697
Views
3
CrossRef citations to date
0
Altmetric
Review Articles

Caffeine-loaded nano/micro-carriers: Techniques, bioavailability, and applications

, , , , , ORCID Icon, , ORCID Icon, , & ORCID Icon show all

References

  • Abd, E., M. S. Roberts, and J. E. Grice. 2016. A comparison of the penetration and permeation of caffeine into and through human epidermis after application in various vesicle formulations. Skin Pharmacology and Physiology 29 (1):24–30. doi: 10.1159/000441040.
  • Abdel-Aziz, H. M., R. S. Farag, and S. A. Abdel-Gawad. 2020. Removal of caffeine from aqueous solution by green approach using Ficus Benjamina zero-valent iron/copper nanoparticles. Adsorption Science & Technology 38 (9–10):325–43. doi: 10.1177/0263617420947495.
  • Abeer, M. M., P. Rewatkar, Z. Qu, M. Talekar, F. Kleitz, R. Schmid, M. Lindén, T. Kumeria, and A. Popat. 2020. Silica nanoparticles: A promising platform for enhanced oral delivery of macromolecules. Journal of Controlled Release: Official Journal of the Controlled Release Society 326 (10):544–55. doi: 10.1016/j.jconrel.2020.07.021.
  • Abosabaa, S. A., A. N. ElMeshad, and M. G. Arafa. 2021. Chitosan nanocarrier entrapping hydrophilic drugs as advanced polymeric system for dual pharmaceutical and cosmeceutical application: A comprehensive analysis using box–behnken design. Polymers 13 (5):677. doi: 10.3390/polym13050677.
  • Agrawal, S. K., N. Sanabria-DeLong, G. N. Tew, and S. R. Bhatia. 2008. Structural characterization of PLA-PEO-PLA solutions and hydrogels: Crystalline vs amorphous PLA domains. Macromolecules 41 (5):1774–84. doi: 10.1021/ma070634r.
  • Akbari-Alavijeh, S., R. Shaddel, and S. M. Jafari. 2020. Encapsulation of food bioactives and nutraceuticals by various chitosan-based nanocarriers. Food Hydrocolloids 105:105774. 2020.105774 doi: 10.1016/j.foodhyd.
  • Algul, D., G. Duman, S. Ozdemir, E. T. Acar, and G. Yener. 2018. Preformulation, characterization, and in vitro release studies of caffeine-loaded solid lipid nanoparticles. Journal of Cosmetic Science 69 (3):165–73.
  • Alsarra, I. A., A. Bosela, S. Ahmed, and G. Mahrous. 2005. Proniosomes as a drug carrier for transdermal delivery of ketorolac. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 59 (3):485–90. doi: 10.1016/j.ejpb.2004.09.006.
  • Altun, Ö., and M. Şuözer. 2019. Synthesis, spectral analysis, antimicrobial, cytotoxicity, and antioxidant studies of gold(III) complex of caffeine. Journal of Coordination Chemistry 72 (12):2091–105. doi: 10.1080/00958972.2019.1629430.
  • Anwar, M., and N. Mohamed. 2015. Amelioration of liver and kidney functions disorders induced by sodium nitrate in rats using wheat germ oil. Journal of Radiation Research and Applied Sciences 8 (1):77–83. doi: 10.1016/j.jrras.2014.11.004.
  • Arendash, G. W., and C. Cao. 2010. Caffeine and coffee as therapeutics against Alzheimer’s disease. Journal of Alzheimer’s Disease 20 (s1):S117–S126. doi: 10.3233/JAD-2010-091249.
  • Artusio, F., A. Ferri, V. Gigante, D. Massella, I. Mazzarino, M. Sangermano, A. Barresi, and R. Pisano. 2019. Synthesis of high payload nanohydrogels for the ecapsulation of hydrophilic molecules via inverse miniemulsion polymerization: Caffeine as a case study. Drug Development and İndustrial Pharmacy 45 (12):1862–70. doi: 10.1080/03639045.2019.1672714.
  • Assadpour, E., and S. M. Jafari. 2019. A systematic review on nanoencapsulation of food bioactive ingredients and nutraceuticals by various nanocarriers. Critical Reviews in Food Science and Nutrition 59 (19):3129–51. doi: 10.1080/10408398.2018.1484687.
  • Assadpour, E., H. Rostamabadi, and S. M. Jafari. 2020. Introduction to characterization of nanoencapsulated food ingredients. In Characterization of nanoencapsulated food ıngredients, 1–50. USA: Academic Press Inc. Elsevier. doi: 10.1016/B978-0-12-815667-4.00001-8.
  • Azam, S., N. Hadi, N. U. Khan, and S. M. Hadi. 2003. Antioxidant and prooxidant properties of caffeine, theobromine and xanthine. Medical Science Monitor: İnternational Medical Journal of Experimental and Clinical Research 9 (9):BR325–BR330.
  • Babu, M., C. Jerard, B. P. Michael, S. Suresh, and R. Ramachandran. 2018. Mesoporous silica loaded caffeine inhibits inflammatory markers in lipopolysaccharide-activated rat macrophage cells. Journal of Applied Pharmaceutical Science 8 (12):124–31. doi: 10.7324/JAPS.2018.81214.
  • Bagheri, L., A. Madadlou, M. Yarmand, and M. E. Mousavi. 2014a. Potentially bioactive and caffeine-loaded peptidic sub-micron and nanoscalar particles. Journal of Functional Foods 6:462–9. doi: 10.1016/j.jff.2013.11.012.
  • Bagheri, L., A. Madadlou, M. Yarmand, and M. E. Mousavi. 2014b. Spray-dried alginate microparticles carrying caffeine-loaded and potentially bioactive nanoparticles. Food Research International 62:1113–9. doi: 10.1016/j.foodres.2014.05.040.
  • Balakrishnan, P., S. Shanmugam, W. S. Lee, W. M. Lee, J. O. Kim, D. H. Oh, D.-D. Kim, J. S. Kim, B. K. Yoo, H.-G. Choi, et al. 2009. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. International Journal of Pharmaceutics 377 (1–2):1–8. doi: 10.1016/j.ijpharm.2009.04.020.
  • Baratloo, A., A. Rouhipour, M. M. Forouzanfar, S. Safari, M. Amiri, and A. Negida. 2016. The role of caffeine in pain management: A brief literature review. Anesthesiology and Pain Medicine 6 (3):e33193. doi: 10.5812/aapm.33193.
  • Belščak-Cvitanović, A., D. Komes, S. Karlović, S. Djaković, I. Špoljarić, G. Mršić, and D. Ježek. 2015. Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium. Food Chemistry 167:378–86. doi: 10.1016/j.foodchem.2014.07.011.
  • Bermejo, D. V., E. Ibáñez, G. Reglero, and T. Fornari. 2016. Effect of cosolvents (ethyl lactate, ethyl acetate and ethanol) on the supercritical CO2 extraction of caffeine from green tea. The Journal of Supercritical Fluids 107:507–12. doi: 10.1016/j.supflu.2015.07.008.
  • Bolzinger, M.-A., S. Briançon, J. Pelletier, H. Fessi, and Y. Chevalier. 2008. Percutaneous release of caffeine from microemulsion, emulsion and gel dosage forms. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 68 (2):446–51. doi: 10.1016/j.ejpb.2007.10.018.
  • Bonina, F., S. Bader, L. Montenegro, C. Scrofani, and M. Visca. 1992. Three phase emulsions for controlled delivery in the cosmetic field. International Journal of Cosmetic Science 14 (2):65–74. doi: 10.1111/j.1467-2494.1992.tb00040.x.
  • Bonita, J. S., M. Mandarano, D. Shuta, and J. Vinson. 2007. Coffee and cardiovascular disease: İn vitro, cellular, animal, and human studies. Pharmacological Research 55 (3):187–98. doi: 10.1016/j.phrs.2007.01.006.
