1,375
Views
26
CrossRef citations to date
0
Altmetric
Reviews

Prebiotic effects of goji berry in protection against inflammatory bowel disease

ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Ahmed, I., B. C. Roy, S. A. Khan, S. Septer, and S. Umar. 2016. Microbiome, metabolome and inflammatory bowel disease. Microorganisms 4 (2):20. doi: 10.3390/microorganisms4020020.
  • Al-Sadi, R., J. Engers, and R. Abdulqadir. 2020. Talk about micromanaging! Role of microRNAs in intestinal barrier function. American Journal of Physiology. Gastrointestinal and Liver Physiology 319 (2):G170–4. doi: 10.1152/ajpgi.00214.2020.
  • Altomare, A., L. Putignani, F. Del Chierico, S. Cocca, S. Angeletti, M. Ciccozzi, C. Tripiciano, B. D. Piccola, M. Cicala, and M. P. L. Guarino. 2019. Gut mucosal-associated microbiota better discloses inflammatory bowel disease differential patterns than faecal microbiota. Digestive and Liver Disease 51 (5):648–56. doi: 10.1016/j.dld.2018.11.021.
  • Alves-Santos, A. M., C. S. A. Sugizaki, G. C. Lima, and M. M. V. Naves. 2020. Prebiotic effect of dietary polyphenols: A systematic review. Journal of Functional Foods 74:104169. doi: 10.1016/j.jff.2020.104169.
  • Amagase, H. 2008. General toxicity and histological analysis from acute toxicological study of a standardized Lycium barbarum (goji) juice (GoChiTM) in rodents. The FASEB Journal 22 (S2):722. doi: 10.1096/fasebj.22.2_supplement.722.
  • Amagase, H., and N. R. Farnsworth. 2011. A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food Research International 44 (7):1702–17. doi: 10.1016/j.foodres.2011.03.027.
  • Amagase, H., B. X. Sun, and C. Borek. 2009. Lycium barbarum (goji) juice improves in vivo antioxidant biomarkers in serum of healthy adults. Nutrition Research 29 (1):19–25. doi: 10.1016/j.nutres.2008.11.005.
  • Ananthakrishnan, A. N., C. N. Bernstein, D. Iliopoulos, A. Macpherson, M. F. Neurath, R. A. R. Ali, S. R. Vavricka, and C. Fiocchi. 2018. Environmental triggers in IBD: A review of progress and evidence. Nature Reviews. Gastroenterology & Hepatology 15 (1):39–49. doi: 10.1038/nrgastro.2017.136.
  • Balish, E., and T. Warner. 2002. Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. The American Journal of Pathology 160 (6):2253–7. doi: 10.1016/S0002-9440(10)61172-8.
  • Banaszkiewicz, A., J. Kądzielska, A. Gawrońska, H. Pituch, P. Obuch-Woszczatyński, P. Albrecht, G. Młynarczyk, and A. Radzikowski. 2014. Enterotoxigenic Clostridium perfringens infection and pediatric patients with inflammatory bowel disease. Journal of Crohn’s & Colitis 8 (4):276–81. doi: 10.1016/j.crohns.2013.08.018.
  • Baumgart, D. C., and S. R. Carding. 2007. Gastroenterology 1—Inflammatory bowel disease: Cause and immunobiology. Lancet 369 (9573):1627–40. doi: 10.1016/S0140-6736(07)60750-8.
  • Baumgart, D. C., and W. J. Sandborn. 2007. Inflammatory bowel disease: Clinical aspects and established and evolving therapies. Lancet 369 (9573):1641–57. doi: 10.1016/S0140-6736(07)60751-X.
  • Bauset, C., L. Gisbert-Ferrandiz, and J. Cosin-Roger. 2021. Metabolomics as a promising resource identifying potential biomarkers for ­inflammatory bowel disease. Journal of Clinical Medicine 10 (4)25.622. doi: 10.3390/jcm10040:.
  • Benzie, I. F., W. Y. Chung, J. Wang, M. Richelle, and P. Bucheli. 2006. Enhanced bioavailability of zeaxanthin in a milk-based formulation of wolfberry (Gou Qi Zi; Fructus barbarum L.). British Journal of Nutrition 96 (01):154–60. doi: 10.1079/BJN20061796.
  • Berry, D., C. Schwab, G. Milinovich, J. Reichert, K. Ben Mahfoudh, T. Decker, M. Engel, B. Hai, E. Hainzl, S. Heider, et al. 2012. Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis. The ISME Journal 6 (11):2091–106. doi: 10.1038/ismej.2012.39.
  • Bertoldi, D., L. Cossignani, F. Blasi, M. Perini, A. Barbero, S. Pianezze, and D. Montesano. 2019. Characterisation and geographical traceability of Italian goji berries. Food Chemistry 275:585–93. doi: 10.1016/j.foodchem.2018.09.098.
  • Bevins, C. L., and N. H. Salzman. 2011. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nature Reviews. Microbiology 9 (5):356–68. doi: 10.1038/nrmicro2546.
  • Bielefeldt, K., B. Davis, and D. G. Binion. 2009. Pain and inflammatory bowel disease. Inflammatory Bowel Diseases 15 (5):778–88. doi: 10.1002/ibd.20848.
  • Bjerrum, J. T., Y. L. Wang, F. H. Hao, M. Coskun, C. Ludwig, U. Gunther, and O. H. Nielsen. 2015. Metabonomics of human fecal extracts characterize ulcerative colitis, Crohn’s disease and healthy individuals. Metabolomics 11 (1):122–33. doi: 10.1007/s11306-014-0677-3.
  • Bloom, S. M., V. N. Bijanki, G. M. Nava, L. L. Sun, N. P. Malvin, D. L. Donermeyer, W. M. Dunne, P. M. Allen, and T. S. Stappenbeck. 2011. Commensal Bacteroides species induce colitis in host-genotype-specific fashion in a mouse model of inflammatory bowel disease. Cell Host & Microbe 9 (5):390–403. doi: 10.1016/j.chom.2011.04.009.
  • Bochimoto, H., D. Kondoh, R. Nagata, Y. Ishihara, J. Tomiyasu, K. H. Han, K. Shimada, M. Sasaki, N. Kitamura, and M. Fukushima. 2019. Ultrastructural changes in colonic epithelial cells in a rat model of inflammatory bowel disease. Microscopy Research and Technique 82 (8):1339–44. doi: 10.1002/jemt.23285.
  • Breithaupt, D. E., P. Weller, M. Wolters, and A. Hahn. 2004. Comparison of plasma responses in human subjects after the ingestion of 3R,3R′-zeaxanthin dipalmitate from wolfberry (Lycium barbarum) and non-esterified 3R,3R′-zeaxanthin using chiral high-performance liquid chromatography. The British Journal of Nutrition 91 (5):707–13. doi: 10.1079/bjn20041105.
  • Brown, E. M., M. Sadarangani, and B. B. Finlay. 2013. The role of the immune system in governing host-microbe interactions in the intestine. Nature Immunology 14 (7):660–7. doi: 10.1038/ni.2611.
  • Bruewer, M., A. Luegering, T. Kucharzik, C. A. Parkos, J. L. Madara, A. M. Hopkins, and A. Nusrat. 2003. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. Journal of Immunology 171 (11):6164–72. doi: 10.4049/jimmunol.171.11.6164.
  • Buchman, A. L., A. M. Babbo, and R. G. Gieser. 2006. Central retinal vein thrombosis in a patient with ulcerative colitis. Digestive Diseases and Sciences 51 (10):1847–9. doi: 10.1007/s10620-006-9188-z.
  • Cai, H., F. Liu, P. Zuo, G. Huang, Z. Song, T. Wang, H. Lu, F. Guo, C. Han, and G. Sun. 2015. Practical application of antidiabetic efficacy of Lycium barbarum polysaccharide in patients with type 2 diabetes. Medicinal Chemistry 11 (4):383–90. doi: 10.2174/1573406410666141110153858.
  • Cao, S. M., J. L. Du, and Q. H. Hei. 2017. Lycium barbarum polysaccharide protects against neurotoxicity via the Nrf2-HO-1 pathway. Experimental and Therapeutic Medicine 14 (5):4919–27. doi: 10.3892/etm.2017.5127.
  • Carbonero, F., A. C. Benefiel, and H. R. Gaskins. 2012. Contributions of the microbial hydrogen economy to colonic homeostasis. Nature Reviews Gastroenterology & Hepatology 9 (9):504–518. doi: 10.1038/nrgastro.2012.85.
  • Caviglia, G. P., F. Dughera, D. G. Ribaldone, C. Rosso, M. L. Abate, R. Pellicano, F. Bresso, A. Smedile, G. M. Saracco, and M. Astegiano. 2019. Serum zonulin in patients with inflammatory bowel disease: A pilot study. Minerva Medica 110 (2):95–100. doi: 10.23736/S0026-4806.18.05787-7.
  • Chan, H. C., R. C. C. Chang, A. K. C. Ip, K. Chiu, W. H. Yuen, S. Y. Zee, and K. F. So. 2007. Neuroprotective effects of Lycium ­barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma. Experimental Neurology 203 (1):269–73. doi: 10.1016/j.expneurol.2006.05.031.
  • Chan, J. C. N., V. Malik, W. P. Jia, T. Kadowaki, C. S. Yajnik, K. H. Yoon, and F. B. Hu. 2009. Diabetes in Asia: Epidemiology, risk factors, and pathophysiology. JAMA 301 (20):2129–40. doi: 10.1001/jama.2009.726.
  • Chen, G. X., X. Ran, B. Li, Y. H. Li, D. W. He, B. X. Huang, S. P. Fu, J. X. Liu, and W. Wang. 2018. Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model. Ebiomedicine 30:317–25. doi: 10.1016/j.ebiom.2018.03.030.
  • Chen, J. L., B. Yu, D. W. Chen, Z. Q. Huang, X. B. Mao, P. Zheng, J. Yu, J. Q. Luo, and J. He. 2018. Chlorogenic acid improves intestinal barrier functions by suppressing mucosa inflammation and improving antioxidant capacity in weaned pigs. The Journal of Nutritional Biochemistry 59:84–92. doi: 10.1016/j.jnutbio.2018.06.005.
  • Chen, J. L., B. Yu, D. W. Chen, P. Zheng, Y. H. Luo, Z. Q. Huang, J. Q. Luo, X. B. Mao, J. Yu, and J. He. 2019. Changes of porcine gut microbiota in response to dietary chlorogenic acid supplementation. Applied Microbiology and Biotechnology 103 (19):8157–68. doi: 10.1007/s00253-019-10025-8.
  • Chen, J. S., L. N. Long, Q. Jiang, B. J. Kang, Y. H. Li, and J. Yin. 2020. Effects of dietary supplementation of Lycium barbarum polysaccharides on growth performance, immune status, antioxidant capacity and selected microbial populations of weaned piglets. Journal of Animal Physiology and Animal Nutrition 104 (4):1106–15. doi: 10.1111/jpn.13247.
  • Chen, L. A., S. K. Hourigan, Z. Grigoryan, Z. Gao, J. C. Clemente, J. R. Rideout, S. Chirumamilla, S. Rabidazeh, S. Saeed, C. O. Elson, et al. 2019. Decreased fecal bacterial diversity and altered microbiome in children colonized with Clostridium difficile. Journal of Pediatric Gastroenterology & Nutrition 68 (4):502–8. doi: 10.1097/MPG.0000000000002210.
