341
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Healthy values and de novo domestication of sand rice (Agriophyllum squarrosum), a comparative view against Chenopodium quinoa

, , , , , , , , & show all

References

  • Abderrahim, F., E. Huanatico, R. Segura, S. Arribas, M. C. Gonzalez, and L. Condezo-Hoyos. 2015. Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food Chemistry 183:83–90. doi: 10.1016/j.foodchem.2015.03.029.
  • Abugoch James, L. E. 2009. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties. Advances in Food and Nutrition Research 58:1–31. doi:10.1016/s1043-4526(09)58001-1
  • Abugoch, L. E., N. Romero, C. A. Tapia, J. Silva, and M. Rivera. 2008. Study of some physicochemical and functional properties of quinoa (Chenopodium quinoa willd) protein isolates. Journal of Agricultural and Food Chemistry 56 (12):4745–50. doi: 10.1021/jf703689u.
  • Ahamed, N. T., R. S. Singhal, P. R. Kulkarni, and R. Pal. 1996. Physicochemical and functional properties of Chenopodium quinoa starch. Carbohydrate Polymers 31 (1–2):99–103. doi: 10.1016/S0144-8617(96)00034-3.
  • Alexandratos, N. 1999. World food and agriculture: Outlook for the medium and longer term. Proceedings of the National Academy of Sciences of the United States of America 96 (11):5908–14. doi: 10.1073/pnas.96.11.5908.
  • Aluko, R. E., and E. Monu. 2003. Functional and bioactive properties of quinoa seed protein hydrolysates. Journal of Food Science 68 (4):1254–8. doi: 10.1111/j.1365-2621.2003.tb09635.x.
  • Alvarez-Jubete, L., E. K. Arendt, and E. Gallagher. 2010. Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends in Food Science & Technology 21 (2):106–13. doi: 10.1016/j.tifs.2009.10.014.
  • Ando, H., Y. C. Chen, H. J. Tang, M. Shimizu, K. Watanabe, and T. Mitsunaga. 2002. Food components in fractions of quinoa seed. Food Science and Technology Research 8 (1):80–4. doi: 10.3136/fstr.8.80.
  • Ao, W. 2013. A Mongolia medicine for the treatment of hyperglycemia and diabetes. Patent CN103263449A :19–39. pp. (In Chinese without English abstract)
  • Atwell, W. A., B. M. Patrick, L. A. Johnson, and R. W. Glass. 1983. Characterization of quinoa starch. Cereal Chemistry 60 (1):9–11.
  • Banu, I., and I. Aprodu. 2020. Assessing the performance of different grains in gluten-free bread applications. Applied Sciences 10 (24):8772. doi: 10.3390/app10248772.
  • Bao, M. 2017. Study on hypolipidemic activity of agriophyllum. Thesis, College of Chemistry and Chemical Engineering, Inner Mongolia University:19–39. (In Chinese with English abstract)
  • Bao, S.-Y., S.-Y. Han, R.-Y. Chao, G. Cheli, and A. Wu-Liji. 2018. The protective effects of Agiophyllum Oligo saccharides on rat liver and kidney. Chinese Pharmacological Bulletin 34 (1):147–8. doi: 10.3969/j.issn.1001-1978.2018.01.031.(In Chinese with English abstract)
  • Bao, S.-Y, S.-Y Han, C.-G Chao-Riya, and A. Wu-Liji. 2016a. Effects of Agiophyllum oligo saccharides on insulin resistance of Goto-Kakizaki rats. Chinese Pharmacological Bulletin 32 (3):403–9. doi: 10.3969/j.issn.1001-1978.2016.03.021.(In Chinese with English abstract)
  • Bao, S., S. Han, H. Wang, W. Bao, and A. Wuliji. 2016b. Improvement effects of Agriophyllum oligosaccharides on general characterization and glucose and lipid metabolism of diabetic GK rats. Journal of Jilin University (Medicine Edition) 42 (6):1059–65. doi: 10.13481/j.1671-587x.20160604.(In Chinese with English abstract)
  • Bao, S., Y.-L. Wu, X. Wang, S. Han, S. Cho, W. Ao, and J.-X. Nan. 2020. Agriophyllum oligosaccharides ameliorate hepatic injury in type 2 diabetic db/db mice targeting INS-R/IRS-2/PI3K/AKT/PPAR-γ/Glut4 signal pathway. Journal of Ethnopharmacology 257:112863 doi: 10.1016/j.jep.2020.112863.
  • Bascuñán-Godoy, L., M. Reguera, Y. M. Abdel-Tawab, and E. Blumwald. 2016. Water deficit stress-induced changes in carbon and nitrogen partitioning in Chenopodium quinoa Willd. Planta 243 (3):591–603. doi: 10.1007/s00425-015-2424-z.
  • Bergamo, P., F. Maurano, G. Mazzarella, G. Iaquinto, I. Vocca, A. R. Rivelli, E. De Falco, C. Gianfrani, and M. Rossi. 2011. Immunological evaluation of the alcohol-soluble protein fraction from gluten-free grains in relation to celiac disease. Molecular Nutrition & Food Research 55 (8):1266–70. doi: 10.1002/mnfr.201100132.
  • Bigliardi, B., and F. Galati. 2013. Innovation trends in the food industry: The case of functional foods. Trends in Food Science & Technology 31 (2):118–29. doi: 10.1016/j.tifs.2013.03.006.
  • Birasuren, B., N. Y. Kim, H. L. Jeon, and M. R. Kim. 2013. Evaluation of the antioxidant capacity and phenolic content of Agriophyllum pungens seed extracts from Mongolia. Preventive Nutrition and Food Science 18 (3):188–95. doi: 10.3746/pnf.2013.18.3.188.
  • Bischoff, S. C. 2008. Quercetin: Potentials in the prevention and therapy of disease. Current Opinion in Clinical Nutrition and Metabolic Care 11 (6):733–40. doi: 10.1097/MCO.0b013e32831394b8.
  • Bornet, F. R. J., A.-E. Jardy-Gennetier, N. Jacquet, and J. Stowell. 2007. Glycaemic response to foods: Impact on satiety and long-term weight regulation. Appetite 49 (3):535–53. doi: 10.1016/j.appet.2007.04.006.
  • Brad, K. 2011. Research on fatty acid and amino acid components of Agriophyllum squarrosum seeds from Xinjiang. Agricultural Science & Technology 12 (6):789–91.