  • Bourbon, A. I., M. A. Cerqueira, and A. A. Vicente. 2016. Encapsulation and controlled release of bioactive compounds in lactoferrin-glycomacropeptide nanohydrogels: Curcumin and caffeine as model compounds. Journal of Food Engineering 180:110–9. doi: 10.1016/j.jfoodeng.2016.02.016.
  • Bourbon, A. I., A. C. Pinheiro, M. A. Cerqueira, and A. A. Vicente. 2016. Influence of chitosan coating on protein-based nanohydrogels properties and in vitro gastric digestibility. Food Hydrocolloids 60:109–18. doi: 10.1016/j.foodhyd.2016.03.002.
  • Bourbon, A. I., A. C. Pinheiro, M. A. Cerqueira, and A. A. Vicente. 2018. In vitro digestion of lactoferrin-glycomacropeptide nanohydrogels incorporating bioactive compounds: Effect of a chitosan coating. Food Hydrocolloids 84:267–75. doi: 10.1016/j.foodhyd.2018.06.015.
  • Bravo, J., C. Monente, I. Juániz, M. P. De Peña, and C. Cid. 2013. Influence of extraction process on antioxidant capacity of spent coffee. Food Research International 50 (2):610–6. doi: 10.1016/j.foodres.2011.04.026.
  • Brent, R. L., M. S. Christian, and R. M. Diener. 2011. Evaluation of the reproductive and developmental risks of caffeine. Birth Defects Research. Part B, Developmental and Reproductive Toxicology 92 (2):152–87. doi: 10.1002/bdrb.20288.
  • Cacciotti, I., F. Garavand, H. Rostamabadi, N. Khorshidian, Z. Sarlak, and S. M. Jafari. 2021. Application of nano/microencapsulated ingredients in chewing gum. In Application of nano/microencapsulated ıngredients in food products, 345–86. Elsevier. USA: Academic Press Inc. doi: 10.1016/B978-0-12-815726-8.00008-8.
  • Cacciotti, I., S. Mori, V. Cherubini, and F. Nanni. 2018. Eco-sustainable systems based on poly (lactic acid), diatomite and coffee grounds extract for food packaging. International Journal of Biological Macromolecules 112:567–75. doi: 10.1016/j.ijbiomac.2018.02.018.
  • Cai, Y., S. H. Gaffney, T. H. Lilley, D. Magnolato, R. Martin, C. M. Spencer, and E. Haslam. 1990. Polyphenol interactions. Part 4. Model studies with caffeine and cyclodextrins. Journal of the Chemical Society, Perkin Transactions 2 (12):2197–209.
  • Cai, C., F. Li, L. Liu, and Z. Tan. 2019. Deep eutectic solvents used as the green media for the efficient extraction of caffeine from Chinese dark tea. Separation and Purification Technology 227:115723. doi: 10.1016/j.seppur.2019.115723.
  • Cannon, C. L., L. A. Hogue, R. K. Vajravelu, G. H. Capps, A. Ibricevic, K. M. Hindi, A. Kascatan-Nebioglu, M. J. Walter, S. L. Brody, and W. J. Youngs. 2009. In vitro and murine efficacy and toxicity studies of nebulized SCC1, a methylated caffeine-silver(I) complex, for treatment of pulmonary infections. Antimicrobial Agents and Chemotherapy 53 (8):3285–93. doi: 10.1128/AAC.00314-09.
  • Chambin‐Remoussenard, O., P. Treffel, Y. Bechtel, and P. Agache. 1993. Surface recovery and stripping methods to quantify percutaneous absorption of caffeine in humans. Journal of Pharmaceutical Sciences 82 (11):1099–101. doi: 10.1002/jps.2600821107.
  • Chen, Y., and Y. Liu. 2010. Cyclodextrin-based bioactive supramolecular assemblies. Chemical Society Reviews 39 (2):495–505. doi: 10.1039/B816354P.
  • Cheng, M., Z. Hu, X. Lu, J. Huang, and D. Gu. 2014. Caffeine intake and atrial fibrillation incidence: Dose response meta-analysis of prospective cohort studies. The Canadian Journal of Cardiology 30 (4):448–54. doi: 10.1016/j.cjca.2013.12.026.
  • Choi, J. 2020. Motivations influencing caffeine consumption behaviors among college students in Korea: Associations with sleep quality. Nutrients 12 (4):953. doi: 10.3390/nu12040953.
  • Chrościńska-Krawczyk, M., M. Jargiełło-Baszak, M. Wałek, B. Tylus, and S. J. Czuczwar. 2011. Caffeine and the anticonvulsant potency of antiepileptic drugs: Experimental and clinical data. Pharmacological Reports: PR 63 (1):12–8. doi: 10.1016/S1734-1140(11)70394-2.
  • Clément, P., C. Laugel, and J.-P. Marty. 2000. In vitro release of caffeine from concentrated W/O emulsions: Effect of formulation parameters. International Journal of Pharmaceutics 207 (1–2):7–20. doi: 10.1016/S0378-5173(00)00521-4.
  • Comunian, T., A. Babazadeh, A. Rehman, R. Shaddel, S. Akbari-Alavijeh, S. Boostani, and S. M. Jafari. 2022. Protection and controlled release of vitamin C by different micro/nanocarriers. Critical Reviews in Food Science and Nutrition 62 (12):3301–22. doi: 10.1080/10408398.2020.1865258.
  • Dai, T., W. He, C. Yao, X. Ma, W. Ren, Y. Mai, and A. Wu. 2020. Applications of inorganic nanoparticles in the diagnosis and therapy of atherosclerosis. Biomaterials Science 8 (14):3784–99. doi: 10.1039/D0BM00196A.
  • Daraee, H., A. Eatemadi, E. Abbasi, S. F. Aval, M. Kouhi, and A. Akbarzadeh. 2016. Application of gold nanoparticles in biomedical and drug delivery. Artificial Cells, Nanomedicine, and Biotechnology 44 (1):410–22. doi: 10.3109/21691401.2014.955107.
  • de Mejia, E. G., and M. V. Ramirez-Mares. 2014. Impact of caffeine and coffee on our health. Trends in Endocrinology and Metabolism: TEM 25 (10):489–92. doi: 10.1016/j.tem.2014.07.003.
  • Di, H. W., Y. L. Luo, F. Xu, Y. S. Chen, and Y. F. Nan. 2011. Fabrication and caffeine release from Fe3O4/P(MAA-co- NVP) magnetic microspheres with controllable core-shell architecture. Journal of Biomaterials Science. Polymer Edition 22 (4–6):557–76. doi: 10.1163/092050610X487891.
  • Dias, M., A. Farinha, E. Faustino, J. Hadgraft, J. Pais, and C. Toscano. 1999. Topical delivery of caffeine from some commercial formulations. International Journal of Pharmaceutics 182 (1):41–7. doi: 10.1016/S0378-5173(99)00067-8.
  • Dreher, F., F. Fouchard, C. Patouillet, M. Andrian, J.-T. Simonnet, and F. Benech-Kieffer. 2002. Comparison of cutaneous bioavailability of cosmetic preparations containing caffeine or α-tocopherol applied on human skin models or human skin ex vivo at finite doses. Skin Pharmacology and Physiology 15 (Suppl. 1):40–58. doi: 10.1159/000066680.
  • EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). 2015. Scientific opinion on the safety of caffeine. EFSA Journal 13 (5):4102.
  • Elmotasem, H., H. K. Farag, and A. A. Salama. 2018. In vitro and in vivo evaluation of an oral sustained release hepatoprotective caffeine loaded w/o Pickering emulsion formula–Containing wheat germ oil and stabilized by magnesium oxide nanoparticles. International Journal of Pharmaceutics 547 (1–2):83–96. doi: 10.1016/j.ijpharm.2018.05.038.