  • Chen, L., M. M. Sun, W. Wu, W. J. Yang, X. S. Huang, Y. Xiao, C. Y. Ma, L. Q. Xu, S. X. Yao, Z. J. Liu, et al. 2019. Microbiota metabolite butyrate differentially regulates Th1 and Th17 cells’ differentiation and function in induction of colitis. Inflammatory Bowel Diseases 25 (9):1450–61. doi: 10.1093/ibd/izz046.
  • Chen, W., X. Cheng, J. Chen, X. Yi, D. Nie, X. Sun, J. Qin, M. Tian, G. Jin, and X. Zhang. 2014. Lycium barbarum polysaccharides prevent memory and neurogenesis impairments in scopolamine-treated rats. PLoS One 9 (2):e88076. doi: 10.1371/journal.pone.0088076.
  • Chen, Z., B. Kwong Huat Tan, and S. H. Chan. 2008. Activation of T lymphocytes by polysaccharide-protein complex from Lycium barbarum L. International Immunopharmacology 8 (12):1663–71. doi: 10.1016/j.intimp.2008.07.019.
  • Cheng, J., E. Balbuena, B. Miller, and A. Eroglu. 2021. The role of β-carotene in colonic inflammation and intestinal barrier integrity. Frontiers in Nutrition 8:660. doi: 10.3389/fnut.2021.723480.
  • Cheng, J., Z. W. Zhou, H. P. Sheng, L. J. He, X. W. Fan, Z. X. He, T. Sun, X. Zhang, R. J. Zhao, L. Gu, et al. 2015. An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides. Drug Design, Development and Therapy 9:33–78. doi: 10.2147/DDDT.S72892.
  • Choi, C. H. R., I. Al Bakir, A. L. Hart, and T. A. Graham. 2017. Clonal evolution of colorectal cancer in IBD. Nature Reviews. Gastroenterology & Hepatology 14 (4):218–29. doi: 10.1038/nrgastro.2017.1.
  • Choi, H., C. B. A. Matta, G. Fu, G. Trichonas, M. L. Morgan, M. Yursky, J. Katz, and P. Sinh. 2019. Central retinal vein occlusion: A rare ocular complication of inflammatory bowel disease—A case series. Inflammatory Bowel Diseases 25 (9):E110–1. doi: 10.1093/ibd/izz086.
  • Claesson, M. H., F. Nicoletti, S. Stosic-Grujicic, A. Doria, and S. Zampieri. 2008. Interactions between infections and immune-inflammatory cells in type 1 diabetes mellitus and inflammatory bowel diseases: Evidences from animal models. Clinical and Experimental Rheumatology 26 (1):S8–S11.
  • Crosnier, C., D. Stamataki, and J. Lewis. 2006. Organizing cell renewal in the intestine: Stem cells, signals and combinatorial control. Nature Reviews. Genetics 7 (5):349–59. doi: 10.1038/nrg1840.
  • Cui, B., Y. Chen, S. Liu, J. Wang, S. Li, Q. Wang, S. Li, M. Chen, and X. Lin. 2012. Antitumour activity of Lycium chinensis polysaccharides in liver cancer rats. International Journal of Biological Macromolecules 51 (3):314–8. doi: 10.1016/j.ijbiomac.2012.05.004.
  • Cui, B., S. Liu, X. Lin, J. Wang, S. Li, Q. Wang, and S. Li. 2011. Effects of Lycium barbarum aqueous and ethanol extracts on high-fat-diet induced oxidative stress in rat liver tissue. Molecules 16 (11):9116–28. doi: 10.3390/molecules16119116.
  • Cui, K. R., G. S. Xing, X. M. Liu, G. M. Xing, and Y. F. Wang. 1999. Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarum L. Plant Science 146 (1):9–16.
  • de Alencar, H., A. P. R. Paiotti, H. B. De Araujo, C. T. F. Oshima, S. J. Miszputen, and O. Ambrogini. 2020. The relationship between the commensal microbiota levels and Crohn’s disease activity. JGH Open 4 (5):784–9. doi: 10.1002/jgh3.12338.
  • De Cruz, P., L. Prideaux, J. Wagner, S. C. Ng, C. McSweeney, C. Kirkwood, M. Morrison, and M. A. Kamm. 2012. Characterization of the gastrointestinal microbiota in health and inflammatory bowel disease. Inflammatory Bowel Diseases 18 (2):372–90. doi: 10.1002/ibd.21751.
  • de Meij, T. G. J., E. F. J. de Groot, C. F. W. Peeters, N. K. H. de Boer, C. M. F. Kneepkens, A. Eck, M. A. Benninga, P. H. M. Savelkoul, A. A. van Bodegraven, and A. E. Budding. 2018. Variability of core microbiota in newly diagnosed treatment-naive paediatric inflammatory bowel disease patients. PLoS One 13 (8):e0197649. doi: 10.1371/journal.pone.0197649.
  • de Sousa Moraes, L. F., X. Sun, M. Peluzio, and M. J. Zhu. 2019. Anthocyanins/anthocyanidins and colorectal cancer: What is behind the scenes? Critical Reviews in Food Science and Nutrition 59 (1):59–71. doi: 10.1080/10408398.2017.1357533.
  • de Souza, H. S. P., and C. Fiocchi. 2016. Immunopathogenesis of IBD: Current state of the art. Nature Reviews. Gastroenterology & Hepatology 13 (1):13–27. doi:10.1038/nrgastro.2016.186.
  • Dijkstra, G., H. Moshage, H. M. Van Dullemen, A. De Jager-Krikken, A. Tiebosch, J. H. Kleibeuker, P. L. M. Jansen, and H. Van Goor. 1998. Expression of nitric oxide synthases and formation of nitrotyrosine and reactive oxygen species in inflammatory bowel disease. The Journal of Pathology 186 (4):416–21. doi: 10.1002/(sici)1096-9896(199812)186:4 < 416::aid-path201 > 3.0.co;2-u.
  • Ding, S., S. Xu, J. Fang, and H. Jiang. 2020. The protective effect of polyphenols for colorectal cancer. Frontiers in Immunology 11:1407. doi: 10.3389/fimmu.2020.01407.
  • Ding, Y., Y. M. Yan, D. Chen, L. W. Ran, J. Mi, L. Lu, B. Jing, X. Y. Li, X. X. Zeng, and Y. L. Cao. 2019. Modulating effects of polysaccharides from the fruits of Lycium barbarum on the immune response and gut microbiota in cyclophosphamide-treated mice. Food & Function 10 (6):3671–83. doi: 10.1039/c9fo00638a.
  • Docherty, M. J., R. Carter, W. Jones, III, and M. S. Wallace. 2011. Managing pain in inflammatory bowel disease. Gastroenterology & Hepatology 7 (9):592.
  • Doi, M. 1999. Central retinal vein occlusion during remission of ulcerative colitis. Japanese Journal of Ophthalmology 43 (3):213–6. doi: 10.1016/S0021-5155(99)00010-6.
  • Donno, D., G. L. Beccaro, M. G. Mellano, A. K. Cerutti, and G. Bounous. 2015. Goji berry fruit (Lycium spp.): Antioxidant compound fingerprint and bioactivity evaluation. Journal of Functional Foods 18:1070–85. doi: 10.1016/j.jff.2014.05.020.
  • Duboc, H., S. Rajca, D. Rainteau, D. Benarous, M. A. Maubert, E. Quervain, G. Thomas, V. Barbu, L. Humbert, G. Despras, et al. 2013. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 62 (4):531–9. doi: 10.1136/gutjnl-2012-302578.
  • Dursun, R., Y. Zengin, E. Gunduz, M. Icer, H. M. Durgun, M. Daggulli, I. Kaplan, U. Alabalik, and C. Guloglu. 2015. The protective effect of goji berry extract in ischemic reperfusion in testis torsion. International Journal of Clinical and Experimental Medicine 8 (2):2727–33.
  • Eaden, J. A., K. R. Abrams, and J. F. Mayberry. 2001. The risk of colorectal cancer in ulcerative colitis: A meta-analysis. Gut 48 (4):526–35. doi: 10.1136/gut.48.4.526.
  • Ebert, M. N., A. Klinder, W. H. M. Peters, A. Schaferhenrich, W. Sendt, J. Scheele, and B. L. Pool-Zobel. 2003. Expression of glutathione S-transferases (GSTs) in human colon cells and inducibility of GSTM2 by butyrate. Carcinogenesis 24 (10):1637–44. doi: 10.1093/carcin/bgg122.
  • Eeckhaut, V., K. Machiels, C. Perrier, C. Romero, S. Maes, B. Flahou, M. Steppe, F. Haesebrouck, B. Sas, R. Ducatelle, et al. 2013. Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut 62 (12):1745–52. doi: 10.1136/gutjnl-2012-303611.
  • Elinav, E., T. Strowig, A. L. Kau, J. Henao-Mejia, C. A. Thaiss, C. J. Booth, D. R. Peaper, J. Bertin, S. C. Eisenbarth, J. I. Gordon, et al. 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145 (5):745–57. doi: 10.1016/j.cell.2011.04.022.
  • Facchin, S., N. Vitulo, M. Calgaro, A. Buda, C. Romualdi, D. Pohl, B. Perini, G. Lorenzon, C. Marinelli, R. D’Inca, et al. 2020. Microbiota changes induced by microencapsulated sodium butyrate in patients with inflammatory bowel disease. Neurogastroenterology and Motility 32 (10):e13914. doi: 10.1111/nmo.13914.
  • Fakhfakh, J., K. Athmouni, H. Mallek-Fakhfakh, H. Ayedi, and N. Allouche. 2020. Polysaccharide from Lycium arabicum: Structural features, in vitro antioxidant activities and protective effect against oxidative damage in human erythrocytes. Chemistry & Biodiversity 17 (12):e00614. doi: 10.1002/cbdv.202000614.
  • Feng, Z. H., H. Q. Jia, X. S. Li, Z. L. Bai, Z. B. Liu, L. J. Sun, Z. L. Zhu, P. Bucheli, O. Ballevre, J. K. Wang, et al. 2010. A milk-based wolfberry preparation prevents prenatal stress-induced cognitive impairment of offspring rats, and inhibits oxidative damage and mitochondrial dysfunction in vitro. Neurochemical Research 35 (5):702–11. doi: 10.1007/s11064-010-0123-5.
  • Firdous, A. P., G. Kuttan, and R. Kuttan. 2015. Anti-inflammatory potential of carotenoid meso-zeaxanthin and its mode of action. Pharmaceutical Biology 53 (7):961–7. doi: 10.3109/13880209.2014.950673.
  • Fitzpatrick, L. R., and P. Jenabzadeh. 2020. IBD and bile acid absorption: Focus on pre-clinical and clinical observations. Frontiers in Physiology 11:7. doi: 10.3389/fphys.2020.00564.
  • Frank, D. N., A. L. S. Amand, R. A. Feldman, E. C. Boedeker, N. Harpaz, and N. R. Pace. 2007. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proceedings of the National Academy of Sciences of the United States of America 104 (34):13780–5. doi: 10.1073/pnas.0706625104.
  • Fu, P. F., M. Gao, and K. K. L. Yung. 2020. Association of intestinal disorders with Parkinson’s disease and Alzheimer’s disease: A systematic review and meta-analysis. ACS Chemical Neuroscience 11 (3):395–405. doi: 10.1021/acschemneuro.9b00607.
  • Gan, L., S. Hua Zhang, X. L. Yang, and H. B. Xu. 2004. Immunomodulation and antitumor activity by a polysaccharide-protein complex from Lycium barbarum. International Immunopharmacology 4 (4):563–9. doi: 10.1016/j.intimp.2004.01.023.