  • Brinegar, C., and S. Goundan. 1993. Isolation and characterization of chenopodin, the 11S seed staorage protein of quinoa (Chenopodium-Quinoa). Journal of Agricultural and Food Chemistry 41 (2):182–5. doi: 10.1021/jf00026a006.
  • Brinegar, C., B. Sine, and L. Nwokocha. 1996. High-cysteine 25 seed storage proteins from quinoa (Chenopodium quinoa). Journal of Agricultural and Food Chemistry 44 (7):1621–3. doi: 10.1021/jf950830 + .
  • Burrieza, H. P., A. J. Rizzo, E. Moura Vale, V. Silveira, and S. Maldonado. 2019. Shotgun proteomic analysis of quinoa seeds reveals novel lysine-rich seed storage globulins. Food Chemistry 293:299–306. doi: 10.1016/j.foodchem.2019.04.098.
  • Burrieza, H. P., M. P. López-Fernández, and S. Maldonado. 2014. Analogous reserve distribution and tissue characteristics in quinoa and grass seeds suggest convergent evolution. Frontiers in Plant Science 5:546 doi: 10.3389/fpls.2014.00546.
  • Caio, G., U. Volta, A. Sapone, D. A. Leffler, R. De Giorgio, C. Catassi, and A. Fasano. 2019. Celiac disease: A comprehensive current review. BMC Medicine 17 (1):142 doi: 10.1186/s12916-019-1380-z.
  • Castorina, G., and G. Consonni. 2020. The role of brassinosteroids in controlling plant height in poaceae: A genetic perspective. International Journal of Molecular Sciences 21 (4):1191. doi: 10.3390/ijms21041191.
  • Chang, G., C. Wang, and J. Wang. 2003. Studies on experiments of cultivation of introduced Calligonum mongolicum, Artemisia sphaerocephala and Agriophyllum squarrosum in Lanzhou. Journal of Traditional Chinese Veterinary Medicine 4 (S1):47–9. In Chinese without English abstract)
  • Chen, G., J. Zhao, X. Zhao, P. Zhao, R. Duan, E. Nevo, and X. Ma. 2014. A psammophyte Agriophyllum squarrosum (L.) Moq.: A potential food crop. Genetic Resources and Crop Evolution 61 (3):669–76. doi: 10.1007/s10722-014-0083-8.
  • Comai, S., A. Bertazzo, L. Bailoni, M. Zancato, C. V. L. Costa, and G. Allegri. 2007. The content of proteic and nonproteic (free and protein-bound) tryptophan in quinoa and cereal flours. Food Chemistry 100 (4):1350–5. doi: 10.1016/j.foodchem.2005.10.072.
  • Craine, E. B., and K. M. Murphy. 2020. Seed composition and amino acid profiles for quinoa grown in Washington State. Frontiers in Nutrition 7: 126. doi: 10.3389/fnut.2020.00126.
  • Curti, R. N., A. J. de la Vega, A. J. Andrade, S. J. Bramardi, and H. D. Bertero. 2014. Multi-environmental evaluation for grain yield and its physiological determinants of quinoa genotypes across Northwest Argentina. Field Crops Research 166:46–57. doi: 10.1016/j.fcr.2014.06.011.
  • Czekus, B., I. Pećinar, I. Petrović, N. Paunović, S. Savić, Z. Jovanović, and R. Stikić. 2019. Raman and Fourier transform infrared spectroscopy application to the Puno and Titicaca cvs. of quinoa seed microstructure and perisperm characterization. Journal of Cereal Science 87:25–30. doi: 10.1016/j.jcs.2019.02.011.
  • Dakhili, S., L. Abdolalizadeh, S. M. Hosseini, S. Shojaee-Aliabadi, and L. Mirmoghtadaie. 2019. Quinoa protein: Composition, structure and functional properties. Food Chemistry 299:125161 doi: 10.1016/j.foodchem.2019.125161.
  • Dawson, I. K., W. Powell, P. Hendre, J. Bančič, J. M. Hickey, R. Kindt, S. Hoad, I. Hale, and R. Jamnadass. 2019. The role of genetics in mainstreaming the production of new and orphan crops to diversify food systems and support human nutrition. New Phytologist 224 (1):37–54. doi: 10.1111/nph.15895.
  • Ding, L.-Q., L.-J. Hu, J.-F. Wang, A.-M. Sun, and Y. Jiao. 2008. Studies on scavenging effects on hydroxyl radical of the extraction from agiophyllum squarrosum. Food Research and Development 29 (2):47–50. In Chinese with English abstract)
  • Dirzo, R., and P. H. Raven. 2003. Global state of biodiversity and loss. Annual Review of Environment and Resources 28 (1):137–67. doi: 10.1146/annurev.energy.28.050302.105532.
  • Dong, H. 1810. Sha peng mi. Huang Qing Wen Ying Xu Bian:1374. (In Chinese without English abstract)
  • Edoardo, G., C. Francesca, S. Dimitrios, S. Andrea, G. Michela, M. G.-M. Jose, M. Silvia, and M. Giovanna. 2013. muma, An R package for metabolomics univariate and multivariate statistical analysis. Current Metabolomics 1 (2):180–9. doi: 10.2174/2213235X11301020005.
  • EL-Gazzar, A. 1988. Agriophyllum montasiri, a new species of Chenopodiaceae from Eastern Arabia. Mitteilungen Der Botanischen Staatssammlung München 27:15–9.
  • Elsohaimy, S. A., T. M. Refaay, and M. A. M. Zaytoun. 2015. Physicochemical and functional properties of quinoa protein isolate. Annals of Agricultural Sciences 60 (2):297–305. doi: 10.1016/j.aoas.2015.10.007.
  • Escribano, J., J. Cabanes, M. Jiménez-Atiénzar, M. Ibañez-Tremolada, L. R. Gómez-Pando, F. García-Carmona, and F. Gandía-Herrero. 2017. Characterization of betalains, saponins and antioxidant power in differently colored quinoa (Chenopodium quinoa) varieties. Food Chemistry 234:285–94. doi: 10.1016/j.foodchem.2017.04.187.
  • Fairbanks, D. J., K. W. Burgener, L. R. Robison, W. R. Andersen, and E. Ballon. 1990. Electrophoretic characterization of quinoa seed proteins. Plant Breeding 104 (3):190–5. doi: 10.1111/j.1439-0523.1990.tb00422.x.
