962
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Green extraction and characterization of leaves phenolic compounds: a comprehensive review

ORCID Icon &

References

  • Abbott, A. P., G. Capper, D. L. Davies, R. K. Rasheed, and V. Tambyrajah. 2003. Novel solvent properties of choline chloride/urea mixtures. Chemical Communications 1:70–1. doi: 10.1039/b210714g.
  • Abbott, A. P., R. C. Harris, K. S. Ryder, C. D’Agostino, L. F. Gladden, and M. D. Mantle. 2011. Glycerol eutectics as sustainable solvent systems. Green Chemistry 13 (1):82–90. doi: 10.1039/C0GC00395F.
  • Ajila, C. M., S. K. Brar, M. Verma, R. D. Tyagi, S. Godbout, and J. R. Valero. 2011. Extraction and analysis of polyphenols: Recent trends. Critical Reviews in Biotechnology 31 (3):227–49. doi: 10.3109/07388551.2010.513677.
  • Alanon, M. E., M. Ivanovic, A. M. Gomez-Caravaca, D. Arraez-Roman, and A. Segura-Carretero. 2020. Choline chloride derivative-based deep eutectic liquids as novel green alternative solvents for extraction of phenolic compounds from olive leaf. Arabian Journal of Chemistry 13 (1):1685–701. doi: 10.1016/j.arabjc.2018.01.003.
  • Albarri, R., İ. Toprakçı, E. Kurtulbaş, and S. Şahin. 2021. Estimation of diffusion and mass transfer coefficients for the microwave-assisted extraction of bioactive substances from Moringa oleifera leaves. Biomass Conversion and Biorefinery. doi: 10.1007/s13399-021-01443-8.
  • Alonso-Salces, R. M., E. Korta, A. Barranco, L. A. Berrueta, B. Gallo, and F. Vicente. 2001a. Determination of polyphenolic profiles of Basque cider apple varieties using accelerated solvent extraction. Journal of Agricultural and Food Chemistry 49 (8):3761–7. doi: 10.1021/jf010021s.
  • Alonso-Salces, R. M., E. Korta, A. Barranco, L. A. Berrueta, B. Gallo, and F. Vicente. 2001b. Pressurized liquid extraction for the determination of polyphenols in apple. Journal of Chromatography. A 933 (1–2):37–43. doi: 10.1016/S0021-9673(01)01212-2.
  • Alsaud, N., and M. Farid. 2020. Insight into the influence of grinding on the extraction efficiency of selected bioactive compounds from various plant leaves. Applied Sciences 10 (18) 6362. doi: 10.3390/app1018:6362.
  • Alves, J. J. L., M. I. Dias, J. C. M. Barreira, L. Barros, O. Resende, A. C. R. Aguiar, and I. Ferreira. 2020. Phenolic profile of Croton urucurana Baill. Leaves, stems and bark: Pairwise influence of drying temperature and extraction solvent. Molecules 25 (9):2032. doi: 10.3390/molecules25092032.
  • Amaral, V. A., T. F. R. Alves, J. F. de Souza, F. Batain, K. M. D. Crescencio, V. S. Soeiro, and M. V. Chaud. 2021. Phenolic compounds from Psidium guajava (Linn.) Leaves: Effect of the extraction-assisted method upon total phenolics content and antioxidant activity. Biointerface Research in Applied Chemistry 11 (2):9346–57. doi: 10.33263/briaci12.93469357.
  • Ameer, K., B.-S. Chun, and J.-H. Kwon. 2017a. Optimization of supercritical fluid extraction of steviol glycosides and total phenolic content from Stevia rebaudiana (Bertoni) leaves using response surface methodology and artificial neural network modeling. Industrial Crops and Products 109:672–85. doi: 10.1016/j.indcrop.2017.09.023.
  • Ameer, K., H. M. Shahbaz, and J. H. Kwon. 2017b. Green extraction methods for polyphenols from plant matrices and their byproducts: A review. Comprehensive Reviews in Food Science and Food Safety 16 (2):295–315. doi: 10.1111/1541-4337.12253.
  • Apea-Bah, F. B., D. Head, R. Scales, R. Bazylo, and T. Beta. 2020. Hydrothermal extraction, a promising method for concentrating phenolic antioxidants from red osier dogwood (Corpus stolonifer) leaves and stems. Heliyon 6 (10):e05158. doi: 10.1016/j.heliyon.2020.e05158.
  • Arriola, N. D. A., P. M. de Medeiros, E. S. Prudencio, C. M. O. Muller, and R. Amboni. 2016. Encapsulation of aqueous leaf extract of Stevia rebaudiana Bertoni with sodium alginate and its impact on phenolic content. Food Bioscience 13:32–40. doi: 10.1016/j.fbio.2015.12.001.
  • Asofiei, I., I. Calinescu, A. Trifan, and A. I. Gavrila. 2019. A Semi-continuous process for polyphenols extraction from Sea Buckthorn Leaves. Scientific Reports 9 (1):7. doi: 10.1038/s41598-019-48610-6.
  • Asofiei, I., I. Calinescu, A. Trifan, I. G. David, and A. I. Gavrila. 2016. Microwave-assisted batch extraction of polyphenols from Sea Buckthorn Leaves. Chemical Engineering Communications 203 (12):1547–53. doi: 10.1080/00986445.2015.1134518.
  • Ayala-Zavala, J. F., C. Rosas-Dominguez, V. Vega-Vega, and G. A. Gonzalez-Aguilar. 2010. Antioxidant enrichment and antimicrobial protection of fresh-cut fruits using their own byproducts: Looking for integral exploitation. Journal of Food Science 75 (8):R175–R181. doi: 10.1111/j.1750-3841.2010.01792.x.
  • Baeeri, M., P. Sarkhail, G. Hashemi, R. Marefatoddin, and Z. Shahabi. 2018. Data showing the optimal conditions of pre-extraction and extraction of Citrullus lanatus (watermelon) white rind to increase the amount of bioactive compounds, DPPH radical scavenging and anti-tyrosinase activity. Data in Brief 20:1683–5. doi: 10.1016/j.dib.2018.09.024.
  • Bagade, S. B., and M. Patil. 2021. Recent advances in microwave assisted extraction of bioactive compounds from complex herbal samples: A review. Critical Reviews in Analytical Chemistry 51 (2):138–12. doi: 10.1080/10408347.2019.1686966.
  • Banozic, M., J. Babic, and S. Jokic. 2020. Recent advances in extraction of bioactive compounds from tobacco industrial waste-a review. Industrial Crops and Products :144, 112009. doi: 10.1016/j.indcrop.2019.112009.
  • Bao, Y. W., L. Reddivari, and J. Y. Huang. 2020. Enhancement of phenolic compounds extraction from grape pomace by high voltage atmospheric cold plasma. LWT – Food Science and Technology 133:109970. doi: 10.1016/j.lwt.2020.109970.
  • Barišić, V., I. Flanjak, M. Kopjar, M. Benšić, A. Jozinović, J. Babić, D. Šubarić, B. Miličević, K. Doko, M. Jašić, et al. 2020. Does high voltage electrical discharge treatment induce changes in Tannin and fiber properties of cocoa shell? Foods 9 (6):810. doi: 10.3390/foods9060810.
  • Belwal, T., A. Pandey, I. D. Bhatt, R. S. Rawal, and Z. S. Luo. 2019b. Trends of polyphenolics and anthocyanins accumulation along ripening stages of wild edible fruits of Indian Himalayan region. Scientific Reports 9 (1) doi: 10.1038/s41598-019-42270-2.
  • Belwal, T., H. Huang, L. Li, Z. H. Duan, X. B. Zhang, H. Aalim, and Z. S. Luo. 2019a. Optimization model for ultrasonic-assisted and scale-up extraction of anthocyanins from Pyrus communis ‘Starkrimson’ fruit peel. Food Chemistry 297:124993. doi: 10.1016/j.foodchem.2019.124993.
  • Belwal, T., S. M. Ezzat, L. Rastrelli, I. D. Bhatt, M. Daglia, A. Baldi, H. P. Devkota, I. E. Orhan, J. K. Patra, G. Das, et al. 2018. A critical analysis of extraction techniques used for botanicals: Trends, priorities, industrial uses and optimization strategies. Trac Trends in Analytical Chemistry 100:82–102. doi: 10.1016/j.trac.2017.12.018.
  • Ben Ahmed, Z., M. Yousfi, J. Viaene, B. Dejaegher, K. Demeyer, D. Mangelings, and Y. V. Heyden. 2016. Determination of optimal extraction conditions for phenolic compounds from Pistacia atlantica leaves using the response surface methodology. Analytical Methods 8 (31):6107–14. doi: 10.1039/C6AY01739H.
  • Benthin, B., H. Danz, and M. Hamburger. 1999. Pressurized liquid extraction of medicinal plants. Journal of Chromatography. A 837 (1-2):211–9. doi: 10.1016/S0021-9673(99)00071-0.
  • Bharadwaz, A., and C. Bhattacharjee. 2012. Extraction of polyphenols from dried tea leaves. International Journal of Scientific & Engineering Research 3 (5):1–5.
  • Bindes, M. M. M., M. H. M. Reis, V. L. Cardoso, and D. C. Boffito. 2019. Ultrasound-assisted extraction of bioactive compounds from green tea leaves and clarification with natural coagulants (Chitosan and Moringa oleífera seeds)). Ultrasonics Sonochemistry 51:111–9. doi: 10.1016/j.ultsonch.2018.10.014.
  • Bonifacio-Lopes, T., J. A. Teixeira, and M. Pintado. 2020. Current extraction techniques towards bioactive compounds from brewer’s spent grain – A review. Critical Reviews in Food Science and Nutrition 60 (16):2730–41. doi: 10.1080/10408398.2019.1655632.
  • Boussetta, N., J. L. Lanoiselle, C. Bedel-Cloutour, and E. Vorobiev. 2009. Extraction of soluble matter from grape pomace by high voltage electrical discharges for polyphenol recovery: Effect of sulphur dioxide and thermal treatments. Journal of Food Engineering 95 (1):192–8. doi: 10.1016/j.jfoodeng.2009.04.030.
  • Caleja, C., A. Ribeiro, M. F. Barreiro, and I. Ferreira. 2017. Phenolic compounds as nutraceuticals or functional food ingredients. Current Pharmaceutical Design 23 (19):2787–806. doi: 10.2174/1381612822666161227153906.
  • Chan, S. W., C. Y. Lee, C. F. Yap, W. M. Wan Aida, and C. W. Ho. 2009. Optimisation of extraction conditions for phenolic compounds from limau purut (Citrus hystrix) peels. International Food Research Journal 16:203–13.
  • Cheaib, D., N. El Darra, H. Rajha, I. El-Ghazzawi, Y. Mouneimne, A. Jammoul, R. Maroun, and N. Louka. 2018. Study of the selectivity and bioactivity of polyphenols using infrared assisted extraction from apricot pomace compared to conventional methods. Antioxidants 7 (12):174. doi: 10.3390/antiox7120174.
  • Chemat, F., M. A. Vian, and G. Cravotto. 2012. Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences 13 (7):8615–27. doi: 10.3390/ijms13078615.
  • Chemat, F., M. Abert Vian, A.-S. Fabiano-Tixier, M. Nutrizio, A. Režek Jambrak, P. E. S. Munekata, J. M. Lorenzo, F. J. Barba, A. Binello, and G. Cravotto. 2020. A review of sustainable and intensified techniques for extraction of food and natural products. Green Chemistry 22 (8):2325–53. doi: 10.1039/C9GC03878G.
  • Chemat, F., N. Rombaut, A. G. Sicaire, A. Meullemiestre, A. S. Fabiano-Tixier, and M. Abert-Vian. 2017. Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. Ultrasonics Sonochemistry 34:540–60. doi: 10.1016/j.ultsonch.2016.06.035.