  • Emamverdian, P., E. M. Kia, B. Ghanbarzadeh, and Z. Ghasempour. 2020. Characterization and optimization of complex coacervation between soluble fraction of Persian gum and gelatin. Colloids and Surfaces A: Physicochemical and Engineering Aspects 607:125436. 2020.125436. doi: 10.1016/j.colsurfa.
  • Esfanjani, A. F., and S. M. Jafari. 2016. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic ­compounds. Colloids and Surfaces. B, Biointerfaces 146:532–43. doi: 10.1016/j.colsurfb.2016.06.053.
  • Falsafi, S. R., H. Rostamabadi, and S. M. Jafari. 2020. X-ray diffraction (XRD) of nanoencapsulated food ingredients. In Characterization of nanoencapsulated food ingredients, 271–93. USA: Academic Press Inc. Elsevier. doi: 10.1016/B978-0-12-815667-4.00009-2.
  • Fang, C.-L., S. A. Al-Suwayeh, and J.-Y. Fang. 2013. Nanostructured lipid carriers (NLCs) for drug delivery and targeting. Recent Patents on Nanotechnology 7 (1):41–55. doi: 10.2174/187221013804484827.
  • Fathi, M., F. Donsi, and D. J. McClements. 2018. Protein‐based delivery systems for the nanoencapsulation of food ingredients. Comprehensive Reviews in Food Science and Food Safety 17 (4):920–36. doi: 10.1111/1541-4337.12360.
  • Fonseca, L. R., T. P. Santos, A. Czaikoski, and R. L. Cunha. 2022. Microfluidics-based production of chitosan-gellan nanocomplexes encapsulating caffeine. Food Research İnternational (Ottawa, ON) 151:110885. doi: 10.1016/j.foodres.2021.110885.
  • Fu, D., S. Deng, D. J. McClements, L. Zhou, L. Zou, J. Yi, C. Liu, and W. Liu. 2019. Encapsulation of β-carotene in wheat gluten nanoparticle-xanthan gum-stabilized Pickering emulsions: Enhancement of carotenoid stability and bioaccessibility. Food Hydrocolloids 89:80–9. 2018.10.032. doi: 10.1016/j.foodhyd.
  • Fuciños, C., M. Míguez, P. Fuciños, L. M. Pastrana, M. L. Rúa, and A. A. Vicente. 2017. Creating functional nanostructures: Encapsulation of caffeine into α-lactalbumin nanotubes. Innovative Food Science & Emerging Technologies 40:10–7. doi: 10.1016/j.ifset.2016.07.030.
  • FulgoniIII, V. L., D. R. Keast, and H. R. Lieberman. 2015. Trends in intake and sources of caffeine in the diets of US adults: 2001–2010. The American Journal of Clinical Nutrition 101 (5):1081–7. doi: 10.3945/ajcn.113.080077.
  • Gaffney, S. H., R. Martin, T. H. Lilley, E. Haslam, and D. Magnolato. 1986. The association of polyphenols with caffeine and α-and β-cyclodextrin in aqueous media. Journal of the Chemical Society, Chemical Communications 2:107–9. doi: 10.1039/C39860000107.
  • Gaonkar, A. G., N. Vasisht, A. R. Khare, and R. Sobel. 2014. Microencapsulation in the food industry: a practical implementation guide. USA: Academic Press Inc. Elsevier.
  • Glade, M. J. 2010. Caffeine—not just a stimulant. Nutrition (Burbank, Los Angeles County, CA) 26 (10):932–8. doi: 10.1016/j.nut.2010.08.004.
  • Godin, B., J. H. Sakamoto, R. E. Serda, A. Grattoni, A. Bouamrani, and M. Ferrari. 2010. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends in Pharmacological Sciences 31 (5):199–205. doi: 10.1016/j.tips.2010.01.003.
  • Graveland-Bikker, J., and C. De Kruif. 2006. Unique milk protein based nanotubes: Food and nanotechnology meet. Trends in Food Science & Technology 17 (5):196–203. doi: 10.1016/j.tifs.2005.12.009.
  • Gref, R., Y. Minamitake, M. T. Peracchia, V. Trubetskoy, V. Torchilin, and R. Langer. 1994. Biodegradable long-circulating polymeric nanospheres. Science (New York, NY) 263 (5153):1600–3. doi: 10.1126/science.8128245.
  • Gudas, V. V., M. A. Reed, P. G. Schnell, H. T. Tyrpin, M. P. Russell, and D. L. Witkewitz. 2000. Method of controlling release of caffeine in chewing gum. U.S. Patent 6 (165):516.
  • Gunasekaran, S., S. Ko, and L. Xiao. 2007. Use of whey proteins for encapsulation and controlled delivery applications. Journal of Food Engineering 83 (1):31–40. doi: 10.1016/j.jfoodeng.2006.11.001.
  • Guo, Y., P. Harris, A. Kaur, L. Pastrana, and P. Jauregi. 2017. Characterisation of β-lactoglobulin nanoparticles and their binding to caffeine. Food Hydrocolloids 71:85–93. doi: 10.1016/j.foodhyd.2017.04.027.
  • Hamdi, H., F. Abderrahim, and Meganem, R. 2010. Spectroscopic studies of inclusion complex of β-cyclodextrin and benzidine diammonium dipicrate. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 75 (1):32–6. doi: 10.1016/j.saa.2009.09.018.
  • Hamishehkar, H., J. Shokri, S. Fallahi, A. Jahangiri, S. Ghanbarzadeh, and M. Kouhsoltani. 2015. Histopathological evaluation of caffeine-loaded solid lipid nanoparticles in efficient treatment of cellulite. Drug Development and İndustrial Pharmacy 41 (10):1640–6. doi: 10.3109/03639045.2014.980426.
  • Harata, K., L. Xin Song, and H. Morii. 2000. X-ray structure of a 1:2 complex of hexakis (3- O -acetyl-2,6-di- O -methyl)-α-cyclodextrin with Butylacetate. Supramolecular Chemistry 11 (3):217–24. doi: 10.1080/10610270008049131.
  • Hasan, M., G. B. Messaoud, F. Michaux, A. Tamayol, C. J. Kahn, N. Belhaj, M. Linder, and E. Arab-Tehrany. 2016. Chitosan-coated ­liposomes encapsulating curcumin: Study of lipid–polysaccharide interactions and nanovesicle behavior. RSC Advances 6 (51):45290–304. doi: 10.1039/C6RA05574E.
  • Hassan, A., S. Sahudin, Z. Hussain, M. Hussain, and M. Hussain. 2018. Self-assembled chitosan nanoparticles for percutaneous delivery of caffeine: Preparation, characterization and in vitro release studies. International Journal of Applied Pharmaceutics 10 (4):172–85. doi: 10.22159/ijap.2018v10i4.25947.
  • Heckman, M. A., J. Weil, and E. G. De Mejia. 2010. Caffeine (1, 3, 7‐trimethylxanthine) in foods: A comprehensive review on consumption, functionality, safety, and regulatory matters. Journal of Food Science 75 (3):R77–R87. doi: 10.1111/j.1750-3841.2010.01561.x.
  • Hernández-Marín, N. Y., C. Lobato-Calleros, A. Román-Guerrero, J. Alvarez-Ramirez, and E. J. Vernon-Carter. 2016. Physical properties and release behaviour of caffeine multiple emulsions stabilised by binary or ternary biopolymer soluble complexes under acid, bile and yogurt storage conditions. Food Hydrocolloids 58:42–8. doi: 10.1016/j.foodhyd.2016.02.008.
  • Herrero, M., J. A. Mendiola, A. Cifuentes, and E. Ibáñez. 2010. Supercritical fluid extraction: Recent advances and applications. Journal of Chromatography. A 1217 (16):2495–511. doi: 10.1016/j.chroma.2009.12.019.