  • FAO. 1998. Carbohydrates in human nutrition. Report of a Joint FAO/WHO Expert Consultation. FAO Food and Nutrition Paper No. 66 Food and Agriculture Organization of the United Nations, Rome.
  • Fernie, A. R., and J. Yan. 2019. De Novo domestication: An alternative route toward new crops for the future. Molecular Plant 12 (5):615–31. doi: 10.1016/j.molp.2019.03.016.
  • Filho, A. M. M., M. R. Pirozi, J. T. D. S. Borges, H. M. Pinheiro Sant’Ana, J. B. P. Chaves, and J. S. D. R. Coimbra. 2017. Quinoa: Nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science and Nutrition 57 (8):1618–30. doi: 10.1080/10408398.2014.1001811.
  • Fuentes-Zaragoza, E., M. J. Riquelme-Navarrete, E. Sánchez-Zapata, and J. A. Pérez-Álvarez. 2010. Resistant starch as functional ingredient: A review. Food Research International 43 (4):931–42. doi: 10.1016/j.foodres.2010.02.004.
  • Galwey, N. W., C. L. A. Leakey, K. R. Price, and G. R. Fenwick. 1989. Chemical composition and nutritional characteristics of quinoa (Chenopodium Quinoa Willd.). Food Sciences and Nutrition 42 (4):245–61. doi: 10.1080/09543465.1989.11904148.
  • Gao, Q. 2002. The "grass seed" is Agriophyllum squarrosum in Dunhuang manuscripts. Journal of Dunhuang Studies 42:43–4. In Chinese without English abstract)
  • Gawlik-Dziki, U., M. Świeca, M. Sułkowski, D. Dziki, B. Baraniak, and J. Czyż. 2013. Antioxidant and anticancer activities of Chenopodium quinoa leaves extracts - in vitro study. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 57:154–60. doi: 10.1016/j.fct.2013.03.023.
  • Genievskaya, Y., D. Karelova, S. Abugalieva, P. Zhao, G. Chen, and Y. Turuspekov. 2020. SSR-based evaluation of genetic diversity in populations of Agriophyllum squarrosum L. and Agriophyllum minus Fisch. & Mey. collected in South-East Kazakhstan. Vavilovskii Zhurnal Genetiki i Selektsii 24 (7):697–704. doi: 10.18699/vj20.664.
  • Genievskaya, Y., S. Abugalieva, A. Zhubanysheva, and Y. Turuspekov. 2017. Morphological description and DNA barcoding study of sand rice (Agriophyllum squarrosum, Chenopodiaceae) collected in Kazakhstan. BMC Plant Biology 17 (S1):177. doi: 10.1186/s12870-017-1132-1.
  • Ghaffari, S. M., Z. Balaei, T. Chatrenoor, and H. Akhani. 2015. Cytology of SW Asian Chenopodiaceae: New data from Iran and a review of previous records and correlations with life forms and C4 photosynthesis. Plant Systematics and Evolution 301 (2):501–21. doi: 10.1007/s00606-014-1109-6.
  • Gómez-Caravaca, A. M., G. Iafelice, V. Verardo, E. Marconi, and M. F. Caboni. 2014. Influence of pearling process on phenolic and saponin content in quinoa (Chenopodium quinoa Willd). Food Chemistry 157:174–8. doi: 10.1016/j.foodchem.2014.02.023.
  • Gomez-Pando, L. R., E. Aguilar-Castellanos, and M. Ibañez-Tremolada. 2019. Quinoa (Chenopodium quinoa Willd.) breeding. In Advances in plant breeding strategies: Cereals, vol. 5, ed. J. M. Al-Khayri, S. M. Jain, and D. V. Johnson, 259–316. Cham: Springer International Publishing.
  • Gong, B., K.-X. Zhang, Y.-H. Zhou, L. Zhang, Y.-Q. Hui, and Y.-S. Li. 2012. Separation and identification of chemical constituents from Agriophyllum squarrosum (L.) Moq. Modern Chinese Medicine 14 (10):7–11. doi: 10.13313/j.issn.1673-4890.2012.10.016.(In Chinese with English abstract)
  • Gonzalez, J. A., A. Roldan, M. Gallardo, T. Escudero, and F. E. Prado. 1989. Quantitative determinations of chemical compounds with nutritional value from Inca crops: Chenopodium quinoa (‘quinoa’)). Plant Foods for Human Nutrition (Dordrecht, Netherlands) 39 (4):331–7. doi: 10.1007/bf01092070.
  • Gonzalez, J. A., Y. Konishi, M. Bruno, M. Valoy, and F. E. Prado. 2012. Interrelationships among seed yield, total protein and amino acid composition of ten quinoa (Chenopodium quinoa) cultivars from two different agroecological regions. Journal of the Science of Food and Agriculture 92 (6):1222–9. doi: 10.1002/jsfa.4686.
  • Graf, B. L., P. Rojas-Silva, L. E. Rojo, J. Delatorre-Herrera, M. E. Baldeón, and I. Raskin. 2015. Innovations in health value and ­functional food development of quinoa (Chenopodium quinoa Willd.). Comprehensive Reviews in Food Science and Food Safety 14 (4):431–45. doi: 10.1111/1541-4337.12135.
  • Hemalatha, P., D. P. Bomzan, B. V. Sathyendra Rao, and Y. N. Sreerama. 2016. Distribution of phenolic antioxidants in whole and milled fractions of quinoa and their inhibitory effects on α-amylase and α-glucosidase activities. Food Chemistry 199:330–8. doi: 10.1016/j.foodchem.2015.12.025.
  • Jarvis, D. E., Y. S. Ho, D. J. Lightfoot, S. M. Schmockel, B. Li, T. J. Borm, H. Ohyanagi, K. Mineta, C. T. Michell, N. Saber, et al. 2017. The genome of Chenopodium quinoa. Nature 542 (7641):307–12. doi: 10.1038/nature21370.
  • Jin, Y., Y.-H. Li, Y.-Q. Hui, and Y.-S. Li. 2015. The chemical constituents of total flavonoids from Agriophyllum squarrosum. Journal of Shenyang Pharmaceutical University 32 (7):519–22. doi: 10.14066/j.cnki.cn21-1349/r.2015.07.004.(In Chinese with English abstract)
  • Jirigala. 2016. Hypoglycemic activity of aqueous extract of agriophyllum squarrosum. Thesis, School of Life Sciences, Inner Mongolia University:19–39. (In Chinese with English abstract)
  • Khoury, C. K., A. D. Bjorkman, H. Dempewolf, J. Ramirez-Villegas, L. Guarino, A. Jarvis, L. H. Rieseberg, and P. C. Struik. 2014. Increasing homogeneity in global food supplies and the implications for food security. Proceedings of the National Academy of Sciences of the United States of America 111 (11):4001–6. doi: 10.1073/pnas.1313490111.