  • Choi, Y. H., and R. Verpoorte. 2019. Green solvents for the extraction of bioactive compounds from natural products using ionic liquids and deep eutectic solvents. Current Opinion in Food Science 26:87–93. doi: 10.1016/j.cofs.2019.04.003.
  • Chong, K. Y., R. Stefanova, J. Z. Zhang, and M. S. L. Brooks. 2020. Aqueous two-phase extraction of bioactive compounds from haskap leaves (Lonicera caerulea): Comparison of salt/ethanol and sugar/propanol systems. Separation and Purification Technology 252:117399. doi: 10.1016/j.seppur.2020.117399.
  • Ciulu, M., R. Quirantes-Pine, N. Spano, G. Sanna, I. Borras-Linares, and A. Segura-Carretero. 2017. Evaluation of new extraction approaches to obtain phenolic compound-rich extracts from Stevia rebaudiana Bertoni leaves. Industrial Crops and Products 108:106–12. doi: 10.1016/j.indcrop.2017.06.024.
  • Costa, R. 2016. Chapter 9 – The chemistry of mushrooms: A survey of novel extraction techniques targeted to chromatographic and spectroscopic screening. In Studies in natural products chemistry, ed. R. Attaur, 279–306. Amsterdam: Elsevier.
  • Cristianini, M., and J. S. G. Sanchez. 2020. Extraction of bioactive compounds from purple corn using emerging technologies: A review. Journal of Food Science 85 (4):862–9. doi: 10.1111/1750-3841.15074.
  • Cui, Q., J. Z. Liu, L. T. Wang, Y. F. Kang, Y. Meng, J. Jiao, and Y. J. Fu. 2018. Sustainable deep eutectic solvents preparation and their efficiency in extraction and enrichment of main bioactive flavonoids from sea buckthorn leaves. Journal of Cleaner Production 184:826–35. doi: 10.1016/j.jclepro.2018.02.295.
  • Dahmoune, F., G. Spigno, K. Moussi, H. Remini, A. Cherbal, and K. Madani. 2014. Pistacia lentiscus leaves as a source of phenolic compounds: Microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Industrial Crops and Products 61:31–40. doi: 10.1016/j.indcrop.2014.06.035.
  • Dai, Y. T., J. van Spronsen, G. J. Witkamp, R. Verpoorte, and Y. H. Choi. 2013. Natural deep eutectic solvents as new potential media for green technology. Analytica Chimica Acta 766:61–8. doi: 10.1016/j.aca.2012.12.019.
  • Dailey, A., and Q. V. Vuong. 2015. Optimization of aqueous extraction conditions for recovery of phenolic content and antioxidant properties from Macadamia (Macadamia tetraphylla) skin waste. Antioxidants (Basel, Switzerland) 4 (4):699–718. doi: 10.3390/antiox4040699.
  • de Castro, M. D. L., and F. Priego-Capote. 2012. Microwave-assisted extraction. In Enhancing extraction processes in the food industry, eds. N. Lebovka, E. Vorobiev, and F. Chemat, 85–122. Boca Raton, FL: CRC Press.
  • Dean, J. R., A. Santamaria-Rekondo, and E. Ludkin. 1996. Accelerated solvent extraction of phenols from soil. Analytical Communications 33 (12):413–6. doi: 10.1039/ac9963300413.
  • Demirbas, A. 2001. Supercritical fluid extraction and chemicals from biomass with supercritical fluids. Energy Conversion and Management 42 (3):279–94. doi: 10.1016/s0196-8904(00)00059-5.
  • Deng, X. T., J. J. Shi, and M. G. Kong. 2006. Physical mechanisms of inactivation of Bacillus subtilis spores using cold atmospheric plasmas. IEEE Transactions on Plasma Science 34 (4):1310–6. doi: 10.1109/TPS.2006.877739.
  • Destandau, E., T. Michel, and C. Elfakir. 2013. Microwave-assisted extraction. In Natural product extraction: Principles and applications, eds. M. A. Rostagno and J. M. Prado, Vol. 21, 113–56. Cambridge, UK: Royal Soc Chemistry.
  • Detti, C., L. B. D. Nascimento, C. Brunetti, F. Ferrini, and A. Gori. 2020. Optimization of a green ultrasound-assisted extraction of different polyphenols from pistacia lentiscus l. leaves using a response surface methodology. Plants 9 (11):1482. 17. doi: 10.3390/plants9111482.
  • Diaz-de-Cerio, E., D. Arraez-Roman, A. Segura-Carretero, P. Ferranti, R. Nicoletti, G. M. Perrotta, and A. M. Gomez-Caravaca. 2018b. Establishment of pressurized-liquid extraction by response surface methodology approach coupled to HPLC-DAD-TOF-MS for the determination of phenolic compounds of myrtle leaves. Analytical and Bioanalytical Chemistry 410 (15):3547–57. doi: 10.1007/s00216-018-0914-0.
  • Diaz-de-Cerio, E., L. M. Aguilera-Saez, A. M. Gomez-Caravaca, V. Verardo, A. Fernandez-Gutierrez, I. Fernandez, and D. Arraez-Roman. 2018a. Characterization of bioactive compounds of Annona cherimola L. Leaves using a combined approach based on HPLC-ESI-TOF-MS and NMR. Analytical and Bioanalytical Chemistry 410 (15):3607–19. doi: 10.1007/s00216-018-1051-5.
  • Djemaa-Landri, K., S. Hamri-Zeghichi, J. Valls, S. Cluzet, R. Tristan, N. Boulahbal, N. Kadri, and K. Madani. 2020. Phenolic content and antioxidant activities of Vitis vinifera L. Leaf extracts obtained by conventional solvent and microwave-assisted extractions. Journal of Food Measurement and Characterization 14 (6):3551–64. doi: 10.1007/s11694-020-00596-w.
  • Dobrinčić, A., M. Repajić, I. E. Garofulić, L. Tuđen, V. Dragović-Uzelac, and B. Levaj. 2020. Comparison of different extraction methods for the recovery of olive leaves polyphenols. Processes 8 (9):1008. doi: 10.3390/pr809:1008.
  • Dolan, J. W. 2012. When should an internal standard be used? LCGC North America 30 (6):474–80. https://www.chromatographyonline.com/view/when-should-internal-standard-be-used-0.
  • Dolatowski, Z. J., and D. M. Stasiak. 2012. Ultrasonically assisted diffusion processes. In Enhancing Extraction Processes in the Food Industry, eds. N. Lebovka, E. Vorobiev, and F. Chemat, 1st ed., 123–44. Boca Raton, FL: CRC Press.
  • Dragović, S., V. Dragović-Uzelac, S. Pedisić, Z. Čošić, M. Friščić, I. E. Garofulić, and Z. Zorić. 2020. The mastic tree (Pistacia lentiscus L.) leaves as source of BACs: Effect of growing location, phenological stage and extraction solvent on phenolic content. Food Technology and Biotechnology 58 (3):303–13. doi: 10.17113/ftb.58.03.20.6662.
  • Duan, L., C. M. Zhang, C. J. Zhang, Z. J. Xue, Y. G. Zheng, and L. Guo. 2019. Green extraction of phenolic acids from Artemisia argyi Leaves by tailor-made ternary deep eutectic solvents. Molecules 24 (15):2842. doi: 10.3390/molecules24152842.
  • Duereh, A., A. Anantpinijwatna, and P. Latcharote. 2020. Prediction of solvatochromic polarity parameters for aqueous mixed-solvent systems. Applied Sciences 10 (23):8480. doi: 10.3390/app1023:8480.
  • Dzah, C. S., Y. Q. Duan, H. H. Zhang, C. T. Wen, J. X. Zhang, G. Y. Chen, and H. L. Ma. 2020. The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Bioscience 35:100547. doi: 10.1016/j.fbio.2020.100547.
  • Ebrahimi, I., and M. P. Gashti. 2016. Extraction of polyphenolic dyes from henna, pomegranate rind, and Pterocarya fraxinifolia for nylon 6 dyeing. Coloration Technology 132 (2):162–76. doi: 10.1111/cote.12204.
  • EEA. 2013. Towards a green economy in Europe: EU environmental policy targets and objectives 2010–2050. Copenhagen, Denmark: EEA.
  • Ekezie, F. G. C., D. W. Sun, and J. H. Cheng. 2017. A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science & Technology 69:46–58. doi: 10.1016/j.tifs.2017.08.007.
  • El-Mesallamy, A. M. D., S. A. M. Hussein, A. A. M. Hussein, S. A. Mahmoud, and K. M. El-Azab. 2018. Reno protective effect of methanolic stevia Rebaudiana bertoni leaves extract and its phenolic compounds in type-1-diabetes. Egyptian Journal of Chemistry 0 (0):0–615. doi: 10.21608/ejchem.2018.3550.1297.
  • Eruygur, N., N. G. K. Dincel, and N. Kutuk. 2018. Modeling of total phenolic contents in various tea samples by experimental design methods. Open Chemistry 16 (1):738–44. doi: 10.1515/chem-2018-0082.
  • Espada-Bellido, E., M. Ferreiro-Gonzalez, C. Carrera, M. Palma, C. G. Barroso, and G. F. Barbero. 2017. Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp. Food Chemistry 219:23–32. doi: 10.1016/j.foodchem.2016.09.122.
  • Essien, S., B. Young, and S. Baroutian. 2020. Subcritical water extraction for selective recovery of phenolic bioactives from kanuka leaves. Journal of Supercritical Fluids :158. doi: 10.1016/j.supflu.2019.104721.
  • EU. 2008. Regulation (EC) No 1333/2008 of the European Parliament and of the Council of 16 December 2008 on food additives. Official Journal of the European Union L354:16–33. https://eur-lex.europa.eu/eli/reg/2008/1333/oj.
  • EU. 2009. Commission Regulation (EC) No 450/2009 of 29 May 2009 on active and intelligent materials and articles intended to come into contact with food. Official Journal of the European Union L135:3–11. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:135:0003:0011:EN:PDF.
  • EU. 2011a. Commission Regulation (EU) No 1129/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council by establishing a Union list of food additives. Official Journal of the European Union L295:1–211.
  • EU. 2011b. Commission Regulation (EU) No 1131/2011 of 11 November 2011 amending Annex II to Regulation (EC) No 1333/2008 of the European Parliament and of the Council with regard to steviol glycosides. Official Journal of the European Union L295:205–11. https://webgate.ec.europa.eu/foods_system/main/?event=document.view&identifier=2584&documentCrossTable=legislation&documentType=legislation&documentTypeIdentifier=-1.
  • Feng, S. M., Z. S. Luo, B. P. Tao, and C. Chen. 2015. Ultrasonic-assisted extraction and purification of phenolic compounds from sugarcane (Saccharum officinarum L.) rinds. LWT – Food Science and Technology 60 (2):970–6. doi: 10.1016/j.lwt.2014.09.066.
  • Ferarsa, S., W. X. Zhang, N. Moulai-Mostefa, L. H. Ding, M. Y. Jaffrin, and N. Grimi. 2018. Recovery of anthocyanins and other phenolic compounds from purple eggplant peels and pulps using ultrasonic-assisted extraction. Food and Bioproducts Processing 109:19–28. doi: 10.1016/j.fbp.2018.02.006.
  • Florez-Fernandez, N., M. P. Casas, M. J. G. Munoz, and H. D. Gonzalez. 2017. Chapter 17 – Combination of water-based extraction technologies. In Water extraction of bioactive compounds, eds. H. D. Gonzalez and M. J. G. Munoz, 421–49. Amsterdam: Elsevier.
  • Freitas, P. A. V., C. Gonzalez-Martinez, and A. Chiralt. 2020. Application of ultrasound pre-treatment for enhancing extraction of bioactive compounds from rice straw. Foods 9 (11):1657. doi: 10.3390/foods9111657.
  • Gadkari, P. V., M. Balarman, and U. S. Kadimi. 2015. Polyphenols from fresh frozen tea leaves (Camellia assamica L.,) by supercritical carbon dioxide extraction with ethanol entrainer – Application of response surface methodology. Journal of Food Science and Technology 52 (2):720–30. doi: 10.1007/s13197-013-1085-9.
