388
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Potential implications of polyphenolic compounds in neurodegenerative diseases

ORCID Icon, , ORCID Icon, , & ORCID Icon

References

  • Al-Dosari, D. I., M. M. Ahmed, S. S. Al-Rejaie, A. S. Alhomida, and M. S. Ola. 2017. Flavonoid naringenin attenuates oxidative stress, apoptosis and improves neurotrophic effects in the diabetic rat retina. Nutrients 9 (10):1161. doi: 10.3390/nu9101161.
  • Alfei, S., F. Turrini, S. Catena, P. Zunin, M. Grilli, A. M. Pittaluga, and R. Boggia. 2019. Ellagic acid a multi-target bioactive compound for drug discovery in CNS? A narrative review. European Journal of Medicinal Chemistry 183:111724. doi: 10.1016/j.ejmech.2019.111724.
  • Anekonda, T. S., and P. H. Reddy. 2006. Neuronal protection by sirtuins in Alzheimer’s disease. Journal of Neurochemistry 96 (2):305–13. doi: 10.1111/j.1471-4159.2005.03492.x.
  • Angelova, A., and B. Angelov. 2017. Dual and multi-drug delivery nanoparticles towards neuronal survival and synaptic repair. Neural Regeneration Research 12 (6):886–9. doi: 10.4103/1673-5374.208546.
  • Ansari, M. A., H. M. Abdul, G. Joshi, W. O. Opii, and D. A. Butterfield. 2009. Protective effect of quercetin in primary neurons against A beta(1-42): Relevance to Alzheimer’s disease. The Journal of Nutritional Biochemistry 20 (4):269–75. doi: 10.1016/j.jnutbio.2008.03.002.
  • Ayaz, M., A. Sadiq, M. Junaid, F. Ullah, M. Ovais, I. Ullah, J. Ahmed, and M. Shahid. 2019. Flavonoids as prospective neuroprotectants and their therapeutic propensity in aging associated neurological disorders. Frontiers in Aging Neuroscience 11:155. doi:ARTN 155 doi: 10.3389/fnagi.2019.00155.
  • Bajpai, M., A. Pande, S. K. Tewari, and D. Prakash. 2005. Phenolic contents and antioxidant activity of some food and medicinal plants. International Journal of Food Sciences and Nutrition 56 (4):287–91. doi: 10.1080/09637480500146606.
  • Baluchnejadmojarad, T., M. Mansouri, J. Ghalami, Z. Mokhtari, and M. Roghani. 2017. Sesamin imparts neuroprotection against intrastriatal 6-hydroxydopamine toxicity by inhibition of astroglial activation, apoptosis, and oxidative stress. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 88:754–61. doi: 10.1016/j.biopha.2017.01.123.
  • Bao, C., P. Jiang, J. Chai, Y. Jiang, D. Li, W. Bao, B. Liu, B. Liu, W. Norde, Y. Li, et al. 2019. The delivery of sensitive food bioactive ingredients: Absorption mechanisms, influencing factors, encapsulation techniques and evaluation models. Food Research International (Ottawa, ON) 120:130–40. doi: 10.1016/j.foodres.2019.02.024.
  • Barros, M., C. Zamberlan, M. H. Gehlen, P. H. D. Rosa, and S. Ilha. 2020. Awareness raising workshop for nursing students on the elderly with Alzheimer’s disease: Contributions to education. Rev Bras Enferm 73 (Suppl 3):e20190021. doi: 10.1590/0034-7167-2019-0021.
  • Basu, A., M. Rhone, and T. J. Lyons. 2010. Berries: Emerging impact on cardiovascular health. Nutrition Reviews 68 (3):168–77. doi: 10.1111/j.1753-4887.2010.00273.x.
  • Baum, L., and A. Ng. 2004. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. Journal of Alzheimer’s Disease: JAD 6 (4):367–77. discussion 443-369. doi: 10.3233/jad-2004-6403.
  • Baur, J. A., and D. A. Sinclair. 2006. Therapeutic potential of resveratrol: The in vivo evidence. Nature Reviews. Drug Discovery 5 (6):493–506. doi: 10.1038/nrd2060.
  • Bellaver, B., D. G. Souza, D. O. Souza, and A. Quincozes-Santos. 2014. Resveratrol increases antioxidant defenses and decreases proinflammatory cytokines in hippocampal astrocyte cultures from newborn, adult and aged Wistar rats. Toxicology in Vitro: An International Journal Published in Association with BIBRA 28 (4):479–84. doi: 10.1016/j.tiv.2014.01.006.
  • Bellone, J. A., J. R. Murray, P. Jorge, T. G. Fogel, M. Kim, D. R. Wallace, and R. E. Hartman. 2019. Pomegranate supplementation improves cognitive and functional recovery following ischemic stroke: A randomized trial. Nutritional Neuroscience 22 (10):738–43. doi: 10.1080/1028415X.2018.1436413.
  • Bian, Y., Y. Dong, J. Sun, M. Sun, Q. Hou, Y. Lai, and B. Zhang. 2020. Protective effect of kaempferol on LPS-induced inflammation and barrier dysfunction in a coculture model of intestinal epithelial cells and intestinal microvascular endothelial cells. Journal of Agricultural and Food Chemistry 68 (1):160–7. doi: 10.1021/acs.jafc.9b06294.
  • Bihaqi, S. W., A. P. Singh, and M. Tiwari. 2012. Supplementation of Convolvulus pluricaulis attenuates scopolamine-induced increased tau and amyloid precursor protein (AbetaPP) expression in rat brain. Indian Journal of Pharmacology 44 (5):593–8. doi: 10.4103/0253-7613.100383.
  • Bochorakova, H., H. Paulova, J. Slanina, P. Musil, and E. Taborska. 2003. Main flavonoids in the root of Scutellaria baicalensis cultivated in Europe and their comparative antiradical properties. Phytotherapy Research: PTR 17 (6):640–4. doi: 10.1002/ptr.1216.
  • Cai, Y., X. Li, Z. Pan, Y. Zhu, J. Tuo, Q. Meng, G. Dai, G. Yang, and Y. Pan. 2020. Anthocyanin ameliorates hypoxia and ischemia induced inflammation and apoptosis by increasing autophagic flux in SH-SY5Y cells. European Journal of Pharmacology 883:173360. doi: 10.1016/j.ejphar.2020.173360.
  • Calabrese, E. J., E. Agathokleous, and V. Calabrese. 2021. Ferulic acid and hormesis: Biomedical and environmental implications. Mechanisms of Ageing and Development 198:111544. doi: 10.1016/j.mad.2021.111544.
  • Calabrese, V., C. Cornelius, A. T. Dinkova-Kostova, E. J. Calabrese, and M. P. Mattson. 2010. Cellular stress responses, the hormesis paradigm, and vitagenes: Novel targets for therapeutic intervention in neurodegenerative disorders. Antioxidants & Redox Signaling 13 (11):1763–811. doi: 10.1089/ars.2009.3074.
  • Calabrese, E. J., I. Iavicoli, and V. Calabrese. 2012. Hormesis: Why it is important to biogerontologists. Biogerontology 13 (3):215–35. doi: 10.1007/s10522-012-9374-7.
  • Calabrese, V., C. Mancuso, M. Calvani, E. Rizzarelli, D. A. Butterfield, and A. M. Stella. 2007. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nature Reviews. Neuroscience 8 (10):766–75. doi: 10.1038/nrn2214.
  • Cao, C., X. He, W. Wang, L. Zhang, H. Lin, and L. Du. 2006. Kinetic distribution of paeoniflorin in cortex of normal and cerebral ischemia-reperfusion rats after intravenous administration of Paeoniae Radix extract. Biomedical Chromatography: BMC 20 (12):1283–8. doi: 10.1002/bmc.658.
  • Capiralla, H., V. Vingtdeux, H. Zhao, R. Sankowski, Y. Al-Abed, P. Davies, and P. Marambaud. 2012a. Resveratrol mitigates lipopolysaccharide- and Abeta-mediated microglial inflammation by inhibiting the TLR4/NF-kappaB/STAT signaling cascade. Journal of Neurochemistry 120 (3):461–72. doi: 10.1111/j.1471-4159.2011.07594.x.
  • Capiralla, H., V. Vingtdeux, H. Zhao, R. Sankowski, Y. Al-Abed, P. Davies, and P. Marambaud. 2012b. Resveratrol mitigates lipopolysaccharide- and A ss-mediated microglial inflammation by inhibiting the TLR4/NF-?B/STAT signaling cascade. Journal of Neurochemistry 120 (3):461–72. doi: 10.1111/j.1471-4159.2011.07594.x.
  • Cardona, F., C. Andres-Lacueva, S. Tulipani, F. J. Tinahones, and M. I. Queipo-Ortuno. 2013. Benefits of polyphenols on gut microbiota and implications in human health. The Journal of Nutritional Biochemistry 24 (8):1415–22. doi: 10.1016/j.jnutbio.2013.05.001.
  • Chandrasekhar, Y., G. Phani Kumar, E. M. Ramya, and K. R. Anilakumar. 2018. Gallic acid protects 6-OHDA induced neurotoxicity by attenuating oxidative stress in human dopaminergic cell line. Neurochemical Research 43 (6):1150–60. doi: 10.1007/s11064-018-2530-y.
  • Chang, W., D. Huang, Y. M. Lo, Q. Tee, P. Kuo, J. S. Wu, W. Huang, and S. Shen. 2019. Protective effect of caffeic acid against Alzheimer’s disease pathogenesis via modulating cerebral insulin signaling, beta-amyloid accumulation, and synaptic plasticity in hyperinsulinemic rats. Journal of Agricultural and Food Chemistry 67 (27):7684–93. doi: 10.1021/acs.jafc.9b02078.
  • Chen, Y. H., G. H. Du, and J. T. Zhang. 2000. Salvianolic acid B protects brain against injuries caused by ischemia-reperfusion in rats. Acta Pharmacologica Sinica 21 (5):463–6.
  • Chen, L., C. Gnanaraj, P. Arulselvan, H. El-Seedi, and H. Teng. 2019. A review on advanced microencapsulation technology to enhance bioavailability of phenolic compounds: Based on its activity in the treatment of Type 2 Diabetes. Trends in Food Science & Technology 85:149–62. doi: 10.1016/j.tifs.2018.11.026.
  • Cheng, Y., W. Leng, and J. Zhang. 2016. Protective effect of puerarin against oxidative stress injury of neural cells and related mechanisms. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research 22:1244–9. doi: 10.12659/msm.896058.