  • Hodali, H. A., R. S. Rawajfeh, and N. A. Allababdeh. 2017. Caffeine loading into micro- and nanoparticles of mesoporous silicate materials: İn vitro release kinetics. Journal of Dispersion Science and Technology 38 (9):1342–7. doi: 10.1080/01932691.2016.1239540.
  • Hofland, H. E., R. van der Geest, H. E. Bodde, H. E. Junginger, and J. A. Bouwstra. 1994. Estradiol permeation from nonionic surfactant vesicles through human stratum corneum in vitro. Pharmaceutical Research 11 (5):659–64. doi: 10.1023/A:1018963910260.
  • Hosseini, S. M. H., Z. Emam-Djomeh, P. Sabatino, and P. Van der Meeren. 2015. Nanocomplexes arising from protein-polysaccharide electrostatic interaction as a promising carrier for nutraceutical compounds. Food Hydrocolloids 50:16–26. doi: 10.1016/j.foodhyd.2015.04.006.
  • Hsu, C.-Y., P.-W. Wang, A. Alalaiwe, Z.-C. Lin, and J.-Y. Fang. 2019. Use of lipid Nanocarriers to improve Oral delivery of vitamins. Nutrients 11 (1):68. doi: 10.3390/nu11010068.
  • Huang, H., W. Feng, Y. Chen, and J. Shi. 2020. Inorganic nanoparticles in clinical trials and translations. Nano Today 35:100972. doi: 10.1016/j.nantod.2020.100972.
  • Iannuccelli, V., N. Sala, R. Tursilli, G. Coppi, and S. Scalia. 2006. Influence of liposphere preparation on butyl-methoxydibenzoylmethane photostability. European Journal of Pharmaceutics and Biopharmaceutics: Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik e.V 63 (2):140–5. doi: 10.1016/j.ejpb.2006.01.007.
  • International Agency for Research on Cancer (IARC). 1990. Coffee, tea, meat, methylxanthines and methylglyoxal. IARC Monographs Evaluation of Carcinogenic Risks to Humans 51:217–33.
  • Islam, M., M. Alencar, A. Mata, M. Paz, L. Matos, J. Sousa, and A. Melo-Cavalcante. 2016. Coffee: A health fuel-blot popular drinking. International Journal of Pharmacy and Pharmaceutical Sciences 8 (12):1–7. doi: 10.22159/ijpps.2016v8i12.14510.
  • Jafari, S. M., A. F. Esfanjani, I. Katouzian, and E. Assadpour. 2017. Release, characterization, and safety of nanoencapsulated food ingredients. In Nanoencapsulation of Food Bioactive İngredients, 401–53. USA: Academic Press Inc. Elsevier. doi: 10.1016/B978-0-12-809740-3.00010-6.
  • Jafari, S. M., I. Katouzian, H. Rajabi, and M. Ganje. 2017. Bioavailability and release of bioactive components from nanocapsules. In Nanoencapsulation technologies for the food and nutraceutical industries, 494–523. Elsevier. doi: 10.1016/B978-0-12-809436-5.00013-6.
  • Jafari, S. M., and D. J. McClements. 2017. Nanotechnology approaches for increasing nutrient bioavailability. In Advances in food and nutrition research, vol. 81, 1–30. USA: Academic Press Inc. Elsevier. doi: 10.1016/bs.afnr.2016.12.008.
  • Jagadish, R., S. Yellappa, M. Mahanthappa, and K. B. Chandrasekhar. 2017. Zinc oxide nanoparticle-modified glassy carbon electrode as a highly sensitive electrochemical sensor for the detection of caffeine. Journal of the Chinese Chemical Society 64 (7):813–21. doi: 10.1002/jccs.201600817.
  • Jain, A., D. Thakur, G. Ghoshal, O. Katare, and U. Shivhare. 2016. Characterization of microcapsulated β-carotene formed by complex coacervation using casein and gum tragacanth. International Journal of Biological Macromolecules 87:101–13. doi: 10.1016/j.ijbiomac.2016.01.117.
  • Jiao, M., P. Zhang, J. Meng, Y. Li, C. Liu, X. Luo, and M. Gao. 2018. Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications. Biomaterials Science 6 (4):726–45. doi: 10.1039/C7BM01020F.
  • Jin, T., and Y. He. 2011. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. Journal of Nanoparticle Research 13 (12):6877–85. doi: 10.1007/s11051-011-0595-5.
  • Kamalakannan, R., G. Mani, P. Muthusamy, A. A. Susaimanickam, and K. Kim. 2017. Caffeine-loaded gold nanoparticles conjugated with PLA-PEG-PLA copolymer for in vitro cytotoxicity and anti-inflammatory activity. Journal of Industrial and Engineering Chemistry 51:113–21. doi: 10.1016/j.jiec.2017.02.021.
  • Kamimori, G. H., C. S. Karyekar, R. Otterstetter, D. S. Cox, T. J. Balkin, G. L. Belenky, and N. D. Eddington. 2002. The rate of absorption and relative bioavailability of caffeine administered in chewing gum versus capsules to normal healthy volunteers. International Journal of Pharmaceutics 234 (1–2):159–67. doi: 10.1016/S0378-5173(01)00958-9.
  • Katouzian, I., A. F. Esfanjani, S. M. Jafari, and S. Akhavan. 2017. Formulation and application of a new generation of lipid nano-carriers for the food bioactive ingredients. Trends in Food Science & Technology 68:14–25. doi: 10.1016/j.tifs.2017.07.017.
  • Katouzian, I., and S. M. Jafari. 2016. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends in Food Science & Technology 53:34–48. doi: 10.1016/j.tifs.2016.05.002.
  • Katouzian, I., and S. M. Jafari. 2019. Nanotubes of α-lactalbumin for encapsulation of food ingredients. In Biopolymer nanostructures for food encapsulation purposes, 101–24. USA: Academic Press Inc. Elsevier. doi: 10.1016/B978-0-12-815663-6.00004-5.
  • Katyal, P., M. Meleties, and J. K. Montclare. 2019. Self-assembled protein-and peptide-based nanomaterials. ACS Biomaterials Science & Engineering 5 (9):4132–47. doi: 10.1021/acsbiomaterials.9b00408.
  • Kazemi, D., M. Salouti, K. Rostamizadeh, and A. Zabihian. 2014. Development of gentamicin-loaded solid lipid nanoparticles: Evaluation of drug release kinetic and antibacterial activity against Staphylococcus aureus. International Journal of Pharmaceutical Research and Innovation 7:1–6.
  • Keast, R. S. J. 2008. Modification of the bitterness of caffeine. Food Quality and Preference 19 (5):465–72. doi: 10.1016/j.foodqual.2008.02.002.
  • Khan, F., S. K. Park, N. I. Bamunuarachchi, D. Oh, and Y. M. Kim. 2021. Caffeine-loaded gold nanoparticles: Antibiofilm and anti-persister activities against pathogenic bacteria. Applied Microbiology and Biotechnology 105 (9):3717–31. doi: 10.1007/s00253-021-11300-3.
  • Khazaeli, P., A. Pardakhty, and H. Shoorabi. 2007. Caffeine-loaded niosomes: Characterization and in vitro release studies. Drug Delivery 14 (7):447–52. doi: 10.1080/10717540701603597.
  • Kim, W.-J., J.-D. Kim, J. Kim, S.-G. Oh, and Y.-W. Lee. 2008. Selective caffeine removal from green tea using supercritical carbon dioxide extraction. Journal of Food Engineering 89 (3):303–9. doi: 10.1016/j.jfoodeng.2008.05.018.
  • Kim, C., J. Shim, S. Han, and I. Chang. 2002. The skin-permeation-enhancing effect of phosphatidylcholine: Caffeine as a model active ingredient. Journal of Cosmetic Science 53 (6):363–74.