  • Gao, K., M. Y. Liu, J. Y. Cao, M. N. Yao, Y. Y. Lu, J. K. Li, X. H. Zhu, Z. F. Yang, and A. D. Wen. 2014. Protective effects of Lycium barbarum polysaccharide on 6-OHDA-induced apoptosis in PC12 cells through the ROS-NO pathway. Molecules 20 (1):293–308. doi: 10.3390/molecules20010293.
  • Gehart, H., and H. Clevers. 2019. Tales from the crypt: New insights into intestinal stem cells. Nature Reviews. Gastroenterology & Hepatology 16 (1):19–34. doi: 10.1038/s41575-018-0081-y.
  • Gjymishka, A., R. M. Coman, T. M. Brusko, and S. C. Glover. 2013. Influence of host immunoregulatory genes, ER stress and gut microbiota on the shared pathogenesis of inflammatory bowel disease and type 1 diabetes. Immunotherapy 5 (12):1357–66. doi: 10.2217/imt.13.130.
  • Gondim, F. D. A., G. R. de Oliveira, B. C. V. Teles, M. Souza, L. Braga, and E. L. Messias. 2015. A case-control study of the prevalence of neurological diseases in inflammatory bowel disease (IBD). Arquivos de Neuro-Psiquiatria 73 (2):119–24. doi: 10.1590/0004-282x20140223.
  • Gong, H., P. Shen, L. Jin, C. Xing, and F. Tang. 2005. Therapeutic effects of Lycium barbarum polysaccharide (LBP) on irradiation or chemotherapy-induced myelosuppressive mice. Cancer Biotherapy & Radiopharmaceuticals 20 (2):155–62. doi: 10.1089/cbr.2005.20.155.
  • Grondin, J. A., Y. H. Kwon, P. M. Far, S. Haq, and W. I. Khan. 2020. Mucins in intestinal mucosal defense and inflammation: Learning from clinical and experimental studies. Frontiers in Immunology 11:2054. doi: 10.3389/fimmu.2020.02054.
  • Gündüz, E., R. Dursun, Y. Zengin, M. İçer, H. M. Durgun, A. Kanıcı, İ. Kaplan, U. Alabalık, H. Gürbüz, and C. Güloğlu. 2015. Lycium barbarum extract provides effective protection against paracetamol-induced acute hepatotoxicity in rats. International Journal of Clinical and Experimental Medicine 8 (5):7898–905.
  • Hakonarson, H., and S. F. A. Grant. 2009. Genome-wide association studies in type 1 diabetes, inflammatory bowel disease and other immune-mediated disorders. Seminars in Immunology 21 (6):355–62. doi: 10.1016/j.smim.2009.06.001.
  • Heidarian, F., M. Alebouyeh, S. Shahrokh, H. Balaii, and M. R. Zali. 2019. Altered fecal bacterial composition correlates with disease activity in inflammatory bowel disease and the extent of IL8 induction. Current Research in Translational Medicine 67 (2):41–50. doi: 10.1016/j.retram.2019.01.002.
  • Helander, H. F., and L. Fandriks. 2014. Surface area of the digestive tract—Revisited. Scandinavian Journal of Gastroenterology 49 (6):681–9. doi: 10.3109/00365521.2014.898326.
  • Hellmann, J., H. Andersen, L. Fei, A. Linn, R. Bezold, K. Lake, K. Jackson, D. Meyer, K. Dirksing, E. Bonkowski, et al. 2020. Microbial shifts and shorter time to bowel resection surgery associated with C. Difficile in pediatric Crohn’s disease. Inflammatory Bowel Diseases 26 (8):1212–21. doi: 10.1093/ibd/izz263.
  • Hirano, A., J. Umeno, Y. Okamoto, H. Shibata, Y. Ogura, T. Moriyama, T. Torisu, S. Fujioka, Y. Fuyuno, Y. Kawarabayasi, et al. 2018. Comparison of the microbial community structure between inflamed and non-inflamed sites in patients with ulcerative colitis. Journal of Gastroenterology and Hepatology 33 (9):1590–7. doi: 10.1111/jgh.14129.
  • Ho, Y. S., M. S. Yu, X. F. Yang, K. F. So, W. H. Yuen, and R. C. Chang. 2010. Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lycium barbarum, against homocysteine-induced toxicity in rat cortical neurons. Journal of Alzheimer’s Disease: JAD 19 (3):813–27. doi: 10.3233/JAD-2010-1280.
  • Ho, Y. S., M. S. Yu, S. Y. Yik, K. F. So, W. H. Yuen, and R. C. Chang. 2009. Polysaccharides from wolfberry antagonizes glutamate excitotoxicity in rat cortical neurons. Cellular and Molecular Neurobiology 29 (8):1233–44. doi: 10.1007/s10571-009-9419-x.
  • Honneffer, J. B., Y. Minamoto, and J. S. Suchodolski. 2014. Microbiota alterations in acute and chronic gastrointestinal inflammation of cats and dogs. World Journal of Gastroenterology 20 (44):16489–97. doi: 10.3748/wjg.v20.i44.16489.
  • Hooper, L. V. 2015. Epithelial cell contributions to intestinal immunity. Advances in Immunology 126:129–72. doi: 10.1016/bs.ai.2014.11.003.
  • Huang, K. Y., W. Dong, W. Y. Liu, Y. M. Yan, P. Wan, Y. J. Peng, Y. J. Xu, X. X. Zeng, and Y. L. Cao. 2019. 2-O-beta-D-glucopyranosyl-l-ascorbic acid, an ascorbic acid derivative isolated from the fruits of Lycium barbarum L., modulates gut microbiota and palliates colitis in dextran sodium sulfate-induced colitis in mice. Journal of Agricultural and Food Chemistry 67 (41):11408–19. doi: 10.1021/acs.jafc.9b04411.
  • Huang, K. Y., Y. M. Yan, D. Chen, Y. Zhao, W. Dong, X. X. Zeng, and Y. L. Cao. 2020. Ascorbic acid derivative 2-O-beta-D-glucopyranosyl-L-ascorbic acid from the fruit of Lycium barbarum modulates microbiota in the small intestine and colon and exerts an immunomodulatory effect on cyclophosphamide-treated BALB/c mice. Journal of Agricultural and Food Chemistry 68 (40):11128–43. doi: 10.1021/acs.jafc.0c04253.
  • Huang, W. S., C. H. Tseng, P. C. Chen, C. H. Tsai, C. L. Lin, F. C. Sung, and C. H. Kao. 2014. Inflammatory bowel diseases increase future ischemic stroke risk: A Taiwanese population-based retrospective cohort study. European Journal of Internal Medicine 25 (6):561–5. doi: 10.1016/j.ejim.2014.05.009.
  • Huda-Faujan, N., A. S. Abdulamir, A. B. Fatimah, O. M. Anas, M. Shuhaimi, A. M. Yazid, and Y. Y. Loong. 2010. The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects. The Open Biochemistry Journal 4:53–8. doi: 10.2174/1874091X01004010053.
  • Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486 (7402):207–14. doi: 10.1038/nature11234.
  • Ilic, T., M. Dodevska, M. Marcetic, D. Bozic, I. Kodranov, and B. Vidovic. 2020. Chemical characterization, antioxidant and antimicrobial properties of goji berries cultivated in Serbia. Foods 9 (11):1614. doi: 10.3390/foods9111614.
  • Im, A. R., Y. H. Kim, M. R. Uddin, S. Chae, H. W. Lee, Y. S. Kim, and M. Y. Lee. 2013. Neuroprotective effects of Lycium chinense Miller against rotenone-induced neurotoxicity in PC12 cells. The American Journal of Chinese Medicine 41 (6):1343–59. doi: 10.1142/S0192415X13500900.
  • Inbaraj, B. S., H. Lu, C. F. Hung, W. B. Wu, C. L. Lin, and B. H. Chen. 2008. Determination of carotenoids and their esters in fruits of Lycium barbarum Linnaeus by HPLC-DAD-APCI-MS. Journal of Pharmaceutical and Biomedical Analysis 47 (4–5):812–8. doi: 10.1016/J.Jpba.2008.04.001.
  • Itzkowitz, S. H., and X. Y. Yio. 2004. Inflammation and cancer—IV. Colorectal cancer in inflammatory bowel disease: The role of inflammation. American Journal of Physiology. Gastrointestinal and Liver Physiology 287 (1):G7–17. doi: 10.1152/ajpgi.00079.2004.
  • Jain, U., A. M. Ver Heul, S. Xiong, M. H. Gregory, E. G. Demers, J. T. Kern, C.-W. Lai, B. D. Muegge, D. A. G. Barisas, J. S. Leal-Ekman, et al. 2021. Debaryomyces is enriched in Crohn’s disease intestinal tissue and impairs healing in mice. Science (New York, N.Y.) 371 (6534):1154–9. doi: 10.1126/science.abd0919.
  • Jalanka, J., J. Cheng, K. Hiippala, J. Ritari, J. Salojarvi, T. Ruuska, M. Kalliomaki, and R. Satokari. 2020. Colonic mucosal microbiota and association of bacterial taxa with the expression of host antimicrobial peptides in pediatric ulcerative colitis. International Journal of Molecular Sciences 21 (17):6044. doi: 10.3390/ijms21176044.
  • Jess, T., M. Gamborg, P. Matzen, P. Munkholm, and T. I. A. Sorensen. 2005. Increased risk of intestinal cancer in Crohn’s disease: A meta-analysis of population-based cohort studies. The American Journal of Gastroenterology 100 (12):2724–9. doi: 10.1111/j.1572-0241.2005.00287.x.
  • Jess, T., B. W. Jensen, M. Andersson, M. Villumsen, and K. H. Allin. 2020. Inflammatory bowel diseases increase risk of type 2 diabetes in a nationwide cohort study. Clinical Gastroenterology and Hepatology 18 (4):881–8.e1. doi: 10.1016/j.cgh.2019.07.052.
  • Jia, H., Y. C. Zhang, X. M. Si, Y. H. Jin, D. Jiang, Z. L. Dai, and Z. L. Wu. 2021. Quercetin alleviates oxidative damage by activating nuclear factor erythroid 2-related factor 2 signaling in porcine enterocytes. Nutrients 13 (2):375. doi: 10.3390/nu13020375.
  • Jia, W., G. X. Xie, and W. P. Jia. 2018. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nature Reviews. Gastroenterology & Hepatology 15 (2):111–28. doi: 10.1038/nrgastro.2017.119.
  • Jiang, Y., Y. Zhang, L. Wark, E. Ortiz, S. Lim, H. He, W. Wang, D. Medeiros, and D. Lin. 2012. Wolfberry water soluble phytochemicals down-regulate ER stress biomarkers and modulate multiple signaling pathways leading to inhibition of proliferation and induction of apoptosis in Jurkat cells. Journal of Nutrition & Food Sciences 1 (S2):1. doi: 10.4172/2155-9600.S2-001.
  • Johansson, M. E. V., and G. C. Hansson. 2016. Immunological aspects of intestinal mucus and mucins. Nature Reviews. Immunology 16 (10):639–49. doi: 10.1038/nri.2016.88.
  • Kaakoush, N. O., J. Holmes, S. Octavia, S. M. Man, L. Zhang, N. Castano-Rodriguez, A. S. Day, S. T. Leach, D. A. Lemberg, S. Dutt, et al. 2010. Detection of Helicobacteraceae in intestinal biopsies of children with Crohn’s disease. Helicobacter 15 (6):549–57. doi: 10.1111/j.1523-5378.2010.00792.x.
  • Kabeerdoss, J., V. Sankaran, S. Pugazhendhi, and B. S. Ramakrishna. 2013. Clostridium leptum group bacteria abundance and diversity in the fecal microbiota of patients with inflammatory bowel disease: a case-control study in India. BMC Gastroenterology 13 (1):8. doi: 10.1186/1471-230X-13-20.