  • Cheng, Y.-F., G.-Q. Zhu, M. Wang, H. Cheng, A. Zhou, N. Wang, N. Fang, X.-C. Wang, X.-Q. Xiao, Z.-W. Chen, et al. 2009. Involvement of ubiquitin proteasome system in protective mechanisms of Puerarin to MPP(+)-elicited apoptosis. Neuroscience Research 63 (1):52–8. doi: 10.1016/j.neures.2008.10.009.
  • Cheng, Y.-F., G. Zhu, Q.-W. Wu, Y.-S. Xie, Y. Jiang, L. Guo, Y.-L. Guan, Y.-S. Liu, and J. Zhang. 2017. GPR30 activation contributes to the puerarin-mediated neuroprotection in MPP(+)-induced SH-SY5Y cell death. Journal of Molecular Neuroscience: MN 61 (2):227–34. doi: 10.1007/s12031-016-0856-y.
  • Chen, M., L. Peng, P. Gong, X. Zheng, T. Sun, X. Zhang, and J. Huo. 2021. Baicalein mediates mitochondrial autophagy via miR-30b and the NIX/BNIP3 signaling pathway in Parkinson’s disease. Biochemistry Research International 2021:2319412. doi: 10.1155/2021/2319412.
  • Chen, C., Y.-Z. Wei, X.-M. He, D.-D. Li, G.-Q. Wang, J.-J. Li, and F. Zhang. 2019. Naringenin produces neuroprotection against LPS-induced dopamine neurotoxicity via the inhibition of microglial NLRP3 inflammasome activation. Frontiers in Immunology 10:936. doi: 10.3389/fimmu.2019.00936.
  • Chen, T., Y. Yang, S. Zhu, Y. Lu, L. Zhu, Y. Wang, and X. Wang. 2020. Inhibition of Abeta aggregates in Alzheimer’s disease by epigallocatechin and epicatechin-3-gallate from green tea. Bioorganic Chemistry 105:104382. doi: 10.1016/j.bioorg.2020.104382.
  • Chen, S. Y., K. Zheng, and Z. Q. Wang. 2016. Neuroprotective effects of Ellagic acid on neonatal hypoxic brain injury via inhibition of inflammatory mediators and down-regulation of JNK/p38 MAPK activation. Tropical Journal of Pharmaceutical Research 15 (2):241–51. doi: 10.4314/tjpr.v15i2.4.
  • Chen, J., Y. Zhou, S. Mueller-Steiner, L.-F. Chen, H. Kwon, S. Yi, L. Mucke, and L. Gan. 2005. SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling. The Journal of Biological Chemistry 280 (48):40364–74. doi: 10.1074/jbc.M509329200.
  • Chien, M.-Y., C.-H. Chuang, C.-M. Chern, K.-T. Liou, D.-Z. Liu, Y.-C. Hou, and Y.-C. Shen. 2016. Salvianolic acid A alleviates ischemic brain injury through the inhibition of inflammation and apoptosis and the promotion of neurogenesis in mice. Free Radical Biology & Medicine 99:508–19. doi: 10.1016/j.freeradbiomed.2016.09.006.
  • Choi, J. R., J. H. Kim, S. Lee, E. J. Cho, and H. Y. Kim. 2020. Protective effects of protocatechuic acid against cognitive impairment in an amyloid beta-induced Alzheimer’s disease mouse model. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 144:111571. doi: 10.1016/j.fct.2020.111571.
  • Clifford, M. N. 2004. Diet-derived phenols in plasma and tissues and their implications for health. Planta Medica 70 (12):1103–14. doi: 10.1055/s-2004-835835.
  • Correa-Betanzo, J., E. Allen-Vercoe, J. McDonald, K. Schroeter, M. Corredig, and G. Paliyath. 2014. Stability and biological activity of wild blueberry (Vaccinium angustifolium) polyphenols during simulated in vitro gastrointestinal digestion. Food Chemistry 165:522–31. doi: 10.1016/j.foodchem.2014.05.135.
  • Cui, H., W. Wang, X. Zheng, D. Xia, H. Liu, C. Qin, H. Tian, and J. Teng. 2021. Decreased AQP4 expression aggravates a-synuclein pathology in Parkinson’s disease mice, possibly via impaired glymphatic clearance. Journal of Molecular Neuroscience 71 (12):2500–13. doi: 10.1007/s12031-021-01836-4.
  • da Silva, I. C. V., G. N. Kaluđerović, P. F. de Oliveira, D. O. Guimarães, C. H. Quaresma, A. Porzel, M. F. Muzitano, L. A. Wessjohann, and I. C. R. Leal. 2018. Apoptosis caused by triterpenes and phytosterols and antioxidant activity of an enriched flavonoid extract from Passiflora mucronata. Anti-Cancer Agents in Medicinal Chemistry 18 (10):1405–16. doi: 10.2174/1871520618666180315090949.
  • Dang, J., Y. N. Paudel, X. Yang, Q. Ren, S. Zhang, X. Ji, K. Liu, and M. Jin. 2021. Schaftoside suppresses pentylenetetrazol-induced seizures in zebrafish via suppressing apoptosis, modulating inflammation, and oxidative stress. ACS Chemical Neuroscience 12 (13):2542–52. doi: 10.1021/acschemneuro.1c00314.
  • de Camargo, A. C., M. A. Regitano-d’Arce, A. C. Biasoto, and F. Shahidi. 2014. Low molecular weight phenolics of grape juice and winemaking byproducts: Antioxidant activities and inhibition of oxidation of human low-density lipoprotein cholesterol and DNA strand breakage. Journal of Agricultural and Food Chemistry 62 (50):12159–71. doi: 10.1021/jf504185s.
  • De Melo, G. O., M. F. Muzitano, A. Legora-Machado, T. A. Almeida, D. B. De Oliveira, C. R. Kaiser, V. L. G. Koatz, and S. S. Costa. 2005. C-glycosylflavones from the aerial parts of Eleusine indica inhibit LPS-induced mouse lung inflammation. Planta Medica 71 (4):362–3. doi: 10.1055/s-2005-864104.
  • de Oliveira, M. R. 2016. The effects of ellagic acid upon brain cells: A mechanistic view and future directions. Neurochemical Research 41 (6):1219–28. doi: 10.1007/s11064-016-1853-9.
  • Del Rio, D., G. Borges, and A. Crozier. 2010. Berry flavonoids and phenolics: Bioavailability and evidence of protective effects. The British Journal of Nutrition 104 Suppl 3:S67–S90. doi: 10.1017/S0007114510003958.
  • Dende, C., J. Meena, P. Nagarajan, V. A. Nagaraj, A. K. Panda, and G. Padmanaban. 2017. Nanocurcumin is superior to native curcumin in preventing degenerative changes in experimental cerebral malaria. Scientific Reports 7 (1):10062. doi: 10.1038/s41598-017-10672-9.
  • Denny, C., J. G. Lazarini, M. Franchin, P. S. Melo, G. E. Pereira, A. P. Massarioli, I. A. M. Moreno, J. A. R. Paschoal, S. M. Alencar, and P. L. Rosalen. 2014. Bioprospection of Petit Verdot grape pomace as a source of anti-inflammatory compounds. Journal of Functional Foods 8:292–300. doi: 10.1016/j.jff.2014.03.016.
  • Di Giacomo, C., R. Acquaviva, R. Santangelo, V. Sorrenti, L. Vanella, G. Li Volti, N. D’Orazio, A. Vanella, and F. Galvano. 2012. Effect of treatment with cyanidin-3-O-beta-D-glucoside on rat ischemic/reperfusion brain damage. Evidence-Based Complementary and Alternative Medicine: eCAM 2012:285750. doi: 10.1155/2012/285750.
  • Dinda, B., S. Dinda, S. DasSharma, R. Banik, A. Chakraborty, and M. Dinda. 2017. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. European Journal of Medicinal Chemistry 131:68–80. doi: 10.1016/j.ejmech.2017.03.004.
  • Donkor, E. S. 2018. Stroke in the 21(st) century: A snapshot of the burden, epidemiology, and quality of life. Stroke Research and Treatment 2018:3238165. doi: 10.1155/2018/3238165.
  • Drake, J., R. Sultana, M. Aksenova, V. Calabrese, and D. A. Butterfield. 2003. Elevation of mitochondrial glutathione by gamma-glutamylcysteine ethyl ester protects mitochondria against peroxynitrite-induced oxidative stress. Journal of Neuroscience Research 74 (6):917–27. doi: 10.1002/jnr.10810.
  • Du, Y., J. Qu, W. Zhang, M. Bai, Q. Zhou, Z. Zhang, Z. Li, and J. Miao. 2016. Morin reverses neuropathological and cognitive impairments in APPswe/PS1dE9 mice by targeting multiple pathogenic mechanisms. Neuropharmacology 108:1–13. doi: 10.1016/j.neuropharm.2016.04.008.
  • Durazzo, A., M. Lucarini, E. Camilli, S. Marconi, P. Gabrielli, S. Lisciani, L. Gambelli, A. Aguzzi, E. Novellino, A. Santini, et al. 2018. Dietary lignans: Definition, description and research trends in databases development. Molecules 23 (12):3251. doi: 10.3390/molecules23123251.
  • Elsayed, A. A., E. T. Menze, M. G. Tadros, B. M. M. Ibrahim, N. A. Sabri, and A. E. Khalifa. 2018. Effects of genistein on pentylenetetrazole-induced behavioral and neurochemical deficits in ovariectomized rats. Naunyn-Schmiedeberg’s Archives of Pharmacology 391 (1):27–36. doi: 10.1007/s00210-017-1435-7.
  • Elufioye, T. O., T. I. Berida, and S. Habtemariam. 2017. Plants-derived neuroprotective agents: Cutting the cycle of cell death through multiple mechanisms. Evidence-Based Complementary and Alternative Medicine 2017:1–27. doi: 10.1155/2017/3574012.
  • Enogieru, A. B., W. Haylett, D. C. Hiss, and O. E. Ekpo. 2021. Regulation of AKT/AMPK signaling, autophagy and mitigation of apoptosis in Rutin-pretreated SH-SY5Y cells exposed to MPP(). Metabolic Brain Disease 36 (2):315–26. doi: 10.1007/s11011-020-00641-z.
  • Fadel, O., K. El Kirat, and S. Morandat. 2011. The natural antioxidant rosmarinic acid spontaneously penetrates membranes to inhibit lipid peroxidation in situ. Biochimica et Biophysica Acta 1808 (12):2973–80. doi: 10.1016/j.bbamem.2011.08.011.