  • Kumar, V., J. Kaur, A. Panghal, S. Kaur, and V. Handa. 2018. Caffeine: A boon or bane. Nutrition & Food Science 48 (1):61–75. doi: 10.1108/NFS-05-2017-0100.
  • Kwak, H. W., H. Woo, I.-C. Kim, and K. H. Lee. 2017. Fish gelatin nanofibers prevent drug crystallization and enable ultrafast delivery. RSC Advances 7 (64):40411–7. doi: 10.1039/C7RA06433K.
  • Laizure, S. C., B. Meibohm, K. Nelson, F. Chen, Z. Y. Hu, and R. B. Parker. 2017. Comparison of caffeine disposition following ­administration by oral solution (energy drink) and inspired powder (AeroShot) in human subjects. British Journal of Clinical Pharmacology 83 (12):2687–94. doi: 10. 1111/bcp. 13389.
  • Leal-Calderon, F., V. Schmitt, and J. Bibette. 2007. Emulsion science: basic principles. USA: Springer New York, NY. Springer Science & Business Media.
  • Li, X., M. A. Kanjwal, L. Lin, and I. S. Chronakis. 2013. Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloids and Surfaces. B, Biointerfaces 103:182–8. doi: 10.1016/j.colsurfb.2012.10.016.
  • Liedana, N., E. Marin, C. Tellez, and J. Coronas. 2013. One-step encapsulation of caffeine in SBA-15 type and non-ordered silicas. Chemical Engineering Journal 223:714–21. doi: 10.1016/j.cej.2013.03.041.
  • Liu, J., W. Hu, H. Chen, Q. Ni, H. Xu, and X. Yang. 2007. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. International Journal of Pharmaceutics 328 (2):191–5. doi: 10.1016/j.ijpharm.2006.08.007.
  • Liu, B., J. Li, Y. Zhao, X. Liu, G. Zhu, and Liang, W. 2013. Physicochemical characterisation of the supramolecular structure of luteolin/cyclodextrin inclusion complex. Food Chemistry 141 (2):900–6. doi: 10.1016/j.foodchem.2013.03.097.
  • Liu, T. I., Y. C. Tsai, T. M. Wang, S. H. Chang, Y. C. Yang, H. H. Chen, and H. C. Chiu. 2020. Development of a nano-immunomodulator encapsulating R837 and caffeine for combined radio-/immunotherapy against orthotopic breast cancer. Progress in Natural Science: Materials International 30 (5):697–706. doi: 10.1016/j.pnsc.2020.09.014.
  • Lobatto, M. E., V. Fuster, Z. A. Fayad, and W. J. Mulder. 2011. Perspectives and opportunities for nanomedicine in the management of atherosclerosis. Nature Reviews. Drug Discovery 10 (11):835–52. doi: 10.1038/nrd3578.
  • Luther, D. C., R. Huang, T. Jeon, X. Zhang, Y. W. Lee, H. Nagaraj, and V. M. Rotello. 2020. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Advanced Drug Delivery Reviews 156:188–213. doi: 10.1016/j.addr.2020.06.020.
  • Ma, H., M. Yu, M. Lei, F. Tan, and N. Li. 2015. A novel topical targeting system of caffeine microemulsion for inhibiting UVB-induced skin tumor: Characterization, optimization, and evaluation. AAPS PharmSciTech 16 (4):905–13. doi: 10.1208/s12249-014-0278-5.
  • Madadlou, A., S. Jaberipour, and M. H. Eskandari. 2014. Nanoparticulation of enzymatically cross-linked whey proteins to encapsulate caffeine via microemulsification/heat gelation procedure. LWT - Food Science and Technology 57 (2):725–30. doi: 10.1016/j.lwt.2014.02.041.
  • Manchun, S., S. Soradech, K. Kingkaew, P. Sobharaksha, P. Sriamornsak, and S. Tubtimted. 2019. Design of caffeine-loaded nanostructured lipid carriers containing coconut oil for topical application. In Key engineering materials, vol. 819, 187–92. Switzerland: Trans Tech Publ. doi: 10.4028/www.scientific.net/KEM.819.187.
  • Mao, L., Y. Lu, M. Cui, S. Miao, and Y. Gao. 2020. Design of gel structures in water and oil phases for improved delivery of bioactive food ingredients. Critical Reviews in Food Science and Nutrition 60 (10):1651–66. doi: 10.1080/10408398.2019.1587737.
  • Martínez-López, S., B. Sarriá, G. Baeza, R. Mateos, and L. Bravo-Clemente. 2014. Pharmacokinetics of caffeine and its metabolites in plasma and urine after consuming a soluble green/roasted coffee blend by healthy subjects. Food Research İnternational (Ottawa, ON) 64:125–33. doi: 10.1016/j.foodres.2014.05.043.
  • Matoušková, P., K. Patockova, L. Doskocil, and I. Marova. 2012. Encapsulation of caffeine into organic micro-and nanoparticles. In NANOCON 2012–2nd. International Conference on Nanotechnology. Conference Proceedings, 99. India: Bharati Vidyapeeth University Pune.
  • McClements, D. J. 2006. Non-covalent interactions between proteins and polysaccharides. Biotechnology Advances 24 (6):621–5. doi: 10.1016/j.biotechadv.2006.07.003.
  • Meena, J., A. Gupta, R. Ahuja, M. Singh, S. Bhaskar, and A. K. Panda. 2020. Inorganic nanoparticles for natural product delivery: A review. Environmental Chemistry Letters 18 (6):2107–18. doi: 10.1007/s10311-020-01061-2.
  • Milkova, V., and F. M. Goycoolea. 2020. Encapsulation of caffeine in polysaccharide oil-core nanocapsules. Colloid and Polymer Science 298 (8):1035–41. doi: 10.1007/s00396-020-04653-0.
  • Moffat, A. C., M. D. Osselton, B. Widdop, and J. Watts. 2011. Clarke’s analysis of drugs and poisons, Vol. 3. London: Pharmaceutical press London.
  • Monteagudo-Olivan, R., M. J. Cocero, J. Coronas, and S. Rodríguez-Rojo. 2019. Supercritical CO2 encapsulation of bioactive molecules in carboxylate based MOFs. Journal of CO2 Utilization 30:38–47. doi: 10.1016/j.jcou.2018.12.022.
  • Mohammadpour, R., M. A. Dobrovolskaia, D. L. Cheney, K. F. Greish, and H. Ghandehari. 2019. Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Advanced Drug Delivery Reviews 144:112–32. doi: 10.1016/j.addr.2019.07.006.
  • Morrish, C., S. Teimouri, T. Istivan, and S. Kasapis. 2020. Molecular characterisation of hot moulded alginate gels as a delivery vehicle for the release of entrapped caffeine. Food Hydrocolloids 109:106142. doi: 10.1016/j.foodhyd.2020.106142.
  • Muller, R., M. Radtke, and S. Wissing. 2002. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Advanced Drug Delivery Reviews 54 (1):S131–S155. doi: 10.1016/S0169-409X(02)00118-7.
  • Mulyasuryani, A., R. T. Tjahjanto, and R. Andawiyah. 2019. Simultaneous voltammetric detection of acetaminophen and caffeine base on cassava starch-Fe3O4 nanoparticles modified glassy carbon electrode. Chemosensors 7 (4):49. doi: 10.3390/chemosensors7040049.
  • Mumford, G., N. Benowitz, S. Evans, B. Kaminski, K. Preston, C. Sannerud, K. Silverman, and R. Griffiths. 1996. Absorption rate of methylxanthines following capsules, cola and chocolate. European Journal of Clinical Pharmacology 51 (3–4):319–25. doi: 10.1007/s002280050205.