  • Galan, A. M., J. Calinescu, A. Trifan, C. Winkworth-Smith, M. Calvo-Carrascal, C. Dodds, and E. Binner. 2017. New insights into the role of selective and volumetric heating during microwave extraction: Investigation of the extraction of polyphenolic compounds from sea buckthorn leaves using microwave-assisted extraction and conventional solvent extraction. Chemical Engineering and Processing: Process Intensification 116:29–39. doi: 10.1016/j.cep.2017.03.006.
  • Gao, M. Z., Q. Cui, L. T. Wang, Y. Meng, L. Yu, Y. Y. Li, and Y. J. Fu. 2020. A green and integrated strategy for enhanced phenolic compounds extraction from mulberry (Morus alba L.) leaves by deep eutectic solvent. Microchemical Journal 154:104598. doi: 10.1016/j.microc.2020.104598.
  • Garofulic, I. E., V. Kruk, A. Martić, I. Martić, Z. Zorić, S. Pedisić, S. Dragović, and V. Dragović-Uzelac. 2020. Evaluation of polyphenolic profile and antioxidant activity of Pistacia lentiscus L. Leaves and fruit extract obtained by optimized microwave-assisted extraction. Foods 9 (11)15.1556. doi: 10.3390/foods911:.
  • Gavrilovic, M., K. M. Rajkovic, V. Simic, S. Jeremic, S. Mirkovic, and A. S. Jevtic. 2018. Optimization of ultrasound-assisted extraction of total polyphenolic compounds from Juglans nigra L. leaves. Journal of the Serbian Chemical Society 83 (11):1273–84. doi: 10.2298/JSC180321069G.
  • Geng, P., Y. Fang, R. Xie, W. Hu, X. Xi, Q. Chu, G. Dong, N. Shaheen, and Y. Wei. 2017. Separation of phenolic acids from sugarcane rind by online solid-phase extraction with high-speed counter-current chromatography. Journal of Separation Science 40 (4):991–8. doi: 10.1002/jssc.201600887.
  • Giacometti, J., D. Bursać Kovačević, P. Putnik, D. Gabrić, T. Bilušić, G. Krešić, V. Stulić, F. J. Barba, F. Chemat, G. Barbosa-Cánovas, et al. 2018a. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Research International (Ottawa, Ont.) 113:245–62. doi: 10.1016/j.foodres.2018.06.036.
  • Giacometti, J., G. Zauhar, and M. Zuvic. 2018b. Optimization of ultrasonic-assisted extraction of major phenolic compounds from olive leaves (Olea europaea L.) using response surface methodology. Foods 7 (9):149. doi: 10.3390/foods7090149.
  • Gligor, O., A. Mocan, C. Moldovan, M. Locatelli, G. Crișan, and I. C. F. R. Ferreira. 2019. Enzyme-assisted extractions of polyphenols – A comprehensive review. Trends in Food Science & Technology 88:302–15. doi: 10.1016/j.tifs.2019.03.029.
  • Gonzalez-Romero, J., S. Arranz-Arranz, V. Verardo, B. Garcia-Villanova, and E. J. Guerra-Hernandez. 2020. Bioactive compounds and antioxidant capacity of moringa leaves grown in spain versus 28 leaves commonly consumed in pre-packaged salads. Processes 8 (10):1297. doi: 10.3390/pr810:1297.
  • Goyeneche, R., K. Di Scala, C. L. Ramirez, and M. A. Fanovich. 2020. Recovery of bioactive compounds from beetroot leaves by supercritical CO2 extraction as a promising bioresource. Journal of Supercritical Fluids :155, 104658. doi: 10.1016/j.supflu.2019.104658.
  • GrandViewResearch. 2019. Polyphenols Market size, share & trends analysis report by product (Grape Seed, Green Tea, Cocoa), By Application (Beverages, Food, Feed, Dietary Supplements, Cosmetics), And Segment Forecasts, 2019–2025 (978-1-68038-127-6). California, United States: https://www.grandviewresearch.com/industry-analysis/polyphenols-market-analysis
  • Guo, X.-Y., Y.-Q. Lv, Y. Ye, Z.-Y. Liu, X.-Q. Zheng, J.-L. Lu, Y.-R. Liang, and J.-H. Ye. 2021. Polyphenol oxidase dominates the conversions of flavonol glycosides in tea leaves. Food Chemistry 339:128088. doi: 10.1016/j.foodchem.2020.128088.
  • Gutiérrez, M. C., M. L. Ferrer, C. R. Mateo, and F. del Monte. 2009. Freeze-drying of aqueous solutions of deep eutectic solvents: A suitable approach to deep eutectic suspensions of self-assembled structures. Langmuir: The ACS Journal of Surfaces and Colloids 25 (10):5509–15. doi: 10.1021/la900552b.
  • Health Canada. 2002. Nutraceuticals/functional foods and health claims on foods. Canada: Government of Canada. https://www.canada.ca/en/health-canada/services/food-nutrition/food-labelling/health-claims/nutraceuticals-functional-foods-health-claims-foods-policy-paper.html
  • HealthCanada. 2015. List of permitted carrier or extraction solvents (Lists of Permitted Food Additives). Canada: Government of Canada. https://www.canada.ca/en/health-canada/services/food-nutrition/food-safety/food-additives/lists-permitted/15-carrier-extraction-solvents-2016-06-28.html
  • Heinaaho, M., J. Pusenius, and R. Julkunen-Tiitto. 2006. Effects of different organic farming methods on the concentration of phenolic compounds in sea buckthorn leaves. J Agric Food Chem 54 (20):7678–85. doi: 10.1021/jf061018h.
  • Hidalgo, G. I., and M. P. Almajano. 2017. Red fruits: Extraction of antioxidants, phenolic content, and radical scavenging determination: A review. Antioxidants 6 (1):7. doi: 10.3390/antiox6010007.
  • Ho, L. H., N. F. Ramli, T. C. Tan, N. Muhamad, and M. N. Haron. 2018. Effect of extraction solvents and drying conditions on total phenolic content and antioxidant properties of watermelon rind powder. Sains Malaysiana 47 (1):99–107. doi: 10.17576/jsm-2018-4701-12.
  • Hou, M. Y., Hu, W. Z., Hao, K. X., Xiu, Z. L., Zhang, X. F., & Liu, S. S. (2020). Enhancing the potential exploitation of Salvia miltiorrhiza Bunge: Extraction, enrichment and HPLC-DAD analysis of bioactive phenolics from its leaves. Industrial Crops and Products 158:9. doi: 10.1016/j.indcrop.2020.113019.
  • Huang, H. W., C. P. Hsu, B. B. Yang, and C. Y. Wang. 2013. Advances in the extraction of natural ingredients by high pressure extraction technology. Trends in Food Science & Technology 33 (1):54–62. doi: 10.1016/j.tifs.2013.07.001.
  • Irakli, M., P. Chatzopoulou, and L. Ekateriniadou. 2018. Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Industrial Crops and Products 124:382–8. doi: 10.1016/j.indcrop.2018.07.070.
  • Irna, C., I. Jaswir, R. Othman, and D. N. Jimat. 2018. Optimization of high-pressure processing in extraction of astaxanthin from Penaeus monodon carapace using response surface methodology. Journal of Food Process Engineering 41 (8):e12880. doi: 10.1111/jfpe.12880.
  • Ismail, B. B., M. M. Guo, Y. F. Pu, W. J. Wang, X. Q. Ye, and D. H. Liu. 2019. Valorisation of baobab (Adansonia digitata) seeds by ultrasound assisted extraction of polyphenolics. Optimisation and comparison with conventional methods. Ultrasonics Sonochemistry 52:257–67. doi: 10.1016/j.ultsonch.2018.11.023.
  • Ivanovic, M., M. I. Razborsek, and M. Kolar. 2020. Innovative extraction techniques using deep eutectic solvents and analytical methods for the isolation and characterization of natural bioactive compounds from plant material. Plants 9 (11)1428. doi: 10.3390/plants911:.
  • Jacquemin, J., P. Husson, A. A. H. Padua, and V. Majer. 2006. Density and viscosity of several pure and water-saturated ionic liquids. Green Chem. 8 (2):172–80. doi: 10.1039/B513231B.
  • Japon-Lujan, R., J. M. Luque-Rodriguez, and M. D. L. de Castro. 2006a. Dynamic ultrasound-assisted extraction of oleuropein and related biophenols from olive leaves. Journal of Chromatography A 1108 (1):76–82. doi: 10.1016/j.chroma.2005.12.106.
  • Japon-Lujan, R., J. M. Luque-Rodriguez, and M. D. L. De Castro. 2006b. Multivariate optimisation of the microwave-assisted extraction of oleuropein and related biophenols from olive leaves. Analytical and Bioanalytical Chemistry 385 (4):753–9. doi: 10.1007/s00216-006-0419-0.
  • Kala, H. K., R. Mehta, K. K. Sen, R. Tandey, and V. Mandal. 2016. Critical analysis of research trends and issues in microwave assisted extraction of phenolics: Have we really done enough. Trac Trends in Analytical Chemistry 85:140–52. doi: 10.1016/j.trac.2016.09.007.
  • Kalogianni, A. I., T. Lazou, I. Bossis, and A. I. Gelasakis. 2020. Natural phenolic compounds for the control of oxidation, bacterial spoilage, and foodborne pathogens in meat. Foods 9 (6):794. doi: 10.3390/foods9060794.
  • Karabegovic, I. T., S. S. Stojicevic, D. T. Velickovic, N. C. Nikolic, and M. L. Lazic. 2013. Optimization of microwave-assisted extraction and characterization of phenolic compounds in cherry laurel (Prunus laurocerasus) leaves. Separation and Purification Technology 120:429–36. doi: 10.1016/j.seppur.2013.10.021.
  • Karabegovic, I. T., S. S. Stojicevic, D. T. Velickovic, N. C. Nikolic, and M. L. Lazic. 2018. Direct ultrasound-assisted extraction and characterization of phenolic compounds from fresh houseleek (Sempervivum marmoreum L.) leaves. Hemijska Industrija 72 (1):13–21. doi: 10.2298/HEMIND170402017K.
  • Karageorgou, I., S. Grigorakis, S. Lalas, and D. P. Makris. 2017. Enhanced extraction of antioxidant polyphenols from Moringa oleifera Lam. leaves using a biomolecule-based low-transition temperature mixture. European Food Research and Technology 243 (10):1839–48. doi: 10.1007/s00217-017-2887-1.
  • Karageorgou, I., S. Grigorakis, S. Lalas, I. Mourtzinos, and D. P. Makris. 2018. Incorporation of 2-hydroxypropyl beta-cyclodextrin in a biomolecule-based low-transition temperature mixture (LTTM) boosts efficiency of polyphenol extraction from Moringa oleifera Lam leaves. Journal of Applied Research on Medicinal and Aromatic Plants 9:62–9. doi: 10.1016/j.jarmap.2018.02.005.
  • Karakose, H., A. Muller, and N. Kuhnert. 2015. Profiling and quantification of phenolics in Stevia rebaudiana Leaves. Journal of Agricultural and Food Chemistry 63 (41):9188–98. doi: 10.1021/acs.jafc.5b01944.
  • Karunanithi, A., and S. Venkatachalam. 2019. Ultrasonic-assisted solvent extraction of phenolic compounds from Opuntia ficus-indica peel: Phytochemical identification and comparison with soxhlet extraction. Journal of Food Process Engineering 42 (5) doi: 10.1111/jfpe.13126.
  • Kaushik, R., P. Narayanan, V. Vasudevan, G. Muthukumaran, and A. Usha. 2010. Nutrient composition of cultivated stevia leaves and the influence of polyphenols and plant pigments on sensory and antioxidant properties of leaf extracts. Journal of Food Science and Technology 47 (1):27–33. doi: 10.1007/s13197-010-0011-7.