  • Kang, Y. F., Y. S. Xue, M. Du, and M. J. Zhu. 2017. Preventive effects of goji berry on dextran-sulfate-sodium-induced colitis in mice. The Journal of Nutritional Biochemistry 40:70–6. doi: 10.1016/j.jnutbio.2016.10.009.
  • Kang, Y. F., G. Yang, S. M. Zhang, C. F. Ross, and M. J. Zhu. 2018. Goji berry modulates gut microbiota and alleviates colitis in IL‐10‐deficient mice. Molecular Nutrition & Food Research 62 (22):1800535. doi: 10.1002/mnfr.201800535.
  • Kaplan, G. G., and S. C. Ng. 2016. Globalisation of inflammatory bowel disease: Perspectives from the evolution of inflammatory bowel disease in the UK and China. The Lancet. Gastroenterology & Hepatology 1 (4):307–16. doi: 10.1016/S2468-1253(16)30077-2.
  • Karioti, A., M. C. Bergonzi, F. F. Vincieri, and A. R. Bilia. 2014. Validated method for the analysis of goji berry, a rich source of zeaxanthin dipalmitate. Journal of Agricultural and Food Chemistry 62 (52):12529–35. doi: 10.1021/jf503769s.
  • Kaur, C. P., J. Vadivelu, and S. Chandramathi. 2018. Impact of Klebsiella pneumoniae in lower gastrointestinal tract diseases. Journal of Digestive Diseases 19 (5):262–71. doi: 10.1111/1751-2980.12595.
  • Ke, M., X. J. Zhang, Z. H. Han, H. Y. Yu, Y. Lin, W. G. Zhang, F. H. Sun, and T. J. Wang. 2011. Extraction, purification of Lycium barbarum polysaccharides and bioactivity of purified fraction. Carbohydrate Polymers 86 (1):136–41. doi: 10.1016/j.carbpol.2011.04.023.
  • Keshavarzian, A., A. Banan, A. Farhadi, S. Komanduri, E. Mutlu, Y. Zhang, and J. Z. Fields. 2003. Increases in free radicals and cytoskeletal protein oxidation and nitration in the colon of patients with inflammatory bowel disease. Gut 52 (5):720–8. doi: 10.1136/gut.52.5.720.
  • Kiernan, M. G., J. C. Coffey, K. McDermott, P. D. Cotter, R. Cabrera-Rubio, P. A. Kiely, and C. P. Dunne. 2019. The human mesenteric lymph node microbiome differentiates between Crohn’s disease and ulcerative colitis. Journal of Crohn’s & Colitis 13 (1):58–66. doi: 10.1093/ecco-jcc/jjy136.
  • Kim, J. S., and H. Y. Chung. 2009. GC-MS analysis of the volatile components in dried boxthorn (Lycium chinensis) fruit. Journal of the Korean Society for Applied Biological Chemistry 52 (5):516–24. doi: 10.3839/jksabc.2009.088.
  • Koh, A., F. De Vadder, P. Kovatcheva-Datchary, and F. Backhed. 2016. From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165 (6):1332–45. doi: 10.1016/j.cell.2016.05.041.
  • Konarska, A. 2018. Microstructural and histochemical characteristics of Lycium barbarum L. fruits used in folk herbal medicine and as functional food. Protoplasma 255 (6):1839–54. doi: 10.1007/s00709-018-1277-2.
  • Kosińska-Cagnazzo, A., B. Weber, R. Chablais, J. F. Vouillamoz, B. Molnár, J. Crovadore, F. Lefort, and W. Andlauer. 2017. Bioactive compound profile and antioxidant activity of fruits from six goji cultivars cultivated in Switzerland. Journal of Berry Research 7 (1):43–59. doi: 10.3233/JBR-160144.
  • Kowalska-Duplaga, K., T. Gosiewski, P. Kapusta, A. Sroka-Oleksiak, A. Wędrychowicz, S. Pieczarkowski, A. H. Ludwig-Słomczyńska, P. P. Wołkow, and K. Fyderek. 2019. Differences in the intestinal microbiome of healthy children and patients with newly diagnosed Crohn’s disease. Scientific Reports 9 (1):11. doi: 10.1038/s41598-019-55290-9.
  • Kuhn, P., H. M. Kalariya, A. Poulev, D. M. Ribnicky, A. Jaja-Chimedza, D. E. Roopchand, and I. Raskin. 2018. Grape polyphenols reduce gut-localized reactive oxygen species associated with the development of metabolic syndrome in mice. PLoS One 13 (10):e0198716. doi: 10.1371/journal.pone.0198716.
  • Larsson, J., and C. Hansson-Lundblad. 2000. Central retinal vein occlusion in two patients with inflammatory bowel disease. Retina (Philadelphia, Pa.) 20 (6):681–2. doi: 10.1097/00006982-200006000-00022.
  • Laukoetter, M. G., P. Nava, and A. Nusrat. 2008. Role of the intestinal barrier in inflammatory bowel disease. World Journal of Gastroenterology 14 (3):401–7. doi: 10.3748/wjg.14.401.
  • Lavelle, A., and H. Sokol. 2020. Gut microbiota-derived metabolites as key actors in inflammatory bowel disease. Nature Reviews. Gastroenterology & Hepatology 17 (4):223–37. doi: 10.1038/s41575-019-0258-z.
  • Lawrence, T. 2009. The nuclear factor NF-kB pathway in inflammation. Cold Spring Harbor Perspectives in Biology 1 (6):a001651. doi: 10.1101/cshperspect.a001651.
  • Le, K., F. Chiu, and K. Ng. 2007. Identification and quantification of antioxidants in Fructus lycii. Food Chemistry 105 (1):353–63. doi: 10.1016/j.foodchem.2006.11.063.
  • Lee, C., B. G. Kim, J. H. Kim, J. Chun, J. P. Im, and J. S. Kim. 2017. Sodium butyrate inhibits the NF-kappa B signaling pathway and histone deacetylation, and attenuates experimental colitis in an IL-10 independent manner. International Immunopharmacology 51:47–56. doi: 10.1016/j.intimp.2017.07.023.
  • Li, H., Y. Liang, K. Chiu, Q. Yuan, B. Lin, R. C. Chang, and K. F. So. 2013. Lycium barbarum (wolfberry) reduces secondary degeneration and oxidative stress, and inhibits JNK pathway in retina after partial optic nerve transection. PLoS One 8 (7):e68881. doi: 10.1371/journal.pone.0068881.
  • Li, W., M. B. Gao, and T. Han. 2020. Lycium barbarum polysaccharides ameliorate intestinal barrier dysfunction and inflammation through the MLCK-MLC signaling pathway in Caco-2 cells. Food & Function 11 (4):3741–8. doi: 10.1039/d0fo00030b.
  • Li, X., and X. Li. 2020. Obesity promotes experimental colitis by increasing oxidative stress and mitochondrial dysfunction in the colon. Inflammation 43 (5):1884–92. doi: 10.1007/s10753-020-01261-6.
  • Li, X. M. 2007. Protective effect of Lycium barbarum polysaccharides on streptozotocin-induced oxidative stress in rats. International Journal of Biological Macromolecules 40 (5):461–5. doi: 10.1016/J.Ijbiomac.2006.11.002.
  • Li, X. M., Y. L. Ma, and X. J. Liu. 2007. Effect of the Lycium barbarum polysaccharides on age-related oxidative stress in aged mice. Journal of Ethnopharmacology 111 (3):504–11. doi: 10.1016/J.Jep.2006.12.024.
  • Liang, G. X., M. A. Conrad, J. R. Kelsen, L. R. Kessler, J. Breton, L. G. Albenberg, S. Marakos, A. Galgano, N. Devas, J. Erlichman, et al. 2020. Dynamics of the stool virome in very early-onset inflammatory bowel disease. Journal of Crohn’s & Colitis 14 (11):1600–10. doi: 10.1093/ecco-jcc/jjaa094.
  • Liang, N. J., and D. D. Kitts. 2018. Amelioration of oxidative stress in Caco-2 cells treated with pro-inflammatory proteins by chlorogenic acid isomers via activation of the Nrf2-Keapl -ARE-signaling pathway. Journal of Agricultural and Food Chemistry 66 (42):11008–17. doi: 10.1021/acs.jafc.8b03983.
  • Liguori, G., B. Lamas, M. L. Richard, G. Brandi, G. da Costa, T. W. Hoffmann, M. P. Di Simone, C. Calabrese, G. Poggioli, P. Langella, et al. 2016. Fungal dysbiosis in mucosa-associated microbiota of Crohn’s disease patients. Journal of Crohn’s and Colitis 10 (3):296–305. doi: 10.1093/ecco-jcc/jjv209.
  • Litvak, Y., M. X. Byndloss, and A. J. Baumler. 2018. Colonocyte metabolism shapes the gut microbiota. Science 362 (6418):eaat9076. doi: 10.1126/science.aat9076.
  • Liu, P. Y., Y. B. Wang, G. Yang, Q. H. Zhang, L. B. Meng, Y. Xin, and X. Jiang. 2021. The role of short-chain fatty acids in intestinal barrier function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacological Research 165105420. doi: 10.1016/j.phrs.2021.:.
  • Liu, Y., S. Zeng, W. Sun, M. Wu, W. Hu, X. Shen, and Y. Wang. 2014. Comparative analysis of carotenoid accumulation in two goji (Lycium barbarum L. and L. ruthenicum Murr.) fruits. BMC Plant Biology 14:269. doi: 10.1186/s12870-014-0269-4.
  • Liu, Z. G., J. Dang, Q. L. Wang, M. F. Yu, L. Jiang, L. J. Mei, Y. Shao, and Y. D. Tao. 2013. Optimization of polysaccharides from Lycium ruthenicum fruit using RSM and its anti-oxidant activity. International Journal of Biological Macromolecules 61:127–34. doi: 10.1016/j.ijbiomac.2013.06.042.
  • Lloyd-Price, J., C. Arze, A. N. Ananthakrishnan, M. Schirmer, J. Avila-Pacheco, T. W. Poon, E. Andrews, N. J. Ajami, K. S. Bonham, C. J. Brislawn, et al. 2019. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569 (7758):655–662. doi: 10.1038/s41586-019-1237-9.
  • Loftus, E. V. 2004. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology 126 (6):1504–17. doi: 10.1053/j.gastro.2004.01.063.
  • Louis, P., G. L. Hold, and H. J. Flint. 2014. The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews. Microbiology 12 (10):661–72. doi: 10.1038/nrmicro3344.
  • Luo, Q., Y. Z. Cai, J. Yan, M. Sun, and H. Corke. 2004. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sciences 76 (2):137–49. doi: 10.1016/J.Lfs.2004.04.056.
  • Luo, Q., Z. N. Li, J. Yan, F. Zhu, R. J. Xu, and Y. Z. Cai. 2009. Lycium barbarum polysaccharides induce apoptosis in human prostate cancer cells and inhibits prostate cancer growth in a xenograft mouse model of human prostate cancer. Journal of Medicinal Food 12 (4):695–703. doi: 10.1089/jmf.2008.1232.
  • Lutgens, M., M. G. H. van Oijen, G. van der Heijden, F. P. Vleggaar, P. D. Siersema, and B. Oldenburg. 2013. Declining risk of colorectal cancer in inflammatory bowel disease: An updated meta-analysis of population-based cohort studies. Inflammatory Bowel Diseases 19 (4):789–99. doi: 10.1097/MIB.0b013e31828029c0.
