1,460
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Impact of solid-state fermentation on factors and mechanisms influencing the bioactive compounds of grains and processing by-products

, , &

References

  • Abd Razak, D. L., A. Jamaluddin, N. Y. Abd Rashid, A. Abd Ghani, and M. Abdul Manan. 2019. Assessment of fermented broken rice extracts for their potential as functional ingredients in cosmeceutical products. Annals of Agricultural Sciences 64 (2):176–82. doi: 10.1016/j.aoas.2019.11.003.
  • Abdel-Aty, A. M., R. I. Bassuiny, A. Z. Barakat, and S. A. Mohamed. 2019. Upgrading the phenolic content, antioxidant and antimicrobial activities of garden cress seeds using solid-state fermentation by Trichoderma reesei. Journal of Applied Microbiology 127 (5):1454–67. doi: 10.1111/jam.14394.
  • Acosta-Estrada, B. A., J. A. Gutiérrez-Uribe, and S. O. Serna-Saldívar. 2014. Bound phenolics in foods, a review. Food Chemistry 152:46–55. doi: 10.1016/j.foodchem.2013.11.093.
  • Adebo, O. A., and I. G. Medina-Meza. 2020. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules 25 (4):927. doi: 10.3390/molecules25040927.
  • Adebo, O. A., P. B. Njobeh, A. S. Adeboye, J. A. Adebiyi, S. S. Sobowale, O. M. Ogundele, and E. Kayitesi. 2018. Advances in fermentation technology for novel food products. In Innovations in technologies for fermented food and beverage industries, ed. S. K. Panda and P. H. Shetty, 1st ed., 71–87. Cham: Springer International Publishing.
  • Adnan, M., S. A. Ashraf, S. Khan, E. Alshammari, and A. M. Awadelkareem. 2017. Effect of pH, temperature and incubation time on cordycepin production from Cordyceps militaris using solid-state fermentation on various substrates. CyTA - Journal of Food 15 (4):617–21. doi: 10.1080/19476337.2017.1325406.
  • Aguiar, M. M., V. C. Pietrobon, M. M. De Salles Pupo, N. H. Torres, J. H. P. Américo, G. R. Salazar-Banda, D. P. Silva, R. T. R. Monteiro, and L. F. Romanholo Ferreira. 2018. Evaluation of commercial cellulolytic enzymes for sugarcane bagasse hydrolysis. Cellulose Chemistry and Technology 52 (7–8):695–9. http://hdl.handle.net/11449/176809.
  • Ahmad, Z. S., and M. S. A. Munaim. 2018. Effect of time, moisture content, and substrate amount on sorbitol production using entrapment of Lactobacillus plantarum (BAA-793) in sodium alginate beads. Food Bioscience 21:27–33. doi: 10.1016/j.fbio.2017.11.002.
  • Allwood, J. G., L. T. Wakeling, and D. C. Bean. 2021. Fermentation and the microbial community of Japanese Koji and Miso: A review. Journal of Food Science 86 (6):2194–207. doi: 10.1111/1750-3841.15773.
  • Andayani, S. N., H. N. Lioe, C. H. Wijaya, and M. Ogawa. 2020. Umami fractions obtained from water-soluble extracts of red oncom and black oncom-Indonesian fermented soybean and peanut products. Journal of Food Science 85 (3):657–65. doi: 10.1111/1750-3841.14942.
  • Anson, N. M., A. M. Aura, E. Selinheimo, I. Mattila, K. Poutanen, R. Van Den Berg, R. Havenaar, A. Bast, and G. R. M. M. Haenen. 2011. Bioprocessing of wheat bran in whole wheat bread increases the bioavailability of phenolic acids in men and exerts antiinflammatory effects ex vivo1-3. The Journal of Nutrition 141 (1):137–43. doi: 10.3945/jn.110.127720.
  • Arora, S., R. Rani, and S. Ghosh. 2018. Bioreactors in solid state fermentation technology: Design, applications and engineering aspects. Journal of Biotechnology 269:16–34. doi: 10.1016/j.jbiotec.2018.01.010.
  • Ashok, A., K. Doriya, D. R. M. Rao, and D. S. Kumar. 2017. Design of solid state bioreactor for industrial applications: An overview to conventional bioreactors. Biocatalysis and Agricultural Biotechnology 9:11–8. doi: 10.1016/j.bcab.2016.10.014.
  • Ayyash, M., S. K. Johnson, S. Q. Liu, A. Al-Mheiri, and A. Abushelaibi. 2018. Cytotoxicity, antihypertensive, antidiabetic and antioxidant activities of solid-state fermented lupin, quinoa and wheat by Bifidobacterium species: In-vitro investigations. LWT 95:295–302. doi: 10.1016/j.lwt.2018.04.099.
  • Ayyash, M., S. K. Johnson, S. Q. Liu, N. Mesmari, S. Dahmani, A. S. Al Dhaheri, and J. Kizhakkayil. 2019. In vitro investigation of bioactivities of solid-state fermented lupin, quinoa and wheat using Lactobacillus spp. Food Chemistry 275:50–8. doi: 10.1016/j.foodchem.2018.09.031.
  • Barrett, E. M., M. J. Batterham, S. Ray, and E. J. Beck. 2019. Whole grain, bran and cereal fibre consumption and CVD: A systematic review. The British Journal of Nutrition 121 (8):914–37. doi: 10.1017/S000711451900031X.
  • Behera, S. S., and R. C. Ray. 2016. Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. International Journal of Biological Macromolecules 86:656–69. doi: 10.1016/j.ijbiomac.2015.10.090.
  • Bei, Q., Y. Liu, L. Wang, G. Chen, and Z. Wu. 2017. Improving free, conjugated, and bound phenolic fractions in fermented oats (Avena sativa L.) with Monascus anka and their antioxidant activity. Journal of Functional Foods 32:185–94. doi: 10.1016/j.jff.2017.02.028.
  • Bhanja, T., A. Kumari, and R. Banerjee. 2009. Enrichment of phenolics and free radical scavenging property of wheat Koji prepared with two filamentous fungi. Bioresource Technology 100 (11):2861–6. doi: 10.1016/j.biortech.2008.12.055.
  • Bhanja, T., S. Rout, R. Banerjee, and B. C. Bhattacharyya. 2007. Comparative profiles of alpha-amylase production in conventional tray reactor and GROWTEK bioreactor. Bioprocess and Biosystems Engineering 30 (5):369–76. doi: 10.1007/s00449-007-0133-0.
  • Bhanja, T., S. Rout, R. Banerjee, and B. C. Bhattacharyya. 2008. Studies on the performance of a new bioreactor for improving antioxidant potential of rice. LWT - Food Science and Technology 41 (8):1459–65. doi: 10.1016/j.lwt.2007.08.015.
  • Boz, H. 2016. Phenolic amides (avenanthramides) in oats - A review. Czech Journal of Food Sciences 33 (No. 5):399–404. doi: 10.17221/696/2014-CJFS.
  • Cairns, L. S., L. Hobley, and N. R. Stanley-Wall. 2014. Biofilm formation by Bacillus subtilis: New insights into regulatory strategies and assembly mechanisms. Molecular Microbiology 93 (4):587–98. doi: 10.1111/mmi.12697.
  • Calabriso, N., M. Massaro, E. Scoditti, A. Pasqualone, B. Laddomada, and M. A. Carluccio. 2020. Phenolic extracts from whole wheat biofortified bread dampen overwhelming inflammatory response in human endothelial cells and monocytes: Major role of VCAM-1 and CXCL-10. European Journal of Nutrition 59 (6):2603–15. doi: 10.1007/s00394-019-02109-y.
  • Călinoiu, L. F., A. F. Cătoi, and D. C. Vodnar. 2019. Solid-state yeast fermented wheat and oat bran as a route for delivery of antioxidants. Antioxidants 8 (9):372. doi: 10.3390/antiox8090372.
  • Călinoiu, L. F., and D. C. Vodnar. 2018. Whole grains and phenolic acids: A review on bioactivity, functionality, health benefits and bioavailability. Nutrients 10 (11):1615. doi: 10.3390/nu10111615.
  • Cano y Postigo, L. O., D. A. Jacobo-Velázquez, D. Guajardo-Flores, L. E. Garcia Amezquita, and T. García-Cayuela. 2021. Solid-state fermentation for enhancing the nutraceutical content of agrifood by-products: Recent advances and its industrial feasibility. Food Bioscience 41:100926. doi: 10.1016/j.fbio.2021.100926.