  • Kazan, A., H. Koyu, I. C. Turu, and O. Yesil-Celiktas. 2014. Supercritical fluid extraction of Prunus persica leaves and utilization possibilities as a source of phenolic compounds. The Journal of Supercritical Fluids 92:55–9. doi: 10.1016/j.supflu.2014.05.006.
  • Keshavarzi, M., G. Najafi, H. A. Gavlighi, P. Seyfi, and H. Ghomi. 2020. Enhancement of polyphenolic content extraction rate with maximal antioxidant activity from green tea leaves by cold plasma. Journal of Food Science 85 (10):3415–22. doi: 10.1111/1750-3841.15448.
  • Khan, R. S., J. Grigor, R. Winger, and A. Win. 2013. Functional food product development – Opportunities and challenges for food manufacturers. Trends in Food Science & Technology 30 (1):27–37. doi: 10.1016/j.tifs.2012.11.004.
  • Kheirkhah, H., S. Baroutian, and S. Y. Quek. 2019. Evaluation of bioactive compounds extracted from Hayward kiwifruit pomace by subcritical water extraction. Food and Bioproducts Processing 115:143–53. doi: 10.1016/j.fbp.2019.03.007.
  • Khemakhem, I., M. H. Ahmad-Qasem, E. B. Catalan, V. Micol, J. V. Garcia-Perez, M. A. Ayadi, and M. Bouaziz. 2017. Kinetic improvement of olive leaves’ bioactive compounds extraction by using power ultrasound in a wide temperature range. Ultrasonics Sonochemistry 34:466–73. doi: 10.1016/j.ultsonch.2016.06.010.
  • Koffi, E. N., C. Le Guerneve, P. R. Lozano, E. Meudec, F. A. Adje, Y. A. Bekro, and Y. F. Lozano. 2013. Polyphenol extraction and characterization of Justicia secunda Vahl leaves for traditional medicinal uses. Industrial Crops and Products 49:682–9. doi: 10.1016/j.indcrop.2013.06.001.
  • Kovacevic, D. B., F. J. Barba, D. Granato, C. M. Galanakis, Z. Herceg, V. Dragovic-Uzelac, and P. Putnik. 2018a. Pressurized hot water extraction (PHWE) for the green recovery of bioactive compounds and steviol glycosides from Stevia rebaudiana Bertoni leaves. Food Chemistry 254:150–7. doi: 10.1016/j.foodchem.2018.01.192.
  • Kovacevic, D., M. Maras, F. J. Barba, D. Granato, S. Roohinejad, K. Mallikarjunan, D. Montesano, J. M. Lorenzo, and P. Putnik. 2018b. Innovative technologies for the recovery of phytochemicals from Stevia rebaudiana Bertoni leaves: A review. Food Chemistry 268:513–21. doi: 10.1016/j.foodchem.2018.06.091.
  • Kumar, K., S. Srivastav, and V. S. Sharanagat. 2021. Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry 70:105325. doi: 10.1016/j.ultsonch.2020.105325.
  • Kumar, M., A. Dahuja, A. Sachdev, C. Kaur, E. Varghese, S. Saha, and K. Sairam. 2019. Valorisation of black carrot pomace: Microwave assisted extraction of bioactive phytoceuticals and antioxidant activity using Box-Behnken design. Journal of Food Science and Technology 56 (2):995–1007. doi: 10.1007/s13197-018-03566-9.
  • Kumar, Y., K. K. Patel, and V. Vivek Kumar. 2015. Pulsed electric field processing in food technology. International Journal of Engineering Studies and Technical Approach 1:6–17.
  • Lama-Munoz, A., Contreras, M. D., Espinola, F., Moya, M., Romero, I., & Castro, E. (2020). Content of phenolic compounds and mannitol in olive leaves extracts from six Spanish cultivars: Extraction with the Soxhlet method and pressurized liquids. Food Chemistry 320:9. doi: 10.1016/j.foodchem.2020.126626.
  • Lang, Q. Y., and C. M. Wai. 2001. Supercritical fluid extraction in herbal and natural product studies – a practical review. Talanta 53 (4):771–82. doi: 10.1016/S0039-9140(00)00557-9.
  • Lefebvre, T., E. Destandau, and E. Lesellier. 2021. Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. Journal of Chromatography. A 1635461770. doi: 10.1016/j.chroma.2020.:.
  • Lehotay, S. J., and C. H. Lee. 1997. Evaluation of a fibrous cellulose drying agent in supercritical fluid extraction and pressurized liquid extraction of diverse pesticides. Journal of Chromatography. A 785 (1-2):313–27. doi: 10.1016/S0021-9673(97)00551-7.
  • Lemus-Mondaca, R., K. Ah-Hen, A. Vega-Galvez, C. Honores, and N. O. Moraga. 2016. Stevia rebaudiana leaves: Effect of drying process temperature on bioactive components, antioxidant capacity and natural sweeteners. Plant Foods for Human Nutrition (Dordrecht, Netherlands) 71 (1):49–56. doi: 10.1007/s11130-015-0524-3.
  • Leone, A., G. Fiorillo, F. Criscuoli, S. Ravasenghi, L. Santagostini, G. Fico, A. Spadafranca, A. Battezzati, A. Schiraldi, F. Pozzi, et al. 2015. Nutritional characterization and phenolic profiling of Moringa oleifera Leaves grown in Chad, Sahrawi Refugee Camps, and Haiti. International Journal of Molecular Sciences 16 (8):18923–37. doi: 10.3390/ijms160818923.
  • Li, C. T., and N. P. Seeram. 2018. Ultra-fast liquid chromatography coupled with electrospray ionization time-of-flight mass spectrometry for the rapid phenolic profiling of red maple (Acer rubrum) leaves. Journal of Separation Science 41 (11):2331–46. doi: 10.1002/jssc.201800037.
  • Liao, X. Y., D. H. Liu, Q. S. Xiang, J. Ahn, S. G. Chen, X. Q. Ye, and T. Ding. 2017. Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control. 75:83–91. doi: 10.1016/j.foodcont.2016.12.021.
  • Liu, Z. B., E. Esveld, J. P. Vincken, and M. E. Bruins. 2019. Pulsed electric field as an alternative pre-treatment for drying to enhance polyphenol extraction from fresh tea leaves. Food and Bioprocess Technology 12 (1):183–92. doi: 10.1007/s11947-018-2199-x.
  • Liu, Z., M. E. Bruins, W. J. C. de Bruijn, and J.-P. Vincken. 2020. A comparison of the phenolic composition of old and young tea leaves reveals a decrease in flavanols and phenolic acids and an increase in flavonols upon tea leaf maturation. Journal of Food Composition and Analysis 86:103385. doi: 10.1016/j.jfca.2019.103385.
  • Llompart, M. P., R. A. Lorenzo, R. Cela, J. R. J. Pare, J. M. R. Belanger, and K. Li. 1997. Phenol and methylphenol isomers determination in soils by in-situ microwave-assisted extraction and derivatisation. Journal of Chromatography A 757 (1-2):153–64. doi: 10.1016/S0021-9673(96)00662-0.
  • Lloyd, P. J., and J. V. Wyk. 2012. Introduction to extraction in food processing. In Enhancing extraction processes in the food industry, eds. N. Lebovka, E. Vorobiev, and F. Chemat, 1st ed., 1–24. Boca Raton, FL: CRC Press.
  • Loncaric, A., A. Jozinovic, T. Kovac, N. Kojic, J. Babic, and D. Subaric. 2020. High voltage electrical discharges and ultrasound-assisted extraction of phenolics from indigenous fungus-resistant grape by-product. Polish Journal of Food and Nutrition Sciences 70 (2):101–11. doi: 10.31883/pjfns/117716.
  • Lopez, N., E. Puertolas, S. Condon, I. Alvarez, and J. Raso. 2008. Effects of pulsed electric fields on the extraction of phenolic compounds during the fermentation of must of Tempranillo grapes. Innovative Food Science & Emerging Technologies 9 (4):477–82. doi: 10.1016/j.ifset.2007.11.001.
  • López-de-Dicastillo, C., J. M. Alonso, R. Catalá, R. Gavara, and P. Hernández-Muñoz. 2010. Improving the antioxidant protection of packaged food by incorporating natural flavonoids into ethylene-vinyl alcohol copolymer (EVOH) films . Journal of Agricultural and Food Chemistry 58 (20):10958–64. doi: 10.1021/jf1022324.
  • Lopez-Fernandez, O., R. Dominguez, M. Pateiro, P. E. S. Munekata, G. Rocchetti, and J. M. Lorenzo. 2020. Determination of polyphenols using liquid chromatography-tandem mass spectrometry technique (LC-MS/MS): A review. Antioxidants 9 (6):479. doi: 10.3390/antiox9060479.
  • Lopez-Hortas, L., C. Le Juge, E. Falque, H. Dominguez, and M. D. Torres. 2020. Bioactive extracts from edible nettle leaves using microwave hydrodiffusion and gravity and distillation extraction techniques. Process Biochemistry 94:66–78. doi: 10.1016/j.procbio.2020.04.012.
  • Lourenço, S. C., M. Moldão-Martins, and V. D. Alves. 2019. Antioxidants of natural plant origins: from sources to food industry applications. Molecules 24 (22):4132. doi: 10.3390/molecules24224132.
  • Lu, W. D., and S. J. Liu. 2020. Choline chloride-based deep eutectic solvents (Ch-DESs) as promising green solvents for phenolic compounds extraction from bioresources: State-of-the-art, prospects, and challenges. Biomass Conversion and Biorefinery doi: 10.1007/s13399-020-00753-7.
  • Lukić, K., T. Vukušić, M. Tomašević, N. Ćurko, L. Gracin, and K. Kovačević Ganić. 2019. The impact of high voltage electrical discharge plasma on the chromatic characteristics and phenolic composition of red and white wines. Innovative Food Science & Emerging Technologies 53:70–7. doi: 10.1016/j.ifset.2017.11.004.
  • Luo, Q., J.-R. Zhang, H.-B. Li, D.-T. Wu, F. Geng, H. Corke, X.-L. Wei, and R.-Y. Gan. 2020. Green extraction of antioxidant polyphenols from green tea (Camellia sinensis). Antioxidants 9 (9):785. doi: 10.3390/antiox9090785.
  • Ma, X. Y., J. Moilanen, O. Laaksonen, W. Yang, E. Tenhu, and B. R. Yang. 2019. Phenolic compounds and antioxidant activities of tea-type infusions processed from sea buckthorn (Hippophae rhamnoides) leaves. Food Chemistry 272:1–11. doi: 10.1016/j.foodchem.2018.08.006.
  • Madureira, J., L. Barros, S. Cabo Verde, F. M. A. Margaça, C. Santos-Buelga, and I. C. F. R. Ferreira. 2020. Ionizing radiation technologies to increase the extraction of bioactive compounds from agro-industrial residues: a review. Journal of Agricultural and Food Chemistry 68 (40):11054–67. doi: 10.1021/acs.jafc.0c04984.
  • Mahdi, A. A., W. Al-Ansi, M. I. Ahmed, C. Xiaoyun, J. K. Mohammed, A. A. Sulieman, B. S. Mushtaq, Y. Harimana, and H. Wang. 2020. Microwave assisted extraction of the bioactive compounds from peel/pulp of Citrus medica L. var. sarcodactylis swingle along with its nutritional profiling. Journal of Food Measurement and Characterization 14 (1):283–92. doi: 10.1007/s11694-019-00290-6.
  • Mandal, S. C., V. Mandal, and A. K. Das. 2015. Chapter 6 – classification of extraction methods. In Essentials of botanical extraction, eds. S. C. Mandal, V. Mandal, and A. K. Das, 83–136. Boston: Academic Press.