  • Khush, G. S. 2001. Green revolution: The way forward. Nature Reviews. Genetics 2 (10):815–22. doi: 10.1038/35093585.
  • Kolano, B., J. McCann, M. Orzechowska, D. Siwinska, E. Temsch, and H. Weiss-Schneeweiss. 2016. Molecular and cytogenetic evidence for an allotetraploid origin of Chenopodium quinoa and C. berlandieri (Amaranthaceae). Molecular Phylogenetics and Evolution 100:109–23. doi: 10.1016/j.ympev.2016.04.009.
  • Kong, L., L. Zhang, and Y. Li. 2018. Isolation and identification of oleanane type triterpenoid saponins from Agriophyllum squarrosum. Journal of Shenyang Pharmaceutical University 35 (6):443–7. doi: 10.14066/j.cnki.cn21-1349/r.2018.06.002.(In Chinese with English abstract)
  • Konishi, Y., S. Hirano, H. Tsuboi, and M. Wada. 2004. Distribution of minerals in quinoa (Chenopodium quinoa Willd.) seeds.). Bioscience, Biotechnology, and Biochemistry 68 (1):231–4. doi: 10.1271/bbb.68.231.
  • Koziol, M. J. 1991. Afrosimetric estimation of threshold saponin concentration for bitterness in quinoa (Chenopodium quinoa Willd). Journal of the Science of Food and Agriculture 54 (2):211–9. doi: 10.1002/jsfa.2740540206.
  • Koziol, M. J. 1992. Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis 5:35–68.
  • Lamothe, L. M., S. Srichuwong, B. L. Reuhs, and B. R. Hamaker. 2015. Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chemistry 167:490–6. doi: 10.1016/j.foodchem.2014.07.022.
  • Lenser, T., and G. Theißen. 2013. Molecular mechanisms involved in convergent crop domestication. Trends in Plant Science 18 (12):704–14. doi: 10.1016/j.tplants.2013.08.007.
  • Li, B.-Y., K.-X. Zhan, Y.-H. Zhou, Y.-Q. Guo, Y.-Q. Hui, and Y.-S. Li. 2012. Isolation and identification of chemical constituents of flavonoids and coumarins from the aerial parts of Agriophyllum squarrosum (L.) Moq. Journal of Shenyang Pharmaceutical University 29 (12):923–6. doi: 10.14066/j.cnki.cn21-1349/r.2012.12.003.(In Chinese with English abstract)
  • Li, G., and F. Zhu. 2017. Amylopectin molecular structure in relation to physicochemical properties of quinoa starch. Carbohydrate Polymers 164:396–402. doi: 10.1016/j.carbpol.2017.02.014.
  • Li, G., and F. Zhu. 2018. Quinoa starch: Structure, properties, and applications. Carbohydrate Polymers 181:851–61. doi: 10.1016/j.carbpol.2017.11.067.
  • Li, S. 1578. Compendium of Materia Medica. (In Chinese without English abstract)
  • Lim, J. G., H. M. Park, and K. S. Yoon. 2020. Analysis of saponin composition and comparison of the antioxidant activity of various parts of the quinoa plant (Chenopodium quinoa Willd.). Food Science & Nutrition 8 (1):694–702. doi: 10.1002/fsn3.1358.
  • Lindeboom, N., P. R. Chang, and R. T. Tyler. 2004. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: A review. Starch - Stärke 56 (34):89–99. doi: 10.1002/star.200300218.
  • Liu, F., H. Li, Y. Cui, Y. Yang, H. F. Lee, D. Ding, Y. Hou, and G. Dong. 2019. Chronology and plant utilization from the earliest walled settlement in the Hexi Corridor, Northwestern China. Radiocarbon 61 (4):971–89. doi: 10.1017/RDC.2019.57.
  • Liu, J.-Q., J.-C. Pu, and X.-M. Liu. 1987. Comparative studies on water relations and xeromorphic structures of some plant species in the middle part of the desert zone in China. Acta Botanica Sinica 29 (6):662–73. In Chinese with English abstract)
  • Liu, M., K. Zhu, Y. Yao, Y. Chen, H. Guo, G. Ren, X. Yang, and J. Li. 2020. Antioxidant, anti‐inflammatory, and antitumor activities of phenolic compounds from white, red, and black Chenopodium quinoa seed. Cereal Chemistry 97 (3):703–13. doi: 10.1002/cche.10286.
  • Liu, Z.-C., Y.-H. Li, J.-Y. Qu, and Y.-S. Li. 2013. Triterpene saponins from the aerial parts of agriophyllum squarrosum. Modern Chinese Medicine 15 (11):936–9. doi: 10.13313/j.issn.1673-4890.2013.11.013.(In Chinese with English abstract)
  • Lomonosova, M., and A. Krasnikov. 1993. Chromosome numbers in some members of the Chenopodiaceae. Botanicheskiĭ Zhurnal 78 (3):158–9.
  • Lorenz, K. 1990. Quinoa (Chenopodium quinoa) starch — physico-chemical properties and functional characteristics. Starch - Stärke 42 (3):81–6. doi: 10.1002/star.19900420302.
  • Ma, Q.-L., J.-H. Wang, J.-G. Zhang, K.-J. Zhan, D.-K. Zhang, and F. Chen. 2008. Ecological protective function of a pioneer species (Agriophyllum squarrosum) on shifting sand dunes. Journal of Soil and Water Conservation 22 (1):140–5 + 150. In Chinese with English abstract)
  • Mad, T., H. Sterk, M. Mittelbach, and G. N. Rechberger. 2006. Tandem mass spectrometric analysis of a complex triterpene saponin mixture of Chenopodium quinoa. Journal of the American Society for Mass Spectrometry 17 (6):795–806. doi: 10.1016/j.jasms.2006.02.013.
  • Medina-Meza, I. G., N. A. Aluwi, S. R. Saunders, and G. M. Ganjyal. 2016. GC–MS profiling of triterpenoid saponins from 28 quinoa varieties (Chenopodium quinoa Willd.) grown in Washington State. Journal of Agricultural and Food Chemistry 64 (45):8583–91. doi: 10.1021/acs.jafc.6b02156.