  • Cao, Z. H., J. M. Green-Johnson, N. D. Buckley, and Q. Y. Lin. 2019. Bioactivity of soy-based fermented foods: A review. Biotechnology Advances 37 (1):223–38. doi: 10.1016/j.biotechadv.2018.12.001.
  • Carbonaro, M., P. Maselli, and A. Nucara. 2015. Structural aspects of legume proteins and nutraceutical properties. Food Research International 76 (P1):19–30. doi: 10.1016/j.foodres.2014.11.007.
  • Casciatori, F. P., A. Bück, J. C. Thoméo, and E. Tsotsas. 2016. Two-phase and two-dimensional model describing heat and water transfer during solid-state fermentation within a packed-bed bioreactor. Chemical Engineering Journal 287:103–16. doi: 10.1016/j.cej.2015.10.108.
  • Chavan, U. D. 2018. Phenolics: Antioxidants and health benefits. 1st ed. Jodhpur: Scientific Publishers.
  • Cheng, K. C., J. Y. Wu, J. T. Lin, and W. H. Liu. 2013. Enhancements of isoflavone aglycones, total phenolic content, and antioxidant activity of black soybean by solid-state fermentation with Rhizopus spp. European Food Research and Technology 236 (6):1107–13. doi: 10.1007/s00217-013-1936-7.
  • Chen, G., Y. Liu, J. Zeng, X. Tian, Q. Bei, and Z. Wu. 2020. Enhancing three phenolic fractions of oats (Avena sativa L.) and their antioxidant activities by solid-state fermentation with Monascus anka and Bacillus subtilis. Journal of Cereal Science 93:102940. doi: 10.1016/j.jcs.2020.102940.
  • Chen, P. X., Y. Tang, M. F. Marcone, P. K. Pauls, B. Zhang, R. Liu, and R. Tsao. 2015. Characterization of free, conjugated and bound phenolics and lipophilic antioxidants in regular- and non-darkening cranberry beans (Phaseolus vulgaris L.). Food Chemistry 185:298–308. doi: 10.1016/j.foodchem.2015.03.100.
  • Chen, G. C., X. Tong, J. Y. Xu, S. F. Han, Z. X. Wan, J. B. Qin, and L. Q. Qin. 2016. Whole-grain intake and total, cardiovascular, and cancer mortality: A systematic review and meta-analysis of prospective studies. The American Journal of Clinical Nutrition 104 (1):164–72. doi: 10.3945/ajcn.115.122432.
  • Chen, B., Q. Wu, and Y. Xu. 2014. Filamentous fungal diversity and community structure associated with the solid state fermentation of Chinese Maotai-flavor liquor. International Journal of Food Microbiology 179:80–4. doi: 10.1016/j.ijfoodmicro.2014.03.011.
  • Chettri, R., M. O. Bhutia, and J. P. Tamang. 2016. Poly-γ-glutamic acid (PGA)-producing Bacillus species isolated from kinema, Indian fermented soybean food. Frontiers in Microbiology 7:971. doi: 10.3389/fmicb.2016.00971.
  • Chien, R. C., Y. C. Lin, and J. L. Mau. 2017. Apoptotic effect of Taiwanofungus salmoneus (Agaricomycetes) mycelia and solid-state fermented products on cancer cells. International Journal of Medicinal Mushrooms 19 (9):777–95. doi: 10.1615/IntJMedMushrooms.2017024264.
  • Cho, K., S. Hong, R. Math, J. Lee, D. Kambiranda, J. Kim, S. Islam, M. Yun, J. Cho, W. Lim, et al. 2009. Biotransformation of phenolics (isoflavones, flavanols and phenolic acids) during the fermentation of cheonggukjang by Bacillus pumilus HY1. Food Chemistry 114 (2):413–9. doi: 10.1016/j.foodchem.2008.09.056.
  • Christ-Ribeiro, A., L. M. Chiattoni, C. R. F. Mafaldo, E. Badiale-Furlong, and L. A. de Souza-Soares. 2021. Fermented rice-bran by Saccharomyces cerevisiae: Nutritious ingredient in the formulation of gluten-free cookies. Food Bioscience 40:100859. doi: 10.1016/j.fbio.2020.100859.
  • Correa Deza, M. A., A. R. de Olmos, and M. S. Garro. 2019. Solid state fermentation to obtain vegetable products bio-enriched with isoflavone aglycones using lactic cultures. Revista Argentina de Microbiologia 51 (3):201–7. doi: 10.1016/j.ram.2018.04.006.
  • Costa, R. d S., S. S. de Almeida, E. d A. C. Cavalcanti, D. M. G. Freire, N. Moura-Nunes, M. Monteiro, and D. Perrone. 2021. Enzymes produced by solid state fermentation of agro-industrial by-products release ferulic acid in bioprocessed whole-wheat breads. Food Research International (Ottawa, ON) 140:109843. doi: 10.1016/j.foodres.2020.109843.
  • Dai, C., H. Ma, R. He, L. Huang, S. Zhu, Q. Ding, and L. Luo. 2017. Improvement of nutritional value and bioactivity of soybean meal by solid-state fermentation with Bacillus subtilis. LWT - Food Science and Technology 86:1–7. doi: 10.1016/j.lwt.2017.07.041.
  • Dang, D. L., N. Y. Nur, A. Jamaluddin, A. Abd. Ghani, A. Mansor, and M. A. Manan. 2019. Brewer’s rice-A potential substrate for cosmeceutical bio-ingredient production by solid state fermentation using Aspergillus oryzae. Malaysian Journal of Microbiology 15 (SpecialIssue4):260–6. doi: 10.21161/mjm.191541.
  • de Olmos, A. R., M. A. Correa Deza, and M. S. Garro. 2017. Selected lactobacilli and bifidobacteria development in solid state fermentation using soybean paste. Revista Argentina de Microbiologia 49 (1):62–9. doi: 10.1016/j.ram.2016.08.007.
  • de Olmos, A. R., and M. S. Garro. 2020. Metabolic profile of Lactobacillus paracasei subsp. paracasei CRL 207 in solid state fermentation using commercial soybean meal. Food Bioscience 35 (8):100584. doi: 10.1016/j.fbio.2020.100584.
  • Dey, T. B., S. Chakraborty, K. K. Jain, A. Sharma, and R. C. Kuhad. 2016. Antioxidant phenolics and their microbial production by submerged and solid state fermentation process: A review. Trends in Food Science & Technology 53:60–74. doi: 10.1016/j.tifs.2016.04.007.
  • Dey, T. B., and R. C. Kuhad. 2014a. Upgrading the antioxidant potential of cereals by their fungal fermentation under solid-state cultivation conditions. Letters in Applied Microbiology 59 (5):493–9. doi: 10.1111/lam.12300.
  • Dey, T. B., and R. C. Kuhad. 2014b. Enhanced production and extraction of phenolic compounds from wheat by solid-state fermentation with Rhizopus oryzae RCK2012. Biotechnology Reports (Amsterdam, Netherlands) 4 (1):120–7. doi: 10.1016/j.btre.2014.09.006.
  • Dulf, F. V., D. C. Vodnar, and C. Socaciu. 2016. Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products. Food Chemistry 209:27–36. doi: 10.1016/j.foodchem.2016.04.016.
  • Economou, C. N., C. N. Economou, A. N. Philippoussis, and P. A. Diamantopoulou. 2020. Spent mushroom substrate for a second cultivation cycle of Pleurotus mushrooms and dephenolization of agro-industrial wastewaters. FEMS Microbiology Letters 367 (8):fnaa060. doi: 10.1093/femsle/fnaa060.
  • Erkan, S. B., H. N. Gürler, D. G. Bilgin, M. Germec, and I. Turhan. 2020. Production and characterization of tempehs from different sources of legume by Rhizopus oligosporus. LWT 119:108880. doi: 10.1016/j.lwt.2019.108880.
  • Farinas, C. S. 2015. Developments in solid-state fermentation for the production of biomass-degrading enzymes for the bioenergy sector. Renewable and Sustainable Energy Reviews 52:179–88. doi: 10.1016/j.rser.2015.07.092.
  • Feitosa, P. R. B., T. R. J. Santos, N. C. Gualberto, N. Narain, and L. C. L. de Aquino Santana. 2020. Solid-state fermentation with Aspergillus niger for the bio-enrichment of bioactive compounds in Moringa oleifera (moringa) leaves. Biocatalysis and Agricultural Biotechnology 27:101709. doi: 10.1016/j.bcab.2020.101709.