  • Maran, J. P., B. Priya, and S. Manikandan. 2014a. Modeling and optimization of supercritical fluid extraction of anthocyanin and phenolic compounds from Syzygium cumini fruit pulp. Journal of Food Science and Technology 51 (9):1938–46. doi: 10.1007/s13197-013-1237-y.
  • Maran, J. P., S. Manikandan, B. Priya, and P. Gurumoorthi. 2015. Box-Behnken design based multi-response analysis and optimization of supercritical carbon dioxide extraction of bioactive flavonoid compounds from tea (Camellia sinensis L.) leaves. Journal of Food Science and Technology 52 (1):92–104. doi: 10.1007/s13197-013-0985-z.
  • Maran, J. P., V. Sivakumar, K. Thirugnanasambandham, and R. Sridhar. 2014b. Extraction, multi-response analysis, and optimization of biologically active phenolic compounds from the pulp of Indian jamun fruit. Food Science and Biotechnology 23 (1):9–14. doi: 10.1007/s10068-014-0002-y.
  • Martillanes, S., J. Rocha-Pimienta, M. Cabrera-Bañegil, D. Martín-Vertedor, and J. Delgado-Adámez. 2017. Application of phenolic compounds for food preservation: food additive and active packaging. In Phenolic compounds – Biological activity, eds. M. Soto-Hernandez, M. Palma-Tenango, & M. D. R. Garcia-Mateos. London, UK: IntechOpen.
  • Martinez, J. M., C. Delso, I. Alvarez, and J. Raso. 2020. Pulsed electric field-assisted extraction of valuable compounds from microorganisms. Comprehensive Reviews in Food Science and Food Safety 19 (2):530–52. doi: 10.1111/1541-4337.12512.
  • Martin-Garcia, B., S. Pimentel-Moral, A. M. Gomez-Caravaca, D. Arraez-Roman, and A. Segura-Carretero. 2020. Box-Behnken experimental design for a green extraction method of phenolic compounds from olive leaves. Industrial Crops and Products 154:112741. doi: 10.1016/j.indcrop.2020.112741.
  • Marzuki, N. H. C., M. A. Hamid, and R. A. Wahab. 2018. Assessment of fatty acid composition and response surface optimization of ultrasonic-assisted extraction of phenolic compounds from Pouteria campechiana pulp. Malaysian Journal of Fundamental and Applied Sciences 14 (2):269–77. <Go to ISI>://WOS:000434304600015
  • Medina-Medrano, J. R., J. E. Torres-Contreras, J. I. Valiente-Banuet, M. D. Mares-Quinones, M. Vazquez-Sanchez, and D. Alvarez-Bernal. 2019. Effect of the solid-liquid extraction solvent on the phenolic content and antioxidant activity of three species of Stevia leaves. Separation Science and Technology 54 (14):2283–93. doi: 10.1080/01496395.2018.1546741.
  • Medina-Torres, N., T. Ayora-Talavera, H. Espinosa-Andrews, A. Sanchez-Contreras, and N. Pacheco. 2017. Ultrasound assisted extraction for the recovery of phenolic compounds from vegetable sources. Agronomy-Basel 7 (3):47. doi: 10.3390/agronomy7030047.
  • Mendez, S., G. Ettiene, J. Raga, and E. Perez-Perez. 2014. Optimization of an extraction method for phenols and total flavonoids in mango pulp (Mangifera indica L.) ultrasound-assisted. Revista De La Facultad De Agronomia De La Universidad Del Zulia 31:776–84. <Go to ISI>://WOS:000209630000068
  • Milevskaya, V. V., S. Prasad, and Z. A. Temerdashev. 2019. Extraction and chromatographic determination of phenolic compounds from medicinal herbs in the Lamiaceae and Hypericaceae families: A review. Microchemical Journal 145:1036–49. doi: 10.1016/j.microc.2018.11.041.
  • Moghaddam, T. N., A. H. Elhamirad, M. R. S. Asl, and M. S. Noghabi. 2020. Pulsed electric field-assisted extraction of phenolic antioxidants from tropical almond red leaves. Chemical Papers 74 (11):3957–61. doi: 10.1007/s11696-020-01153-x.
  • Mohti, H., M. F. Taviano, F. Cacciola, P. Dugo, L. Mondello, A. Zaid, E. Cavò, and N. Miceli. 2020. Silene vulgaris subsp. macrocarpa leaves and roots from Morocco: Assessment of the efficiency of different extraction techniques and solvents on their antioxidant capacity, brine shrimp toxicity and phenolic characterization. Plant Biosystems – An International Journal Dealing with All Aspects of Plant Biology 154 (5):692–9. doi: 10.1080/11263504.2019.1674404.
  • Moldoveanu, S. C., and V. David. 2013. Chapter 1 – Basic information about HPLC. In Essentials in modern HPLC separations, eds.S. C. Moldoveanu and V. David, 1–51. Amsterdam: Elsevier.
  • Moldoveanu, S., and V. David. 2018. Derivatization methods in GC and GC/MS. In Gas chromatography – Derivatization, sample preparation, application. London, UK: IntechOpen.
  • Morgenstern, A., A. Ekholm, P. Scheewe, and K. Rumpunen. 2014. Changes in content of major phenolic compounds during leaf development of sea buckthorn (Hippophae rhamnoides L). Agricultural and Food Science 23 (3):207–19. doi: 10.23986/afsci.9489.
  • Mukhtar, B., M. Mushtaq, S. Akram, and A. Adnan. 2018. Maceration mediated liquid-liquid extraction of conjugated phenolics from spent black tea leaves extraction of non-extractable phenolics. Analytical Methods 10 (35):4310–9. doi: 10.1039/C8AY01350K.
  • Mulinacci, N., M. Innocenti, M. Bellumori, C. Giaccherini, V. Martini, and M. Michelozzi. 2011. Storage method, drying processes and extraction procedures strongly affect the phenolic fraction of rosemary leaves: An HPLC/DAD/MS study. Talanta 85 (1):167–76. doi: 10.1016/j.talanta.2011.03.050.
  • Mushtaq, M., B. Sultana, H. N. Bhatti, and M. Asghar. 2015. RSM based optimized enzyme-assisted extraction of antioxidant phenolics from underutilized watermelon (Citrullus lanatus Thunb.) rind. Journal of Food Science and Technology 52 (8):5048–56. doi: 10.1007/s13197-014-1562-9.
  • Myint, K. Z., K. Wu, Y. M. Xia, Y. Fan, J. Shen, P. Zhang, and J. X. Gu. 2020. Polyphenols from Stevia rebaudiana (Bertoni) leaves and their functional properties. Journal of Food Science 85 (2):240–8. doi: 10.1111/1750-3841.15017.
  • Naczk, M., and F. Shahidi. 2006. Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis 41 (5):1523–42. doi: 10.1016/j.jpba.2006.04.002.
  • Nadiah, N. I., and U. Uthumporn. 2015. Determination of phenolic and antioxidant properties in tea and spent tea under various extraction method and determination of catechins, caffeine and gallic acid by HPLC. International Journal on Advanced Science Engineering Information Technology 5:158–64. doi: 10.18517/ijaseit.5.3.520.
  • Natolino, A., and C. Da Porto. 2020. Kinetic models for conventional and ultrasound assistant extraction of polyphenols from defatted fresh and distilled grape marc and its main components skins and seeds. Chemical Engineering Research and Design 156:1–12. doi: 10.1016/j.cherd.2070.01.009.
  • Nieto, J. A., S. Santoyo, M. Prodanov, G. Reglero, and L. Jaime. 2020. Valorisation of grape stems as a source of phenolic antioxidants by using a sustainable extraction methodology. Foods 9 (5):604. doi: 10.3390/foods9050604.
  • Nour, V., I. Trandafir, and S. Cosmulescu. 2016. Optimization of ultrasound-assisted hydroalcoholic extraction of phenolic compounds from walnut leaves using response surface methodology. Pharmaceutical Biology 54 (10):2176–87. doi: 10.3109/13880209.2016.1150303.
  • Nunes, M. A., R. C. Alves, A. S. G. Costa, M. Oliveira, and H. Puga. 2018. Olive pomace phenolics extraction: Conventional vs emergent methodologies.
  • Nutrizio, M., G. Pataro, D. Carullo, S. Carpentieri, L. Mazza, G. Ferrari, F. Chemat, M. Banović, and A. Režek Jambrak. 2020b. High voltage electrical discharges as an alternative extraction process of phenolic and volatile compounds from wild thyme (Thymus serpyllum L.): In silico and experimental approaches for solubility assessment. Molecules 25 (18):4131. doi: 10.3390/molecules25184131.
  • Nutrizio, M., N. Maltar-Strmecki, F. Chemat, B. Duic, and A. R. Jambrak. 2020a. High-voltage electrical discharges in green extractions of bioactives from oregano leaves (Origanum vulgare L.) using water and ethanol as green solvents assessed by theoretical and experimental procedures. Food Engineering Reviews 13 (1):161–74. doi: 10.1007/s12393-020-09231-2.
  • Odeleye, T., W. L. White, and J. Lu. 2019. Extraction techniques and potential health benefits of bioactive compounds from marine molluscs: A review. Food & Function 10 (5):2278–89. doi: 10.1039/c9fo00172g.
  • Ogihara, W., T. Aoyama, and H. Ohno. 2004. Polarity measurement for ionic liquids containing dissociable protons. Chemistry Letters 33 (11):1414–5. doi: 10.1246/cl.2004.1414.
  • Oh, Y. A., S. H. Roh, and S. C. Min. 2016. Cold plasma treatments for improvement of the applicability of defatted soybean meal-based edible film in food packaging. Food Hydrocolloids. 58:150–9. doi: 10.1016/j.foodhyd.2016.02.022.
  • Okolie, C. L., T. O. Akanbi, B. Mason, C. C. Udenigwe, and A. N. A. Aryee. 2019. Influence of conventional and recent extraction technologies on physicochemical properties of bioactive macromolecules from natural sources: A review. Food Research International (Ottawa, Ont.) 116:827–39. doi: 10.1016/j.foodres.2018.09.018.
  • Oldoni, T. L. C., N. Merlin, M. Karling, S. T. Carpes, S. M. d Alencar, R. G. F. Morales, E. A. d Silva, and E. J. Pilau. 2019. Bioguided extraction of phenolic compounds and UHPLC-ESI-Q-TOF-MS/MS characterization of extracts of Moringa oleifera leaves collected in Brazil. Food Research International (Ottawa, Ont.) 125:108647. doi: 10.1016/j.foodres.2019.108647.
  • Oldoni, T. L. C., N. Merlin, T. C. Bicas, A. Prasniewski, S. T. Carpes, J. Ascari, S. M. de Alencar, A. P. Massarioli, M. D. Bagatini, R. Morales, et al. 2021. Antihyperglycemic activity of crude extract and isolation of phenolic compounds with antioxidant activity from Moringa oleifera Lam. leaves grown in Southern Brazil. Food Research International (Ottawa, Ont.) 141:110082. doi: 10.1016/j.foodres.2020.110082.
  • Ong, E. S., J. S. H. Cheong, and D. Goh. 2006. Pressurized hot water extraction of bioactive or marker compounds in botanicals and medicinal plant materials. Journal of Chromatography. A 1112 (1-2):92–102. doi: 10.1016/j.chroma.2005.12.052.
  • Oyeniran, O. H., A. O. Ademiluyi, and G. Oboh. 2021. Comparative study of the phenolic profile, antioxidant properties, and inhibitory effects of Moringa (Moringa oleifera Lam.) and Almond (Terminalia catappa Linn.) leaves on acetylcholinesterase and monoamine oxidase activities in the head region of Fruitfly (Drosophila melanogaster Meigen) in vitro. Journal of Food Biochemistry 45 (3) doi: 10.1111/jfbc.13401.
  • Pacifico, S., S. Piccolella, P. Nocera, E. Tranquillo, F. Dal Poggetto, and M. Catauro. 2019. New insights into phenol and polyphenol composition of Stevia rebaudiana leaves. Journal of Pharmaceutical and Biomedical Analysis 163:45–57. doi: 10.1016/j.jpba.2018.09.046.