  • Lutter, L., D. P. H. van Konijnenburg, E. C. Brand, B. Oldenburg, and F. van Wijk. 2018. The elusive case of human intraepithelial T cells in gut homeostasis and inflammation. Nature Reviews. Gastroenterology & Hepatology 15 (10):637–49. doi: 10.1038/s41575-018-0039-0.
  • Ma, H. Q., T. T. Yu, X. J. Zhao, Y. Zhang, and H. J. Zhang. 2018. Fecal microbial dysbiosis in Chinese patients with inflammatory bowel disease. World Journal of Gastroenterology 24 (13):1464–77. doi: 10.3748/wjg.v24.i13.1464.
  • Macpherson, A. J., and T. Uhr. 2004. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303 (5664):1662–5. doi: 10.1126/science.1091334.
  • Maharshak, N., C. D. Packey, M. Ellermann, S. Manick, J. P. Siddle, E. Y. Huh, S. Plevy, R. B. Sartor, and I. M. Carroll. 2013. Altered enteric microbiota ecology in interleukin 10-deficient mice during development and progression of intestinal inflammation. Gut Microbes 4 (4):316–24. doi: 10.4161/gmic.25486.
  • Malham, M., B. Lilje, G. Houen, K. Winther, P. S. Andersen, and C. Jakobsen. 2019. The microbiome reflects diagnosis and predicts disease severity in paediatric onset inflammatory bowel disease. Scandinavian Journal of Gastroenterology 54 (8):969–75. doi: 10.1080/00365521.2019.1644368.
  • Maloy, K. J., and F. Powrie. 2011. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474 (7351):298–306. doi: 10.1038/nature10208.
  • Mancabelli, L., C. Milani, G. A. Lugli, F. Turroni, D. Cocconi, D. van Sinderen, and M. Ventura. 2017. Identification of universal gut microbial biomarkers of common human intestinal diseases by meta-analysis. FEMS Microbiology Ecology 93 (12):fix153. doi: 10.1093/femsec/fix153.
  • Mandar, R., and M. Mikelsaar. 1996. Transmission of mother’s microflora to the newborn at birth. Biology of the Neonate 69 (1):30–5. doi: 10.1159/000244275.
  • Manichanh, C., N. Borruel, F. Casellas, and F. Guarner. 2012. The gut microbiota in IBD. Nature Reviews. Gastroenterology & Hepatology 9 (10):599–608. doi: 10.1038/nrgastro.2012.152.
  • Mankertz, J., M. Amasheh, S. M. Krug, A. Fromm, S. Amasheh, B. Hillenbrand, S. Tavalali, M. Fromm, and J. D. Schulzke. 2009. TNFa up-regulates claudin-2 expression in epithelial HT-29/B6 cells via phosphatidylinositol-3-kinase signaling. Cell and Tissue Research 336 (1):67–77. doi: 10.1007/s00441-009-0751-8.
  • Mao, F., B. X. Xiao, Z. Jiang, J. W. Zhao, X. Huang, and J. M. Guo. 2011. Anticancer effect of Lycium barbarum polysaccharides on colon cancer cells involves G0/G1 phase arrest. Medical Oncology 28 (1):121–6. doi: 10.1007/s12032-009-9415-5.
  • Masci, A., S. Carradori, M. A. Casadei, P. Paolicelli, S. Petralito, R. Ragno, and S. Cesa. 2018. Lycium barbarum polysaccharides: Extraction, purification, structural characterisation and evidence about hypoglycaemic and hypolipidaemic effects. A review. Food Chemistry 254:377–89. doi: 10.1016/j.foodchem.2018.01.176.
  • Maslowski, K. M., A. T. Vieira, A. Ng, J. Kranich, F. Sierro, D. Yu, H. C. Schilter, M. S. Rolph, F. Mackay, D. Artis, et al. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461 (7268):1282–U119. doi: 10.1038/nature08530.
  • Mayorgas, A., I. Dotti, and A. Salas. 2021. Microbial metabolites, postbiotics, and intestinal epithelial function. Molecular Nutrition & Food Research 65 (5):2000188. doi: 10.1002/mnfr.202000188.
  • Melhem, H., B. Kaya, C. K. Ayata, P. Hruz, and J. H. Niess. 2019. Metabolite-sensing G protein-coupled receptors connect the diet-microbiota-metabolites axis to inflammatory bowel disease. Cells 8 (5):450. doi: 10.3390/cells8050450.
  • Metwaly, A., A. Dunkel, N. Waldschmitt, A. C. D. Raj, I. Lagkouvardos, A. M. Corraliza, A. Mayorgas, M. Martinez-Medina, S. Reiter, M. Schloter, et al. 2020. Integrated microbiota and metabolite profiles link Crohn’s disease to sulfur metabolism. Nature Communications 11 (1):1–15. doi: 10.1038/s41467-020-17956-1.
  • Mi, X. S., Q. Feng, A. C. Y. Lo, R. C. C. Chang, B. Lin, S. K. Chung, and K. F. So. 2012. Protection of retinal ganglion cells and retinal vasculature by Lycium barbarum polysaccharides in a mouse model of acute ocular hypertension. PLoS One 7 (10):e45469. doi: 10.1371/journal.pone.0045469.
  • Miao, Y., B. X. Xiao, Z. Jiang, Y. A. Guo, F. Mao, J. W. Zhao, X. Huang, and J. M. Guo. 2010. Growth inhibition and cell-cycle arrest of human gastric cancer cells by Lycium barbarum polysaccharide. Medical Oncology 27 (3):785–90. doi: 10.1007/s12032-009-9286-9.
  • Mohammadifard, N., K. H. Humphries, C. Gotay, G. Mena-Sanchez, J. Salas-Salvado, A. Esmaillzadeh, A. Ignaszewski, and N. Sarrafzadegan. 2019. Trace minerals intake: Risks and benefits for cardiovascular health. Critical Reviews in Food Science and Nutrition 59 (8):1334–46. doi: 10.1080/10408398.2017.1406332.
  • Morgan, X. C., T. L. Tickle, H. Sokol, D. Gevers, K. L. Devaney, D. V. Ward, J. A. Reyes, S. A. Shah, N. LeLeiko, S. B. Snapper, et al. 2012. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biology 13 (9)r79. doi: 10.1186/gb-2012-13-9-:.
  • Moustafa, A., W. Z. Li, E. L. Anderson, E. H. M. Wong, P. S. Dulai, W. J. Sandborn, W. Biggs, S. Yooseph, M. B. Jones, J. C. Venter, et al. 2018. Genetic risk, dysbiosis, and treatment stratification using host genome and gut microbiome in inflammatory bowel disease. Clinical and Translational Gastroenterology 9 (1):e132. doi: 10.1038/ctg.2017.58.
  • Mukhopadhya, I., R. Hansen, E. M. El-Omar, and G. L. Hold. 2012. IBD-what role do Proteobacteria play? Nature Reviews. Gastroenterology & Hepatology 9 (4):219–30. doi: 10.1038/nrgastro.2012.14.
  • Murakami, M., J. Iwamoto, A. Honda, T. Tsuji, M. Tamamushi, H. Ueda, T. Monma, N. Konishi, S. Yara, T. Hirayama, et al. 2018. Detection of gut dysbiosis due to reduced Clostridium subcluster XIVa using the fecal or serum bile acid profile. Inflammatory Bowel Diseases 24 (5):1035–44. doi: 10.1093/ibd/izy022.
  • Ng, S. C., G. G. Kaplan, W. Tang, R. Banerjee, B. Adigopula, F. E. Underwood, D. Tanyingoh, S. C. Wei, W. C. Lin, H. H. Lin, et al. 2019. Population density and risk of inflammatory bowel disease: A prospective population-based study in 13 countries or regions in Asia-Pacific. The American Journal of Gastroenterology 114 (1):107–15. doi: 10.1038/s41395-018-0233-2.
  • Ng, S. C., H. Y. Shi, N. Hamidi, F. E. Underwood, W. Tang, E. I. Benchimol, J. C. Wu, F. K. Chan, J. J. Sung, and G. Kaplan. 2017. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Gastroenterology 152 (5):S970–S1. doi: 10.1016/S0016-5085(17)33292-4.
  • Nielsen, D. S. G., B. B. Jensen, P. K. Theil, T. S. Nielsen, K. E. B. Knudsen, and S. Purup. 2018. Effect of butyrate and fermentation products on epithelial integrity in a mucus-secreting human colon cell line. Journal of Functional Foods 40:9–17. doi: 10.1016/j.jff.2017.10.023.
  • Niess, J. H., S. Brand, X. Gu, L. Landsman, S. Jung, B. A. McCormick, J. M. Vyas, M. Boes, H. L. Ploegh, J. G. Fox, et al. 2005. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307 (5707):254–8. doi: 10.1126/science.1102901.
  • Niro, S., A. Fratianni, G. Panfili, L. Falasca, L. Cinquanta, and M. R. Alam. 2017. Nutritional evaluation of fresh and dried goji berries cultivated in Italy. Italian Journal of Food Science 29 (3):398–408.
  • Nishino, K., A. Nishida, R. Inoue, Y. Kawada, M. Ohno, S. Sakai, O. Inatomi, S. Bamba, M. Sugimoto, M. Kawahara, et al. 2018. Analysis of endoscopic brush samples identified mucosa-associated dysbiosis in inflammatory bowel disease. Journal of Gastroenterology 53 (1):95–106. doi: 10.1007/s00535-017-1384-4.
  • Norman, J. M., S. A. Handley, M. T. Baldridge, L. Droit, C. Y. Liu, B. C. Keller, A. Kambal, C. L. Monaco, G. Zhao, P. Fleshner, et al. 2015. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160 (3):447–60. doi: 10.1016/j.cell.2015.01.002.
  • Nuij, V., G. M. Fuhler, A. J. Edel, R. J. T. Ouwendijk, M. C. M. Rijk, R. Beukers, R. Quispel, A. J. P. van Tilburg, T. J. Tang, H. Smalbraak, et al. 2015. Benefit of earlier anti-TNF treatment on IBD disease complications? Journal of Crohn’s and Colitis 9 (11):997–1003. doi: 10.1093/ecco-jcc/jjv130.
  • O’Brien, C. L., P. Pavli, D. M. Gordon, and G. E. Allison. 2014. Detection of bacterial DNA in lymph nodes of Crohn’s disease patients using high throughput sequencing. Gut 63 (10):1596–606. doi: 10.1136/gutjnl-2013-305320.
  • O’Keefe, S. J. D. 2016. Diet, microorganisms and their metabolites, and colon cancer. Nature Reviews. Gastroenterology & Hepatology 13 (12):691–706. doi: 10.1038/nrgastro.2016.165.
  • Odenwald, M. A., and J. R. Turner. 2017. The intestinal epithelial barrier: A therapeutic target? Nature Reviews. Gastroenterology & Hepatology 14 (1):9–21. doi: 10.1038/nrgastro.2016.169.
  • Ohata, A., M. Usami, and M. Miyoshi. 2005. Short-chain fatty acids alter tight junction permeability in intestinal monolayer cells via lipoxygenase activation. Nutrition 21 (7–8):838–47. doi: 10.1016/j.nut.2004.12.004.
  • Oliveira, G. R., B. C. V. Teles, E. F. Brasil, M. H. L. P. Souza, L. E. T. A. Furtado, C. M. de Castro-Costa, F. H. Rola, L. L. B. C. Braga, and F. d A. A. Gondim. 2008. Peripheral neuropathy and neurological disorders in an unselected Brazilian population-based cohort of IBD patients. Inflammatory Bowel Diseases 14 (3):389–95. doi: 10.1002/ibd.20304.