  • Feng, L., Y. Xie, C. Peng, Y. Liu, and H. Wang. 2018. A novel antidiabetic food produced via solid-state fermentation of Tartary buckwheat by L. plantarum TK9 and L. paracasei TK1501. Food Technology and Biotechnology 56 (3):373–80. doi: 10.17113/ftb.56.03.18.5540.
  • Fink-Hooijer, F. 2021. First circular economy action plan. Last Modified November 17, 2021. Accessed November 20, 2021. https://ec.europa.eu/environment/topics/circular-economy_en/.
  • Ganesan, K., and B. Xu. 2017. Polyphenol-rich lentils and their health promoting effects. International Journal of Molecular Sciences 18 (11):2390. doi: 10.3390/ijms18112390.
  • Georgetti, S. R., F. T. M. C. Vicentini, C. Y. Yokoyama, M. F. Borin, A. C. C. Spadaro, and M. J. V. Fonseca. 2009. Enhanced in vitro and in vivo antioxidant activity and mobilization of free phenolic compounds of soybean flour fermented with different beta-glucosidase-producing fungi. Journal of Applied Microbiology 106 (2):459–66. doi: 10.1111/j.1365-2672.2008.03978.x.
  • Ghosh, K., H. S. Kang, W. Bin Hyun, and K. P. Kim. 2018. High prevalence of Bacillus subtilis-infecting bacteriophages in soybean-based fermented foods and its detrimental effects on the process and quality of Cheonggukjang. Food Microbiology 76:196–203. doi: 10.1016/j.fm.2018.05.007.
  • Gomes, E., R. da Silva, J. de Cassia Pereira, and G. Ladino-Orjuela. 2018. Fungal growth on solid substrates: A physiological overview. In Current developments in biotechnology and bioengineering, ed. A. Pandey, C. Larroche, and C. R. Soccol, 31–56. 1st ed. Amsterdam: Elsevier B.V.
  • Gopikrishna, T., H. K. Suresh Kumar, K. Perumal, and E. Elangovan. 2021. Impact of Bacillus in fermented soybean foods on human health. Annals of Microbiology 71 (1):30. doi: 10.1186/s13213-021-01641-9.
  • Government of Canada. 2021. Circular economy. Last Modified October 6, 2021. Accessed November 20, 2021. https://www.canada.ca/en/services/environment/conservation/sustainability/circular-economy.html.
  • Handa, C. L., F. S. de Lima, M. F. G. Guelfi, M. da, S. Fernandes, S. R. Georgetti, and E. I. Ida. 2019. Parameters of the fermentation of soybean flour by Monascus purpureus or Aspergillus oryzae on the production of bioactive compounds and antioxidant activity. Food Chemistry 271:274–83. doi: 10.1016/j.foodchem.2018.07.188.
  • Hong, S. B., D. H. Kim, and R. A. Samson. 2015. Aspergillus associated with meju, a fermented soybean starting material for traditional soy sauce and soybean paste in Korea. Mycobiology 43 (3):218–24. doi: 10.5941/MYCO.2015.43.3.218.
  • Hong, S. H., I. Lee, S. J. Kim, and J. Y. Imm. 2012. Improved functionality of soft soybean curd containing monascus fermented soybean ethanol extract. Food Science and Biotechnology 21 (3):701–7. doi: 10.1007/s10068-012-0091-4.
  • Hong, F., L. Ming, S. Yi, L. Zhanxia, W. Yongquan, and L. Chi. 2008. The antihypertensive effect of peptides: A novel alternative to drugs? Peptides 29 (6):1062–71. doi: 10.1016/j.peptides.2008.02.005.
  • Huang, S. J., F. K. Huang, Y. S. Li, and S. Y. Tsai. 2017. The quality improvement of solid-state fermentation with Cordyceps militaris by UVB irradiation. Food Technology and Biotechnology 55 (4):445–53. doi: 10.17113/ftb.55.04.17.5235.
  • Huang, S., Y. Ma, D. Sun, J. Fan, and S. Cai. 2017. In vitro DNA damage protection and anti-inflammatory effects of Tartary buckwheats (Fagopyrum tataricum L. Gaertn) fermented by filamentous fungi. International Journal of Food Science & Technology 52 (9):2006–17. doi: 10.1111/ijfs.13474.
  • Huynh, N. T., J. Van Camp, G. Smagghe, and K. Raes. 2014. Improved release and metabolism of flavonoids by steered fermentation processes: A review. International Journal of Molecular Sciences 15 (11):19369–88. doi: 10.3390/ijms151119369.
  • Jamaluddin, A., D. L. Dang, N. Y. Nur, S. A. Sharifudin, A. Abd. Kahar, A. Z. Ainur, and K. Long. 2016. Effects of solid state fermentation by Monascus purpureus on phenolic content and biological activities of coconut testa and rice bran. Jurnal Teknologi 78 (11–2):23–8. doi: 10.11113/jt.v78.9939.
  • Jayathilake, C., R. Visvanathan, A. Deen, R. Bangamuwage, B. C. Jayawardana, S. Nammi, and R. Liyanage. 2018. Cowpea: An overview on its nutritional facts and health benefits. Journal of the Science of Food and Agriculture 98 (13):4793–806. doi: 10.1002/jsfa.9074.
  • Joginder, S. D., Kamal, M. K. S. Pardeep, and S. Pooja, Surekha. 2016. Bio-enrichment of phenolics and free radicals scavenging activity of wheat (WH-711) fractions by solid state fermentation with Aspergillus oryzae. African Journal of Biochemistry Research 10 (2):12–9. doi: 10.5897/AJBR2015.0854.
  • Kamel Eshraq, B., M. Ali Mona, A. F. Sayed, and E. A. Abdel-Rahim. 2016. Bioactive components in black beans for inhibition of cancer cell growth. Research Journal of Pharmaceutical, Biological and Chemical Sciences 7 (6):1068–80. doi: 10.33887/rjpbcs.
  • Kaur, B., D. Chakraborty, and B. Kumar. 2013. Phenolic biotransformations during conversion of ferulic acid to vanillin by lactic acid bacteria. BioMed Research International 2013:590359. doi: 10.1155/2013/590359.
  • Khan, M. K., W. Karnpanit, S. M. Nasar-Abbas, Z. E. Huma, and V. Jayasena. 2018. Development of a fermented product with higher phenolic compounds and lower anti-nutritional factors from germinated lupin (Lupinus angustifolius L.). Journal of Food Processing and Preservation 42 (12):e13843. doi: 10.1111/jfpp.13843.
  • Kim, I. S., C. W. Hwang, W. S. Yang, and C. H. Kim. 2021. Current perspectives on the physiological activities of fermented soybean-derived Cheonggukjang. International Journal of Molecular Sciences 22 (11):5746. doi: 10.3390/ijms22115746.
  • Kim, K. M., J. Lim, J. J. Lee, B. S. Hurh, and I. Lee. 2017. Characterization of aspergillus sojae isolated from Meju, Korean traditional fermented soybean brick. Journal of Microbiology and Biotechnology 27 (2):251–61. doi: 10.4014/jmb.1610.10013.
  • Kim, K. H., R. Tsao, R. Yang, and S. W. Cui. 2006. Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions. Food Chemistry 95 (3):466–73. doi: 10.1016/j.foodchem.2005.01.032.
  • Kobayashi, K., Y. Horii, S. Watanabe, Y. Kubo, K. Koguchi, Y. Hoshi, K. I. Matsumoto, and K. Soda. 2017. Comparison of soybean cultivars for enhancement of the polyamine contents in the fermented soybean natto using Bacillus subtilis (natto). Bioscience, Biotechnology, and Biochemistry 81 (3):587–94. doi: 10.1080/09168451.2016.1270738.
  • Kobayashi, K., S. Shimojo, and S. Watanabe. 2016. Contribution of a fermentation process using bacillus subtilis (natto) to high polyamine contents of natto, a traditional Japanese fermented soy food. Food Science and Technology Research 22 (1):153–7. doi: 10.3136/fstr.22.153.
  • Koistinen, V. M., K. Katina, E. Nordlund, K. Poutanen, and K. Hanhineva. 2016. Changes in the phytochemical profile of rye bran induced by enzymatic bioprocessing and sourdough fermentation. Food Research International 89:1106–15. doi: 10.1016/j.foodres.2016.06.027.
  • Koistinen, V. M., O. Mattila, K. Katina, K. Poutanen, A. M. Aura, and K. Hanhineva. 2018. Metabolic profiling of sourdough fermented wheat and rye bread. Scientific Reports 8 (1):5684. doi: 10.1038/s41598-018-24149-w.