  • Paludo, M. C., R. C. Colombo, J. Teixeira, I. Hermosin-Gutierrez, C. A. Ballus, and H. T. Godoy. 2019. Optimizing the extraction of anthocyanins from the skin and phenolic compounds from the seed of jabuticaba fruits (Myrciaria jabuticaba (Vell.) O. Berg) with ternary mixture experimental designs. Journal of the Brazilian Chemical Society 30 (7):1506–14. doi: 10.21577/0103-5053.20190047.
  • Pan, X. J., G. G. Niu, and H. Z. Liu. 2003. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chemical Engineering and Processing: Process Intensification 42 (2):129–33. doi: 10.1016/S0255-2701(02)00037-5.
  • Pandey, R., and B. Kumar. 2016. HPLC-QTOF-MS/MS-based rapid screening of phenolics and triterpenic acids in leaf extracts of Ocimum species and their interspecies variation. Journal of Liquid Chromatography & Related Technologies 39 (4):225–38. doi: 10.1080/10826076.2016.1148048.
  • Pankaj, S. K., and K. M. Keener. 2017. Cold plasma: Background, applications and current trends. Current Opinion in Food Science 16:49–52. doi: 10.1016/j.cofs.2017.07.008.
  • Parveen, I., A. Winters, M. D. Threadgill, B. Hauck, and P. Morris. 2008. Extraction, structural characterisation and evaluation of hydroxycinnamate esters of orchard grass (Dactylis glomerata) as substrates for polyphenol oxidase. Phytochemistry 69 (16):2799–806. doi: 10.1016/j.phytochem.2008.08.019.
  • Pasrija, D., P. N. Ezhilarasi, D. Indrani, and C. Anandharamakrishnan. 2015. Microencapsulation of green tea polyphenols and its effect on incorporated bread quality. LWT – Food Science and Technology 64 (1):289–96. doi: 10.1016/j.lwt.2015.05.054.
  • Patra, J. K., G. Das, S. Lee, S. S. Kang, and H. S. Shin. 2018. Selected commercial plants: A review of extraction and isolation of bioactive compounds and their pharmacological market value. Trends in Food Science & Technology 82:89–109. doi: 10.1016/j.tifs.2018.10.001.
  • Periche, A., M. L. Castello, A. Heredia, and I. Escriche. 2016. Effect of different drying methods on the phenolic, flavonoid and volatile compounds of Stevia rebaudiana leaves. Flavour and Fragrance Journal 31 (2):173–7. doi: 10.1002/ffj.3298.
  • Perinban, S., V. Orsat, and V. Raghavan. 2019. Nonthermal plasma-liquid interactions in food processing: A review. Comprehensive Reviews in Food Science and Food Safety 18 (6):1985–2008. doi: 10.1111/1541-4337.12503.
  • Perni, S., G. Shama, and M. G. Kong. 2008. Cold atmospheric plasma disinfection of cut fruit surfaces contaminated with migrating microorganisms. Journal of Food Protection 71 (8):1619–25. doi: 10.4315/0362-028x-71.8.1619.
  • Petkovska, A., V. Gjamovski, and M. Stefova. 2016. Comparison of different extraction solvents for assay of the polyphenol content in the peel and pulp of apple cultivars from macedonia. Macedonian Journal of Chemistry and Chemical Engineering 35 (1):29–38. doi: 10.20450/mjcce.2016.871.
  • Pinelli, P., F. Ieri, P. Vignolini, L. Bacci, S. Baronti, and A. Romani. 2008. Extraction and HPLC analysis of phenolic compounds in leaves, stalks, and textile fibers of Urtica dioica L. Journal of Agricultural and Food Chemistry 56 (19):9127–32. doi: 10.1021/jf801552d.
  • Pingret, D., A. S. Fabiano-Tixier, and F. Chemat. 2013. Ultrasound-assisted extraction. In Natural product extraction: Principles and applications, eds. M. A. Rostagno & J. M. Prado, Vol. 21, 89–112. Royal Soc Chemistry: Thomas Graham House, Science Park, Cambridge Cb4 4wf, Cambs, England
  • Plaza, M., and M. L. Marina. 2019. Pressurized hot water extraction of bioactives. Trac Trends in Analytical Chemistry 116:236–47. doi: 10.1016/j.trac.2019.03.024.
  • Plechkova, N. V., and K. R. Seddon. 2008. Applications of ionic liquids in the chemical industry. Chemical Society Reviews 37 (1):123–50. doi: 10.1039/b006677j.
  • Pragna, C. H., T. K. R. Gracy, R. Mahendran, and C. Anandharamakrishnan. 2019. Effects of microwave and cold plasma assisted hydrodistillation on lemon peel oil extraction. International Journal of Food Engineering 15 (10) doi: 10.1515/ijfe-2019-0093.
  • Puértolas, E., M. Koubaa, and F. J. Barba. 2016. An overview of the impact of electrotechnologies for the recovery of oil and high-value compounds from vegetable oil industry: Energy and economic cost implications. Food Research International 80:19–26. doi: 10.1016/j.foodres.2015.12.009.
  • Putnik, P., D. B. Kovacevic, M. Penic, M. Feges, and V. Dragovic-Uzelac. 2016. Microwave-Assisted Extraction (MAE) of dalmatian sage leaves for the optimal yield of polyphenols: HPLC-DAD identification and quantification. Food Analytical Methods 9 (8):2385–94. doi: 10.1007/s12161-016-0428-3.
  • Quirantes-Pine, R., J. Lozano-Sanchez, M. Herrero, E. Ibanez, A. Segura-Carretero, and A. Fernandez-Gutierrez. 2013. HPLC-ESI-QTOF-MS as a powerful analytical tool for characterising phenolic compounds in olive-leaf extracts. Phytochemical Analysis : PCA 24 (3):213–23. doi: 10.1002/pca.2401.
  • Radojković, M., M. M. Moreira, C. Soares, M. Fátima Barroso, A. Cvetanović, J. Švarc-Gajić, S. Morais, and C. Delerue-Matos. 2018. Microwave-assisted extraction of phenolic compounds from Morus nigra leaves: Optimization and characterization of the antioxidant activity and phenolic composition. Journal of Chemical Technology & Biotechnology 93 (6):1684–93. doi: 10.1002/jctb.5541.
  • Rahmanian, N., S. M. Jafari, and T. A. Wani. 2015. Bioactive profile, dehydration, extraction and application of the bioactive components of olive leaves. Trends in Food Science & Technology 42 (2):150–72. doi: 10.1016/j.tifs.2014.12.009.
  • Raja, M., J. Hernandez-Revelles, S. Hernandez-Cassou, and J. Saurina. 2014. Determination of polyphenols in the pear pulp matrix by solvent extraction and liquid chromatography with UV-Vis detection. Analytical Methods 6 (24):9769–76. doi: 10.1039/C4AY02558J.
  • Rajha, H. N., M. Koubaa, N. Boussetta, R. G. Maroun, N. Louka, N. Lebovka, and E. Vorobiev. 2020. Selective ultrasound-assisted aqueous extraction of polyphenols from pomegranate peels and seeds. Journal of Food Processing and Preservation 44 (7). doi: 10.1111/jfpp.14545.
  • Ramakrishnan, P., and K. Rangiah. 2016. A UHPLC-MS/SRM method for analysis of phenolics from Camellia sinensis leaves from Nilgiri hills. Analytical Methods 8 (45):8033–41. doi: 10.1039/C6AY02329K.
  • Rivera-Mondragón, A., G. Broeckx, S. Bijttebier, T. Naessens, E. Fransen, F. Kiekens, C. Caballero-George, Y. Vander Heyden, S. Apers, L. Pieters, et al. 2019. Ultrasound-assisted extraction optimization and validation of an HPLC-DAD method for the quantification of polyphenols in leaf extracts of Cecropia species. Scientific Reports 9 (1):16. doi: 10.1038/s41598-018-37607-2.
  • Rocchetti, G., F. Blasi, D. Montesano, S. Ghisoni, M. C. Marcotullio, S. Sabatini, L. Cossignani, and L. Lucini. 2019. Impact of conventional/non-conventional extraction methods on the untargeted phenolic profile of Moringa oleifera leaves. Food Research International (Ottawa, Ont.) 115:319–27. doi: 10.1016/j.foodres.2018.11.046.
  • Rocchetti, G., J. P. Pagnossa, F. Blasi, L. Cossignani, R. Hilsdorf Piccoli, G. Zengin, D. Montesano, P. S. Cocconcelli, and L. Lucini. 2020. Phenolic profiling and in vitro bioactivity of Moringa oleifera leaves as affected by different extraction solvents. Food Research International (Ottawa, Ont.) 127:108712. doi: 10.1016/j.foodres.2019.108712.
  • Rodrigues, L. G. G., S. Mazzutti, L. Vitali, G. A. Micke, and S. R. S. Ferreira. 2019. Recovery of bioactive phenolic compounds from papaya seeds agroindustrial residue using subcritical water extraction. Biocatalysis and Agricultural Biotechnology 22:101367. doi: 10.1016/j.bcab.2019.101367.
  • Rodriguez -Perez, C., J. A. Mendiola, R. Quirantes-Pine, E. Ibanez, and A. Segura-Carretero. 2016. Green downstream processing using supercritical carbon dioxide, CO2-expanded ethanol and pressurized hot water extractions for recovering bioactive compounds from Moringa oleifera leaves. The Journal of Supercritical Fluids 116:90–100. doi: 10.1016/j.supflu.2016.05.009.
  • Rodríguez-Pérez, C., A. M. Gómez-Caravaca, E. Guerra-Hernández, L. Cerretani, B. García-Villanova, and V. Verardo. 2018. Comprehensive metabolite profiling of Solanum tuberosum L. (potato) leaves by HPLC-ESI-QTOF-MS. Food Research International (Ottawa, Ont.) 112:390–9. doi: 10.1016/j.foodres.2018.06.060.
  • Rodriguez-Perez, C., B. Gilbert-Lopez, J. A. Mendiola, R. Quirantes-Pine, A. Segura-Carretero, and E. Ibanez. 2016. Optimization of microwave-assisted extraction and pressurized liquid extraction of phenolic compounds from Moringa oleifera leaves by multiresponse surface methodology. Electrophoresis 37 (13):1938–46. doi: 10.1002/elps.201600071.
  • Rodriguez-Perez, C., R. Quirantes-Pine, A. Fernandez-Gutierrez, and A. Segura-Carretero. 2015. Optimization of extraction method to obtain a phenolic compounds-rich extract from Moringa oleifera Lam leaves. Industrial Crops and Products 66:246–54. doi: 10.1016/j.indcrop.2015.01.002.
  • Rombaut, N., T. Chave, S. I. Nikitenko, M. El Maataoui, A. S. Fabiano-Tixier, and F. Chemat. 2020. Modification of olive leaves’ surface by ultrasound cavitation. Correlation with polyphenol extraction enhancement. Applied Sciences 11 (1):232. doi: 10.3390/app11010232.
  • Rosa, A. D., A. Junges, I. A. Fernandes, R. L. Cansian, M. L. Corazza, E. Franceschi, G. T. Backes, and E. Valduga. 2019. High pressure extraction of olive leaves (Olea europaea): bioactive compounds, bioactivity and kinetic modelling. Journal of Food Science and Technology 56 (8):3864–76. doi: 10.1007/s13197-019-03856-w.
  • Roshanak, S., M. Rahimmalek, and S. A. H. Goli. 2016. Evaluation of seven different drying treatments in respect to total flavonoid, phenolic, vitamin C content, chlorophyll, antioxidant activity and color of green tea (Camellia sinensis or C. assamica) leaves. Journal of Food Science and Technology 53 (1):721–9. doi: 10.1007/s13197-015-2030-x.