  • Ouyang, H. X., Y. Q. Li, and Q. W. Xiao. 2007. Simultaneous determination of monosaccharides and oligosaccharides in Lycium barbarum L. by high performance liquid chromatography. Sichuan Da Xue Xue Bao. Yi Xue Ban = Journal of Sichuan University. Medical Science Edition 38 (6):1040–2.
  • Palmela, C., C. Chevarin, Z. L. Xu, J. Torres, G. Sevrin, R. Hirten, N. Barnich, S. C. Ng, and J. F. Colombel. 2018. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 67 (3):574–87. doi: 10.1136/gutjnl-2017-314903.
  • Park, Y. M., E. Ha, K. N. Gu, G. Y. Shin, C. K. Lee, K. Kim, and H. J. Kim. 2020. Host genetic and gut microbial signatures in familial inflammatory bowel disease. Clinical and Translational Gastroenterology 11 (7):e00213. doi: 10.14309/ctg.0000000000000213.
  • Pedro, A. C., J. B. B. Maurer, S. F. Zawadzki-Baggio, S. Avila, G. M. Maciel, and C. W. I. Haminiuk. 2018. Bioactive compounds of organic goji berry (Lycium barbarum L.) prevents oxidative deterioration of soybean oil. Industrial Crops and Products 112:90–7. doi: 10.1016/j.indcrop.2017.10.052.
  • Peng, L., Z. R. Li, R. S. Green, I. R. Holzman, and J. Lin. 2009. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. The Journal of Nutrition 139 (9):1619–25. doi: 10.3945/jn.109.104638.
  • Peng, X., and G. Tian. 2001. Structural characterization of the glycan part of glycoconjugate LbGp2 from Lycium barbarum L. Carbohydrate Research 331 (1):95–9. doi: 10.1016/S0008-6215(00)00321-9.
  • Peng, Y. J., Y. M. Yan, P. Wan, D. Chen, Y. Ding, L. W. Ran, J. Mi, L. Lu, Z. J. Zhang, X. Y. Li, et al. 2019. Gut microbiota modulation and anti-inflammatory properties of anthocyanins from the fruits of Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis in mice. Free Radical Biology & Medicine 136:96–108. doi: 10.1016/j.freeradbiomed.2019.04.005.
  • Peng, Y. J., Y. M. Yan, P. Wan, W. Dong, K. Y. Huang, L. W. Ran, J. Mi, L. Lu, X. X. Zeng, and Y. L. Cao. 2020. Effects of long-term intake of anthocyanins from Lycium ruthenicum Murray on the organism health and gut microbiota in vivo. Food Research International 130:108952. doi: 10.1016/j.foodres.2019.108952.
  • Peng, Y., C. Ma, Y. Li, K. S. Leung, Z. H. Jiang, and Z. Zhao. 2005. Quantification of zeaxanthin dipalmitate and total carotenoids in Lycium fruits (Fructus Lycii). Plant Foods for Human Nutrition 60 (4):161–4. doi: 10.1007/s11130-005-9550-5.
  • Pereira, C., D. Gracio, J. P. Teixeira, and F. Magro. 2015. Oxidative stress and DNA damage: Implications in inflammatory bowel disease. Inflammatory Bowel Diseases 21 (10):2403–17. doi: 10.1097/mib.0000000000000506.
  • Philippe, D., V. Brahmbhatt, F. Foata, Y. Saudan, P. Serrant, S. Blum, J. Benyacoub, and K. Vidal. 2012. Anti-inflammatory effects of lacto-wolfberry in a mouse model of experimental colitis. World Journal of Gastroenterology 18 (38):5351–9. doi: 10.3748/wjg.v18.i38.5351.
  • Podolsky, D. K. 2002. Inflammatory bowel disease. The New England Journal of Medicine 347 (6):417–29. doi: 10.1056/NEJMra020831.
  • Porras, M., M. T. Martin, P. C. Yang, J. Jury, M. H. Perdue, and P. Vergara. 2006. Correlation between cyclical epithelial barrier dysfunction and bacterial translocation in the relapses of intestinal inflammation. Inflammatory Bowel Diseases 12 (9):843–52. doi: 10.1097/01.mib.0000231571.88806.62.
  • Potterat, O. 2010. Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Medica 76 (1):7–19. doi: 10.1055/s-0029-1186218.
  • Prorok-Hamon, M., M. K. Friswell, A. Alswied, C. L. Roberts, F. Song, P. K. Flanagan, P. Knight, C. Codling, J. R. Marchesi, C. Winstanley, et al. 2014. Colonic mucosa-associated diffusely adherent afaC + Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer. Gut 63 (5):761–70. doi: 10.1136/gutjnl-2013-304739.
  • Qian, J. Y., D. Liu, and A. G. Huang. 2004. The efficiency of flavonoids in polar extracts of Lycium chinense Mill fruits as free radical scavenger. Food Chemistry 87 (2):283–8. doi: 10.1016/j.foodchem.2003.11.008.
  • Rahmani, J., H. Kord-Varkaneh, A. Hekmatdoost, J. Thompson, C. Clark, A. Salehisahlabadi, A. S. Day, and K. Jacobson. 2019. Body mass index and risk of inflammatory bowel disease: A systematic review and dose-response meta-analysis of cohort studies of over a million participants. Obesity Reviews 20 (9):1312–20. doi: 10.1111/obr.12875.
  • Reeve, V. E., M. Allanson, S. J. Arun, D. Domanski, and N. Painter. 2010. Mice drinking goji berry juice (Lycium barbarum) are protected from UV radiation-induced skin damage via antioxidant pathways. Photochemical & Photobiological Sciences 9 (4):601–7. doi: 10.1039/b9pp00177h.
  • Ren, Z. H., L. X. Na, Y. M. Xu, M. Rozati, J. P. Wang, J. G. Xu, C. H. Sun, K. Vidal, D. Y. Wu, and S. N. Meydani. 2012. Dietary supplementation with lacto-wolfberry enhances the immune response and reduces pathogenesis to influenza infection in mice. The Journal of Nutrition 142 (8):1596–602. doi: 10.3945/jn.112.159467.
  • Rescigno, M. 2011. The intestinal epithelial barrier in the control of homeostasis and immunity. Trends in Immunology 32 (6):256–64. doi: 10.1016/j.it.2011.04.003.
  • Rescigno, M., M. Urbano, B. Valzasina, M. Francolini, G. Rotta, R. Bonasio, F. Granucci, J. P. Kraehenbuhl, and P. Ricciardi-Castagnoli. 2001. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunology 2 (4):361–7. doi: 10.1038/86373.
  • Rezende, E. S. V., G. C. Lima, and M. M. V. Naves. 2021. Dietary fibers as beneficial microbiota modulators: A proposed classification by prebiotic categories. Nutrition 89:111217. doi: 10.1016/j.nut.2021.111217.
  • Rojo, O. P., A. L. San Roman, E. A. Arbizu, A. D. Martinez, E. R. Sevillano, and A. A. Martinez. 2007. Serum lipopolysaccharide-binding protein in endotoxemic patients with inflammatory bowel disease. Inflammatory Bowel Diseases 13 (3):269–77. doi: 10.1002/ibd.20019.
  • Ruan, Z., S. Q. Liu, Y. Zhou, S. M. Mi, G. Liu, X. Wu, K. Yao, H. Assaad, Z. Y. Deng, Y. Q. Hou, et al. 2014. Chlorogenic acid decreases intestinal permeability and increases expression of intestinal tight junction proteins in weaned rats challenged with LPS. PLoS One 9 (6):e97815. doi: 10.1371/journal.pone.0097815.
  • Ruan, Z., S. M. Mi, L. L. Zhou, Y. Zhou, J. Li, W. H. Liu, Z. Y. Deng, and Y. L. Yin. 2016. Chlorogenic acid enhances intestinal barrier by decreasing MLCK expression and promoting dynamic distribution of tight junction proteins in colitic rats. Journal of Functional Foods 26:698–708. doi: 10.1016/j.jff.2016.08.038.
  • Rui, C., L. Yuxiang, H. Yinju, Z. Qingluan, W. Yang, Z. Qipeng, W. Hao, M. Lin, L. Juan, Z. Chengjun, et al. 2012. Protective effects of Lycium barbarum polysaccharide on neonatal rat primary cultured hippocampal neurons injured by oxygen-glucose deprivation and reperfusion. Journal of Molecular Histology 43 (5):535–42. doi: 10.1007/s10735-012-9420-4.
  • Rumi, G., I. Szabo, A. Vincze, Z. Matus, G. Toth, and G. Mozsik. 2000. Decrease of serum carotenoids in Crohn’s disease. Journal of Physiology-Paris 94 (2):159–61. doi: 10.1016/S0928-4257(00)00159-5.
  • Sakamoto, M., A. Takagaki, K. Matsumoto, Y. Kato, K. Goto, and Y. Benno. 2009. Butyricimonas synergistica gen. nov., sp nov and Butyricimonas virosa sp nov., butyric acid-producing bacteria in the family ‘Porphyromonadaceae’ isolated from rat faeces. International Journal of Systematic and Evolutionary Microbiology 59 (Pt 7):1748–53. doi: 10.1099/ijs.0.007674-0.
  • Santoru, M. L., C. Piras, A. Murgia, V. Palmas, T. Camboni, S. Liggi, I. Ibba, M. A. Lai, S. Orru, A. L. Loizedda, et al. 2017. Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Scientific Reports 7 (1):14. doi: 10.1038/s41598-017-10034-5.
  • Sartor, R. B. 2006. Mechanisms of disease: Pathogenesis of Crohn’s disease and ulcerative colitis. Nature Clinical Practice. Gastroenterology & Hepatology 3 (7):390–407. doi: 10.1038/ncpgasthep0528.
  • Scheppach, W. 1994. Effects of short chain fatty acids on gut morphology and function. Gut 35 (1 Suppl):S35–S8. doi: 10.1136/gut.35.1_suppl.s35.
  • Schierová, D., J. Březina, J. Mrázek, K. O. Fliegerová, S. Kvasnová, L. Bajer, and P. Drastich. 2020. Gut microbiome changes in patients with active left-sided ulcerative colitis after fecal microbiome transplantation and topical 5-aminosalicylic acid therapy. Cells 9 (10):2283. doi: 10.3390/cells9102283.
  • Schultsz, C., F. M. van den Berg, F. W. ten Kate, G. N. J. Tytgat, and J. Dankert. 1999. The intestinal mucus layer from patients with inflammatory bowel disease harbors high numbers of bacteria compared with controls. Gastroenterology 117 (5):1089–97. doi: 10.1016/S0016-5085(99)70393-8.
  • Schultz, B. M., C. A. Paduro, G. A. Salazar, F. J. Salazar-Echegarai, V. P. Sebastian, C. A. Riedel, A. M. Kalergis, M. Alvarez-Lobos, and S. M. Bueno. 2017. A potential role of Salmonella infection in the onset of inflammatory bowel diseases. Frontiers in Immunology 8:191. doi: 10.3389/fimmu.2017.00191.
  • Sekirov, I., S. L. Russell, L. C. M. Antunes, and B. B. Finlay. 2010. Gut microbiota in health and disease. Physiological Reviews 90 (3):859–904. doi: 10.1152/physrev.00045.2009.
  • Shi, T. L., X. Y. Bian, Z. X. Yao, Y. W. Wang, W. N. Gao, and C. J. Guo. 2020. Quercetin improves gut dysbiosis in antibiotic-treated mice. Food & Function 11 (9):8003–13. doi: 10.1039/D0FO01439G.
  • Siegel, R. L., K. D. Miller, and A. Jemal. 2020. Cancer statistics, 2020. CA: A Cancer Journal for Clinicians 70 (1):7–30. doi: 10.3322/caac.21590.