  • Meng, H., H. Xu, H. Liu, S. Wang, J. Zhang, L. Xu, and C. Ma. 2017. Analysis of triglycerides in the seed of psammophyte Agriophyllum squarrosum. Journal of the Chinese Cereals and Oils Association 32 (12):87–93.
  • Millward, D. J. 2012. Amino acid scoring patterns for protein quality assessment. British Journal of Nutrition 108 (S2):S31–S43. doi: 10.1017/S0007114512002462.
  • Miranda, M., A. Vega-Galvez, I. Quispe-Fuentes, M. J. Rodriguez, H. Maureira, and E. A. Martinez. 2012. Nutritional aspects of six quinoa (Chenopodium quinoa WILLD.) ecotypes from three geographical areas of Chile. Chilean Journal of Agricultural Research 72 (2):175–81. doi: 10.4067/S0718-58392012000200002.
  • Moses, T., K. K. Papadopoulou, and A. Osbourn. 2014. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Critical Reviews in Biochemistry and Molecular Biology 49 (6):439–62. doi: 10.3109/10409238.2014.953628.
  • Mundigler, N. 1998. Isolation and determination of starch from amaranth (Amaranthus cruentus) and quinoa (Chenopodium quinoa). Starch - Stärke 50 (2–3):67–9. doi: 10.1002/(sici)1521-379x(199803)50:2/3 < 67::aid-star67 > 3.0.co;2-r.
  • Nascimento, A. C., C. Mota, I. Coelho, S. Gueifão, M. Santos, A. S. Matos, A. Gimenez, M. Lobo, N. Samman, and I. Castanheira. 2014. Characterisation of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: Proximates, minerals and trace elements. Food Chemistry 148:420–6. doi: 10.1016/j.foodchem.2013.09.155.
  • National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Food and Nutrition Board. 2019. Committee to review the dietary reference intakes for sodium and potassium; M. Oria, M. Harrison, and V. A. Stallings, editors. Washington, DC: National Academies Press (US), March 5.
  • Nieman, D. C., D. A. Henson, J. M. Davis, E. A. Murphy, D. P. Jenkins, S. J. Gross, M. D. Carmichael, J. C. Quindry, C. L. Dumke, A. C. Utter, et al. 2007. Quercetin’s influence on exercise-induced changes in plasma cytokines and muscle and leukocyte cytokine mRNA. Journal of Applied Physiology (Bethesda, Md. : 1985) 103 (5):1728–35. doi: 10.1152/japplphysiol.00707.2007.
  • Ogungbenle, H. N. 2003. Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. International Journal of Food Sciences and Nutrition 54 (2):153–8. doi: 10.1080/0963748031000084106.
  • Patiranage, D. S. R., E. Rey, N. Emrani, G. Wellman, K. Schmid, S. M. Schmöckel, M. Tester, and C. Jung. 2020. Genome-wide association study in the pseudocereal quinoa reveals selection pattern typical for crops with a short breeding history. bioRxiv 2020:2012.2003.410050. doi: 10.1101/2020.12.03.410050.
  • Peng, J. 2017. Study on physicochemical properties of sand rice protein and starch and the utilization. Thesis, College of Food Science and Technology, Nanjing Agricultural University:53. (In Chinese with English abstract)
  • Peng, J., M. Zhang, M. Xing, G. Chen, T. Liu, and K. Tu. 2017. Physiochemical and functional properties of protein isolates prepared from bran and perisperm of sand rice seeds (Agriophyllum squarrosum). Food Science 38 (13):71–6. doi: 10.7506/spkx1002-6630-201713012.(In Chinese with English abstract)
  • Peng, J., Y. Wang, G. Chen, L. Pan, and K. Tu. 2018. Morphological and physicochemical properties of very small granules starch from Agriophyllum squarrosum (L.) Moq. in comparison with maize starch. Starch - Stärke 70 (3–4):1700068. doi: 10.1002/star.201700068.
  • Pereira, E., V. Cadavez, L. Barros, C. Encina-Zelada, D. Stojković, M. Sokovic, R. C. Calhelha, U. Gonzales-Barron, and I. C. F. R. Ferreira. 2020. Chenopodium quinoa Willd. (quinoa) grains: A good source of phenolic compounds. Food Research International (Ottawa, Ont.) 137:109574 doi: 10.1016/j.foodres.2020.109574.
  • Prego, I., S. Maldonado, and M. Otegui. 1998. Seed structure and localization of reserves in Chenopodium quinoa. Annals of Botany 82 (4):481–8. doi: 10.1006/anbo.1998.0704.
  • Qian, C., H. Yin, Y. Shi, J. Zhao, C. Yin, W. Luo, Z. Dong, G. Chen, X. Yan, X. R. Wang, et al. 2016. Population dynamics of Agriophyllum squarrosum, a pioneer annual plant endemic to mobile sand dunes, in response to global climate change. Scientific Reports 6:26613 doi: 10.1038/srep26613.
  • Qian, C., X. Yan, T. Fang, X. Yin, S. Zhou, X. Fan, Y. Chang, and X.-F. Ma. 2021. Genomic Adaptive Evolution of Sand Rice (Agriophyllum squarrosum) and Its Implications for Desert Ecosystem Restoration. Frontiers in Genetics 12:656061. doi: 10.3389/fgene.2021.656061.
  • Ranhotra, G. S., J. A. Gelroth, B. K. Glaser, K. J. Lorenz, and D. L. Johnson. 1993. Composition and protein nutritional quality of quinoa. Cereal Chemistry 70 (3):303–305.
  • Ray, D. K., J. S. Gerber, G. K. MacDonald, and P. C. West. 2015. Climate variation explains a third of global crop yield variability. Nature Communications 6 (1):5989. doi: 10.1038/ncomms6989.
  • Ren, W.-M., X.-F. Liu, and C.-M. Ni. 2005. An analyses on nutritional composition of natural Agriophyllum squarrosum of Mu Us desert. Journal of Inner Mongolia Agriculture University 26 (2):88–90.
  • Ren, Y., K. Guo, B. Zhang, and C. Wei. 2020. Comparison of physicochemical properties of very small granule starches from endosperms of dicotyledon plants. International Journal of Biological Macromolecules 154:818–25. doi: 10.1016/j.ijbiomac.2020.03.147.