  • Feng, L., and L. Zhang. 2019. Resveratrol suppresses abeta-induced microglial activation through the TXNIP/TRX/NLRP3 signaling pathway. DNA and Cell Biology 38 (8):874–9. doi: 10.1089/dna.2018.4308.
  • Feng, S.-Q., N. Aa, J.-L. Geng, J.-Q. Huang, R.-B. Sun, C. Ge, Z.-J. Yang, L.-S. Wang, J.-Y. Aa, G.-J. Wang, et al. 2017. Pharmacokinetic and metabolomic analyses of the neuroprotective effects of salvianolic acid A in a rat ischemic stroke model. Acta Pharmacologica Sinica 38 (11):1435–44. doi: 10.1038/aps.2017.114.
  • Ferrare, K., L. P. R. Bidel, A. Awwad, P. Poucheret, G. Cazals, F. Lazennec, J. Azay-Milhau, M. Tournier, A.-D. Lajoix, D. Tousch, et al. 2018. Increase in insulin sensitivity by the association of chicoric acid and chlorogenic acid contained in a natural chicoric acid extract (NCRAE) of chicory (Cichorium intybus L.) for an antidiabetic effect. Journal of Ethnopharmacology 215:241–8. doi: 10.1016/j.jep.2017.12.035.
  • Figge, D. A., and D. G. Standaert. 2017. Dysregulation of BET proteins in levodopa-induced dyskinesia. Neurobiology of Disease 102:125–32. doi: 10.1016/j.nbd.2017.03.003.
  • Fonteles, A. A., C. M. de Souza, J. C. de Sousa Neves, A. P. F. Menezes, M. R. Santos do Carmo, F. D. P. Fernandes, P. R. de Araújo, and G. M. de Andrade. 2016. Rosmarinic acid prevents against memory deficits in ischemic mice. Behavioural Brain Research 297:91–103. doi: 10.1016/j.bbr.2015.09.029.
  • Gambini, J., M. Inglés, G. Olaso, R. Lopez-Grueso, V. Bonet-Costa, L. Gimeno-Mallench, C. Mas-Bargues, K. M. Abdelaziz, M. C. Gomez-Cabrera, J. Vina, et al. 2015. Properties of resveratrol: In vitro and in vivo studies about metabolism, bioavailability, and biological effects in animal models and humans. Oxidative Medicine and Cellular Longevity 2015:837042. doi:Artn 837042 doi: 10.1155/2015/837042.
  • Gao, L. J., X. Q. Li, S. Meng, T. Y. Ma, L. H. Wan, and S. J. Xu. 2020. Chlorogenic acid alleviates A beta(25-35)-induced autophagy and cognitive impairment via the mTOR/TFEB signaling pathway. Drug Design, Development and Therapy 14:1705–16. doi: 10.2147/Dddt.S235969.
  • Gao, R., Y. N. Lin, G. Liang, B. Y. Yu, and Y. Gao. 2014. Comparative pharmacokinetic study of chlorogenic acid after oral administration of lonicerae japonicae flos and shuang-huang-lian in normal and febrile rats. Phytotherapy Research: PTR 28 (1):144–7. doi: 10.1002/ptr.4958.
  • Ghasemian, M., S. Owlia, and M. B. Owlia. 2016. Review of anti-inflammatory herbal medicines. Advances in Pharmacological Sciences 2016:1–11. doi: 10.1155/2016/9130979.
  • Gomez-Pinilla, F., and T. T. J. Nguyen. 2012. Natural mood foods: The actions of polyphenols against psychiatric and cognitive disorders. Nutritional Neuroscience 15 (3):127–33. doi: 10.1179/1476830511y.0000000035.
  • Gong, Q. H., F. Li, F. Jin, and J. S. Shi. 2010. Resveratrol attenuates neuroinflammation-mediated cognitive deficits in rats. Journal of Health Science 56 (6):655–63. doi: 10.1248/jhs.56.655.
  • Gonzalez-Vallinas, M., M. Gonzalez-Castejon, A. Rodriguez-Casado, and A. Ramirez de Molina. 2013. Dietary phytochemicals in cancer prevention and therapy: A complementary approach with promising perspectives. Nutrition Reviews 71 (9):585–99. doi: 10.1111/nure.12051.
  • Grigoletto, J., C. V. d. Oliveira, A. C. B. Grauncke, T. L. d. Souza, N. S. Souto, M. L. d. Freitas, A. F. Furian, A. R. S. Santos, and M. S. Oliveira. 2016. Rosmarinic acid is anticonvulsant against seizures induced by pentylenetetrazol and pilocarpine in mice. Epilepsy & Behavior: E&B 62:27–34. doi: 10.1016/j.yebeh.2016.06.037.
  • Gulcin, I. 2010. Antioxidant properties of resveratrol: A structure-activity insight. Innovative Food Science & Emerging Technologies 11 (1):210–8. doi: 10.1016/j.ifset.2009.07.002.
  • Guo, H., H. Cao, X. Cui, W. Zheng, S. Wang, J. Yu, and Z. Chen. 2019. Silymarin’s inhibition and treatment effects for Alzheimer’s Disease. Molecules 24 (9):1748. doi: 10.3390/molecules24091748.
  • Guo, X.-Q., Y.-L. Cao, F. Hao, Z.-R. Yan, M.-L. Wang, and X.-W. Liu. 2017. Tangeretin alters neuronal apoptosis and ameliorates the severity of seizures in experimental epilepsy-induced rats by modulating apoptotic protein expressions, regulating matrix metalloproteinases, and activating the PI3K/Akt cell survival pathway. Advances in Medical Sciences 62 (2):246–53. doi: 10.1016/j.advms.2016.11.011.
  • Haddadi, R., A. M. Nayebi, and S. Eyvari Brooshghalan. 2018. Silymarin prevents apoptosis through inhibiting the Bax/caspase-3 expression and suppresses toll like receptor-4 pathway in the SNc of 6-OHDA intoxicated rats. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 104:127–36. doi: 10.1016/j.biopha.2018.05.020.
  • Haddadi, R., A. M. Nayebi, S. Farajniya, S. E. Brooshghalan, and H. Sharifi. 2014. Silymarin improved 6-OHDA-induced motor impairment in hemi-parkisonian rats: Behavioral and molecular study. Daru: Journal of Faculty of Pharmacy, Tehran University of Medical Sciences 22 (1):38. doi: 10.1186/2008-2231-22-38.
  • Hajipour, S., A. Sarkaki, Y. Farbood, A. Eidi, P. Mortazavi, and Z. Valizadeh. 2016. Effect of gallic acid on dementia type of Alzheimer disease in rats: Electrophysiological and histological studies. Basic and Clinical Neuroscience 7 (2):97–106. doi: 10.15412/J.BCN.03070203.
  • Hamaguchi, T., K. Ono, A. Murase, and M. Yamada. 2009. Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-beta aggregation pathway. The American Journal of Pathology 175 (6):2557–65. doi: 10.2353/ajpath.2009.090417.
  • Hamaguchi, T., K. Ono, and M. Yamada. 2010. REVIEW: Curcumin and Alzheimer’s disease. CNS Neuroscience & Therapeutics 16 (5):285–97. doi: 10.1111/j.1755-5949.2010.00147.x.
  • Han, C.-L., M. Ge, Y.-P. Liu, X.-M. Zhao, K.-L. Wang, N. Chen, W.-J. Meng, W. Hu, J.-G. Zhang, L. Li, et al. 2018. LncRNA H19 contributes to hippocampal glial cell activation via JAK/STAT signaling in a rat model of temporal lobe epilepsy. Journal of Neuroinflammation 15 (1):103. doi: 10.1186/s12974-018-1139-z.
  • Han, Y. S., W. H. Zheng, S. Bastianetto, J. G. Chabot, and R. Quirion. 2004. Neuroprotective effects of resveratrol against beta-amyloid-induced neurotoxicity in rat hippocampal neurons: Involvement of protein kinase C. British Journal of Pharmacology 141 (6):997–1005. doi: 10.1038/sj.bjp.0705688.
  • Hashemzaei, M., K. Tabrizian, Z. Alizadeh, S. Pasandideh, R. Rezaee, C. Mamoulakis, A. Tsatsakis, Z. Skaperda, D. Kouretas, J. Shahraki, et al. 2020. Resveratrol, curcumin and gallic acid attenuate glyoxal-induced damage to rat renal cells. Toxicology Reports 7:1571–7. doi: 10.1016/j.toxrep.2020.11.008.
  • He, F. J., C. A. Nowson, and G. A. MacGregor. 2006. Fruit and vegetable consumption and stroke: Meta-analysis of cohort studies. Lancet (London, England) 367 (9507):320–6. doi: 10.1016/S0140-6736(06)68069-0.
  • Hewlings, S. J., and D. S. Kalman. 2017. Curcumin: A review of its effects on human health. Foods 6 (10):92. doi: 10.3390/foods6100092.
  • Hou, S., M. M. Zhao, P. P. Shen, X. P. Liu, Y. Sun, and J. C. Feng. 2016. Neuroprotective effect of salvianolic acids against cerebral ischemia/reperfusion injury. International Journal of Molecular Sciences (7):17:1190. doi: 10.3390/ijms17071190.
  • Hu, Q.-p., H.-x. Yan, F. Peng, W. Feng, F.-f. Chen, X.-y. Huang, X. Zhang, Y.-yu Zhou, and Y.-S. Chen. 2021. Genistein protects epilepsy-induced brain injury through regulating the JAK2/STAT3 and Keap1/Nrf2 signaling pathways in the developing rats. European Journal of Pharmacology 912:174620. doi:ARTN 174620doi: 10.1016/j.ejphar.2021.174620.
  • Hung, K.-C., H.-J. Huang, Y.-T. Wang, and A. M.-Y. Lin. 2016. Baicalein attenuates alpha-synuclein aggregation, inflammasome activation and autophagy in the MPP(+)-treated nigrostriatal dopaminergic system in vivo. Journal of Ethnopharmacology 194:522–9. doi: 10.1016/j.jep.2016.10.040.
  • Iglesias-Carres, L., A. Mas-Capdevila, F. I. Bravo, G. Aragones, A. Arola-Arnal, and B. Muguerza. 2019. A comparative study on the bioavailability of phenolic compounds from organic and nonorganic red grapes. Food Chemistry 299:125092. doi: 10.1016/j.foodchem.2019.125092.