  • Routray, W., and V. Orsat. 2012. Microwave-assisted extraction of flavonoids: A review. Food and Bioprocess Technology 5 (2):409–24. doi: 10.1007/s11947-011-0573-z.
  • Routray, W., and V. Orsat. 2017. Plant by-products and food industry waste: A source of nutraceuticals and biopolymers (Vol. 2).
  • Ruesgas-Ramon, M., M. C. Figueroa-Espinoza, and E. Durand. 2017. Application of deep eutectic solvents (DES) for phenolic compounds extraction: Overview, challenges, and opportunities. Journal of Agricultural and Food Chemistry 65 (18):3591–601. doi: 10.1021/acs.jafc.7b01054.
  • Saad, N., F. Louvet, S. Tarrade, E. Meudec, K. Grenier, C. Landolt, T. S. Ouk, and P. Bressollier. 2019. Enzyme-assisted extraction of bioactive compounds from raspberry (Rubus idaeus L.) Pomace. Journal of Food Science 84 (6):1371–81. doi: 10.1111/1750-3841.14625.
  • Şahin, S., R. Samli, A. S. B. Tan, F. J. Barba, F. Chemat, G. Cravotto, and J. M. Lorenzo. 2017. Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: Antioxidant and antimicrobial properties. Molecules 22 (7)13.1056. doi: 10.3390/molecules2207:.
  • Saifullah, M., R. McCullum, A. McCluskey, and Q. Vuong. 2020. Comparison of conventional extraction technique with ultrasound assisted extraction on recovery of phenolic compounds from lemon scented tea tree (Leptospermum petersonii) leaves. Heliyon 6 (4):e03666. doi: 10.1016/j.heliyon.2020.e03666.
  • Sanchez-Valdepenas, V., E. Barrajon, S. Vegara, L. Funes, N. Marti, M. Valero, and D. Saura. 2015. Effect of instant controlled pressure drop (DIC) pre-treatment on conventional solvent extraction of phenolic compounds from grape stalk powder. Industrial Crops and Products 76:545–9. doi: 10.1016/j.indcrop.2015.04.033.
  • Sandra, P., Z. Zoric, D. B. Kovacevic, I. E. Garofulic, and V. Dragovic-Uzelac. 2020. Pressurized hot water extraction of phenolic compounds from leaves of Stevia rebaudiana: An UPLC-ESI-MSMS study. Journal of Food Process Engineering 43 (2):10. doi: 10.1111/jfpe.13319.
  • Santos, S. A. O., R. Felix, A. C. S. Pais, S. M. Rocha, and A. J. D. Silvestre. 2019. The quest for phenolic compounds from macroalgae: A review of extraction and identification methodologies. Biomolecules 9 (12):847. doi: 10.3390/biom9120847.
  • Sanz, V., N. Flórez-Fernández, H. Domínguez, and M. D. Torres. 2020. Clean technologies applied to the recovery of bioactive extracts from Camellia sinensis leaves agricultural wastes. Food and Bioproducts Processing 122:214–21. doi: 10.1016/j.fbp.2020.05.007.
  • Sarangapani, C., A. Patange, P. Bourke, K. Keener, and P. J. Cullen. 2018. Recent advances in the application of cold plasma technology in foods. In M. P. Doyle & T. R. Klaenhammer (Eds). Annual Review of Food Science and Technology 9 (9):609–29. doi: 10.1146/annurev-food-030117-012517.
  • Sato, T., Y. Ikeya, S. Adachi, K. Yagasaki, K. Nihei, and N. Itoh. 2019. Extraction of strawberry leaves with supercritical carbon dioxide and entrainers: Antioxidant capacity, total phenolic content, and inhibitory effect on uric acid production of the extract. Food and Bioproducts Processing 117:160–9. doi: 10.1016/j.fbp.2019.07.003.
  • Selvamuthukumaran, M., and J. Shi. 2017. Recent advances in extraction of antioxidants from plant by-products processing industries. Food Quality and Safety 1 (1):61–81. doi: 10.1093/fqs/fyx004.
  • Shah, I., M. K. Akhtar, S. Hisaindee, M. A. Rauf, M. Sadig, and S. S. Ashraf. 2018. Clinical diagnostic tools for vitamin D assessment. The Journal of Steroid Biochemistry and Molecular Biology 180:105–17. doi: 10.1016/j.jsbmb.2017.10.003.
  • Sharma, S., and R. K. Singh. 2020. Cold plasma treatment of dairy proteins in relation to functionality enhancement. Trends in Food Science & Technology 102:30–6. doi: 10.1016/j.tifs.2020.05.013.
  • Shiekh, K. A., O. O. Olatunde, B. Zhang, N. Huda, and S. Benjakul. 2021. Pulsed electric field assisted process for extraction of bioactive compounds from custard apple (Annona squamosa) leaves. Food Chemistry 359:129976. doi: 10.1016/j.foodchem.2021.129976.
  • Shishir, M. R. I., N. Karim, T. Bao, V. Gowd, T. Ding, C. D. Sun, and W. Chen. 2020. Cold plasma pretreatment – A novel approach to improve the hot air drying characteristics, kinetic parameters, and nutritional attributes of shiitake mushroom. Drying Technology 38 (16):2134–50. doi: 10.1080/07373937.2019.1683860.
  • Siripatrawan, U., and S. Noipha. 2012. Active film from chitosan incorporating green tea extract for shelf life extension of pork sausages. Food Hydrocolloids. 27 (1):102–8. doi: 10.1016/j.foodhyd.2011.08.011.
  • Skalski, B., B. Kontek, B. Olas, J. Żuchowski, and A. Stochmal. 2018. Phenolic fraction and nonpolar fraction from sea buckthorn leaves and twigs: Chemical profile and biological activity. Future Medicinal Chemistry 10 (20):2381–94. doi: 10.4155/fmc-2018-0144.
  • Smith, E. L., A. P. Abbott, and K. S. Ryder. 2014. Deep Eutectic Solvents (DESs) and Their Applications. Chemical Reviews 114 (21):11060–82. doi: 10.1021/cr300162p.
  • Sukardi, P., Purwaningsih, M. H. I. and Sita, P. F. 2019. Extraction of phenolic compounds from basil (Ocimum americanum L.) leaves with pretreatment using pulsed electric field (PEF). Paper presented at the 3rd International Conference on Green Agro-Industry and Bioeconomy (ICGAB), Aug 26–27. Malang, Indonesia.
  • Sun, H. W., X. S. Ge, Y. K. Lv, and A. B. Wang. 2012. Application of accelerated solvent extraction in the analysis of organic contaminants, bioactive and nutritional compounds in food and feed. Journal of Chromatography. A 1237:1–23. doi: 10.1016/j.chroma.2012.03.003.
  • Švarc-Gajić, J., V. Cerdà, S. Clavijo, R. Suárez, P. Mašković, A. Cvetanović, C. Delerue-Matos, A. P. Carvalho, and V. Novakov. 2018. Bioactive compounds of sweet and sour cherry stems obtained by subcritical water extraction. Journal of Chemical Technology & Biotechnology 93 (6):1627–35. doi: 10.1002/jctb.5532.
  • Swartz, M. 2010. HPLC detectors: A brief review. Journal of Liquid Chromatography & Related Technologies 33 (9-12):1130–50. doi: 10.1080/10826076.2010.484356.
  • Sytařová, I., J. Orsavová, L. Snopek, J. Mlček, Ł. Byczyński, and L. Mišurcová. 2020. Impact of phenolic compounds and vitamins C and E on antioxidant activity of sea buckthorn (Hippophae rhamnoides L.) berries and leaves of diverse ripening times. Food Chemistry 310:125784. doi: 10.1016/j.foodchem.2019.125784.
  • Taamalli, A., D. Arraez-Roman, E. Ibanez, M. Zarrouk, A. Segura-Carretero, and A. Fernandez-Gutierrez. 2012. Optimization of microwave-assisted extraction for the characterization of olive leaf phenolic compounds by using HPLC-ESI-TOF-MS/IT-MS(2). Journal of Agricultural and Food Chemistry 60 (3):791–8. doi: 10.1021/jf204233u.
  • Tan, M. C., and C. W. Ho. 2009. Optimization of extraction of phenolic antioxidants from henna (Lawsonia inermis) stems using response surface methodology (RSM). Annals of Nutrition and Metabolism 55:172. ISI>://WOS:000270827200651
  • Tang, J. F., F. R. Dunshea, and H. A. R. Suleria. 2019. LC-ESI-QTOF/MS characterization of phenolic compounds from medicinal plants (Hops and Juniper Berries) and their antioxidant activity. Foods 9 (1):7. doi: 10.3390/foods9010007.
  • TastesNatural. 2020. A quick guide to functional foods. https://tastesnatural.com/a-quick-guide-to-functional-foods/
  • Tejedor-Calvo, E., D. Morales, P. Marco, S. Sánchez, S. Garcia-Barreda, F. R. Smiderle, M. Iacomini, M. Villalva, S. Santoyo, and C. Soler-Rivas. 2020. Screening of bioactive compounds in truffles and evaluation of pressurized liquid extractions (PLE) to obtain fractions with biological activities. Food Research International (Ottawa, Ont.) 132:109054. doi: 10.1016/j.foodres.2020.109054.
  • Torres-Ossandon, M. J., A. Vega-Galvez, J. Lopez, K. Stucken, J. Romero, and K. Di Scala. 2018. Effects of high hydrostatic pressure processing and supercritical fluid extraction on bioactive compounds and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L.). The Journal of Supercritical Fluids 138:215–220. doi: 10.1016/j.supflu.2018.05.005.
  • Torres-Vega, J., S. Gomez-Alonso, J. Perez-Navarro, and E. Pastene-Navarrete. 2020. Green extraction of alkaloids and polyphenols from Peumus boldus leaves with natural deep eutectic solvents and profiling by HPLC-PDA-IT-MS/MS and HPLC-QTOF-MS/MS. Plants 9 (2)17.242. doi: 10.3390/plants9020:.
  • TransparencyMarketResearch. 2016. Polyphenols Market by Product (Grape seed, Green tea, Apple and Others), by Application (Functional beverages, Functional food, Dietary supplements and Others) – Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2012–2018. https://www.transparencymarketresearch.com/polyphenol-market.html
  • Tzima, K., N. P. Brunton, J. G. Lyng, D. Frontuto, and D. K. Rai. 2021. The effect of pulsed electric field as a pre-treatment step in ultrasound assisted extraction of phenolic compounds from fresh rosemary and thyme by-products. Innovative Food Science & Emerging Technologies 69:102644. doi: 10.1016/j.ifset.2021.102644.
  • Ueda, Y., N. Apiphuwasukcharoen, S. Tsutsumi, Y. Matsuda, V. Areekul, and S. Yasuda. 2019. Optimization of hot-water extraction of dried yacon herbal tea leaves: Enhanced antioxidant activities and total phenolic content by response surface methodology. Food Science and Technology Research 25 (1):131–139. doi: 10.3136/fstr.25.131.
  • UN. 2015. Transforming our world: The 2030 agenda for sustainable development. https://sdgs.un.org/publications/transforming-our-world-2030-agenda-sustainable-development-17981
  • Unlu, A. E. 2021. Green and non-conventional extraction of bioactive compounds from olive leaves: screening of novel natural deep eutectic solvents and investigation of process parameters. Waste and Biomass Valorization 12 (10):5329–5346. doi: 10.1007/s12649-021-01411-3.
  • USFDA. 2019. Food additive status list. United States https://www.fda.gov/food/food-additives-petitions/food-additive-status-list#ftnE
  • Vergara-Jimenez, M., M. M. Almatrafi, and M. L. Fernandez. 2017. Bioactive components in Moringa Oleifera Leaves protect against chronic disease. Antioxidants 6 (4):91. doi: 10.3390/antiox60400:91.