  • Kraboun, K., T. Kongbangkerd, K. Rojsuntornkitti, and P. Phanumong. 2019. Factors and advances on fermentation of Monascus sp. for pigments and monacolin K production: A review. International Food Research Journal 26 (3):751–61. http://www.ifrj.upm.edu.my/26(03)2019/2-IFRJ18953.R1(Review)-Final.pdf.
  • Kuligowski, M., K. Pawłowska, I. Jasińska-Kuligowska, and J. Nowak. 2017. Composición de isoflavonas, contenido de polifenoles y actividad antioxidante de las semillas de soja durante fermentación de tempeh. CYTA - Journal of Food 15 (1):27–33. doi: 10.1080/19476337.2016.1197316.
  • Kumar, V., V. Ahluwalia, S. Saran, J. Kumar, A. K. Patel, and R. R. Singhania. 2015. Production and characterization of thermostable alkaline protease of Bacillus subtilis (ATCC 6633) from optimized solid-state fermentation. Biotechnology and Applied Biochemistry 62 (5):709–18. doi: 10.1002/bab.1309.
  • Kumar, V., V. Ahluwalia, S. Saran, J. Kumar, A. K. Patel, and R. R. Singhania. 2021. Recent developments on solid-state fermentation for production of microbial secondary metabolites: Challenges and solutions. Bioresource Technology 323:124566. doi: 10.1016/j.biortech.2020.124566.
  • Kumitch, H. M., A. Stone, M. G. Nosworthy, M. T. Nickerson, J. D. House, D. R. Korber, and T. Tanaka. 2020. Effect of fermentation time on the nutritional properties of pea protein-enriched flour fermented by Aspergillus oryzae and Aspergillus niger. Cereal Chemistry 97 (1):104–13. doi: 10.1002/cche.10234.
  • Kuttiyatveetil, J. R. A., P. Mitra, D. Goldin, M. T. Nickerson, and T. Tanaka. 2019. Recovery of residual nutrients from agri-food byproducts using a combination of solid-state fermentation and insect rearing. International Journal of Food Science & Technology 54 (4):1130–40. doi: 10.1111/ijfs.14015.
  • Kwak, C. S., D. Son, Y. S. Chung, and Y. H. Kwon. 2015. Antioxidant activity and anti-inflammatory activity of ethanol extract and fractions of doenjang in LPS-stimulated RAW 264.7 macrophages. Nutrition Research and Practice 9 (6):569–78. doi: 10.4162/nrp.2015.9.6.569.
  • Lappi, J., H. Mykkänen, K. E. B. Knudsen, P. Kirjavainen, K. Katina, J. Pihlajamäki, K. Poutanen, and M. Kolehmainen. 2014. Postprandial glucose metabolism and SCFA after consuming wholegrain rye bread and wheat bread enriched with bioprocessed rye bran in individuals with mild gastrointestinal symptoms. Nutrition Journal 13 (1):104. doi: 10.1186/1475-2891-13-104.
  • Lee, I. H., Y. H. Hung, and C. C. Chou. 2007. Total phenolic and anthocyanin contents, as well as antioxidant activity, of black bean koji fermented by Aspergillus awamori under different culture conditions. Food Chemistry 104 (3):936–42. doi: 10.1016/j.foodchem.2006.12.049.
  • Leite, P., D. Sousa, H. Fernandes, M. Ferreira, A. R. Costa, D. Filipe, M. Gonçalves, H. Peres, I. Belo, and J. M. Salgado. 2021. Recent advances in production of lignocellulolytic enzymes by solid-state fermentation of agro-industrial wastes. Current Opinion in Green and Sustainable Chemistry 27:100407. doi: 10.1016/j.cogsc.2020.100407.
  • Leonard, W., P. Zhang, D. Ying, B. Adhikari, and Z. Fang. 2021. Fermentation transforms the phenolic profiles and bioactivities of plant-based foods. Biotechnology Advances 49:107763. doi: 10.1016/j.biotechadv.2021.107763.
  • Li, C., C. Chen, X. Wu, C. W. Tsang, J. Mou, J. Yan, Y. Liu, and C. S. K. Lin. 2019. Recent advancement in lignin biorefinery: With special focus on enzymatic degradation and valorization. Bioresource Technology 291:121898. doi: 10.1016/j.biortech.2019.121898.
  • Liu, L., R. Zhang, Y. Deng, Y. Zhang, J. Xiao, F. Huang, W. Wen, and M. Zhang. 2017. Fermentation and complex enzyme hydrolysis enhance total phenolics and antioxidant activity of aqueous solution from rice bran pretreated by steaming with α-amylase. Food Chemistry 221:636–43. doi: 10.1016/j.foodchem.2016.11.126.
  • Lizardi-Jiménez, M. A., and R. Hernández-Martínez. 2017. Solid state fermentation (SSF): diversity of applications to valorize waste and biomass. 3 Biotech 7 (1):44. doi: 10.1007/s13205-017-0692-y.
  • Long, L., H. Zhao, D. Ding, M. Xu, and S. Ding. 2018. Heterologous expression of two Aspergillus niger feruloyl esterases in Trichoderma reesei for the production of ferulic acid from wheat bran. Bioprocess and Biosystems Engineering 41 (5):593–601. doi: 10.1007/s00449-018-1894-3.
  • López, A., T. El-Naggar, M. Dueñas, T. Ortega, I. Estrella, T. Hernández, M. P. Gómez-Serranillos, O. M. Palomino, and M. E. Carretero. 2017. Influence of processing in the phenolic composition and health-promoting properties of lentils (Lens culinaris L.). Journal of Food Processing and Preservation 41 (5):e13113. doi: 10.1111/jfpp.13113.
  • López-Pérez, M., and G. Viniegra-González. 2016. Production of protein and metabolites by yeast grown in solid state fermentation: Present status and perspectives. Journal of Chemical Technology & Biotechnology 91 (5):1224–31. doi: 10.1002/jctb.4819.
  • Machado, E., P. T. Matumoto Pintro, L. C. Vinhas tavo, B. C. Agustinho, J. L. Pratti Daniel, N. W. Santos, J. M. Bragatto, M. G. Ribeiro, and L. M. Zeoula. 2020. Reduction in lignin content and increase in the antioxidant capacity of corn and sugarcane silages treated with an enzymatic complex produced by white rot fungus. PLoS ONE 15 (2):e0229141. doi: 10.1371/journal.pone.0229141.
  • Madeira, J. V., C. B. Teixeira, and G. A. Macedo. 2015. Biotransformation and bioconversion of phenolic compounds obtainment: An overview. Critical Reviews in Biotechnology 35 (1):75–81. doi: 10.3109/07388551.2013.803020.
  • Magro, A. E. A., L. C. Silva, G. B. Rasera, and R. J. S. de Castro. 2019. Solid-state fermentation as an efficient strategy for the biotransformation of lentils: Enhancing their antioxidant and antidiabetic potentials. Bioresources and Bioprocessing 6 (1):38. doi: 10.1186/s40643-019-0273-5.
  • Malaguti, M., G. Dinelli, E. Leoncini, V. Bregola, S. Bosi, A. F. G. Cicero, and S. Hrelia. 2014. Bioactive peptides in cereals and legumes: Agronomical, biochemical and clinical aspects. International Journal of Molecular Sciences 15 (11):21120–35. doi: 10.3390/ijms151121120.
  • Mansour, A. A., T. Arnaud, T. A. Lu-Chau, M. Fdz-Polanco, M. T. Moreira, and J. A. C. Rivero. 2016. Review of solid state fermentation for lignocellulolytic enzyme production: Challenges for environmental applications. Reviews in Environmental Science and Bio/Technology 15 (1):31–46. doi: 10.1007/s11157-016-9389-7.
  • Mármol, I., C. Sánchez-de-Diego, A. P. Dieste, E. Cerrada, and M. J. R. Yoldi. 2017. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. International Journal of Molecular Sciences 18 (1):197. doi: 10.3390/ijms18010197.
  • McCue, P., A. Horii, and K. Shetty. 2004. Mobilization of phenolic antioxidants from defatted soybean powders by Lentinus edodes during solid-state bioprocessing is associated with enhanced production of laccase. Innovative Food Science & Emerging Technologies 5 (3):385–92. doi: 10.1016/j.ifset.2004.05.003.
