cedrus, Hesperopeuce, Keteleeria, Pseudolarix, and Tsuga and preliminary inferences on the taxonomy of Pinaceae. Lipids 37 (1):17–26. doi: 10.1007/s11745-002-0859-5.
  • Wolff, R. L., F. Pédrono, E. Pasquier, and A. M. Marpeau. 2000. General characteristics of Pinus spp. seed fatty acid compositions, and importance of Δ5-olefinic acids in the taxonomy and phylogeny of the genus. Lipids 35 (1):1–22. doi: 10.1007/s11745-000-0489-y.
  • Wu, J., J. Huang, Y. Hong, H. Zhang, M. Ding, H. Lou, Y. Hu, W. Yu, and L. Song. 2018. De novo transcriptome sequencing of Torreya grandis reveals gene regulation in sciadonic acid biosynthesis pathway. Industrial Crops and Products 120:47–60. doi: 10.1016/j.indcrop.2018.04.041.
  • Xie, K., E. A. Miles, and P. C. Calder. 2016. A review of the potential health benefits of pine nut oil and its characteristic fatty acid pinolenic acid. Journal of Functional Foods 23:464–73. doi: 10.1016/j.jff.2016.03.003.
  • Zadernowski, R., M. Naczk, and S. Czaplicki. 2009. Chemical composition of Pinus sibirica nut oils. European Journal of Lipid Science and Technology 111 (7):698–704. doi: 10.1002/ejlt.200800221.
  • Zhang, J., S.-D. Zhang, P. Wang, N. Guo, W. Wang, L.-P. Yao, Q. Yang, T. Efferth, J. Jiao, and Y.-J. Fu. 2019. Pinolenic acid ameliorates oleic acid-induced lipogenesis and oxidative stress via AMPK/SIRT1 signaling pathway in HepG2 cells. European Journal of Pharmacology 861:172618. doi: 10.1016/j.ejphar.2019.172618.
  • Zhang, L., L. J. Wang, W. Jiang, and J. Y. Qian. 2017. Effect of pulsed electric field on functional and structural properties of canola protein by pretreating seeds to elevate oil yield. LWT-Food Science and Technology 84:73–81. doi: 10.1016/j.lwt.2017.05.048.
  • Zhao, T., B. H. Kim, S. I. Hong, S. W. Yoon, C. T. Kim, Y. Kim, and I. H. Kim. 2012. Lipase-catalyzed production of pinolenic acid concentrate from pine nut oil using a recirculating packed bed reactor. Journal of Food Science 77 (2):C267–C271. doi: 10.1111/j.1750-3841.2011.02562.x.
  • Zheng, L., T. Zhang, L. Xie, E. Karrar, L. Shi, J. Jin, X. Wang, and Q. Jin. 2020. Physicochemical characteristics of Actinostemma lobatum Maxim. kernel oil by supercritical fluid extraction and conventional methods. Industrial Crops and Products 152:112516. doi: 10.1016/j.indcrop.2020.112516.
  • Zhu, X.-M., J.-N. Hu, C.-L. Xue, J.-H. Lee, J.-A. Shin, S.-T. Hong, C.-K. Sung, and K.-T. Lee. 2012. Physiochemical and oxidative stability of interesterified structured lipid for soft margarine fat containing Δ5-UPIFAs. Food Chemistry 131 (2):533–40. doi: 10.1016/j.foodchem.2011.09.018.
  • Zhukova, N. V. 1986. Biosynthesis of non-methylene-interrupted dienoic fatty acids from [14C]acetate in molluscs. Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism 878 (1):131–3. doi: 10.1016/0005-2760(86)90351-6.
  • Zhukova, N. V. 2007. Lipid classes and fatty acid composition of the tropical nudibranch mollusks Chromodoris sp. and Phyllidia coelestis. Lipids 42 (12):1169–75. doi: 10.1007/s11745-007-3123-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.