  • Ishida, K., M. Yamamoto, K. Misawa, H. Nishimura, K. Misawa, N. Ota, and A. Shimotoyodome. 2020. Coffee polyphenols prevent cognitive dysfunction and suppress amyloid beta plaques in APP/PS2 transgenic mouse. Neuroscience Research 154:35–44. doi: 10.1016/j.neures.2019.05.001.
  • Ito, H., X. L. Sun, M. Watanabe, M. Okamoto, and T. Hatano. 2008. Chlorogenic acid and its metabolite m-coumaric acid evoke neurite outgrowth in hippocampal neuronal cells. Bioscience, Biotechnology, and Biochemistry 72 (3):885–8. doi: 10.1271/bbb.70670.
  • Jang, H., K. H. Jeong, and S. R. Kim. 2016. Naringin attenuates granule cell dispersion in the dentate gyrus in a mouse model of temporal lobe epilepsy. Epilepsy Research 123:6–10. doi: 10.1016/j.eplepsyres.2016.03.001.
  • Jang, J. H., and Y. J. Surh. 2003. Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. Free Radical Biology & Medicine 34 (8):1100–10. doi: 10.1016/S0891-5849(03)00062-5.
  • Jeandet, P., B. Delaunois, A. Conreux, D. Donnez, V. Nuzzo, S. Cordelier, C. Clément, and E. Courot. 2010. Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. BioFactors (Oxford, England) 36 (5):331–41. doi: 10.1002/biof.108.
  • Jiang, Y.-f., Z.-q. Liu, W. Cui, W.-t. Zhang, J.-p. Gong, X.-m. Wang, Y. Zhang, and M.-j. Yang. 2015. Antioxidant effect of salvianolic acid B on hippocampal CA1 neurons in mice with cerebral ischemia and reperfusion injury. Chinese Journal of Integrative Medicine 21 (7):516–22. doi: 10.1007/s11655-014-1791-1.
  • Jiao, C.-X., H. Zhou, C.-X. Yang, C. Ma, Y.-X. Yang, R.-R. Mao, L. Xu, and Q.-X. Zhou. 2017. Protective efficacy of a single salvianolic acid A treatment on photothrombosis-induced sustained spatial memory impairments. Neuropsychiatric Disease and Treatment 13:1181–92. doi: 10.2147/Ndt.S127094.
  • Jin, F., Q. Wu, Y. F. Lu, Q. H. Gong, and J. S. Shi. 2008. Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson’s disease in rats. European Journal of Pharmacology 600 (1–3):78–82. doi: 10.1016/j.ejphar.2008.10.005.
  • Kandhare, A. D., A. A. Mukherjee, and S. L. Bodhankar. 2018. Anti-epileptic effect of morin against experimental pentylenetetrazol-induced seizures via modulating brain monoamines and oxidative stress. Asian Pacific Journal of Tropical Biomedicine 8 (7):352–9. doi: 10.4103/2221-1691.237078.
  • Kara, S., B. Gencer, T. Karaca, H. A. Tufan, S. Arikan, I. Ersan, I. Karaboga, and V. Hanci. 2014. Protective effect of hesperetin and naringenin against apoptosis in ischemia/reperfusion-induced retinal injury in rats. TheScientificWorldJournal 2014:797824. doi: 10.1155/2014/797824.
  • Katan, M., and A. Luft. 2018. Global Burden of Stroke. Seminars in Neurology 38 (2):208–11. doi: 10.1055/s-0038-1649503.
  • Kesh, S., R. R. Kannan, and A. Balakrishnan. 2021. Naringenin alleviates 6-hydroxydopamine induced Parkinsonism in SHSY5Y cells and zebrafish model. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP 239:108893. doi: 10.1016/j.cbpc.2020.108893.
  • Khalatbary, A. R., and E. Khademi. 2020. The green tea polyphenolic catechin epigallocatechin gallate and neuroprotection. Nutritional Neuroscience 23 (4):281–94. doi: 10.1080/1028415x.2018.1500124.
  • Khamse, S., S. S. Sadr, M. Roghani, G. Hasanzadeh, and M. Mohammadian. 2015. Rosmarinic acid exerts a neuroprotective effect in the kainate rat model of temporal lobe epilepsy: Underlying mechanisms. Pharmaceutical Biology 53 (12):1818–25. doi: 10.3109/13880209.2015.1010738.
  • Khan, M. M., S. S. Raza, H. Javed, A. Ahmad, A. Khan, F. Islam, M. M. Safhi, and F. Islam. 2012. Rutin protects dopaminergic neurons from oxidative stress in an animal model of Parkinson’s disease. Neurotoxicity Research 22 (1):1–15. doi: 10.1007/s12640-011-9295-2.
  • Kiasalari, Z., M. Khalili, T. Baluchnejadmojarad, and M. Roghani. 2016. Protective effect of oral hesperetin against unilateral striatal 6-hydroxydopamine damage in the rat. Neurochemical Research 41 (5):1065–72. doi: 10.1007/s11064-015-1796-6.
  • Kim, G. D. 2017. Kaempferol inhibits angiogenesis by suppressing HIF-1alpha and VEGFR2 activation via ERK/p38 MAPK and PI3K/Akt/mTOR signaling pathways in endothelial cells. Preventive Nutrition and Food Science 22 (4):320–6. doi: 10.3746/pnf.2017.22.4.320.
  • Kim, H. D., K. H. Jeong, U. J. Jung, and S. R. Kim. 2016. Naringin treatment induces neuroprotective effects in a mouse model of Parkinson’s disease in vivo, but not enough to restore the lesioned dopaminergic system. The Journal of Nutritional Biochemistry 28:140–6. doi: 10.1016/j.jnutbio.2015.10.013.
  • Kim, M.-J., A.-R. Seong, J.-Y. Yoo, C.-H. Jin, Y.-H. Lee, Y. J. Kim, J. Lee, W. J. Jun, and H.-G. Yoon. 2011. Gallic acid, a histone acetyltransferase inhibitor, suppresses beta-amyloid neurotoxicity by inhibiting microglial-mediated neuroinflammation. Molecular Nutrition & Food Research 55 (12):1798–808. doi: 10.1002/mnfr.201100262.
  • Kim, P. S., J. H. Shin, D. S. Jo, D. W. Shin, D.-H. Choi, W. J. Kim, K. Park, J. K. Kim, C. G. Joo, J. S. Lee, et al. 2018. Anti-melanogenic activity of schaftoside in Rhizoma Arisaematis by increasing autophagy in B16F1 cells. Biochemical and Biophysical Research Communications 503 (1):309–15. doi: 10.1016/j.bbrc.2018.06.021.
  • Kimura, A. M., M. Tsuji, T. Yasumoto, Y. Mori, T. Oguchi, Y. Tsuji, M. Umino, A. Umino, T. Nishikawa, S. Nakamura, et al. 2021. Myricetin prevents high molecular weight A beta(1-42) oligomer-induced neurotoxicity through antioxidant effects in cell membranes and mitochondria. Free Radical Biology & Medicine 171:232–44. doi: 10.1016/j.freeradbiomed.2021.05.019.
  • Koh, P. O. 2012. Ferulic acid modulates nitric oxide synthase expression in focal cerebral ischemia. Laboratory Animal Research 28 (4):273–8. doi: 10.5625/lar.2012.28.4.273.
  • Kola, P. K., A. Akula, L. S. Nissankara Rao, R. C. S. R. Danduga, A. Mohammad, and S. Ineedi. 2018. Naringin in a combined therapy with phenytoin on pentylenetetrazole-induced kindling in rats. Epilepsy & Behavior: E&B 89:159–68. doi: 10.1016/j.yebeh.2018.10.006.
  • Kola, P. K., A. Akula, L. S. NissankaraRao, and R. C. S. R. Danduga. 2017. Protective effect of naringin on pentylenetetrazole (PTZ)-induced kindling; possible mechanisms of antikindling, memory improvement, and neuroprotection. Epilepsy & Behavior: E&B 75:114–26. doi: 10.1016/j.yebeh.2017.07.011.
  • Koponen, J. M., A. M. Happonen, P. H. Mattila, and A. R. Torronen. 2007. Contents of anthocyanins and ellagitannins in selected foods consumed in Finland. Journal of Agricultural and Food Chemistry 55 (4):1612–9. doi: 10.1021/jf062897a.
  • Kotani, R., Y. Urano, H. Sugimoto, and N. Noguchi. 2017. Decrease of amyloid-beta levels by curcumin derivative via modulation of amyloid-beta protein precursor trafficking. Journal of Alzheimer’s Disease: JAD 56 (2):529–42. doi: 10.3233/JAD-160794.
  • Kremr, D., T. Bajer, P. Bajerova, S. Surmova, and K. Ventura. 2016. Unremitting problems with chlorogenic acid nomenclature: A review. Quimica Nova 39 (4):530–3. doi: 10.5935/0100-4042.20160063.
  • Krueger, W. K., H. Gutierrez-Bañuelos, G. E. Carstens, B. R. Min, W. E. Pinchak, R. R. Gomez, R. C. Anderson, N. A. Krueger, and T. D. A. Forbes. 2010. Effects of dietary tannin source on performance, feed efficiency, ruminal fermentation, and carcass and non-carcass traits in steers fed a high-grain diet. Animal Feed Science and Technology 159 (1–2):1–9. doi: 10.1016/j.anifeedsci.2010.05.003.
  • Kujawska, M., and J. Jodynis-Liebert. 2018. Polyphenols in Parkinson’s disease: A systematic review of in vivo studies. Nutrients 10 (5):642. doi: 10.3390/nu10050642.
  • Kumar, H., I. S. Kim, S. V. More, B. W. Kim, Y. Y. Bahk, and D. K. Choi. 2013. Gastrodin protects apoptotic dopaminergic neurons in a toxin-induced Parkinson’s disease model. Evidence-Based Complementary and Alternative Medicine: eCAM 2013:514095. doi: 10.1155/2013/514095.
  • Kweon, M. H., H. J. Hwang, and H. C. Sung. 2001. Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo (Phyllostachys edulis). Journal of Agricultural and Food Chemistry 49 (10):4646–55. doi: 10.1021/jf010514x.
  • Kwon, S.-H., H.-K. Lee, J.-A. Kim, S.-I. Hong, H.-C. Kim, T.-H. Jo, Y.-I. Park, C.-K. Lee, Y.-B. Kim, S.-Y. Lee, et al. 2010. Neuroprotective effects of chlorogenic acid on scopolamine-induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. European Journal of Pharmacology 649 (1–3):210–7. doi: 10.1016/j.ejphar.2010.09.001.