  • Mccue, P., Y. I. Kwon, and K. Shetty. 2005. Anti-amylase, anti-glucosidase and anti-angiotensin I-converting enzyme potential of selected foods. Journal of Food Biochemistry 29 (3):278–94. doi: 10.1111/j.1745-4514.2005.00020.x.
  • Milán-Carrillo, J., R. Gutiérrez-Dorado, E. O. Cuevas-Rodríguez, L. M. Sánchez-Magaña, J. J. Rochín-Medina, and C. Reyes-Moreno. 2017. Bebida funcional con potencial antidiabético y antihipertensivo elaborada con maíz azul y frijol negro bioprocesados. Revista Fitotecnia Mexicana 40 (4):451–9. doi: 10.35196/rfm.2017.4.451-459.
  • Mishra, A. 2006. Production of L-asparaginase, an anticancer agent, from Aspergillus niger using agricultural waste in solid state fermentation. Applied Biochemistry and Biotechnology 135 (1):33–42. doi: 10.1385/ABAB:135:1:33.
  • Mithul Aravind, S., S. Wichienchot, R. Tsao, S. Ramakrishnan, and S. Chakkaravarthi. 2021. Role of dietary polyphenols on gut microbiota, their metabolites and health benefits. Food Research International (Ottawa, ON) 142:110189. doi: 10.1016/j.foodres.2021.110189.
  • Mkabayi, L., S. Malgas, B. S. Wilhelmi, and B. I. Pletschke. 2020. Evaluating feruloyl esterase-xylanase synergism for hydroxycinnamic acid and xylo-oligosaccharide production from untreated, hydrothermally pre-treated and dilute-acid pre-treated corn cobs. Agronomy 10 (5):688. doi: 10.3390/agronomy10050688.
  • Moccia, F., A. C. Flores-Gallegos, M. L. Chávez-González, L. Sepúlveda, S. Marzorati, L. Verotta, L. Panzella, J. A. Ascacio-Valdes, C. N. Aguilar, and A. Napolitano. 2019. Ellagic acid recovery by solid state fermentation of pomegranate wastes by aspergillus Niger and saccharomyces cerevisiae: A comparison. Molecules 24 (20):3689. doi: 10.3390/molecules24203689.
  • Moore, J., Z. Cheng, J. Hao, G. Guo, J. G. Liu, C. Lin, and L. Yu. 2007. Effects of solid-state yeast treatment on the antioxidant properties and protein and fiber compositions of common hard wheat bran. Journal of Agricultural and Food Chemistry 55 (25):10173–82. doi: 10.1021/jf071590o.
  • Mushollaeni, W., and L. Tantalu. 2020. Anthocyanin and nutritional contents of fermented Lebui bean (Cajanus sp.) through SSF method and induced by Rhizopus sp. and Saccharomyces sp. IOP Conference Series: Earth and Environmental Science 465 (1):012037. doi: 10.1088/1755-1315/465/1/012037.
  • Nandiyanto, A. B. D., R. Ismiati, J. Indrianti, and A. G. Abdullah. 2018. Economic perspective in the production of preserved soybean (tauco) with various raw material quantities. IOP Conference Series: Materials Science and Engineering 288 (1):012025. doi: 10.1088/1757-899X/288/1/012025.
  • Napitupulu, T. P., N. R. Silaban, A. Kanti, and I. M. Sudiana. 2019. The effect of substrate composition on the activity of amylase and cellulase by Trichoderma harzianum strains under solid state fermentation. Journal of Microbial Systematics and Biotechnology 1 (2):41–8. doi: 10.37604/jmsb.v1i2.26.
  • Nayak, B., R. H. Liu, and J. Tang. 2015. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains-a review. Critical Reviews in Food Science and Nutrition 55 (7):887–918. doi: 10.1080/10408398.2011.654142.
  • Niveditha, V. R., and K. R. Sridhar. 2014. Antioxidant activity of raw, cooked and Rhizopus oligosporus fermented beans of Canavalia of coastal sand dunes of Southwest India. Journal of Food Science and Technology 51 (11):3253–60. doi: 10.1007/s13197-012-0830-9.
  • Oliveira, D. M., T. R. Mota, B. Oliva, F. Segato, R. Marchiosi, O. Ferrarese-Filho, C. B. Faulds, and W. D. dos Santos. 2019. Feruloyl esterases: Biocatalysts to overcome biomass recalcitrance and for the production of bioactive compounds. Bioresource Technology 278:408–23. doi: 10.1016/j.biortech.2019.01.064.
  • Osorio, L. L. D. R., E. Flórez-López, and C. D. Grande-Tovar. 2021. The potential of selected agri-food loss and waste to contribute to a circular economy: Applications in the food, cosmetic and pharmaceutical industries. Molecules 26 (2):515. doi: 10.3390/molecules26020515.
  • Ou, J., and Z. Sun. 2014. Feruloylated oligosaccharides: Structure, metabolism and function. Journal of Functional Foods 7 (1):90–100. doi: 10.1016/j.jff.2013.09.028.
  • Padhi, E. M. T., and D. D. Ramdath. 2017. A review of the relationship between pulse consumption and reduction of cardiovascular disease risk factors. Journal of Functional Foods 38:635–43. doi: 10.1016/j.jff.2017.03.043.
  • Parapouli, M., A. Vasileiadis, A. S. Afendra, and E. Hatziloukas. 2020. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiology 6 (1):1–31. doi: 10.3934/microbiol.2020001.
  • Queiroz Santos, V. A., C. G. Nascimento, C. A. P. Schmidt, D. Mantovani, R. F. H. Dekker, and M. A. A. da Cunha. 2018. Solid-state fermentation of soybean okara: Isoflavones biotransformation, antioxidant activity and enhancement of nutritional quality. LWT 92:509–15. doi: 10.1016/j.lwt.2018.02.067.
  • Radita, R., A. Suwanto, N. Kurosawa, A. T. Wahyudi, and I. Rusmana. 2017. Metagenome analysis of tempeh production: Where did the bacterial community in tempeh come from? Malaysian Journal of Microbiology 13 (4):280–8. doi: 10.21161/mjm.101417.
  • Randhir, R., and K. Shetty. 2007. Mung beans processed by solid-state bioconversion improves phenolic content and functionality relevant for diabetes and ulcer management. Innovative Food Science & Emerging Technologies 8 (2):197–204. doi: 10.1016/j.ifset.2006.10.003.
  • Randhir, R., D. Vattem, and K. Shetty. 2004. Solid-state bioconversion of fava bean by Rhizopus oligosporus for enrichment of phenolic antioxidants and L-DOPA. Innovative Food Science & Emerging Technologies 5 (2):235–44. doi: 10.1016/j.ifset.2004.01.003.
  • Rao, S., K. Chinkwo, A. Santhakumar, S. Johnson, and C. Blanchard. 2019. Apoptosis induction pathway in human colorectal cancer cell line SW480 exposed to cereal phenolic extracts. Molecules 24 (13):2465. doi: 10.3390/molecules24132465.
  • Rashid, N. Y. A., D. L. A. Razak, A. Jamaluddin, S. A. Sharifuddin, and K. Long. 2015. Bioactive compounds and antioxidant activity of rice bran fermented with lactic acid bacteria. Malaysian Journal of Microbiology 11 (Specialissue2):156–62. doi: 10.21161/mjm.12714.
  • Renna, M., F. De Cillis, B. Leoni, E. Acciardi, and P. Santamaria. 2020. From by-product to unconventional vegetable: Preliminary evaluation of fresh fava hulls highlights richness in L-DOPA and low content of anti-nutritional factor. Foods 9 (2):159. doi: 10.3390/foods9020159.
  • Roasa, J., R. De Villa, Y. Mine, and R. Tsao. 2021. Phenolics of cereal, pulse and oilseed processing by-products and potential effects of solid-state fermentation on their bioaccessibility, bioavailability and health benefits: A review. Trends in Food Science & Technology 116:954–74. doi: 10.1016/j.tifs.2021.08.027.
  • Sadh, P. K., P. Chawla, L. Bhandari, and J. S. Duhan. 2018. Bio-enrichment of functional properties of peanut oil cakes by solid state fermentation using Aspergillus oryzae. Journal of Food Measurement and Characterization 12 (1):622–33. doi: 10.1007/s11694-017-9675-2.
  • Sadh, P. K., P. Chawla, L. Bhandari, R. Kaushik, and J. S. Duhan. 2017. In vitro assessment of bio-augmented minerals from peanut oil cakes fermented by Aspergillus oryzae through Caco-2 cells. Journal of Food Science and Technology 54 (11):3640–9. doi: 10.1007/s13197-017-2825-z.