  • Repo-Carrasco, R., C. Espinoza, and S. E. Jacobsen. 2003. Nutritional value and use of the Andean Crops Quinoa (Chenopodium quinoa) and Kañiwa (Chenopodium pallidicaule). Food Reviews International 19 (1–2):179–89. doi: 10.1081/FRI-120018884.
  • Repo-Carrasco-Valencia, R., J. K. Hellström, J.-M. Pihlava, and P. H. Mattila. 2010. Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chemistry 120 (1):128–33. doi: 10.1016/j.foodchem.2009.09.087.
  • Ross-Ibarra, J., P. L. Morrell, and B. S. Gaut. 2007. Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proceedings of the National Academy of Sciences of Sciences 104 (Supplement 1):8641–8. doi: 10.1073/pnas.0700643104.
  • Ruales, J., and B. M. Nair. 1993. Content of fat, vitamins and minerals in quinoa (CHENOPODIUM-QUINOA, WILLD) seeds. Food Chemistry 48 (2):131–6. doi: 10.1016/0308-8146(93)90047-J.
  • Ruiz, G. A., W. Xiao, M. van Boekel, M. Minor, and M. Stieger. 2016. Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa (Chenopodium quinoa Willd). Food Chemistry 209:203–10. doi: 10.1016/j.foodchem.2016.04.052.
  • Sajilata, M. G., R. S. Singhal, and P. R. Kulkarni. 2006. Resistant starch-a review. Comprehensive Reviews in Food Science and Food Safety 5 (1):1–17. doi: 10.1111/j.1541-4337.2006.tb00076.x.
  • Saqier, S. B., S. Han, and W. Ao. 2019. Effects of Agriophyllum squarrosum extracts on glucose metabolism in KKAy mice and the associated underlying mechanisms. Journal of Ethnopharmacology 241:112009. doi: 10.1016/j.jep.2019.112009.
  • Smith, B. D. 1989. Origins of agriculture in eastern North America. Science (New York, N.Y.) 246 (4937):1566–71. doi: 10.1126/science.246.4937.1566.
  • Srichuwong, S., D. Curti, S. Austin, R. King, L. Lamothe, and H. Gloria-Hernandez. 2017. Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents. Food Chemistry 233:1–10. doi: 10.1016/j.foodchem.2017.04.019.
  • State Administration of Traditional Chinese Medicine. 2000. Chinese Materia Medica, Inner Mongolia Volume. (In Chinese without English abstract)
  • Steffolani, M. E., P. Villacorta, E. R. Morales-Soriano, R. Repo-Carrasco, A. E. León, and G. T. Pérez. 2016. Physicochemical and functional characterization of protein isolated from different quinoa varieties (Chenopodium quinoa Willd). Cereal Chemistry Journal 93 (3):275–81. doi: 10.1094/CCHEM-04-15-0083-R.
  • Sun, H., H. Liu, X. Gong, K. Gao, and M. Xiao. 1995. A study of the nutritive value of Agriophyllum squarrosum protein. Journal of Baotou Medical College 11 (3):12–4. In Chinese with English abstract)
  • Tajik, N., M. Tajik, I. Mack, and P. Enck. 2017. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. European Journal of Nutrition 56 (7):2215–44. doi: 10.1007/s00394-017-1379-1.
  • Tang, Y., and R. Tsao. 2017. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: A review. Molecular Nutrition & Food Research 61 (7):1600767. doi: 10.1002/mnfr.201600767.
  • Tang, Y., X. Li, B. Zhang, P. X. Chen, R. Liu, and R. Tsao. 2015b. Characterisation of phenolics, betanins and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry 166:380–8. doi: 10.1016/j.foodchem.2014.06.018.
  • Tang, Y., X. Li, P. X. Chen, B. Zhang, M. Hernandez, H. Zhang, M. F. Marcone, R. Liu, and R. Tsao. 2014. Lipids, tocopherols, and carotenoids in leaves of amaranth and quinoa cultivars and a new approach to overall evaluation of nutritional quality traits. Journal of Agricultural and Food Chemistry 62 (52):12610–9. doi: 10.1021/jf5046377.
  • Tang, Y., X. Li, P. X. Chen, B. Zhang, M. Hernandez, H. Zhang, M. F. Marcone, R. Liu, and R. Tsao. 2015a. Characterisation of fatty acid, carotenoid, tocopherol/tocotrienol compositions and antioxidant activities in seeds of three Chenopodium quinoa Willd. genotypes. Food Chemistry 174:502–8. doi: 10.1016/j.foodchem.2014.11.040.
  • Tang, Y., X. Li, P. X. Chen, B. Zhang, R. Liu, M. Hernandez, J. Draves, M. F. Marcone, and R. Tsao. 2016. Assessing the fatty acid, ­carotenoid, and tocopherol compositions of amaranth and quinoa seeds grown in Ontario and their overall contribution to nutritional quality. Journal of Agricultural and Food Chemistry 64 (5):1103–10. doi: 10.1021/acs.jafc.5b05414.
  • Tawfeek, N., M. F. Mahmoud, D. I. Hamdan, M. Sobeh, N. Farrag, M. Wink, and A. M. El-Shazly. 2021. Phytochemistry, pharmacology and medicinal uses of plants of the genus salix: An updated review. Frontiers in Pharmacology 12 (50):593856. doi: 10.3389/fphar.2021.593856.
  • Thanapornpoonpong, S.-N., S. Vearasilp, E. Pawelzik, and S. Gorinstein. 2008. Influence of Variossus Nitrogen Applications on Protein and Amino Acid Profiles of Amaranth and Quinoa. Journal of Agricultural and Food Chemistry 56 (23):11464–70. doi: 10.1021/jf802673x.
  • Thevenot, E. A., A. Roux, Y. Xu, E. Ezan, and C. Junot. 2015. Analysis of the human adult urinary metabolome variations with age, body mass Index, and Gender by Implementing a Comprehensive Workflow for Univariate and OPLS Statistical Analyses. Journal of Proteome Research 14 (8):3322–35. doi: 10.1021/acs.jproteome.5b00354.
  • Thimmappa, R., K. Geisler, T. Louveau, P. O’Maille, and A. Osbourn. 2014. Triterpene Biosynthesis in Plants. Annual Review of Plant Biology 65 (1):225–57. doi: 10.1146/annurev-arplant-050312-120229.