  • Lahaie-Collins, V., J. Bournival, M. Plouffe, J. Carange, and M.-G. Martinoli. 2008. Sesamin modulates tyrosine hydroxylase, superoxide dismutase, catalase, inducible NO synthase and interleukin-6 expression in dopaminergic cells under MPP+-induced oxidative stress. Oxidative Medicine and Cellular Longevity 1 (1):54–62. doi: 10.4161/oxim.1.1.6958.
  • Landete, J. M. 2011. Ellagitannins, ellagic acid and their derived metabolites: A review about source, metabolism, functions and health. Food Research International 44 (5):1150–60. doi: 10.1016/j.foodres.2011.04.027.
  • Lee, J. M., J. Hong, G. J. Moon, U. J. Jung, S.-Y. Won, and S. R. Kim. 2018. Morin prevents granule cell dispersion and neurotoxicity via suppression of mTORC1 in a kainic acid-induced seizure model. Experimental Neurobiology 27 (3):226–37. doi: 10.5607/en.2018.27.3.226.
  • Li, G., S. Zhang, Y. Cheng, Y. Lu, Z. Jia, X. Yang, S. Zhang, W. Guo, and L. Pei. 2022. Baicalin suppresses neuron autophagy and apoptosis by regulating astrocyte polarization in pentylenetetrazol-induced epileptic rats and PC12 cells. Brain Research 1774:147723. doi: 10.1016/j.brainres.2021.147723.
  • Li, Q., C. Niu, X. Zhang, and M. Dong. 2018. Gastrodin and isorhynchophylline synergistically inhibit MPP(+)-induced oxidative stress in SH-SY5Y cells by targeting ERK1/2 and GSK-3beta pathways: Involvement of Nrf2 nuclear translocation. ACS Chemical Neuroscience 9 (3):482–93. doi: 10.1021/acschemneuro.7b00247.
  • Li, R., T. Liang, L. Xu, N. Zheng, K. Zhang, and X. Duan. 2013. Puerarin attenuates neuronal degeneration in the substantia nigra of 6-OHDA-lesioned rats through regulating BDNF expression and activating the Nrf2/ARE signaling pathway. Brain Research 1523:1–9. doi: 10.1016/j.brainres.2013.05.046.
  • Li, W.-H., X. Cheng, Y.-L. Yang, M. Liu, S.-S. Zhang, Y.-H. Wang, and G.-H. Du. 2019. Kaempferol attenuates neuroinflammation and blood brain barrier dysfunction to improve neurological deficits in cerebral ischemia/reperfusion rats. Brain Research 1722:146361. doi: 10.1016/j.brainres.2019.146361.
  • Li, X., S. Sun, and E. Tong. 2003. Experimental study on the protective effect of puerarin to Parkinson disease. Journal of Huazhong University of Science and Technology. Medical Sciences = Hua Zhong ke ji da Xue Xue Bao. Yi Xue Ying De Wen Ban = Huazhong Keji Daxue Xuebao. Yixue Yingdewen Ban 23 (2):148–50. doi: 10.1007/BF02859940.
  • Li, Y., J. Yao, C. Han, J. Yang, M. T. Chaudhry, S. Wang, H. Liu, and Y. Yin. 2016. Quercetin, inflammation and immunity. Nutrients 8 (3):167. doi: 10.3390/nu8030167.
  • Li, Y., X. Zhang, L. Cui, R. Chen, Y. Zhang, C. Zhang, X. Zhu, T. He, Z. Shen, L. Dong, et al. 2017. Salvianolic acids enhance cerebral angiogenesis and neurological recovery by activating JAK2/STAT3 signaling pathway after ischemic stroke in mice. Journal of Neurochemistry 143 (1):87–99. doi: 10.1111/jnc.14140.
  • Liang, N., and D. D. Kitts. 2015. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients 8 (1):16. doi:ARTN 163390/nu8010016 doi: 10.3390/nu8010016.
  • Liang, W., X. Huang, and W. Chen. 2017. The effects of baicalin and baicalein on cerebral ischemia: A review. Aging and Disease 8 (6):850–67. doi: 10.14336/AD.2017.0829.
  • Liao, Z. J., R. S. Liang, S. S. Shi, C. H. Wang, and W. Z. Yang. 2016. Effect of baicalin on hippocampal damage in kainic acid-induced epileptic mice. Experimental and Therapeutic Medicine 12 (3):1405–11. doi: 10.3892/etm.2016.3461.
  • Lin, C.-M., R.-D. Lin, S.-T. Chen, Y.-P. Lin, W.-T. Chiu, J.-W. Lin, F.-L. Hsu, and M.-H. Lee. 2010. Neurocytoprotective effects of the bioactive constituents of Pueraria thomsonii in 6-hydroxydopamine (6-OHDA)-treated nerve growth factor (NGF)-differentiated PC12 cells. Phytochemistry 71 (17–18):2147–56. doi: 10.1016/j.phytochem.2010.08.015.
  • Lipski, J., R. Nistico, N. Berretta, E. Guatteo, G. Bernardi, and N. B. Mercuri. 2011. L-DOPA: A scapegoat for accelerated neurodegeneration in Parkinson’s disease? Progress in Neurobiology 94 (4):389–407. doi: 10.1016/j.pneurobio.2011.06.005.
  • Liu, D.-H., E. Agbo, S.-H. Zhang, and J.-L. Zhu. 2019. Anticonvulsant and neuroprotective effects of paeonol in epileptic rats. Neurochemical Research 44 (11):2556–65. doi: 10.1007/s11064-019-02874-6.
  • Liu, D.-Z., J. Zhu, D.-Z. Jin, L.-M. Zhang, X.-Q. Ji, Y. Ye, C.-P. Tang, and X.-Z. Zhu. 2007. Behavioral recovery following sub-chronic paeoniflorin administration in the striatal 6-OHDA lesion rodent model of Parkinson’s disease. Journal of Ethnopharmacology 112 (2):327–32. doi: 10.1016/j.jep.2007.03.022.
  • Liu, H. Q., W. Y. Zhang, X. T. Luo, Y. Ye, and X. Z. Zhu. 2006. Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease by activation of adenosine A1 receptor. British Journal of Pharmacology 148 (3):314–25. doi: 10.1038/sj.bjp.0706732.
  • Liu, H., C. Yu, T. Xu, X. Zhang, and M. Dong. 2016. Synergistic protective effect of paeoniflorin and beta-ecdysterone against rotenone-induced neurotoxicity in PC12 cells. Apoptosis: An International Journal on Programmed Cell Death 21 (12):1354–65. doi: 10.1007/s10495-016-1293-7.
  • Liu, M., G. Zhang, M. Song, J. Wang, C. Shen, Z. Chen, X. Huang, Y. Gao, C. Zhu, C. Lin, et al. 2020. Activation of farnesoid X receptor by schaftoside ameliorates acetaminophen-induced hepatotoxicity by modulating oxidative stress and inflammation. Antioxidants & Redox Signaling 33 (2):87–116. doi: 10.1089/ars.2019.7791.
  • Liu, Q.-S., R. Deng, S. Li, X. Li, K. Li, G. Kebaituli, X. Li, and R. Liu. 2017. Ellagic acid protects against neuron damage in ischemic stroke through regulating the ratio of Bcl-2/Bax expression. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolisme 42 (8):855–60. doi: 10.1139/apnm-2016-0651.
  • Liu, Y.-F., F. Gao, X.-W. Li, R.-H. Jia, X.-D. Meng, R. Zhao, Y.-Y. Jing, Y. Wang, and W. Jiang. 2012. The anticonvulsant and neuroprotective effects of baicalin on pilocarpine-induced epileptic model in rats. Neurochemical Research 37 (8):1670–80. doi: 10.1007/s11064-012-0771-8.
  • Liuzzi, G. M., C. M. Mastroianni, T. Latronico, F. Mengoni, A. Fasano, M. Lichtner, V. Vullo, and P. Riccio. 2004. Anti-HIV drugs decrease the expression of matrix metalloproteinases in astrocytes and microglia. Brain: A Journal of Neurology 127 (Pt 2):398–407. doi: 10.1093/brain/awh049.
  • López-Sánchez, C., F. J. Martín-Romero, F. Sun, L. Luis, A. K. Samhan-Arias, V. García-Martínez, and C. Gutiérrez-Merino. 2007. Blood micromolar concentrations of kaempferol afford protection against ischemia/reperfusion-induced damage in rat brain. Brain Research 1182:123–37. doi: 10.1016/j.brainres.2007.08.087.
  • Lou, H., X. Jing, X. Wei, H. Shi, D. Ren, and X. Zhang. 2014. Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway. Neuropharmacology 79:380–8. doi: 10.1016/j.neuropharm.2013.11.026.
  • Lourenco Neto, M., K. L. Agra, J. Suassuna Filho, and F. E. Jorge. 2018. TDDFT calculations and photoacoustic spectroscopy experiments used to identify phenolic acid functional biomolecules in Brazilian tropical fruits in natura. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 193:249–57. doi: 10.1016/j.saa.2017.12.036.
  • Lu, P., T. Mamiya, L. L. Lu, A. Mouri, L. Zou, T. Nagai, M. Hiramatsu, T. Ikejima, and T. Nabeshima. 2009. Silibinin prevents amyloid beta peptide-induced memory impairment and oxidative stress in mice. British Journal of Pharmacology 157 (7):1270–7. doi: 10.1111/j.1476-5381.2009.00295.x.
  • Lu, Y., G. Sun, F. Yang, Z. Guan, Z. Zhang, J. Zhao, Y. Liu, L. Chu, and L. Pei. 2019. Baicalin regulates depression behavior in mice exposed to chronic mild stress via the Rac/LIMK/cofilin pathway. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 116:109054. doi: 10.1016/j.biopha.2019.109054.
  • Lu, Z., G. Nie, P. S. Belton, H. Tang, and B. Zhao. 2006. Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochemistry International 48 (4):263–74. doi: 10.1016/j.neuint.2005.10.010.
  • Luo, M., R.-Y. Gan, B.-Y. Li, Q.-Q. Mao, A. Shang, X.-Y. Xu, H.-Y. Li, and H.-B. Li. 2021. Effects and mechanisms of tea on Parkinson’s disease, Alzheimer’s disease and depression. Food Reviews International 29 (9):541–549. doi: 10.1080/875591.2021.1904413.
  • Luo, W. D., J. W. Min, W. X. Huang, X. Wang, Y. Y. Peng, S. Han, J. Yin, W. H. Liu, X. H. He, and B. Peng. 2018. Vitexin reduces epilepsy after hypoxic ischemia in the neonatal brain via inhibition of NKCC1. Journal of Neuroinflammation 15 (1):186. doi: 10.1186/s12974-018-1221-6.