  • Vieira, V., M. A. Prieto, L. Barros, J. A. P. Coutinho, O. Ferreira, and I. Ferreira. 2017. Optimization and comparison of maceration and microwave extraction systems for the production of phenolic compounds from Juglans regia L. for the valorization of walnut leaves. Industrial Crops and Products 107:341–352. doi: 10.1016/j.indcrop.2017.06.012.
  • Vigano, J., I. Z. Brumer, P. A. D. Braga, J. K. da Silva, M. R. Marostica, F. G. R. Reyes, and J. Martinez. 2016. Pressurized liquids extraction as an alternative process to readily obtain bioactive compounds from passion fruit rinds. Food and Bioproducts Processing 100:382–390. doi: 10.1016/j.fbp.2016.08.011.
  • Vorobiev, E., and N. I. Lebovka. 2012. Pulse electric field-assisted extraction. In Enhancing extraction processes in the food industry, eds. N. Lebovka, E. Vorobiev, & F. Chemat, 1st ed., 25–83. Boca Raton, FL: CRC Press.
  • Wan Mahmood, W. M. A., A. Lorwirachsutee, C. Theodoropoulos, and M. Gonzalez-Miquel. 2019. Polyol-based deep eutectic solvents for extraction of natural polyphenolic antioxidants from Chlorella vulgaris. ACS Sustainable Chemistry & Engineering 7 (5):5018–5026. doi: 10.1021/acssuschemeng.8b05642.
  • Wang, L. J., and C. L. Weller. 2006. Recent advances in extraction of nutraceuticals from plants. Trends in Food Science & Technology 17 (6):300–312. doi: 10.1016/j.tifs.2005.12.004.
  • Wang, L., X. Lin, J. Zhang, W. Zhang, X. Hu, W. Li, C. Li, and S. Liu. 2019. Extraction methods for the releasing of bound phenolics from Rubus idaeus L. leaves and seeds. Industrial Crops and Products 135:1–9. doi: 10.1016/j.indcrop.2019.04.003.
  • Wang, T., J. Jiao, Q. Y. Gai, P. Wang, N. Guo, L. L. Niu, and Y. L. Fu. 2017. Enhanced and green extraction polyphenols and furanocoumarins from Fig (Ficus carica L.) leaves using deep eutectic solvents. Journal of Pharmaceutical and Biomedical Analysis 145:339–345. doi: 10.1016/j.jpba.2017.07.002.
  • Wang, W. X., J. B. Yang, and J. Yang. 2020a. Optimization of ultrasound-assisted aqueous two phase extraction of polyphenols from olive leaves. Preparative Biochemistry & Biotechnology 51 (8):821–831. doi: 10.1080/10826068.2020.1861012.
  • Wang, Y. F., L. Ying, D. Sun, S. K. Zhang, Y. J. Zhu, and P. Xu. 2011. Supercritical carbon dioxide extraction of bioactive compounds from ampelopsis grossedentata stems: Process optimization and antioxidant activity. International Journal of Molecular Sciences 12 (10):6856–6870. doi: 10.3390/ijms12106856.
  • Wang, Y. X., and H. Zhang. 2021. Advances in the extraction, purification, structural-property relationships and bioactive molecular mechanism of Flammulina velutipes polysaccharides: A review. International Journal of Biological Macromolecules 167:528–538. doi: 10.1016/j.ijbiomac.2020.11.208.
  • Wang, Z. Y., S. Y. Li, S. H. Ge, and S. L. Lin. 2020b. Review of distribution, extraction methods, and health benefits of bound phenolics in food plants. Journal of Agricultural and Food Chemistry 68 (11):3330–3343. doi: 10.1021/acs.jafc.9b06574.
  • Ward, T. L., Jung, H. Z., Hinojosa, O., & Benerito, R. R. (1978). Cold-plasma activated natural polymers – characterization and use. Abstracts of Papers of the American Chemical Society 175:108–108. <Go to ISI>://WOS:A1978EM59701535
  • Weaver, J. C., and Y. A. Chizmadzhev. 1996. Theory of electroporation: A review. Bioelectrochemistry and Bioenergetics 41 (2):135–160. doi: 10.1016/S0302-4598(96)05062-3.
  • Wei, Z. F., X. L. Qi, T. T. Li, M. Luo, W. Wang, Y. G. Zu, and Y. J. Fu. 2015. Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography. Separation and Purification Technology 149:237–244. doi: 10.1016/j.seppur.2015.05.015.
  • Weon, J. B., H. J. Yang, J. Y. Ma, and C. J. Ma. 2011. A HPLC-DAD method for the simultaneous determination of five marker components in the traditional herbal medicine Bangpungtongsung-san. Pharmacognosy Magazine 7 (25):60–64. doi: 10.4103/0973-1296.75903.
  • Wu, L. F., L. Li, S. J. Chen, L. Wang, and X. Lin. 2020. Deep eutectic solvent-based ultrasonic-assisted extraction of phenolic compounds from Moringa oleifera L. leaves: Optimization, comparison and antioxidant activity. Separation and Purification Technology 247:117014. doi: 10.1016/j.seppur.2020.117014.
  • Xi, J., D. Shen, S. Zhao, B. Lu, Y. Li, and R. Zhang. 2009. Characterization of polyphenols from green tea leaves using a high hydrostatic pressure extraction. International Journal of Pharmaceutics 382 (1-2):139–143. doi: 10.1016/j.ijpharm.2009.08.023.
  • Xynos, N., G. Papaefstathiou, E. Gikas, A. Argyropoulou, N. Aligiannis, and A.-L. Skaltsounis. 2014. Design optimization study of the extraction of olive leaves performed with pressurized liquid extraction using response surface methodology. Separation and Purification Technology 122:323–330. doi: 10.1016/j.seppur.2013.10.040.
  • Yahia, Y.,. M. A. Benabderrahim, N. Tlili, H. Hannachi, L. Ayadi, and W. Elfalleh. 2020. Comparison of three extraction protocols for the characterization of Caper (Capparis spinosa L.) leaf extracts: Evaluation of phenolic acids and flavonoids by liquid chromatography – Electrospray ionization – Tandem mass spectrometry (LC-ESI-MS) and the antioxidant activity. Analytical Letters 53 (9):1366–1377. doi: 10.1080/00032719.2019.1706546.
  • Yammine, S., C. Delsart, X. Vitrac, M. M. Peuchot, and R. Ghidossi. 2020. Characterisation of polyphenols and antioxidant potential of red and white pomace by-product extracts using subcritical water extraction. Oeno One 54 (2):263–278. doi: 10.20870/oeno-one.2020.54.2.2346.
  • Yang, M., J. Cao, F. Cao, C. Lu, and E. Su. 2018. Efficient extraction of bioactive flavonoids from Ginkgo biloba Leaves using deep eutectic solvent/water mixture as green media. Chemical and Biochemical Engineering Quarterly 32 (3):315–324. doi: 10.15255/CABEQ.2017.1146.
  • Yeasmen, N., M. H. R. Bhuiyan, and V. Orsat. 2021. Unravelling scientific research towards the green extraction of phenolic compounds from leaves: a bibliometric analysis. International Journal of Food Science and Technology 56 (10):4893–4906. doi: 10.1111/ijfs.15215.
  • Yildiz-Ozturk, E., A. Nalbantsoy, O. Tag, and O. Yesil-Celiktas. 2015. A comparative study on extraction processes of Stevia rebaudiana leaves with emphasis on antioxidant, cytotoxic and nitric oxide inhibition activities. Industrial Crops and Products 77:961–971. doi: 10.1016/j.indcrop.2015.10.010.
  • Yilmaz, F. M., A. Gorguc, O. Uygun, and C. Bircan. 2021. Steviol glycosides and polyphenols extraction from Stevia rebaudiana Bertoni leaves using maceration, microwave-, and ultrasound-assisted techniques. Separation Science and Technology 56 (5):936–948. doi: 10.1080/01496395.2020.1743311.
  • Yin, S. P., M. Shibata, and T. Hagiwara. 2019. Extraction of bioactive compounds from stems of Undaria pinnatifida. Food Science and Technology Research 25 (6):765–773. doi: 10.3136/fstr.25.765.
  • Yu, L., Y. Meng, Z.-L. Wang, L. Cao, C. Liu, M.-Z. Gao, C.-J. Zhao, and Y.-J. Fu. 2020. Sustainable and efficient surfactant-based microwave-assisted extraction of target polyphenols and furanocoumarins from fig (Ficus carica L.) leaves. Journal of Molecular Liquids 318:114196. doi: 10.1016/j.molliq.2020.114196.
  • Yu, X., O. Bals, N. Grimi, and E. Vorobiev. 2015. A new way for the oil plant biomass valorization: Polyphenols and proteins extraction from rapeseed stems and leaves assisted by pulsed electric fields. Industrial Crops and Products 74:309–318. doi: 10.1016/j.indcrop.2015.03.045.
  • Zainal-Abidin, M. H., M. Hayyan, A. Hayyan, and N. S. Jayakumar. 2017. New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Analytica Chimica Acta 979:1–23. doi: 10.1016/j.aca.2017.05.012.
  • Zderic, A., and E. Zondervan. 2016. Polyphenol extraction from fresh tea leaves by pulsed electric field: A study of mechanisms. Chemical Engineering Research and Design 109:586–592. doi: 10.1016/j.cherd.2016.03.010.
  • Zderic, A., E. Zondervan, and J. Meuldijk. 2013. Breakage of cellular tissue by pulsed electric field: Extraction of polyphenols from fresh tea leaves. In ICHEAP-11: 11th International Conference on Chemical and Process Engineering, Pts 1-4, eds. S. Pierucci & J. J. Klemes, Vol. 32, 1795–800. Italy: Aidic Servizi Srl.
  • Zemouri-Alioui, S., H. Louaileche, and B. George. 2018. Effects of ultrasound-assisted extraction conditions on the recovery of phenolic compounds and in vitro antioxidant activity of jujube (Ziziphus jujuba Mill.) LEAVES. Annals of the University Dunarea De Jos of Galati, Fascicle Vi-Food Technology 42 (1):96–108. <Go to ISI>://WOS:000444731300007
  • Zemouri-Alioui, S., M. B. Bey, B. Z. Kurt, F. Sonmez, and H. Louaileche. 2019. Optimization of ultrasound-assisted extraction of total phenolic contents and antioxidant activity using response surface methodology from jujube leaves (Ziziphus jujuba) and evaluation of anticholinesterase inhibitory activity. Journal of Food Measurement and Characterization 13 (1):321–329. doi: 10.1007/s11694-018-9947-5.
  • Zeng, J. W., W. G. Cai, W. T. Yang, and W. Wu. 2013. Antioxidant abilities, phenolics and flavonoids contents in the ethanolic extracts of the stems and leaves of different Stevia rebaudiana Bert Lines. Sugar Tech 15 (2):209–213. doi: 10.1007/s12355-013-0210-4.
  • Zhang, J. X., C. T. Wen, H. H. Zhang, Y. Q. Duan, and H. L. Ma. 2020. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends in Food Science & Technology 95:183–195. doi: 10.1016/j.tifs.2019.11.018.
  • Zhao, B., J. Deng, H. Li, Y. He, T. Lan, D. Wu, H. Gong, Y. Zhang, and Z. Chen. 2019. Optimization of phenolic compound extraction from Chinese Moringa oleifera Leaves and antioxidant activities. Journal of Food Quality 2019:1–13. doi: 10.1155/2019/5346279.
  • Zhu, X. R., H. Wang, J. Sun, B. Yang, X. W. Duan, and Y. M. Jiang. 2019. Pericarp and seed of litchi and longan fruits: Constituent, extraction, bioactive activity, and potential utilization. Journal of Zhejiang University. Science. B 20 (6):503–512. doi: 10.1631/jzus.B1900161.
  • Zin, M. M., C. B. Anucha, and S. Banvolgyi. 2020. Recovery of phytochemicals via electromagnetic irradiation (microwave-assisted-extraction): Betalain and phenolic compounds in perspective. Foods 9 (7):918. doi: 10.3390/foods9070918.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.