  • Sinha, S. R., Y. Haileselassie, L. P. Nguyen, C. Tropini, M. Wang, L. S. Becker, D. Sim, K. Jarr, E. T. Spear, G. Singh, et al. 2020. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host & Microbe 27 (4):659–70.e5. doi: 10.1016/j.chom.2020.01.021.
  • Skenderidis, P., C. Mitsagga, D. Lampakis, K. Petrotos, and I. Giavasis. 2019. The effect of encapsulated powder of goji berry (Lycium barbarum) on growth and survival of probiotic bacteria. Microorganisms 8 (1):57. doi: 10.3390/microorganisms8010057.
  • Sokol, H., S. Jegou, C. McQuitty, M. Straub, V. Leducq, C. Landman, J. Kirchgesner, G. L. Gall, A. Bourrier, I. Nion-Larmurier, et al. 2018. Specificities of the intestinal microbiota in patients with inflammatory bowel disease and Clostridium difficile infection. Gut Microbes 9 (1):55–60. doi: 10.1080/19490976.2017.1361092.
  • Sokol, H., V. Leducq, H. Aschard, H. P. Pham, S. Jegou, C. Landman, D. Cohen, G. Liguori, A. Bourrier, I. Nion-Larmurier, et al. 2017. Fungal microbiota dysbiosis in IBD. Gut 66 (6):1039–48. doi: 10.1136/gutjnl-2015-310746.
  • Sokol, H., P. Seksik, J. P. Furet, O. Firmesse, I. Nion-Larmurier, L. Beaugerie, J. Cosnes, G. Corthier, P. Marteau, and J. Doré. 2009. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflammatory Bowel Diseases 15 (8):1183–9. doi: 10.1002/ibd.20903.
  • Sommer, F., and F. Backhed. 2013. The gut microbiota—Masters of host development and physiology. Nature Reviews. Microbiology 11 (4):227–38. doi: 10.1038/nrmicro2974.
  • Song, M. K., N. K. Salam, B. D. Roufogalis, and T. H. Huang. 2011. Lycium barbarum (goji berry) extracts and its taurine component inhibit PPAR-γ-dependent gene transcription in human retinal pigment epithelial cells: Possible implications for diabetic retinopathy treatment. Biochemical Pharmacology 82 (9):1209–18. doi: 10.1016/j.bcp.2011.07.089.
  • Spits, H., and J. P. Di Santo. 2011. The expanding family of innate lymphoid cells: Regulators and effectors of immunity and tissue remodeling. Nature Immunology 12 (1):21–7. doi: 10.1038/ni.1962.
  • Stagg, A. J., A. L. Hart, S. C. Knight, and M. A. Kamm. 2003. The dendritic cell: Its role in intestinal inflammation and relationship with gut bacteria. Gut 52 (10):1522–9. doi: 10.1136/gut.52.10.1522.
  • Sun, M. M., W. Wu, Z. J. Liu, and Y. Z. Cong. 2017. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. Journal of Gastroenterology 52 (1):1–8. doi: 10.1007/s00535-016-1242-9.
  • Sun, X. F., M. Du, D. A. Navarre, and M. J. Zhu. 2018. Purple potato extract promotes intestinal epithelial differentiation and barrier function by activating AMP-activated protein kinase. Molecular Nutrition & Food Research 62 (4):1700536. doi: 10.1002/mnfr.201700536.
  • Suzuki, K., B. Meek, Y. Doi, M. Muramatsu, T. Chiba, T. Honjo, and S. Fagarasan. 2004. Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proceedings of the National Academy of Sciences of the United States of America 101 (7):1981–6. doi: 10.1073/Pnas.0307317101.
  • Suzuki, T. 2013. Regulation of intestinal epithelial permeability by tight junctions. Cellular and Molecular Life Sciences: CMLS 70 (4):631–59. doi: 10.1007/s00018-012-1070-x.
  • Swidsinski, A., A. Ladhoff, A. Pernthaler, S. Swidsinski, V. Loening-Baucke, M. Ortner, J. Weber, U. Hoffmann, S. Schreiber, M. Dietel, et al. 2002. Mucosal flora in inflammatory bowel disease. Gastroenterology 122 (1):44–54. doi: 10.1053/gast.2002.30294.
  • Tang, L., Y. Zhang, Y. Jiang, L. Willard, E. Ortiz, L. Wark, D. Medeiros, and D. Lin. 2011. Dietary wolfberry ameliorates retinal structure abnormalities in db/db mice at the early stage of diabetes. Experimental Biology and Medicine 236 (9):1051–63. doi: 10.1258/ebm.2011.010400.
  • Tian, B. M., Z. Q. Zhang, J. H. Zhao, Q. Y. Ma, H. C. Liu, C. X. Nie, Z. Y. Ma, W. An, and J. X. Li. 2021. Dietary whole Goji berry (Lycium barbarum) intake improves colonic barrier function by altering gut microbiota composition in mice. International Journal of Food Science & Technology 56 (1):103–14. doi: 10.1111/ijfs.14606.
  • Tian, B. M., J. H. Zhao, M. Zhang, Z. F. Chen, Q. Y. Ma, H. C. Liu, C. X. Nie, Z. Q. Zhang, W. An, and J. X. Li. 2021. Lycium ruthenicum anthocyanins attenuate high-fat diet-induced colonic barrier dysfunction and inflammation in mice by modulating the gut microbiota. Molecular Nutrition & Food Research 65 (8):2170017. doi: 10.1002/mnfr.202000745.
  • Tong, M. M., X. X. Li, L. W. Parfrey, B. Roth, A. Ippoliti, B. Wei, J. Borneman, D. P. B. McGovern, D. N. Frank, E. Li, et al. 2013. A modular organization of the human intestinal mucosal microbiota and its association with inflammatory bowel disease. PLoS One 8 (11):e80702. doi: 10.1371/journal.pone.0080702.
  • Toyoda-Ono, Y., M. Maeda, M. Nakao, M. Yoshimura, N. Sugiura-Tomimori, and H. Fukami. 2004. 2-O-(beta-D-glucopyranosyl)ascorbic acid, a novel ascorbic acid analogue isolated from Lycium fruit. Journal of Agricultural and Food Chemistry 52 (7):2092–6. doi: 10.1021/jf035445w.
  • Triantafillidis, J. K., G. Nasioulas, and P. A. Kosmidis. 2009. Colorectal cancer and inflammatory bowel disease: Epidemiology, risk factors, mechanisms of carcinogenesis and prevention strategies. Anticancer Research 29 (7):2727–37.
  • Turner, J. R. 2009. Intestinal mucosal barrier function in health and disease. Nature Reviews. Immunology 9 (11):799–809. doi: 10.1038/nri2653.
  • Van der Sluis, M., B. A. De Koning, A. C. De Bruijn, A. Velcich, J. P. Meijerink, J. B. Van Goudoever, H. A. Buller, J. Dekker, I. Van Seuningen, I. B. Renes, et al. 2006. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131 (1):117–29. doi: 10.1053/j.gastro.2006.04.020.
  • Venegas, D. P., M. K. De la Fuente, G. Landskron, M. J. Gonzalez, R. Quera, G. Dijkstra, H. J. M. Harmsen, K. N. Faber, and M. A. Hermoso. 2019. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers in Immunology 10:16. doi: 10.3389/fimmu.2019.00277.
  • Vieira, M. M., J. Paik, W. S. Blaner, A. M. Soares, R. M. S. Mota, R. L. Guerrant, and A. A. M. Lima. 2008. Carotenoids, retinol, and intestinal barrier function in children from Northeastern Brazil. Journal of Pediatric Gastroenterology & Nutrition 47 (5):652–9. doi: 10.1097/MPG.0b013e31816bf4bf.
  • Vulić, J. J., J. M. Čanadanović-Brunet, G. S. Ćetković, S. M. Djilas, V. T. Tumbas Šaponjac, and S. S. Stajčić. 2016. Bioactive compounds and antioxidant properties of goji fruits (Lycium barbarum L.) cultivated in Serbia. Journal of the American College of Nutrition 35 (8):692–8. doi: 10.1080/07315724.2016.1142404.
  • Wang, H. B., S. M. Zhang, Q. W. Shen, and M. J. Zhu. 2019. A metabolomic explanation on beneficial effects of dietary Goji on intestine inflammation. Journal of Functional Foods 53:109–14. doi: 10.1016/j.jff.2018.12.014.
  • Wang, H. Q., J. N. Li, W. W. Tao, X. Zhang, X. J. Gao, J. J. Yong, J. J. Zhao, L. M. Zhang, Y. Z. Li, and J. A. Duan. 2018. Lycium ruthenicum studies: Molecular biology, phytochemistry and pharmacology. Food Chemistry 240:759–66. doi: 10.1016/j.foodchem.2017.08.026.
  • Wang, Z. F., Y. Liu, Y. J. Sun, Q. Mou, B. Wang, Y. Zhang, and L. J. Huang. 2014. Structural characterization of LbGpl from the fruits of Lycium barbarum L. Food Chemistry 159:137–42. doi: 10.1016/j.foodchem.2014.02.171.
  • Warner, R. H., F. M. Stevens, and C. F. McCarthy. 1999. Salivary SIgA and SIgA 1 in coeliac disease, inflammatory bowel disease and controls. Irish Journal of Medical Science 168 (1):33–5. doi: 10.1007/BF02939578.
  • Wawruszak, A., A. Czerwonka, K. Okła, and W. Rzeski. 2016. Anticancer effect of ethanol Lycium barbarum (Goji berry) extract on human breast cancer T47D cell line. Natural Product Research 30 (17):1993–6. doi: 10.1080/14786419.2015.1101691.
  • Wetters, S., T. Horn, and P. Nick. 2018. Goji who? Morphological and DNA based authentication of a “superfood”. Frontiers in Plant Science 9:1859. doi: 10.3389/fpls.2018.01859.
  • Willing, B. P., J. Dicksved, J. Halfvarson, A. F. Andersson, M. Lucio, Z. Zheng, G. Jarnerot, C. Tysk, J. K. Jansson, and L. Engstrand. 2010. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology 139 (6):1844–54.e1. doi: 10.1053/j.gastro.2010.08.049.
  • Wirbel, J., P. T. Pyl, E. Kartal, K. Zych, A. Kashani, A. Milanese, J. S. Fleck, A. Y. Voigt, A. Palleja, R. Ponnudurai, et al. 2019. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nature Medicine 25 (4):679–89. doi: 10.1038/s41591-019-0406-6.
  • Wu, D. T., H. Guo, S. Lin, S. C. Lam, L. Zhao, D. R. Lin, and W. Qin. 2018. Review of the structural characterization, quality evaluation, and industrial application of Lycium barbarum polysaccharides. Trends in Food Science & Technology 79:171–83. doi: 10.1016/j.tifs.2018.07.016.
  • Xia, W. R., X. A. Li, I. Khan, L. Yin, L. Su, W. K. Leong, X. Q. Bian, J. Y. Su, W. L. W. Hsiao, and G. X. Huang. 2020. Lycium berry polysaccharides strengthen gut microenvironment and modulate gut microbiota of the mice. Evidence-Based Complementary and Alternative Medicine 2020:1–10. doi: 10.1155/2020/8097021.
  • Xiao, J., E. C. Liong, Y. P. Ching, R. C. Chang, K. F. So, M. L. Fung, and G. L. Tipoe. 2012. Lycium barbarum polysaccharides protect mice liver from carbon tetrachloride-induced oxidative stress and necroinflammation. Journal of Ethnopharmacology 139 (2):462–70. doi: 10.1016/j.jep.2011.11.033.