  • Mumin, A., K. F. Akhter, Z. Abedin, and Z. Hossain. 2006. Determination and characterization of caffeine in tea, coffee and soft drinks by solid phase extraction and high performance liquid chromatography (SPE–HPLC). Malaysian Journal of Chemistry 8 (1):045–51.
  • Münster, U., C. NakamuraNachname, A. Haberland, K. Jores, W. Mehnert, S. Rummel, M. Schaller, H. Korting, C. C. Zouboulis, and U. Blume-Peytavi. 2005. RU 58841-myristate–prodrug development for topical treatment of acne and androgenetic alopecia. Die Pharmazie-An International Journal of Pharmaceutical Sciences 60 (1):8–12.
  • Naoui, W., M.-A. Bolzinger, B. Fenet, J. Pelletier, J.-P. Valour, R. Kalfat, and Y. Chevalier. 2011. Microemulsion microstructure influences the skin delivery of an hydrophilic drug. Pharmaceutical Research 28 (7):1683–95. doi: 10.1007/s11095-011-0404-y.
  • Nawrot, P., S. Jordan, J. Eastwood, J. Rotstein, A. Hugenholtz, and M. Feeley. 2003. Effects of caffeine on human health. Food Additives and Contaminants 20 (1):1–30. doi: 10.1080/0265203021000007840.
  • Nikoo, A. M., R. Kadkhodaee, B. Ghorani, H. Razzaq, and N. Tucker. 2018. Electrospray-assisted encapsulation of caffeine in alginate microhydrogels. International Journal of Biological Macromolecules 116:208–16. doi: 10.1016/j.ijbiomac.2018.04.167.
  • Nkondjock, A. 2009. Coffee consumption and the risk of cancer: An overview. Cancer Letters 277 (2):121–5. doi: 10.1016/j.canlet.2008.08.022.
  • Noor, N., A. Shah, A. Gani, A. Gani, and F. Masoodi. 2018. Microencapsulation of caffeine loaded in polysaccharide based delivery systems. Food Hydrocolloids 82:312–21. 2018.04.001. doi: 10.1016/j.foodhyd.
  • Nugrahini, A. D., M. Ishida, T. Nakagawa, K. Nishi, and T. Sugahara. 2019. Anti-degranulation activity of caffeine: In vitro and in vivo study. Journal of Functional Foods 60:103422. doi: 10.1016/j.jff.2019.103422.
  • Palozza, P., R. Muzzalupo, S. Trombino, A. Valdannini, and N. Picci. 2006. Solubilization and stabilization of β-carotene in niosomes: Delivery to cultured cells. Chemistry and Physics of Lipids 139 (1):32–42. doi: 10.1016/j.chemphyslip.2005.09.004.
  • Pan, X., G. Niu, and H. Liu. 2003. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chemical Engineering and Processing: Process Intensification 42 (2):129–33. doi: 10.1016/S0255-2701(02)00037-5.
  • Panda, S., and M. Nayak. 2018. Taste masking of Caffeine by Inclusion Complexation of β-cyclodextrin. Journal of Pharmaceutical Advanced Research 1 (4):224–8.
  • Paranich, V., O. Cherevko, N. Frolova, and A. Paranich. 2000. The effect of wheat germ oil on the antioxidant system of animals. Likars’ ka Sprava 2:40–4.
  • Pardeike, J., A. Hommoss, and R. H. Müller. 2009. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. International Journal of Pharmaceutics 366 (1–2):170–84. doi: 10.1016/j.ijpharm.2008.10.003.
  • Patel, M. K., M. Zafaryab, M. Rizvi, V. V. Agrawal, Z. Ansari, B. Malhotra, and S. Ansari. 2013. Antibacterial and cytotoxic effect of magnesium oxide nanoparticles on bacterial and human cells. Journal of Nanoengineering and Nanomanufacturing 3 (2):162–6. doi: 10.1166/jnan.2013.1122.
  • Penalva, R., I. Esparza, M. Agüeros, C. J. Gonzalez-Navarro, C. Gonzalez-Ferrero, and J. M. Irache. 2015. Casein nanoparticles as carriers for the oral delivery of folic acid. Food Hydrocolloids 44:399–406. doi: 10.1016/j.foodhyd.2014.10.004.
  • Prabu, S., M. Swaminathan, K. Sivakumar, and R. Rajamohan. 2015. Preparation, characterization and molecular modeling studies of the inclusion complex of Caffeine with Beta-cyclodextrin. Journal of Molecular Structure 1099:616–24. doi: 10.1016/j.molstruc.2015.07.018.
  • Puglia, C., and F. Bonina. 2012. Lipid nanoparticles as novel delivery systems for cosmetics and dermal pharmaceuticals. Expert Opinion on Drug Delivery 9 (4):429–41. doi: 10.1517/17425247.2012.666967.
  • Puglia, C., A. Offerta, G. G. Tirendi, M. S. Tarico, S. Curreri, F. Bonina, and R. E. Perrotta. 2016. Design of solid lipid nanoparticles for caffeine topical administration. Drug Delivery 23 (1):36–40. doi: 10.3109/10717544.2014.903011.
  • Qiu, N., X. Cheng, G. Wang, W. Wang, J. Wen, Y. Zhang, H. Song, L. Ma, Y. Wei, A. Peng, et al. 2014. Inclusion complex of barbigerone with hydroxypropyl-β-cyclodextrin: Preparation and in vitro evaluation. Carbohydrate Polymers 101 (1):623–30. doi: 10.1016/j.carbpol.2013.09.035.
  • Quinlan, P., J. Lane, and L. Aspinall. 1997. Effects of hot tea, coffee and water ingestion on physiological responses and mood: The role of caffeine, water and beverage type. Psychopharmacology 134 (2):164–73. doi: 10.1007/s002130050438.
  • Qureshi, D., A. Nadikoppula, B. Mohanty, A. Anis, M. Cerqueira, M. Varshney, and K. Pal. 2021. Effect of carboxylated carbon nanotubes on physicochemical and drug release properties of oleogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects 610:125695. 2020. 125695. doi: 10.1016/j.colsurfa.
  • Raj, M., and R. N. Goyal. 2019. Silver nanoparticles and electrochemically reduced graphene oxide nanocomposite based biosensor for determining the effect of caffeine on Estradiol release in women of child-bearing age. Sensors and Actuators B: Chemical 284:759–67. 2019. 01.018. doi: 10.1016/j.snb.
  • Ramezani, V., M. Honarvar, M. Seyedabadi, A. Karimollah, A. M. Ranjbar, and M. Hashemi. 2018. Formulation and optimization of transfersome containing minoxidil and caffeine. Journal of Drug Delivery Science and Technology 44:129–35. doi: 10.1016/j.jddst.2017.12.003.
  • Raval, A., J. Parikh, and C. Engineer. 2010. Mechanism of controlled release kinetics from medical devices. Brazilian Journal of Chemical Engineering 27 (2):211–25. doi: 10.1590/S0104-66322010000200001.
  • Ravichandran, M., N. S. Hettiarachchy, V. Ganesh, S. C. Ricke, and S. Singh. 2011. Enhancement of antimicrobial activities of naturally occurring phenolic compounds by nanoscale delivery against Listeria monocytogenes, Escherichia coli O157: H7 and Salmonella Typhimurium in broth and chicken meat system. Journal of Food Safety 31 (4):462–71. 00322. x. doi: 10.1111/j.1745-4565.2011.
  • Ren, X., and J.-F. Chen. 2020. Caffeine and Parkinson’s disease: Multiple benefits and emerging mechanisms. Frontiers in Neuroscience 14:602697. doi: 10.3389/fnins.2020.602697.
  • Rezaei, A., M. Fathi, and S. M. Jafari. 2019. Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within ­different nanocarriers. Food Hydrocolloids 88:146–62. doi: 10.1016/j.foodhyd.2018.10.003.