  • Sadh, P. K., S. Duhan, and J. S. Duhan. 2018. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresources and Bioprocessing 5 (1):1. doi: 10.1186/s40643-017-0187-z.
  • Sadh, P. K., P. Saharan, S. Duhan, and J. S. Duhan. 2017. Bioaugmentation of phenolics and antioxidant activity of Oryza sativa by solid state fermentation using Aspergillus spp. International Food Research Journal 24 (3):1160–6.
  • Saharan, P., P. K. Sadh, and J. S. Duhan. 2017. Comparative assessment of effect of fermentation on phenolics, flavanoids and free radical scavenging activity of commonly used cereals. Biocatalysis and Agricultural Biotechnology 12:236–40. doi: 10.1016/j.bcab.2017.10.013.
  • Saharan, P., P. K. Sadh, S. Duhan, and J. S. Duhan. 2020. Bio-enrichment of phenolic, flavonoids content and antioxidant activity of commonly used pulses by solid-state fermentation. Journal of Food Measurement and Characterization 14 (3):1497–510. doi: 10.1007/s11694-020-00399-z.
  • Salar, R. K., M. Certik, and V. Brezova. 2012. Modulation of phenolic content and antioxidant activity of maize by solid state fermentation with thamnidium elegans CCF 1456. Biotechnology and Bioprocess Engineering 17 (1):109–16. doi: 10.1007/s12257-011-0455-2.
  • Salar, R. K., and S. S. Purewal. 2016. Improvement of DNA damage protection and antioxidant activity of biotransformed pearl millet (Pennisetum glaucum) cultivar PUSA-415 using Aspergillus oryzae MTCC 3107. Biocatalysis and Agricultural Biotechnology 8:221–7. doi: 10.1016/j.bcab.2016.10.005.
  • Salar, R. K., S. S. Purewal, and M. S. Bhatti. 2016. Optimization of extraction conditions and enhancement of phenolic content and antioxidant activity of pearl millet fermented with Aspergillus awamori MTCC-548. Resource-Efficient Technologies 2 (3):148–57. doi: 10.1016/j.reffit.2016.08.002.
  • Salar, R. K., S. S. Purewal, and K. S. Sandhu. 2017. Fermented pearl millet (Pennisetum glaucum) with in vitro DNA damage protection activity, bioactive compounds and antioxidant potential. Food Research International (Ottawa, ON) 100 (Pt 2):204–10. doi: 10.1016/j.foodres.2017.08.045.
  • Salazar Lopez, N. J., G. Loarca-Piña, R. Campos-Vega, M. Gaytán Martínez, E. Morales Sánchez, J. M. Esquerra-Brauer, G. A. Gonzalez-Aguilar, and M. Robles Sánchez. 2016. The extrusion process as an alternative for improving the biological potential of sorghum bran: Phenolic compounds and antiradical and anti-inflammatory capacity. Evidence-Based Complementary and Alternative Medicine: eCAM 2016:8387975. doi: 10.1155/2016/8387975.
  • Sandhu, K. S., S. Punia, and M. Kaur. 2016. Effect of duration of solid state fermentation by Aspergillus awamorinakazawa on antioxidant properties of wheat cultivars. LWT - Food Science and Technology 71:323–8. doi: 10.1016/j.lwt.2016.04.008.
  • Sanjukta, S., and A. K. Rai. 2016. Production of bioactive peptides during soybean fermentation and their potential health benefits. Trends in Food Science & Technology 50:1–10. doi: 10.1016/j.tifs.2016.01.010.
  • Saritha, M., Arora, and A. Lata. 2012. Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian Journal of Microbiology 52 (2):122–30. doi: 10.1007/s12088-011-0199-x.
  • Schmidt, C. G., L. M. Gonçalves, L. Prietto, H. S. Hackbart, and E. B. Furlong. 2014. Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae. Food Chemistry 146:371–7. doi: 10.1016/j.foodchem.2013.09.101.
  • Šelo, G., M. Planinić, M. Tišma, S. Tomas, D. Koceva Komlenić, and A. Bucić-Kojić. 2021. A comprehensive review on valorization of agro-food industrial residues by solid-state fermentation. Foods 10 (5):927. doi: 10.3390/foods10050927.
  • Seo, S. H., and S. J. Cho. 2016. Changes in allergenic and antinutritional protein profiles of soybean meal during solid-state fermentation with Bacillus subtilis. LWT - Food Science and Technology 70:208–12. doi: 10.1016/j.lwt.2016.02.035.
  • Seo, H. S., S. Lee, D. Singh, H. W. Shin, S. A. Cho, and C. H. Lee. 2018. Untargeted metabolite profiling for koji-fermentative bioprocess unravels the effects of varying substrate types and microbial inocula. Food Chemistry 266:161–9. doi: 10.1016/j.foodchem.2018.05.048.
  • Sepúlveda, L., R. De La Cruz, J. J. Buenrostro, J. A. Ascacio-Valdés, A. F. Aguilera-Carbó, A. Prado, R. Rodríguez-Herrera, and C. N. Aguilar. 2016. Effect of different polyphenol sources on the efficiency of ellagic acid release by Aspergillus niger. Revista Argentina de Microbiologia 48 (1):71–7. doi: 10.1016/j.ram.2015.08.008.
  • Shahidi, F., and P. Ambigaipalan. 2015. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. Journal of Functional Foods 18:820–97. doi: 10.1016/j.jff.2015.06.018.
  • Shahidi, F., and J. D. Yeo. 2016. Insoluble-bound phenolics in food. Molecules 21 (9):1216. doi: 10.3390/molecules21091216.
  • Shahidi, F., and J. D. Yeo. 2018. Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. International Journal of Molecular Sciences 19 (6):1573. doi: 10.3390/ijms19061573.
  • Sharma, R. K., and D. S. Arora. 2015. Fungal degradation of lignocellulosic residues: An aspect of improved nutritive quality. Critical Reviews in Microbiology 41 (1):52–60. doi: 10.3109/1040841X.2013.791247.
  • Sheih, I. C., T. J. Fang, T. K. Wu, and R. Y. Chen. 2014. Effects of fermentation on antioxidant properties and phytochemical composition of soy germ. Journal of the Science of Food and Agriculture 94 (15):3163–70. doi: 10.1002/jsfa.6666.
  • Shin, H. Y., S. M. Kim, J. H. Lee, and S. T. Lim. 2019. Solid-state fermentation of black rice bran with Aspergillus awamori and Aspergillus oryzae: Effects on phenolic acid composition and antioxidant activity of bran extracts. Food Chemistry 272:235–41. doi: 10.1016/j.foodchem.2018.07.174.
  • Shrivastava, A., A. A. Khan, M. Khurshid, M. A. Kalam, S. K. Jain, and P. K. Singhal. 2016. Recent developments in l-asparaginase discovery and its potential as anticancer agent. Critical Reviews in Oncology/Hematology 100:1–10. doi: 10.1016/j.critrevonc.2015.01.002.
  • Shukla, S., J. Park, D. H. Kim, S. Y. Hong, J. S. Lee, and M. Kim. 2016. Total phenolic content, antioxidant, tyrosinase and α-glucosidase inhibitory activities of water soluble extracts of noble starter culture Doenjang, a Korean fermented soybean sauce variety. Food Control 59:854–61. doi: 10.1016/j.foodcont.2015.07.003.
  • Singh, B., J. P. Singh, K. Shevkani, N. Singh, and A. Kaur. 2017. Bioactive constituents in pulses and their health benefits. Journal of Food Science and Technology 54 (4):858–70. doi: 10.1007/s13197-016-2391-9.
  • Singh, H. B., B. N. Singh, S. P. Singh, and C. S. Nautiyal. 2010. Solid-state cultivation of Trichoderma harzianum NBRI-1055 for modulating natural antioxidants in soybean seed matrix. Bioresource Technology 101 (16):6444–53. doi: 10.1016/j.biortech.2010.03.057.
  • Soccol, C. R., E. S. F. da Costa, L. A. J. Letti, S. G. Karp, A. L. Woiciechowski, L. P. de, and S. Vandenberghe. 2017. Recent developments and innovations in solid state fermentation. Biotechnology Research and Innovation 1 (1):52–71. doi: 10.1016/j.biori.2017.01.002.
  • Soleymani, S., S. Habtemariam, R. Rahimi, and S. M. Nabavi. 2020. The what and who of dietary lignans in human health: Special focus on prooxidant and antioxidant effects. Trends in Food Science & Technology 106:382–90. doi: 10.1016/j.tifs.2020.10.015.