  • Tilman, D., C. Balzer, J. Hill, and B. L. Befort. 2011. Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences of the United States of America 108 (50):20260–4. doi: 10.1073/pnas.1116437108.
  • Valencia-Chamorro, S. A. 2003. Quinoa. In Encyclopedia of food science and nutrition, vol. 8, ed. B. Caballero, 4895–902. Amsterdam: Academic Press.
  • van der Kamp, J. W., K. Poutanen, C. J. Seal, and D. P. Richardson. 2014. The HEALTHGRAIN definition of ‘whole grain. Food & Nutrition Research 58 (1):22100. doi: 10.3402/fnr.v58.22100.
  • Varisi, V. A., L. S. Camargos, L. F. Aguiar, R. M. Christofoleti, L. O. Medici, and R. A. Azevedo. 2008. Lysine biosynthesis and nitrogen metabolism in quinoa (Chenopodium quinoa): Study of enzymes and nitrogen-containing compounds. Plant Physiology and Biochemistry : PPB 46 (1):11–8. doi: 10.1016/j.plaphy.2007.10.001.
  • Varriano-Marston, E., and A. Defrancisco. 1984. Ultrastructure of quinoa fruit (CHENOPODIUM-QUINOA WILLD). Food Microstructure 3 (2):165–73.
  • Vega-Gálvez, A., M. Miranda, J. Vergara, E. Uribe, L. Puente, and E. A. Martínez. 2010. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture 90 (15):2541–7. doi: 10.1002/jsfa.4158.
  • Wang, Q., A. Wang, S. Yan, Q. Zhang, H. Wang, and H. Shao. 2020. Phenolic composition, antioxidant capacity and starch digestibility in vitro of sand rice. Journal of Shaanxi Normal University (Natural Science Edition) 48 (5):42–7. doi: 10.15983/j.cnki.jsnu.2020.03.011.(In Chinese with English abstract).
  • Wang, Q., H. Shao, Z. Zhang, S. Yan, F. Huang, H. Zhang, and X. Yang. 2019. Phenolic profile and antioxidant properties of sand rice (Agriophyllum squarrosum) as affected by cooking and in vitro digestion. Journal of the Science of Food and Agriculture 99 (8):3871–8. doi: 10.1002/jsfa.9609.
  • Wang, Q., H.-K. Chen, and J.-L. Wang. 2013. Karyotype analysis of the chromosome of Agriophyllum squarrosum. Northern Horticulture 1:114–6.
  • Wang, Y., P. Zhao, K. Zhao, and Y. Song. 2007. Study on the extracting conditions and antioxidant activity of chlorogenic acid in agriophyllum squarrosum. Food and Fermentation Industries 33 (10):131–4.
  • Wang, Y., P. Zhao, X. Chen, X. Qi, Y. Lin, and Y. Wang. 2009. The extractin process of Agriophyllum squarrosum ethanol extract and studies on its in vitro antioxidant properties. Journal of Chinese Medicinal Materials 32 (5):794–6. In Chinese without English abstract)
  • Watanabe, K., A. Ibuki, Y.-C. Chen, Y. Kawamura, and T. Mitsunaga. 2003. Composition of quinoa protein fractions. Nippon Shokuhin Kagaku Kogaku KAISHI 50 (11):546–9. (In Janpanese with English abstract) doi: 10.3136/nskkk.50.546.
  • Wei, F., K. Furihata, M. Koda, F. Hu, R. Kato, T. Miyakawa, and M. Tanokura. 2012. (13)C NMR-based metabolomics for the classification of green coffee beans according to variety and origin . Journal of Agricultural and Food Chemistry 60 (40):10118–25. doi: 10.1021/jf3033057.
  • Wheeler, T., and J. von Braun. 2013. Climate change impacts on global food security. Science (New York, N.Y.) 341 (6145):508–13. doi: 10.1126/science.1239402.
  • World Health Organization/Food and Agriculture Organization/United Nations University. 2007. Protein and amino acid requirements in human nutrition report of a joint WHO/FAO/UNU expert consultation. WHO Technical Report Series No. 935. WHO, Geneva.
  • Wright, K. H., K. C. Huber, D. J. Fairbanks, and C. S. Huber. 2002. Isolation and characterization of Atriplex hortensis and sweet Chenopodium quinoa starches. Cereal Chemistry Journal 79 (5):715–9. doi: 10.1094/CCHEM.2002.79.5.715.
  • Xu, H. 2019. Hepatoprotective effects of the constituents of agriophyllum squarrosum seed and Xanthoceras sorbifolia xylem from Inner Mongolia. Thesis, School of Life Sciences, Inner Mongolia University:57–81. (In Chinese with English abstract)
  • Xu, H. Y., H. C. Zheng, H. W. Zhang, J. Y. Zhang, and C. M. Ma. 2018. Comparison of antioxidant constituents of Agriophyllum squarrosum seed with conventional crop seeds. Journal of Food Science 83 (7):1823–31. doi: 10.1111/1750-3841.14159.
  • Nsimba, R. Y., H. Kikuzaki, and Y. Konishi. 2008. Antioxidant activity of various extracts and fractions of Chenopodium quinoa and Amaranthus spp. seeds. Food Chemistry 106 (2):760–6. doi: 10.1016/j.foodchem.2007.06.004.
  • Yin, C., C. Qian, G. Chen, X. Yan, and X. Ma. 2016a. The influence of selection of ecological differentiation to the phenotype polymorphism of Agriophyllum squarrosum. Journal of Desert Research 36 (2):364–373. doi: 10.7522/j.issn.1000-694X.2016.00051.(In Chinese with English abstract)
  • Yin, C., J. Zhao, J. Hu, C. Qian, Z. Xie, G. Chen, X. Yan, and X.-F. Ma. 2016b. Phenotypic variation of a potential food crop, Agriophyllumsquarrosum, impacted by environmental heterogeneity. Scientia Sinica Vitae 46:1–12. doi: 10.1360/n052015-00294.(In Chinese with English abstract)
  • Yin, X., X. Yan, C. Qian, S. Zhou, T. Fang, X. Fan, Y. Gao, Y. Chang, J. Yang, and X.-F. Ma. 2021. Comparative transcriptome analysis to identify genes involved in terpenoid biosynthesis in Agriophyllum squarrosum, a folk medicinal herb native to Asian temperature deserts. Plant Biotechnology Reports 15 (3):369–87. doi: 10.1007/s11816-021-00674-5.