  • Lv, H., L. Wang, J. Shen, S. Hao, A. Ming, X. Wang, F. Su, and Z. Zhang. 2015. Salvianolic acid B attenuates apoptosis and inflammation via SIRT1 activation in experimental stroke rats. Brain Research Bulletin 115:30–6. doi: 10.1016/j.brainresbull.2015.05.002.
  • Magalingam, K. B., A. K. Radhakrishnan, and N. Haleagrahara. 2015. Protective mechanisms of flavonoids in Parkinson’s disease. Oxidative Medicine and Cellular Longevity 2015:314560. doi: 10.1155/2015/314560.
  • Magalingam, K. B., A. Radhakrishnan, P. Ramdas, and N. Haleagrahara. 2015. Quercetin glycosides induced neuroprotection by changes in the gene expression in a cellular model of Parkinson’s disease. Journal of Molecular Neuroscience: MN 55 (3):609–17. doi: 10.1007/s12031-014-0400-x.
  • Mahmood, Q., G.-F. Wang, G. Wu, H. Wang, C.-X. Zhou, H.-Y. Yang, Z.-R. Liu, F. Han, and K. Zhao. 2017. Salvianolic acid A inhibits calpain activation and eNOS uncoupling during focal cerebral ischemia in mice. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology 25:8–14. doi: 10.1016/j.phymed.2016.12.004.
  • Malar, D. S., M. I. Prasanth, M. Jeyakumar, K. Balamurugan, and K. P. Devi. 2021. Vitexin prevents Abeta proteotoxicity in transgenic Caenorhabditis elegans model of Alzheimer’s disease by modulating unfolded protein response. Journal of Biochemical and Molecular Toxicology 35 (1):e22632. doi: 10.1002/jbt.22632.
  • Malar, D. S., V. Suryanarayanan, M. I. Prasanth, S. K. Singh, K. Balamurugan, and K. P. Devi. 2018. Vitexin inhibits Abeta25-35 induced toxicity in Neuro-2a cells by augmenting Nrf-2/HO-1 dependent antioxidant pathway and regulating lipid homeostasis by the activation of LXR-alpha. Toxicology in Vitro: An International Journal Published in Association with BIBRA 50:160–71. doi: 10.1016/j.tiv.2018.03.003.
  • Malarz, J., K. Michalska, Y. V. Yudina, and A. Stojakowska. 2022. Hairy root cultures as a source of polyphenolic antioxidants: Flavonoids, stilbenoids and hydrolyzable tannins. Plants 11 (15):1950. doi:ARTN doi: 10.3390/plants11151950.
  • Mamiya, T., M. Kise, and K. Morikawa. 2008. Ferulic acid attenuated cognitive deficits and increase in carbonyl proteins induced by buthionine-sulfoximine in mice. Neuroscience Letters 430 (2):115–8. doi: 10.1016/j.neulet.2007.10.029.
  • Manach, C., G. Williamson, C. Morand, A. Scalbert, and C. Remesy. 2005. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition 81 (1 Suppl):230S–42S. doi: 10.1093/ajcn/81.1.230S.
  • Manivasagam, T., J. Nataraj, K. Tamilselvam, M. Essa, and U. Janakiraman. 2013. Antioxidant and anti-inflammatory potential of hesperidin against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced experimental Parkinson’s disease in mice. International Journal of Nutrition, Pharmacology, Neurological Diseases 3 (3):294. doi: 10.4103/2231-0738.114875.
  • Manolescu, B. N., E. Oprea, M. Mititelu, L. L. Ruta, and I. C. Farcasanu. 2019. Dietary anthocyanins and stroke: A review of pharmacokinetic and pharmacodynamic studies. Nutrients 11 (7):1479. doi: 10.3390/nu11071479.
  • Mansouri, M. T., Y. Farbood, M. J. Sameri, A. Sarkaki, B. Naghizadeh, and M. Rafeirad. 2013. Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. Food Chemistry 138 (2-3):1028–33. doi: 10.1016/j.foodchem.2012.11.022.
  • Marques, V., and A. Farah. 2009. Chlorogenic acids and related compounds in medicinal plants and infusions. Food Chemistry 113 (4):1370–6. doi: 10.1016/j.foodchem.2008.08.086.
  • Meng, X., J. Zhou, C. N. Zhao, R. Y. Gan, and H. B. Li. 2020. Health benefits and molecular mechanisms of resveratrol: A narrative review. Foods 9 (3):340. doi: 10.3390/foods9030340.
  • Mirahmadi, S.-M.-S., A. Shahmohammadi, A.-M. Rousta, M.-R. Azadi, J. Fahanik-Babaei, T. Baluchnejadmojarad, and M. Roghani. 2018. Soy isoflavone genistein attenuates lipopolysaccharide-induced cognitive impairments in the rat via exerting anti-oxidative and anti-inflammatory effects. Cytokine 104:151–9. doi: 10.1016/j.cyto.2017.10.008.
  • Mishra, S., and K. Palanivelu. 2008. The effect of curcumin (turmeric) on Alzheimer’s disease: An overview. Annals of Indian Academy of Neurology 11 (1):13–9. doi: 10.4103/0972-2327.40220.
  • Moghbelinejad, S., Z. Rashvand, F. Khodabandehloo, G. Mohammadi, and M. Nassiri-Asl. 2016. Modulation of the expression of the GABAA receptor beta1 and beta3 subunits by pretreatment with quercetin in the KA model of epilepsy in mice: The effect of quercetin on GABAA receptor beta subunits. Journal of Pharmacopuncture 19 (2):163–6. doi: 10.3831/KPI.2016.19.018.
  • Morales, I., C. Cerda-Troncoso, V. Andrade, and R. B. Maccioni. 2017. The natural product curcumin as a potential coadjuvant in Alzheimer’s treatment. Journal of Alzheimer’s Disease: JAD 60 (2):451–60. doi: 10.3233/Jad-170354.
  • Mori, T., N. Koyama, M. V. Guillot-Sestier, J. Tan, and T. Town. 2013. Ferulic acid is a nutraceutical beta-secretase modulator that improves behavioral impairment and alzheimer-like pathology in transgenic mice. PloS One 8 (2):e55774. doi:ARTN doi: 10.1371/journal.pone.0055774.
  • Motaghinejad, M., M. Motevalian, S. Fatima, F. Faraji, and S. Mozaffari. 2017. The neuroprotective effect of curcumin against nicotine-induced neurotoxicity is mediated by CREB-BDNF signaling pathway. Neurochemical Research 42 (10):2921–32. doi: 10.1007/s11064-017-2323-8.
  • Murata, N., K. Murakami, Y. Ozawa, N. Kinoshita, K. Irie, T. Shirasawa, and T. Shimizu. 2010. Silymarin attenuated the amyloid beta plaque burden and improved behavioral abnormalities in an Alzheimer’s disease mouse model. Bioscience, Biotechnology, and Biochemistry 74 (11):2299–306. doi: 10.1271/bbb.100524.
  • Muscat, S., L. Pallante, F. Stojceski, A. Danani, G. Grasso, and M. A. Deriu. 2020. The impact of natural compounds on S-shaped A beta 42 fibril: From molecular docking to biophysical characterization. International Journal of Molecular Sciences 21 (6):2017. doi:ARTN 2017 doi: 10.3390/ijms21062017.
  • Nagarajan, S., D. R. Chellappan, P. Chinnaswamy, and S. Thulasingam. 2015. Ferulic acid pretreatment mitigates MPTP-induced motor impairment and histopathological alterations in C57BL/6 mice. Pharmaceutical Biology 53 (11):1591–601. doi: 10.3109/13880209.2014.993041.
  • Nassiri-Asl, M., S. Moghbelinejad, E. Abbasi, F. Yonesi, M.-R. Haghighi, M. Lotfizadeh, and P. Bazahang. 2013. Effects of quercetin on oxidative stress and memory retrieval in kindled rats. Epilepsy & Behavior: E&B 28 (2):151–5. doi: 10.1016/j.yebeh.2013.04.019.
  • Nieoczym, D., K. Socała, G. Raszewski, and P. Wlaź. 2014. Effect of quercetin and rutin in some acute seizure models in mice. Progress in Neuro-Psychopharmacology & Biological Psychiatry 54:50–8. doi: 10.1016/j.pnpbp.2014.05.007.
  • Nimse, S. B., and D. Pal. 2015. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances 5 (35):27986–8006. doi: 10.1039/C4RA13315C.
  • Noh, K., Y. Kang, M. R. Nepal, K. S. Jeong, D. G. Oh, M. J. Kang, S. Lee, W. Kang, H. G. Jeong, and T. C. Jeong. 2016. Role of intestinal microbiota in baicalin-induced drug interaction and its pharmacokinetics. Molecules (Basel, Switzerland) 21 (3):337. doi: 10.3390/molecules21030337.
  • Oboh, G., O. M. Agunloye, A. J. Akinyemi, A. O. Ademiluyi, and S. A. Adefegha. 2013. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro. Neurochemical Research 38 (2):413–9. doi: 10.1007/s11064-012-0935-6.
  • Ojha, S., H. Javed, S. Azimullah, S. B. Abul Khair, and M. E. Haque. 2015. Neuroprotective potential of ferulic acid in the rotenone model of Parkinson’s disease. Drug Design, Development and Therapy 9:5499–510. doi: 10.2147/Dddt.S90616.
  • Olas, B. 2018. Berry phenolic antioxidants - implications for human health? Frontiers in Pharmacology 9:78. doi:ARTN 78 doi: 10.3389/fphar.2018.00078.
  • Ono, K., K. Hasegawa, H. Naiki, and M. Yamada. 2004. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. Journal of Neuroscience Research 75 (6):742–50. doi: 10.1002/jnr.20025.
  • Ono, K., Y. Yoshiike, A. Takashima, K. Hasegawa, H. Naiki, and M. Yamada. 2003. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: Implications for the prevention and therapeutics of Alzheimer’s disease. Journal of Neurochemistry 87 (1):172–81. doi: 10.1046/j.1471-4159.2003.01976.x.
  • Padmapriya, R., S. Ashwini, and R. Raveendran. 2017. In vitro antioxidant and cytotoxic potential of different parts of Tephrosia purpurea. Research in Pharmaceutical Sciences 12 (1):31–7. doi: 10.4103/1735-5362.199044.