  • Spaggiari, M., A. Ricci, L. Calani, L. Bresciani, E. Neviani, C. Dall’Asta, C. Lazzi, and G. Galaverna. 2020. Solid state lactic acid fermentation: A strategy to improve wheat bran functionality. LWT 118:108668. doi: 10.1016/j.lwt.2019.108668.
  • Starzyńska-Janiszewska, A., R. Duliński, B. Stodolak, B. Mickowska, and A. Wikiera. 2016. Prolonged tempe-type fermentation in order to improve bioactive potential and nutritional parameters of quinoa seeds. Journal of Cereal Science 71:116–21. doi: 10.1016/j.jcs.2016.08.001.
  • Starzyńska-Janiszewska, A., B. Stodolak, R. Duliński, B. Mickowska, and R. Sabat. 2017. Fermentation of colored quinoa seeds with neurospora intermedia to obtain oncom-type products of favorable nutritional and bioactive characteristics. Cereal Chemistry Journal 94 (3):619–24. doi: 10.1094/CCHEM-10-16-0264-R.
  • Starzyńska-Janiszewska, A., B. Stodolak, A. M. Gómez-Caravaca, B. Mickowska, B. Martin-Garcia, and Ł. Byczyński. 2019. Mould starter selection for extended solid-state fermentation of quinoa. LWT 99:231–7. doi: 10.1016/j.lwt.2018.09.055.
  • Starzyńska-Janiszewska, A., B. Stodolak, and B. Mickowska. 2014. Effect of controlled lactic acid fermentation on selected bioactive and nutritional parameters of tempeh obtained from unhulled common bean (Phaseolus vulgaris) seeds. Journal of the Science of Food and Agriculture 94 (2):359–66. doi: 10.1002/jsfa.6385.
  • Starzyńska-Janiszewska, A., B. Stodolak, R. Socha, B. Mickowska, and A. Wywrocka-Gurgul. 2019. Spelt wheat Tempe as a value-added whole-grain food product. LWT 113:108250. doi: 10.1016/j.lwt.2019.108250.
  • Su, X., J. Zhang, H. Wang, J. Xu, J. He, L. Liu, T. Zhang, R. Chen, and J. Kang. 2017. Phenolic acid profiling, antioxidant, and anti-inflammatory activities, and miRNA regulation in the polyphenols of 16 blueberry samples from China. Molecules 22 (2):312. doi: 10.3390/molecules22020312.
  • Suarti, B., S. Sukarno, A. Ardiansyah, and S. Budijanto. 2020. Bio-active compounds, their antioxidant activities, and the physicochemical and pasting properties of both pigmented and non-pigmented fermented de-husked rice flour. AIMS Agriculture and Food 6 (1):49–64. doi: 10.3934/agrfood.2021004.
  • Suriano, F., A. M. Neyrinck, J. Verspreet, M. Olivares, S. Leclercq, T. Van de Wiele, C. M. Courtin, P. D. Cani, L. B. Bindels, and N. M. Delzenne. 2018. Particle size determines the anti-inflammatory effect of wheat bran in a model of fructose over-consumption: Implication of the gut microbiota. Journal of Functional Foods 41:155–62. doi: 10.1016/j.jff.2017.12.035.
  • Svensson, L., B. Sekwati-Monang, D. L. Lutz, R. Schieber, and M. G. Gänzle. 2010. Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor (L.) Moench). Journal of Agricultural and Food Chemistry 58 (16):9214–20. doi: 10.1021/jf101504v.
  • Syifaa, A. S., S. Jinap, M. Sanny, and A. Khatib. 2016. Chemical profiling of different types of soy sauce and the relationship with its sensory attributes. Journal of Food Quality 39 (6):714–25. doi: 10.1111/jfq.12240.
  • Tamang, J. P., D. H. Shin, S. J. Jung, and S. W. Chae. 2016. Functional properties of microorganisms in fermented foods. Frontiers in Microbiology 7:578. doi: 10.3389/fmicb.2016.00578.
  • Tamene, A., S. Kariluoto, K. Baye, and C. Humblot. 2019. Quantification of folate in the main steps of traditional processing of tef injera, a cereal based fermented staple food. Journal of Cereal Science 87:225–30. doi: 10.1016/j.jcs.2019.04.005.
  • Tang, Y., and R. Tsao. 2017. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: A review. Molecular Nutrition & Food Research 61 (7):1600767. doi: 10.1002/mnfr.201600767.
  • Tang, Y., B. Zhang, X. Li, P. X. Chen, H. Zhang, R. Liu, and R. Tsao. 2016. Bound phenolics of quinoa seeds released by acid, alkaline, and enzymatic treatments and their antioxidant and α-glucosidase and pancreatic lipase inhibitory effects. Journal of Agricultural and Food Chemistry 64 (8):1712–9. doi: 10.1021/acs.jafc.5b05761.
  • Taylor, J. R. N., P. S. Belton, T. Beta, and K. G. Duodu. 2014. Increasing the utilisation of sorghum, millets and pseudocereals: Developments in the science of their phenolic phytochemicals, biofortification and protein functionality. Journal of Cereal Science 59 (3):257–75. doi: 10.1016/j.jcs.2013.10.009.
  • Teng, D., M. Gao, Y. Yang, B. Liu, Z. Tian, and J. Wang. 2012. Bio-modification of soybean meal with Bacillus subtilis or Aspergillus oryzae. Biocatalysis and Agricultural Biotechnology 1 (1):32–8. doi: 10.1016/j.bcab.2011.08.005.
  • Torino, M. I., R. I. Limón, C. Martínez-Villaluenga, S. Mäkinen, A. Pihlanto, C. Vidal-Valverde, and J. Frias. 2013. Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chemistry 136 (2):1030–7. doi: 10.1016/j.foodchem.2012.09.015.
  • Verduzco-Oliva, R., and J. A. Gutierrez-Uribe. 2020. Beyond enzyme production: Solid state fermentation (SSF) as an alternative approach to produce antioxidant polysaccharides. Sustainability (Switzerland) 12 (2):495. doi: 10.3390/su12020495.
  • Villalva, M. F. A., G. González-Aguilar, O. R. Sández, H. A. García, A. I. L. Osuna, G. A. López-Ahumada, and R. M. Robles-Sánchez. 2018. Bioprocessing of wheat (Triticum aestivum cv. kronstad) bran from northwest Mexico: Effects on ferulic acid bioaccessibility in breads. CYTA - Journal of Food 16 (1):570–9. doi: 10.1080/19476337.2018.1440007.
  • Vinayagam, R., M. Jayachandran, and B. Xu. 2016. Antidiabetic effects of simple phenolic acids: A comprehensive review. Phytotherapy Research: PTR 30 (2):184–99. doi: 10.1002/ptr.5528.
  • Walia, A., S. Guleria, P. Mehta, A. Chauhan, and J. Parkash. 2017. Microbial xylanases and their industrial application in pulp and paper biobleaching: A review. 3 Biotech 7 (1):11. doi: 10.1007/s13205-016-0584-6.
  • Wang, H., S. Zhang, Y. Sun, and Y. Dai. 2013. ACE-Inhibitory peptide isolated from fermented soybean meal as functional food. International Journal of Food Engineering 9 (1):1–8. doi: 10.1515/ijfe-2012-0207.
  • Webb, C. 2017. Design aspects of solid state fermentation as applied to microbial bioprocessing. Journal of Applied Biotechnology & Bioengineering 4 (1):511–32. doi: 10.15406/jabb.2017.04.00094.
  • Wen, T. C., G. R. Li, J. C. Kang, C. Kang, and K. D. Hyde. 2014. Optimization of solid-state fermentation for fruiting body growth and cordycepin production by Cordyceps militaris. Chiang Mai Journal of Science 41 (4):858–72.
  • Weng, C., X. Peng, and Y. Han. 2021. Depolymerization and conversion of lignin to value-added bioproducts by microbial and enzymatic catalysis. Biotechnology for Biofuels 14 (1):84. doi: 10.1186/s13068-021-01934-w.
  • Wongputtisin, P., C. Khanongnuch, W. Kongbuntad, P. Niamsup, S. Lumyong, and P. K. Sarkar. 2014. Use of Bacillus subtilis isolates from Tua-nao towards nutritional improvement of soya bean hull for monogastric feed application. Letters in Applied Microbiology 59 (3):328–33. doi: 10.1111/lam.12279.