  • Xiao, J., F. Y. Xing, J. Huo, M. L. Fung, E. C. Liong, Y. P. Ching, A. M. Xu, R. C. C. Chang, K. F. So, and G. L. Tipoe. 2014. Lycium barbarum polysaccharides therapeutically improve hepatic functions in non-alcoholic steatohepatitis rats and cellular steatosis model. Scientific Reports 4:5587. doi: 10.1038/srep05587.
  • Xiao, Z. L., Z. M. Pei, M. Yuan, X. L. Li, S. J. Chen, and L. J. Xu. 2015. Risk of stroke in patients with inflammatory bowel disease: A systematic review and meta-analysis. Journal of Stroke and Cerebrovascular Siseases 24 (12):2774–80. doi: 10.1016/j.jstrokecerebrovasdis.2015.08.008.
  • Xie, M. G., Y. Q. Fei, Y. Wang, W. Y. Wang, and Z. Wang. 2021. Chlorogenic acid alleviates colon mucosal damage induced by a high-fat diet via gut microflora adjustment to increase short-chain fatty acid accumulation in rats. Oxidative Medicine and Cellular Longevity 2021:3456542. doi: 10.1155/2021/3456542.
  • Xing, X., F. Liu, J. Xiao, and K. F. So. 2016. Neuro-protective mechanisms of Lycium barbarum. NeuroMolecular Medicine 2016:1–11. doi: 10.1007/s12017-016-8393-y.
  • Xu, Y. Q., Y. Zhu, X. T. Li, and B. G. Sun. 2020. Dynamic balancing of intestinal short-chain fatty acids: The crucial role of bacterial metabolism. Trends in Food Science & Technology 100:118–30. doi: 10.1016/j.tifs.2020.02.026.
  • Xue, Y. S., M. Du, and M. J. Zhu. 2017. Quercetin suppresses NLRP3 inflammasome activation in epithelial cells triggered by Escherichia coli O157:H7. Free Radical Biology & Medicine 108:760–9. doi: 10.1016/j.freeradbiomed.2017.05.003.
  • Xue, Y. W., F. Huang, R. X. Tang, Q. S. Fan, B. Zhang, Z. J. Xu, X. M. Sun, and Z. Ruan. 2019. Chlorogenic acid attenuates cadmium-induced intestinal injury in Sprague-Dawley rats. Food and Chemical Toxicology 133:110751. doi: 10.1016/j.fct.2019.110751.
  • Yan, Y. M., Y. J. Peng, J. L. Tang, J. Mi, L. Lu, X. Y. Li, L. W. Ran, X. X. Zeng, and Y. L. Cao. 2018. Effects of anthocyanins from the fruit of Lycium ruthenicum Murray on intestinal microbiota. Journal of Functional Foods 48:533–41. doi: 10.1016/j.jff.2018.07.053.
  • Yang, D., S. Y. Li, C. M. Yeung, R. C. Chang, K. F. So, D. Wong, and A. C. Lo. 2012. Lycium barbarum extracts protect the brain from blood-brain barrier disruption and cerebral edema in experimental stroke. PLoS One 7 (3):e33596. doi: 10.1371/journal.pone.0033596.
  • Yang, G., S. Bibi, M. Du, T. Suzuki, and M. J. Zhu. 2017. Regulation of the intestinal tight junction by natural polyphenols: A mechanistic perspective. Critical Reviews in Food Science and Nutrition 57 (18):3830–9. doi: 10.1080/10408398.2016.1152230.
  • Yang, G., Y. S. Xue, H. Y. Zhang, M. Du, and M. J. Zhu. 2015. Favourable effects of grape seed extract on intestinal epithelial differentiation and barrier function in IL10-deficient mice. The British Journal of Nutrition 114 (1):15–23. doi: 10.1017/s0007114515001415.
  • Yang, X., H. Bai, W. Cai, J. Li, Q. Zhou, Y. Wang, J. Han, X. Zhu, M. Dong, and D. Hu. 2013. Lycium barbarum polysaccharides reduce intestinal ischemia/reperfusion injuries in rats. Chemico-Biological Interactions 204 (3):166–72. doi: 10.1016/j.cbi.2013.05.010.
  • Yang, Y., W. Li, Y. Li, Q. Wang, L. Gao, and J. Zhao. 2014. Dietary Lycium barbarum polysaccharide induces Nrf2/ARE pathway and ameliorates insulin resistance induced by high-fat via activation of PI3K/AKT signaling. Oxidative Medicine and Cellular Longevity 2014:145641. doi: 10.1155/2014/145641.
  • Yin, G. H., and Y. L. Dang. 2008. Optimization of extraction technology of the Lycium barbarum polysaccharides by Box-Behnken statistical design. Carbohydrate Polymers 74 (3):603–10. doi: 10.1016/j.carbpol.2008.04.025.
  • Ying, C. J., L. Chen, S. S. Wang, Y. Z. Mao, H. W. Ling, W. Li, and X. Y. Zhou. 2017. Zeaxanthin ameliorates high glucose-induced mesangial cell apoptosis through inhibiting oxidative stress via activating AKT signalling-pathway. Biomedicine & Pharmacotherapy  90:796–805. doi: 10.1016/j.biopha.2017.04.013.
  • You, T. T., and L. H. Y. Young. 1998. Retinal manifestations of gastrointestinal conditions. International Ophthalmology Clinics 38 (1):197–220. doi: 10.1097/00004397-199803810-00016.
  • Yu, H. F., L. Wark, H. Ji, L. Willard, Y. Jaing, J. Han, H. He, E. Ortiz, Y. N. Zhang, D. M. Medeiros, et al. 2013. Dietary wolfberry upregulates carotenoid metabolic genes and enhances mitochondrial biogenesis in the retina of db/db diabetic mice. Molecular Nutrition & Food Research 57 (7):1158–69. doi: 10.1002/Mnfr.201200642.
  • Yuan, Y. F., Y. B. Wang, Y. M. Jiang, K. N. Prasad, J. L. Yang, H. X. Qu, Y. Wang, Y. X. Jia, H. Mo, and B. Yang. 2016. Structure identification of a polysaccharide purified from Lycium barbarium fruit. International Journal of Biological Macromolecules 82:696–701. doi: 10.1016/j.ijbiomac.2015.10.069.
  • Zamani, S., S. H. Shariati, M. R. Zali, H. A. Aghdaei, A. S. Asiabar, S. Bokaie, B. Nomanpour, L. A. Sechi, and M. M. Feizabadi. 2017. Detection of enterotoxigenic Bacteroides fragilis in patients with ulcerative colitis. Gut Pathogens 9:53. doi: 10.1186/s13099-017-0202-0.
  • Zhang, J., S. W. Zhu, N. Ma, L. J. Johnston, C. D. Wu, and X. Ma. 2021. Metabolites of microbiota response to tryptophan and intestinal mucosal immunity: A therapeutic target to control intestinal inflammation. Medicinal Research Reviews 41 (2):1061–88. doi: 10.1002/med.21752.
  • Zhang, Q., W. Chen, J. Zhao, and W. Xi. 2016. Functional constituents and antioxidant activities of eight Chinese native goji genotypes. Food Chemistry 200:230–6. doi: 10.1016/j.foodchem.2016.01.046.
  • Zhang, T. Y., M. U. R. Kayani, L. W. Hong, C. Zhang, J. Zhong, Z. T. Wang, and L. Chen. 2020. Dynamics of the salivary microbiome during different phases of Crohn’s disease. Frontiers in Cellular and Infection Microbiology 10:544704. doi: 10.3389/fcimb.2020.544704.
  • Zhang, Y. K., J. Wang, L. Liu, R. C. Chang, K. F. So, and G. Ju. 2013. The effect of Lycium barbarum on spinal cord injury, particularly its relationship with M1 and M2 macrophage in rats. BMC Complementary and Alternative Medicine 13:67. doi: 10.1186/1472-6882-13-67.
  • Zhang, Y., Y. Wang, D. W. Chen, B. Yu, P. Zheng, X. B. Mao, Y. H. Luo, Y. Li, and J. He. 2018. Dietary chlorogenic acid supplementation affects gut morphology, antioxidant capacity and intestinal selected bacterial populations in weaned piglets. Food & Function 9 (9):4968–78. doi: 10.1039/C8FO01126E.
  • Zhao, J. H., H. X. Li, Y. Yin, W. An, X. Y. Qin, Y. J. Wang, Y. L. Li, Y. F. Fan, and Y. L. Cao. 2020. Transcriptomic and metabolomic analyses of Lycium ruthenicum and Lycium barbarum fruits during ripening. Scientific Reports 10 (1):4354. doi: 10.1038/s41598-020-61064-5.
  • Zhao, L., Q. T. Xiong, C. M. Stary, O. K. Mahgoub, Y. Z. Ye, L. J. Gu, X. X. Xiong, and S. M. Zhu. 2018. Bidirectional gut-brain-microbiota axis as a potential link between inflammatory bowel disease and ischemic stroke. Journal of Neuroinflammation 15 (1):339. doi: 10.1186/s12974-018-1382-3.
  • Zhou, L. S., W. F. Liao, X. Chen, H. Yue, S. J. Li, and K. Ding. 2018. An arabinogalactan from fruits of Lycium barbarum L. inhibits production and aggregation of Aβ42. Carbohydrate Polymers 195:643–51. doi: 10.1016/j.carbpol.2018.05.022.
  • Zhou, L. S., W. F. Liao, H. Zeng, Y. L. Yao, X. Chen, and K. Ding. 2018. A pectin from fruits of Lycium barbarum L. decreases β-amyloid peptide production through modulating APP processing. Carbohydrate Polymers 201:65–74. doi: 10.1016/j.carbpol.2018.08.050.
  • Zhou, X. F., B. W. Zhang, X. L. Zhao, Y. X. Lin, J. Wang, X. W. Wang, N. Hu, and S. Wang. 2021. Chlorogenic acid supplementation ameliorates hyperuricemia, relieves renal inflammation, and modulates intestinal homeostasis. Food & Function 12 (12):5637–49. doi: 10.1039/d0fo03199b.
  • Zhou, Y., Y. H. Duan, S. C. Huang, X. Zhou, L. S. Zhou, T. T. Hu, Y. F. Yang, J. Lu, K. Ding, D. Guo, et al. 2020. Polysaccharides from Lycium barbarum ameliorate amyloid pathology and cognitive functions in APP/PS1 transgenic mice. International Journal of Biological Macromolecules 144:1004–12. doi: 10.1016/j.ijbiomac.2019.09.177.
  • Zhu, W., S. X. Zhou, J. H. Liu, R. J. C. McLean, and W. H. Chu. 2020. Prebiotic, immuno-stimulating and gut microbiota-modulating effects of Lycium barbarum polysaccharide. Biomedicine & Pharmacotherapy 121:109591. doi: 10.1016/j.biopha.2019.109591.
  • Zhuang, X. J., T. Li, M. Y. Li, S. S. Huang, Y. Qiu, R. Feng, S. H. Zhang, M. H. Chen, L. S. Xiong, and Z. R. Zeng. 2019. Systematic review and meta-analysis: Short-chain fatty acid characterization in patients with inflammatory bowel disease. Inflammatory Bowel Diseases 25 (11):1751–63. doi: 10.1093/ibd/izz188.
  • Zhuang, X. J., C. G. Liu, S. K. Zhan, Z. Y. Tian, N. Li, R. Mao, Z. R. Zeng, and M. H. Chen. 2021. Gut microbiota profile in pediatric patients with inflammatory bowel disease: A systematic review. Frontiers in Pediatrics 9:15. doi: 10.3389/fped.2021.626232.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.