  • Pan, J. Y., S. L. Chen, M. H. Yang, J. Wu, J. Sinkkonen, and K. Zou. 2009. An update on lignans: Natural products and synthesis. Natural Product Reports 26 (10):1251–92. doi: 10.1039/b910940d.
  • Patel, D. C., B. P. Tewari, L. Chaunsali, and H. Sontheimer. 2019. Neuron-glia interactions in the pathophysiology of epilepsy. Nature Reviews. Neuroscience 20 (5):282–97. doi: 10.1038/s41583-019-0126-4.
  • Paul, S., and E. Candelario-Jalil. 2021. Emerging neuroprotective strategies for the treatment of ischemic stroke: An overview of clinical and preclinical studies. Experimental Neurology 335:113518. doi: 10.1016/j.expneurol.2020.113518.
  • Peng, J. W., Y. Liu, G. Meng, J. Y. Zhang, and L. F. Yu. 2018. Effects of salvianolic acid on cerebral perfusion in patients after acute stroke: A single-center randomized controlled trial. Experimental and Therapeutic Medicine 16 (3):2600–14. doi: 10.3892/etm.2018.6444.
  • Penn, D. L., S. R. Witte, R. J. Komotar, and E. Sander Connolly. Jr. 2014. The role of vascular remodeling and inflammation in the pathogenesis of intracranial aneurysms. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia 21 (1):28–32. doi: 10.1016/j.jocn.2013.07.004.
  • Pietsch, K., N. Saul, S. Chakrabarti, S. R. Sturzenbaum, R. Menzel, and C. E. Steinberg. 2011. Hormetins, antioxidants and prooxidants: Defining quercetin-, caffeic acid- and rosmarinic acid-mediated life extension in C. elegans. Biogerontology 12 (4):329–47. doi: 10.1007/s10522-011-9334-7.
  • Pitkänen, A., W. Löscher, A. Vezzani, A. J. Becker, M. Simonato, K. Lukasiuk, O. Gröhn, J. P. Bankstahl, A. Friedman, E. Aronica, et al. 2016. Advances in the development of biomarkers for epilepsy. The Lancet. Neurology 15 (8):843–56. doi: 10.1016/S1474-4422(16)00112-5.
  • Poulose, S. M., N. Thangthaeng, M. G. Miller, and B. Shukitt-Hale. 2015. Effects of pterostilbene and resveratrol on brain and behavior. Neurochemistry International 89:227–33. doi: 10.1016/j.neuint.2015.07.017.
  • Purkayastha, S., A. Berliner, S. S. Fernando, B. Ranasinghe, I. Ray, H. Tariq, and P. Banerjee. 2009. Curcumin blocks brain tumor formation. Brain Research 1266:130–8. doi: 10.1016/j.brainres.2009.01.066.
  • Rakotoarisoa, M., and A. Angelova. 2018. Amphiphilic nanocarrier systems for curcumin delivery in neurodegenerative disorders. Medicines (Basel) 5 (4):126. doi: 10.3390/medicines5040126.
  • Rebai, O., and M. Amri. 2018. Chlorogenic acid prevents AMPA-mediated excitotoxicity in optic nerve oligodendrocytes through a PKC and caspase-dependent pathways. Neurotoxicity Research 34 (3):559–73. doi: 10.1007/s12640-018-9911-5.
  • Reddy, P. H., M. Manczak, X. Yin, M. C. Grady, A. Mitchell, R. Kandimalla, and C. S. Kuruva. 2016. Protective effects of a natural product, curcumin, against amyloid beta induced mitochondrial and synaptic toxicities in Alzheimer’s disease. Journal of Investigative Medicine: The Official Publication of the American Federation for Clinical Research 64 (8):1220–34. doi: 10.1136/jim-2016-000240.
  • Reddy, P. H., M. Manczak, X. Yin, M. C. Grady, A. Mitchell, S. Tonk, C. S. Kuruva, J. S. Bhatti, R. Kandimalla, M. Vijayan, et al. 2018. Protective effects of Indian spice curcumin against amyloid-beta in Alzheimer’s disease. Journal of Alzheimer’s Disease: JAD 61 (3):843–66. doi: 10.3233/JAD-170512.
  • Ren, J., Y. F. Lu, Y. H. Qian, B. Z. Chen, T. Wu, and G. Ji. 2019. Recent progress regarding kaempferol for the treatment of various diseases. Experimental and Therapeutic Medicine 18 (4):2759–76. doi: 10.3892/etm.2019.7886.
  • Ribatti, D. 2015. The crucial role of mast cells in blood-brain barrier alterations. Experimental Cell Research 338 (1):119–25. doi: 10.1016/j.yexcr.2015.05.013.
  • Ries, M., and M. Sastre. 2016. Mechanisms of A beta clearance and degradation by glial cells. Frontiers in Aging Neuroscience 8:160. doi:ARTN 160 10.3389/fnagi.2016.00160.
  • Ringman, J. M., S. A. Frautschy, G. M. Cole, D. L. Masterman, and J. L. Cummings. 2005. A potential role of the curry spice curcumin in Alzheimer’s disease. Current Alzheimer Research 2 (2):131–6. doi: 10.2174/1567205053585882.
  • Rishitha, N., and A. Muthuraman. 2018. Therapeutic evaluation of solid lipid nanoparticle of quercetin in pentylenetetrazole induced cognitive impairment of zebrafish. Life Sciences 199:80–7. doi: 10.1016/j.lfs.2018.03.010.
  • Ritz, M. F., Y. Curin, A. Mendelowitsch, and R. Andriantsitohaina. 2008. Acute treatment with red wine polyphenols protects from ischemia-induced excitotoxicity, energy failure and oxidative stress in rats. Brain Research 1239:226–34. doi: 10.1016/j.brainres.2008.08.073.
  • Riviere, C., T. Richard, L. Quentin, S. Krisa, J. M. Merillon, and J. P. Monti. 2007. Inhibitory activity of stilbenes on Alzheimer’s beta-amyloid fibrils in vitro. Bioorganic & Medicinal Chemistry 15 (2):1160–7. doi: 10.1016/j.bmc.2006.09.069.
  • Rizk, H. A., M. A. Masoud, and O. W. Maher. 2017. Prophylactic effects of ellagic acid and rosmarinic acid on doxorubicin-induced neurotoxicity in rats. Journal of Biochemical and Molecular Toxicology 31 (12):e21977. doi: 10.1002/jbt.21977.
  • Robakis, D., and S. Fahn. 2015. Defining the role of the monoamine oxidase-B inhibitors for Parkinson’s disease. CNS Drugs 29 (6):433–41. doi: 10.1007/s40263-015-0249-8.
  • Rocha, J., M. Eduardo-Figueira, A. Barateiro, A. Fernandes, D. Brites, R. Bronze, C. M. M. Duarte, A. T. Serra, R. Pinto, M. Freitas, et al. 2015. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic & Clinical Pharmacology & Toxicology 116 (5):398–413. doi: 10.1111/bcpt.12335.
  • Rui, W., S. Li, H. Xiao, et al. 2020. Baicalein attenuates neuroinflammation by inhibiting NLRP3/caspase-1/GSDMD pathway in MPTP induced mice model of Parkinson’s disease. International Journal of Neuropsychopharmacology 23 (11):762–773. doi: 10.1093/ijnp/pyaa060.
  • Salem, H. R. A., A. A. Mohamed, E. M. Saleh, et al. 2012. Influence of Hesperidin combined with Sinemet on genetical and biochemical abnormalities in rats suffering from Parkinson’s disease. Life Sciences Journal 9 (4):930–45.
  • Samarghandian, S., M. Azimi-Nezhad, T. Farkhondeh, and F. Samini. 2017. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 87:223–9. doi: 10.1016/j.biopha.2016.12.105.
  • Sarubbo, F., D. Moranta, and G. Pani. 2018. Dietary polyphenols and neurogenesis: Molecular interactions and implication for brain ageing and cognition. Neuroscience and Biobehavioral Reviews 90:456–70. doi: 10.1016/j.neubiorev.2018.05.011.
  • Savaskan, E., G. Olivieri, F. Meier, E. Seifritz, A. Wirz-Justice, and F. Muller-Spahn. 2003. Red wine ingredient resveratrol protects from beta-amyloid neurotoxicity. Gerontology 49 (6):380–3. doi: 10.1159/000073766.
  • Scalbert, A., and G. Williamson. 2000. Dietary intake and bioavailability of polyphenols. The Journal of Nutrition 130 (8S Suppl):2073S–85S. doi: 10.1093/jn/130.8.2073S.
  • Scalbert, A., C. Manach, C. Morand, C. Remesy, and L. Jimenez. 2005. Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition 45 (4):287–306. doi: 10.1080/1040869059096.
  • Sefil, F., I. Kahraman, R. Dokuyucu, H. Gokce, A. Ozturk, O. Tutuk, M. Aydin, U. Ozkan, and N. Pinar. 2014. Ameliorating effect of quercetin on acute pentylenetetrazole induced seizures in rats. International Journal of Clinical and Experimental Medicine 7 (9):2471–7.
  • Sgarbossa, A., D. Giacomazza, and M. di Carlo. 2015. Ferulic acid: A hope for Alzheimer’s disease therapy from plants. Nutrients 7 (7):5764–82. doi: 10.3390/nu7075246.
  • Shahpiri, Z., R. Bahramsoltani, M. Hosein Farzaei, F. Farzaei, and R. Rahimi. 2016. Phytochemicals as future drugs for Parkinson’s disease: A comprehensive review. Reviews in the Neurosciences 27 (6):651–68. doi: 10.1515/revneuro-2016-0004.
  • Shakeel, S., M. U. Rehman, N. Tabassum, U. Amin, and M. U. R. Mir. 2017. Effect of Naringenin (A naturally occurring flavanone) against pilocarpine-induced status epilepticus and oxidative stress in mice. Pharmacognosy Magazine 13 (Suppl 1):S154–S160. doi: 10.4103/0973-1296.203977.
  • Shan, C.-S., H.-F. Zhang, Q.-Q. Xu, Y.-H. Shi, Y. Wang, Y. Li, Y. Lin, and G.-Q. Zheng. 2018. Herbal medicine formulas for Parkinson’s disease: A systematic review and meta-analysis of randomized double-blind placebo-controlled clinical trials. Frontiers in Aging Neuroscience 10:349. doi: 10.3389/fnagi.2018.00349.
  • Shen, J., Q. Zhou, P. Li, Z. Wang, S. Liu, C. He, C. Zhang, and P. Xiao. 2017. Update on phytochemistry and pharmacology of naturally occurring resveratrol oligomers. Molecules 22 (12):2050. doi:ARTN 2050 doi: 10.3390/molecules22122050.