  • Wu, H., X. Rui, W. Li, Y. Xiao, J. Zhou, and M. Dong. 2018. Whole-grain oats (Avena sativa L.) as a carrier of lactic acid bacteria and a supplement rich in angiotensin I-converting enzyme inhibitory peptides through solid-state fermentation. Food & Function 9 (4):2270–81. doi: 10.1039/c7fo01578j.
  • Xiao, Y., J. Fan, Y. Chen, X. Rui, Q. Zhang, and M. Dong. 2016. Enhanced total phenolic and isoflavone aglycone content, antioxidant activity and DNA damage protection of soybeans processed by solid state fermentation with Rhizopus oligosporus RT-3. RSC Advances 6 (35):29741–56. doi: 10.1039/C6RA00074F.
  • Xiao, Y., X. Rui, G. Xing, H. Wu, W. Li, X. Chen, M. Jiang, and M. Dong. 2015. Solid state fermentation with Cordyceps militaris SN-18 enhanced antioxidant capacity and DNA damage protective effect of oats (Avena sativa L.). Journal of Functional Foods 16:58–73. doi: 10.1016/j.jff.2015.04.032.
  • Xiao, Y., G. Xing, X. Rui, W. Li, X. Chen, M. Jiang, and M. Dong. 2014. Enhancement of the antioxidant capacity of chickpeas by solid state fermentation with Cordyceps militaris SN-18. Journal of Functional Foods 10:210–22. doi: 10.1016/j.jff.2014.06.008.
  • Xiao, Y., B. Zhang, Y. Chen, J. Miao, Q. Zhang, X. Rui, and M. Dong. 2017. Solid-state bioprocessing with cordyceps militaris enhanced antioxidant activity and DNA damage protection of red beans (phaseolus angularis). Cereal Chemistry Journal 94 (2):177–84. doi: 10.1094/CCHEM-03-16-0046-R.
  • Xu, L., F. Wang, Z. Zhang, and N. Terry. 2019. Optimization of polysaccharide production from cordyceps militaris by solid-state fermentation on rice and its antioxidant activities. Foods 8 (11):590. doi: 10.3390/foods8110590.
  • Yang, L. C., T. J. Fu, and F. C. Yang. 2020. Biovalorization of soybean residue (okara) via fermentation with Ganoderma lucidum and Lentinus edodes to attain products with high anti-osteoporotic effects. Journal of Bioscience and Bioengineering 129 (4):514–8. doi: 10.1016/j.jbiosc.2019.10.003.
  • Yang, Y., T. Kameda, H. Aoki, D. E. Nirmagustina, A. Iwamoto, N. Kato, N. Yanaka, Y. Okazaki, and T. Kumrungsee. 2018. The effects of tempe fermented with Rhizopus microsporus, Rhizopus oryzae, or Rhizopus stolonifer on the colonic luminal environment in rats. Journal of Functional Foods 49:162–7. doi: 10.1016/j.jff.2018.08.017.
  • Yang, A., L. Zuo, Y. Cheng, Z. Wu, X. Li, P. Tong, and H. Chen. 2018. Degradation of major allergens and allergenicity reduction of soybean meal through solid-state fermentation with microorganisms. Food & Function 9 (3):1899–909. doi: 10.1039/c7fo01824j.
  • Yen, G. C., Y. C. Chang, and S. W. Su. 2003. Antioxidant activity and active compounds of rice koji fermented with Aspergillus candidus. Food Chemistry 83 (1):49–54. doi: 10.1016/S0308-8146(03)00035-9.
  • Yin, Z. N., W. J. Wu, C. Z. Sun, H. F. Liu, W. B. Chen, Q. P. Zhan, Z. G. Lei, X. Xin, J. J. Ma, K. Yao, et al. 2019. Antioxidant and anti-inflammatory capacity of ferulic acid released from wheat bran by solid-state fermentation of Aspergillus niger. Biomedical and Environmental Sciences: BES 32 (1):11–21. doi: 10.3967/bes2019.002.
  • Yuksekdag, Z., B. Cinar Acar, B. Aslim, and U. Tukenmez. 2017. β-Glucosidase activity and bioconversion of isoflavone glycosides to aglycones by potential probiotic bacteria. International Journal of Food Properties 20 (sup3):S2878–S86. doi: 10.1080/10942912.2017.1382506.
  • Zambrano, C., A. Kotogán, O. Bencsik, T. Papp, C. Vágvölgyi, K. C. Mondal, J. Krisch, and M. Takó. 2018. Mobilization of phenolic antioxidants from grape, apple and pitahaya residues via solid state fungal fermentation and carbohydrase treatment. LWT - Food Science and Technology 89:457–65. doi: 10.1016/j.lwt.2017.11.025.
  • Zerva, A., C. Pentari, C. Ferousi, E. Nikolaivits, A. Karnaouri, and E. Topakas. 2021. Recent advances on key enzymatic activities for the utilisation of lignocellulosic biomass. Bioresource Technology 342:126058. doi: 10.1016/j.biortech.2021.126058.
  • Zhang, B., Z. Deng, Y. Tang, P. X. Chen, R. Liu, D. D. Ramdath, Q. Liu, M. Hernandez, and R. Tsao. 2017. Bioaccessibility, in vitro antioxidant and anti-inflammatory activities of phenolics in cooked green lentil (Lens culinaris). Journal of Functional Foods 32:248–55. doi: 10.1016/j.jff.2017.03.004.
  • Zhang, L., W. Gao, X. Chen, and H. Wang. 2014. The effect of bioprocessing on the phenolic acid composition and antioxidant activity of wheat bran. Cereal Chemistry Journal 91 (3):255–61. doi: 10.1094/CCHEM-03-13-0056-R.
  • Zhang, Z., Z. Lei, Y. Lu, Z. Lu, and Y. Chen. 2008. Chemical composition and bioactivity changes in stale rice after fermentation with Cordyceps sinensis. Journal of Bioscience and Bioengineering 106 (2):188–93. doi: 10.1263/jbb.106.188.
  • Zhang, N., D. Li, X. Zhang, Y. Shi, and H. Wang. 2015. Solid-state fermentation of whole oats to yield a synbiotic food rich in lactic acid bacteria and prebiotics. Food & Function 6 (8):2620–5. doi: 10.1039/c5fo00411j.
  • Zhang, Z., G. Lv, H. Pan, L. Fan, C. R. Soccol, and A. Pandey. 2012. Production of powerful antioxidant supplements via solid-state fermentation of wheat (Triticum aestivum Linn.) by Cordyceps militaris. Food Technology and Biotechnology 50 (1):32–9. https://www.ftb.com.hr/archives/77-volume-50-issue-no-1/400-production-of-powerful-antioxidant-supplements-via-solid-state-fermentation-of-wheat-triticum-aestivum-linn-by-cordyceps-militaris.
  • Zhang, S. T., Y. Shi, S. L. Zhang, W. Shang, X. Q. Gao, and H. K. Wang. 2014. Whole soybean as probiotic lactic acid bacteria carrier food in solid-state fermentation. Food Control 41 (1):1–6. doi: 10.1016/j.foodcont.2013.12.026.
  • Zhang, S. B., L. Wang, Y. Liu, H. C. Zhai, J. P. Cai, and Y. S. Hu. 2015. Expression of feruloyl esterase A from Aspergillus terreus and its application in biomass degradation. Protein Expression and Purification 115:153–7. doi: 10.1016/j.pep.2015.08.015.
  • Zhang, H., and H. Yu. 2019. Enhanced biotransformation of soybean isoflavone from glycosides to aglycones using solid-state fermentation of soybean with effective microorganisms (EM) strains. Journal of Food Biochemistry 43 (4):e12804. doi: 10.1111/jfbc.12804.
  • Zhang, B., Y. Zhang, H. Li, Z. Deng, and R. Tsao. 2020. A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives. Trends in Food Science & Technology 105 (September):347–62. doi: 10.1016/j.tifs.2020.09.029.
  • Zheng, S., H. Zhang, R. Liu, C. Liang Huang, H. Li, Z. Yuan Deng, and R. Tsao. 2021. Do short chain fatty acids and phenolic metabolites of the gut have synergistic anti-inflammatory effects? - New insights from a TNF-α-induced Caco-2 cell model. Food Research International (Ottawa, ON) 139:109833. doi: 10.1016/j.foodres.2020.109833.
  • Zhu, Y., and S. Sang. 2017. Phytochemicals in whole grain wheat and their health-promoting effects. Molecular Nutrition & Food Research 61 (7):1600852–23. doi: 10.1002/mnfr.201600852.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.