  • Zevallos, V. F., H. J. Ellis, T. Šuligoj, L. I. Herencia, and P. J. Ciclitira. 2012. Variable activation of immune response by quinoa (Chenopodium quinoa Willd.) prolamins in celiac disease. The American Journal of Clinical Nutrition 96 (2):337–44. doi: 10.3945/ajcn.111.030684.
  • Zevallos, V. F., I. L. Herencia, F. Chang, S. Donnelly, J. H. Ellis, and P. J. Ciclitira. 2014. Gastrointestinal effects of eating quinoa (Chenopodium quinoa Willd.) in celiac patients. The American Journal of Gastroenterology 109 (2):270–8. doi: 10.1038/ajg.2013.431.
  • Zhang, H., Y. Li, and J. K. Zhu. 2018. Developing naturally stress-resistant crops for a sustainable agriculture. Nature Plants 4 (12):989–96. doi: 10.1038/s41477-018-0309-4.
  • Zhang, J., J. Zhao, Q. Zhou, J. Hu, Y. Ma, X. Zhao, P. Zhao, Y. Turuspekov, Z. Xie, and G. Chen. 2018a. The agronomic performance of sand rice (Agriophyllum squarrosum), a potential semi-arid crop species. Genetic Resources and Crop Evolution 65 (8):2293–301. doi: 10.1007/s10722-018-0689-3.
  • Zhang, J., P. Zhao, J. Zhao, and G. Chen. 2018b. Synteny-based mapping of causal point mutations relevant to sand rice (Agriophyllum squarrosum) trichomeless1 mutant by RNA-sequencing. Journal of Plant Physiology 231:86–95. doi: 10.1016/j.jplph.2018.09.003.
  • Zhang, J.-N., J.-R. Zhao, and J.-H. Li. 2006. Determination and analysis of seed nutrients of Agriophyllum squarrosum. Partacultural Science 23 (3):77–9. In Chinese with English abstract)
  • Zhang, J.-Y., H.-L. Zhao, J.-Y. Cui, Y.-L. Li, and J.-D. Yang. 2003. Biomass of Agriophyllumsquarrosum community and its function on mobile sand dune in Horqin sandy land. Journal of Soil and Water Conservation 17 (3):152–4. In Chinese with English abstract)
  • Zhang, Y., S. Qian, H. Wang, D. Wang, M. Li, and T. Xu. 2020. Analysis of the active constituents of saponins in Agriophyllum squarrosum. Chinese Traditional Patent Medicine 42 (8):2218–20. doi: 10.3969/j.issn.1001-1528.2020.08.052. (In Chinese without English abstract)
  • Zhao, J. 2016. Preliminary domestication of Agriophyllum squarrosum. Thesis, Cold and Arid Regions Environmental and Enginneering Research Institute. Chinese Academy of Science:68–70. (In Chinese with English abstract)
  • Zhao, J., F. Zhang, and G. Chen. 2016. Investigation of ancient literature and survey of traditional food culture related to sand rice (Agriophyllum squarrosum). Agricultural Archaeology 2016 (6):40–3. In Chinese without English abstract)
  • Zhao, J., P. Zhao, X. Zhao, X. Ma, Y. Wang, Q. Zhou, and G. Chen. 2016a. Biological characters, nutrient value and domestication feasibility of Agriophyllum squarrosum. Journal of Desert Research 36 (3):636–43. doi: 10.7522/j.issn.1000-694X.2016.00025.(In Chinese with English abstract)
  • Zhao, J., Y. Ma, Q. Zhou, X. Zhao, X.-F. Ma, and G. Chen. 2016b. Comparative analysis on metabolomics of Agriophyllum squarrosum and Chenopodium quinoa seeds. Food and Nutrition in China 22 (12):64–8.
  • Zhao, P., J. Zhang, C. Qian, Q. Zhou, X. Zhao, G. Chen, and X. F. Ma. 2017. SNP Discovery and genetic variation of candidate genes relevant to heat tolerance and agronomic traits in natural populations of sand rice (Agriophyllum squarrosum). Front Plant Sci 8:536 doi: 10.3389/fpls.2017.00536.
  • Zhao, P., J. Zhang, X. Zhao, G. Chen, and X.-F. Ma. 2016c. Different sets of post-embryonic development genes are conserved or lost in two caryophyllales species (Reaumuria soongorica and Agriophyllum squarrosum). Plos One 11 (1):e0148034 doi: 10.1371/journal.pone.0148034.
  • Zhao, P., S. Capella-Gutierrez, Y. Shi, X. Zhao, G. Chen, T. Gabaldon, and X. F. Ma. 2014. Transcriptomic analysis of a psammophyte food crop, sand rice (Agriophyllum squarrosum) and identification of candidate genes essential for sand dune adaptation. BMC Genomics 15 (1):872 doi: 10.1186/1471-2164-15-872.
  • Zhao, X. 1765. Supplements to compendium of materia medica. (In Chinese without English abstract)
  • Zhou, S., X. Yan, J. Yang, C. Qian, X. Yin, X. Fan, T. Fang, Y. Gao, Y. Chang, W. Liu, et al. 2021. Variations in flavonoid metabolites along altitudinal gradient in a desert medicinal plant Agriophyllum squarrosum. Frontiers in Plant Science 12:683265 doi: 10.3389/fpls.2021.683265.
  • Zhou, Y.-H., K.-X. Zhan, B. Gong, L. Zhang, C. Wang, and Y.-S. Li. 2012. Chemical constituents of the whole plants of Agriophyllum squarrosum (L.) Moq. (II). Journal of Shenyang Pharmaceutical University 29 (10):753–7. doi: 10.14066/j.cnki.cn21-1349/r.2012.10.002.(In Chinese with English abstract)
  • Zhu, F. 2020. Dietary fiber polysaccharides of amaranth, buckwheat and quinoa grains: A review of chemical structure, biological functions and food uses. Carbohydrate Polymers 248:116819 doi: 10.1016/j.carbpol.2020.116819.
  • Zhu, Y. 2000. Inner Mongolia Materia Medica, 1. (In Chinese without English abstract)
  • Zou, C., A. Chen, L. Xiao, H. M. Muller, P. Ache, G. Haberer, M. Zhang, W. Jia, P. Deng, R. Huang, et al. 2017. A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Cell Research 27 (11):1327–40. doi: 10.1038/cr.2017.124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.