  • Roberts, A. 2021. Caffeine: An evaluation of the safety database. In Nutraceuticals, 501–18. USA: Academic Press Inc.
  • Rodrigues, F., A. C. Alves, C. Nunes, B. Sarmento, M. H. Amaral, S. Reis, and M. B. P. Oliveira. 2016. Permeation of topically applied caffeine from a food by—product in cosmetic formulations: Is nanoscale in vitro approach an option? International Journal of Pharmaceutics 513 (1–2):496–503. doi: 10.1016/j.ijpharm.2016.09.059.
  • Rostamabadi, H., S. R. Falsafi, and S. M. Jafari. 2020. Transmission electron microscopy (TEM) of nanoencapsulated food ingredients. In Characterization of nanoencapsulated food ingredients, 53–82. USA: Academic Press Inc. Elsevier. doi: 10.1016/B978-0-12-815667-4.00002-X.
  • Rubio, L., C. Alonso, O. López, G. Rodríguez, L. Coderch, J. Notario, A. de la Maza, and J. L. Parra. 2011. Barrier function of intact and impaired skin: Percutaneous penetration of caffeine and salicylic acid. International Journal of Dermatology 50 (7):881–9. doi: 10.1111/j.1365-4632.2010.04819.x.
  • Rukk, N. S., L. G. Kuzmina, R. S. Shamsiev, G. A. Davydova, E. A. Mironova, A. M. Ermakov, G. A. Buzanov, A. Y. Skryabina, A. N. Streletskii, G. A. Vorob’eva, et al. 2019. Zinc(II) and cadmium(II) halide complexes with caffeine: Synthesis, X-ray crystal structure, cytotoxicity and genotoxicity studies. Inorganica Chimica Acta 487:184–200. doi: 10.1016/j.ica.2018.11.036.
  • Rusa, C. C., C. Luca, and A. E. Tonelli. 2001. Polymer-cyclodextrin inclusion compounds: Toward new aspects of their inclusion mechanism. Macromolecules 34 (5):1318–22. doi: 10.1021/ma001868c.
  • Ryu, S., S.-K. Choi, S.-S. JoUNG, H. Suh, Y.-S. Cha, S. Lee, and K. Lim. 2001. Caffeine as a lipolytic food component increases endurance performance in rats and athletes. Journal of Nutritional Science and Vitaminology 47 (2):139–46. doi: 10.3177/jnsv.47.139.
  • Sagalowicz, L., and M. E. Leser. 2010. Delivery systems for liquid food products. Current Opinion in Colloid & Interface Science 15 (1–2):61–72. doi: 10.1016/j.cocis.2009.12.003.
  • Saifullah, M., M. R. I. Shishir, R. Ferdowsi, M. R. T. Rahman, and Q. Van Vuong. 2019. Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review. Trends in Food Science & Technology 86:230–51. doi: 10.1016/j.tifs.2019.02.030.
  • Santa Rosa, L. N., J. de Paula Rezende, Y. L. Coelho, T. A. O. Mendes, L. H. M. da Silva, and A. C. d Santos Pires. 2021. β-lactoglobulin conformation influences its interaction with caffeine. Food Bioscience 44:101418. doi: 10.1016/j.fbio.2021.101418.
  • Santos, M. B., N. R. da Costa, and E. E. Garcia‐Rojas. 2018. Interpolymeric complexes formed between whey proteins and biopolymers: Delivery systems of bioactive ingredients. Comprehensive Reviews in Food Science and Food Safety 17 (3):792–805. doi: 10.1111/1541-4337.12350.
  • Santos, P., A. Watkinson, J. Hadgraft, and M. Lane. 2008. Application of microemulsions in dermal and transdermal drug delivery. Skin Pharmacology and Physiology 21 (5):246–59. doi: 10.1159/000140228.
  • Sarabandi, K., and S. M. Jafari. 2020. Effect of chitosan coating on the properties of nanoliposomes loaded with flaxseed-peptide fractions: Stability during spray-drying. Food Chemistry 310:125951. doi: 10.1016/j.foodchem.2019.125951.
  • Sawynok, J. 1995. Pharmacological rationale for the clinical use of caffeine. Drugs 49 (1):37–50.
  • Schmitt, C., and S. L. Turgeon. 2011. Protein/polysaccharide complexes and coacervates in food systems. Advances in Colloid and İnterface Science 167 (1–2):63–70. doi: 10.1016/j.cis.2010.10.001.
  • Serrano, N., Ò. Castilla, C. Ariño, M. S. Diaz-Cruz, and J. M. Díaz-Cruz. 2019. Commercial screen-printed electrodes based on carbon nanomaterials for a fast and cost-effective voltammetric determination of paracetamol, ibuprofen and caffeine in water samples. Sensors (Switzerland) 19 (18):4039. doi: 10.3390/s19184039.
  • Seyedabadi, M. M., H. Rostami, S. M. Jafari, and M. Fathi. 2021. Development and characterization of chitosan-coated nanoliposomes for encapsulation of caffeine. Food Bioscience 40:100857. doi: 10.1016/j.fbio.2020.100857.
  • Shakeel, F., and W. Ramadan. 2010. Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. Colloids and Surfaces. B, Biointerfaces 75 (1):356–62. doi: 10.1016/j.colsurfb.2009.09.010.
  • Shamsi, M., A. Mohammadi, M. K. Manshadi, and A. Sanati-Nezhad. 2019. Mathematical and computational modeling of nano-engineered drug delivery systems. Journal of Controlled Release: Official Journal of the Controlled Release Society 307:150–65. doi: 10.1016/j.jconrel.2019.06.014.
  • Shao, M., S. Li, C. P. Tan, S. Kraithong, Q. Gao, X. Fu, B. Zhang, and Q. Huang. 2021. Encapsulation of caffeine into starch matrices: Bitterness evaluation and suppression mechanism. International Journal of Biological Macromolecules 173:118–27. doi: 10.1016/j.ijbiomac.2021.01.043.
  • Sharifi, F., A. C. Sooriyarachchi, H. Altural, R. Montazami, M. N. Rylander, and N. Hashemi. 2016. Fiber based approaches as medicine delivery systems. ACS Biomaterials Science & Engineering 2 (9):1411–31. doi: 10.1021/acsbiomaterials.6b00281.
  • Shehata, M., S. M. Azab, and A. M. Fekry. 2020. Facile caffeine electrochemical detection via electrodeposited Ag nanoparticles with modifier polymers on carbon paste sensor at aqueous and micellar media. Canadian Journal of Chemistry 98 (4):169–78. doi: 10.1139/cjc-2019-0195.
  • Shiehzadeh, F., E. Mir, S. Raeesi, S. Daneshmand, and J. Shahraki. 2021. Nanostructured lipid carriers (NLCs) composed of argan oil, the potential novel vehicle for caffeine delivery to stratum corneum and hair follicles. Nanomedicine Journal 9 (1):87–94. doi: 10.22038/NMJ.2022.62357.1646.
  • Shishir, M. R. I., N. Karim, V. Gowd, J. Xie, X. Zheng, and W. Chen. 2019. Pectin-chitosan conjugated nanoliposome as a promising delivery system for neohesperidin: Characterization, release behavior, cellular uptake, and antioxidant property. Food Hydrocolloids 95:432–44. doi: 10.1016/j.foodhyd.2019.04.059.
  • Silva Faria, W. C., A. Almeida da Silva, N. Veggi, N. Honda Kawashita, S. A. de França Lemes, W. M. de Barros, E. da Conceição Cardoso, A. Converti, W. de Melo Moura, and N. Bragagnolo. 2020. Acute and subacute oral toxicity assessment of dry encapsulated and non-encapsulated green coffee fruit extracts. Journal of Food & Drug Analysis 28 (2):337–55.
  • Silva, F., L. Torres, L. Silva, R. Figueiredo, D. Garruti, T. Araújo, A. Duarte, D. Brito, and N. Ricardo. 2018. Cashew gum and maltrodextrin particles for green tea (Camellia sinensis var Assamica) extract encapsulation. Food Chemistry 261:169–75. doi: 10.1016/j.foodchem.2018.04.028.
  • Sintov, A. C., and I. Greenberg. 2014. Comparative percutaneous permeation study using caffeine-loaded microemulsion showing low reliability of the frozen/thawed skin models. International Journal of Pharmaceutics 471 (1–2):516–24. doi: 10.1016/j.ijpharm.2014.05.040.
  • Smith, A. P. 2005. Caffeine at work. Human Psychopharmacology 20 (6):441–5. doi: 10.1002/hup.705.
  • Sökmen, M., E. Demir, and S. Y. Alomar. 2018. Optimization of sequential supercritical fluid extraction (SFE) of caffeine and catechins from green tea. The Journal of Supercritical Fluids 133:171–6. doi: 10.1016/j.supflu.2017.09.027.
  • Solghi, S., Z. Emam‐Djomeh, M. Fathi, and F. Farahani. 2020. The encapsulation of curcumin by whey protein: Assessment of the stability and bioactivity. Journal of Food Process Engineering 43 (6):e13403. doi: 10.1111/jfpe.13403.
  • Song, L. X., S. Z. Pan, L. H. Zhu, M. Wang, F. Y. Du, and J. Chen. 2011. Molecule-ion interaction and its effect on coordination interaction. Inorganic Chemistry 50 (6):2215–23. doi: 10.1021/ic101873w.
  • Sundar, S., J. Kundu, and S. C. Kundu. 2010. Biopolymeric nanoparticles. Science and Technology of Advanced Materials 11 (1):014104. doi: 10.1088/1468-6996/11/1/014104.
  • Tabrizi, R., P. Saneei, K. B. Lankarani, M. Akbari, F. Kolahdooz, A. Esmaillzadeh, S. Nadi-Ravandi, M. Mazoochi, and Z. Asemi. 2019. The effects of caffeine intake on weight loss: A systematic review and dos-response meta-analysis of randomized controlled trials. Critical Reviews in Food Science and Nutrition 59 (16):2688–96. doi: 10.1080/10408398.2018.1507996.
  • Tan, S., A. Ebrahimi, and T. Langrish. 2019. Controlled release of caffeine from tablets of spray-dried casein gels. Food Hydrocolloids 88:13–20. doi: 10.1016/j.foodhyd.2018.09.038.
  • Tan, C., B. Feng, X. Zhang, W. Xia, and S. Xia. 2016. Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocolloids. 52:774–84. doi: 10.1016/j.foodhyd.2015.08.016.
  • Tarhan, Ö., B. R. Hamaker, and O. H. Campanella. 2021. Structure and binding ability of self‐assembled α‐lactalbumin protein nanotubular gels. Biotechnology Progress 37 (3):e3127. doi: 10.1002/btpr.3127.
  • Tello, J., M. Viguera, and L. Calvo. 2011. Extraction of caffeine from Robusta coffee (Coffea canephora var. Robusta) husks using supercritical carbon dioxide. The Journal of Supercritical Fluids 59:53–60. doi: 10.1016/j.supflu.2011.07.018.
  • Tenney, K., J. Hayes, S. Euston, R. Elias, and J. Coupland. 2017. Binding of caffeine and quinine by whey protein and the effect on bitterness. Journal of Food Science 82 (2):509–16. doi: 10.1111/1750-3841.13588.
  • Trommenschlager, A., F. Chotard, B. Bertrand, S. Amor, P. Richard, A. Bettaïeb, C. Paul, J. L. Connat, P. L. Gendre, and E. Bodio. 2018. Gold(I)–coumarin–caffeine-based complexes as new potential anti-ınflammatory and anticancer trackable agents. ChemMedChem 13 (22):2408–14. doi: 10.1002/cmdc.201800474.
  • Tydeman, E. A., M. L. Parker, R. M. Faulks, K. L. Cross, A. Fillery-Travis, M. J. Gidley, G. T. Rich, and K. W. Waldron. 2010. Effect of carrot (Daucus carota) microstructure on carotene bioaccessibility in the upper gastrointestinal tract. 2. In vivo digestions. Journal of Agricultural and Food Chemistry 58 (17):9855–60. doi: 10.1021/jf1010353.
  • Ulusoy, H. İ., E. Yılmaz, and M. Soylak. 2019. Magnetic solid phase extraction of trace paracetamol and caffeine in synthetic urine and wastewater samples by a using core shell hybrid material consisting of graphene oxide/multiwalled carbon nanotube/Fe3O4/SiO2. Microchemical Journal 145:843–51. doi: 10.1016/j.microc.2018.11.056.
  • Veiseh, O., B. C. Tang, K. A. Whitehead, D. G. Anderson, and R. Langer. 2015. Managing diabetes with nanomedicine: Challenges and opportunities. Nature Reviews. Drug Discovery 14 (1):45–57. doi: 10.1038/nrd4477.
  • Wikoff, D., B. T. Welsh, R. Henderson, G. P. Brorby, J. Britt, E. Myers, J. Goldberger, H. R. Lieberman, C. O’Brien, J. Peck, et al. 2017. Systematic review of the potential adverse effects of caffeine consumption in healthy adults, pregnant women, adolescents, and children. Food and Chemical Toxicology: An İnternational Journal Published for the British Industrial Biological Research Association 109 (Pt 1):585–648. doi: 10.1016/j.fct.2017.04.002.
  • Youn, Y. S., and Y. H. Bae. 2018. Perspectives on the past, present, and future of cancer nanomedicine. Advanced Drug Delivery Reviews 130:3–11. doi: 10.1016/j.addr.2018.05.008.
  • Zand-Rajabi, H., and A. Madadlou. 2016. Citric acid cross-linking of heat-set whey protein hydrogel influences its textural attributes and caffeine uptake and release behaviour. International Dairy Journal 61:142–7. doi: 10.1016/j.idairyj.2016.05.008.
  • Zhang, J., and B. Michniak-Kohn. 2011. Investigation of microemulsion microstructures and their relationship to transdermal permeation of model drugs: Ketoprofen, lidocaine, and caffeine. International Journal of Pharmaceutics 421 (1):34–44. doi: 10.1016/j.ijpharm.2011.09.014.
  • Zhang, Y., K. Ren, Z. He, H. Li, T. Chen, Y. Lei, S. Xia, G. He, Y. Xie, Y. Zheng, et al. 2013. Development of inclusion complex of brinzolamide with hydroxypropyl-β- cyclodextrin. Carbohydrate Polymers 98 (1):638–43. doi: 10.1016/j.carbpol.2013.06.052.
  • Zhang, Q., Y. Zhou, W. Yue, W. Qin, H. Dong and, and T. Vasanthan. 2021. Nanostructures of protein-polysaccharide complexes or conjugates for encapsulation of bioactive compounds. Trends in Food Science & Technology 109:169–96. doi: 10.1016/j.tifs.2021.01.026.
  • Zhu, X., A. F. Radovic-Moreno, J. Wu, R. Langer, and J. Shi. 2014. Nanomedicine in the management of microbial infection–overview and perspectives. Nano Today 9 (4):478–98. doi: 10.1016/j.nantod.2014.06.003.
  • Zulli, A., R. M. Smith, P. Kubatka, J. Novak, Y. Uehara, H. Loftus, T. Qaradakhi, M. Pohanka, N. Kobyliak, A. Zagatina, et al. 2016. Caffeine and cardiovascular diseases: Critical review of current research. European Journal of Nutrition 55 (4):1331–43. doi: 10.1007/s00394-016-1179-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.