  • Shen, Y., X. Xiao, K. Wu, Y. Wang, Y. Yuan, J. Liu, S. Sun, and J. Liu. 2020. Effects and molecular mechanisms of Ninghong black tea extract in nonalcoholic fatty liver disease of rats. Journal of Food Science 85 (3):800–7. doi: 10.1111/1750-3841.14846.
  • Shi, M., F. Sun, Y. Wang, J. Kang, S. Zhang, and H. Li. 2020. CGA restrains the apoptosis of Abeta25-35-induced hippocampal neurons. The International Journal of Neuroscience 130 (7):700–7. doi: 10.1080/00207454.2019.1702547.
  • Shimmyo, Y., T. Kihara, A. Akaike, T. Niidome, and H. Sugimoto. 2008. Multifunction of myricetin on A beta: Neuroprotection via a conformational change of A beta and reduction of A beta via the interference of secretases. Journal of Neuroscience Research 86 (2):368–77. doi: 10.1002/jnr.21476.
  • Shishtar, E., G. T. Rogers, J. B. Blumberg, R. Au, and P. F. Jacques. 2020. Long-term dietary flavonoid intake and risk of Alzheimer disease and related dementias in the Framingham Offspring Cohort. The American Journal of Clinical Nutrition 112 (2):343–53. doi: 10.1093/ajcn/nqaa079.
  • Shiying, L., Q. Xinhui, J. Guanghua, N. Feng, L. Feng, C. Shumei, and H. Fan. 2018. Puerarin promoted proliferation and differentiation of dopamine-producing cells in Parkinson’s animal models. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 106:1236–42. doi: 10.1016/j.biopha.2018.07.058.
  • Shukla, P. K., V. K. Khanna, M. Y. Khan, and R. C. Srimal. 2003. Protective effect of curcumin against lead neurotoxicity in rat. Human & Experimental Toxicology 22 (12):653–8. doi: 10.1191/0960327103ht411oa.
  • Singh, T., T. Kaur, and R. K. Goel. 2017. Adjuvant quercetin therapy for combined treatment of epilepsy and comorbid depression. Neurochemistry International 104:27–33. doi: 10.1016/j.neuint.2016.12.023.
  • Singhal, N. K., G. Srivastava, D. K. Patel, S. K. Jain, and M. P. Singh. 2011. Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson’s disease phenotype in the mouse. Journal of Pineal Research 50 (2):97–109. doi: 10.1111/j.1600-079X.2010.00819.x.
  • Smilin Bell Aseervatham, G., U. Suryakala, S. Sundaram, P. C. Bose, T. Sivasudha, and Doulethunisha. 2016. Expression pattern of NMDA receptors reveals antiepileptic potential of apigenin 8-C-glucoside and chlorogenic acid in pilocarpine induced epileptic mice. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 82:54–64. doi: 10.1016/j.biopha.2016.04.066.
  • Song, Y., T. Cui, N. Xie, X. Zhang, Z. Qian, and J. Liu. 2014. Protocatechuic acid improves cognitive deficits and attenuates amyloid deposits, inflammatory response in aged A beta PP/PS1 double transgenic mice. International Immunopharmacology 20 (1):276–81. doi: 10.1016/j.intimp.2014.03.006.
  • Sonia Angeline, M., A. Sarkar, K. Anand, R. K. Ambasta, and P. Kumar. 2013. Sesamol and naringenin reverse the effect of rotenone-induced PD rat model. Neuroscience 254:379–94. doi: 10.1016/j.neuroscience.2013.09.029.
  • Srivastava, N. K., S. Mukherjee, R. Sharma, J. Das, R. Sharma, V. Kumar, N. Sinha, and D. Sharma. 2019. Altered lipid metabolism in post-traumatic epileptic rat model: One proposed pathway. Molecular Biology Reports 46 (2):1757–73. doi: 10.1007/s11033-019-04626-9.
  • Stefani, M., and S. Rigacci. 2013. Protein folding and aggregation into amyloid: The interference by natural phenolic compounds. International Journal of Molecular Sciences 14 (6):12411–57. doi: 10.3390/ijms140612411.
  • Su, S.-Y., C.-Y. Cheng, T.-H. Tsai, and C.-L. Hsieh. 2012. Paeonol protects memory after ischemic stroke via inhibiting beta-secretase and apoptosis. Evidence-Based Complementary and Alternative Medicine: eCAM 2012:932823. doi: 10.1155/2012/932823.
  • Sueishi, Y., M. Hori, M. Ishikawa, K. Matsu-Ura, E. Kamogawa, Y. Honda, M. Kita, and K. Ohara. 2014. Scavenging rate constants of hydrophilic antioxidants against multiple reactive oxygen species. Journal of Clinical Biochemistry and Nutrition 54 (2):67–74. doi: 10.3164/jcbn.13-53.
  • Sugumar, M., M. Sevanan, and S. Sekar. 2019. Neuroprotective effect of naringenin against MPTP-induced oxidative stress. The International Journal of Neuroscience 129 (6):534–9. doi: 10.1080/00207454.2018.1545772.
  • Sultana, R., A. Ravagna, H. Mohmmad-Abdul, V. Calabrese, and D. A. Butterfield. 2005. Ferulic acid ethyl ester protects neurons against amyloid beta- peptide(1-42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. Journal of Neurochemistry 92 (4):749–58. doi: 10.1111/j.1471-4159.2004.02899.x.
  • Sun, D., L. Dong, P. Guo, W. Yan, C. Wang, and Z. Zhang. 2013. Simultaneous determination of four flavonoids and one phenolic acid in rat plasma by LC-MS/MS and its application to a pharmacokinetic study after oral administration of the Herba Desmodii Styracifolii extract. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences 932:66–73. doi: 10.1016/j.jchromb.2013.06.001.
  • Sun, K., J. Y. Fan, and J. Y. Han. 2015. Ameliorating effects of traditional Chinese medicine preparation, Chinese materia medica and active compounds on ischemia/reperfusion-induced cerebral microcirculatory disturbances and neuron damage. Acta Pharmaceutica Sinica. B 5 (1):8–24. doi: 10.1016/j.apsb.2014.11.002.
  • Tambe, R., A. Patil, P. Jain, J. Sancheti, G. Somani, and S. Sathaye. 2017. Assessment of luteolin isolated from Eclipta alba leaves in animal models of epilepsy. Pharmaceutical Biology 55 (1):264–8. doi: 10.1080/13880209.2016.1260597.
  • Tang, Z., M. Li, X. Zhang, and W. Hou. 2016. Dietary flavonoid intake and the risk of stroke: A dose-response meta-analysis of prospective cohort studies. BMJ Open 6 (6):e008680. doi: 10.1136/bmjopen-2015-008680.
  • Tee-Ngam, P., N. Nunant, P. Rattanarat, W. Siangproh, and O. Chailapakul. 2013. Simple and rapid determination of ferulic acid levels in food and cosmetic samples using paper-based platforms. Sensors (Basel, Switzerland) 13 (10):13039–53. doi: 10.3390/s131013039.
  • Thipkaew, C., J. Wattanathorn, and S. Muchimapura. 2017. Electrospun nanofibers loaded with quercetin promote the recovery of focal entrapment neuropathy in a rat model of streptozotocin-induced diabetes. BioMed Research International 2017:2017493. doi: 10.1155/2017/2017493.
  • Tian, J., F. Fu, M. Geng, Y. Jiang, J. Yang, W. Jiang, C. Wang, and K. Liu. 2005. Neuroprotective effect of 20(S)-ginsenoside Rg3 on cerebral ischemia in rats. Neuroscience Letters 374 (2):92–7. doi: 10.1016/j.neulet.2004.10.030.
  • Tiwari, S., V. Atluri, A. Kaushik, A. Yndart, and M. Nair. 2019. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. International Journal of Nanomedicine 14:5541–54. doi: 10.2147/Ijn.S200490.
  • Tsai, C. F., C. L. Huang, Y. L. Lin, Y. C. Lee, Y. C. Yang, and N. K. Huang. 2011. The neuroprotective effects of an extract of Gastrodia elata. Journal of Ethnopharmacology 138 (1):119–25. doi: 10.1016/j.jep.2011.08.064.
  • Tsai, F.-S., L.-Y. Wu, S.-E. Yang, H.-Y. Cheng, C.-C. Tsai, C.-R. Wu, and L.-W. Lin. 2015. Ferulic acid reverses the cognitive dysfunction caused by amyloid beta peptide 1-40 through anti-oxidant activity and cholinergic activation in rats. The American Journal of Chinese Medicine 43 (2):319–35. doi: 10.1142/S0192415X15500214.
  • Vaz, M., V. Silva, C. Monteiro, and S. Silvestre. 2022. Role of aducanumab in the treatment of Alzheimer?s disease: Challenges and opportunities. Clinical Interventions in Aging 17:797–810. doi: 10.2147/Cia.S325026.
  • Vingtdeux, V., P. Davies, D. W. Dickson, and P. Marambaud. 2011. AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer’s disease and other tauopathies. Acta Neuropathologica 121 (3):337–49. doi: 10.1007/s00401-010-0759-x.
  • Wang, B., Y. Zhong, C. Gao, and J. Li. 2017. Myricetin ameliorates scopolamine-induced memory impairment in mice via inhibiting acetylcholinesterase and down-regulating brain iron. Biochemical and Biophysical Research Communications 490 (2):336–42. doi: 10.1016/j.bbrc.2017.06.045.
  • Wang, J., J. Q. Mao, R. Wang, S. N. Li, B. Wu, and Y. F. Yuan. 2020. Kaempferol protects against cerebral ischemia reperfusion injury through intervening oxidative and inflammatory stress induced apoptosis. Frontiers in Pharmacology 11:424. doi:ARTN 424 10.3389/fphar.2020.00424.
  • Wang, N.-Y., J.-N. Li, W.-L. Liu, Q. Huang, W.-X. Li, Y.-H. Tan, F. Liu, Z.-H. Song, M.-Y. Wang, N. Xie, et al. 2021. Ferulic acid ameliorates Alzheimer’s disease-like pathology and repairs cognitive decline by preventing capillary hypofunction in APP/PS1 mice. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics 18 (2):1064–80. doi: 10.1007/s13311-021-01024-7.
  • Wang, R., W. Zhu, J. Peng, K. Li, and C. Li. 2022. Lipid rafts as potential mechanistic targets underlying the pleiotropic actions of polyphenols. Critical Reviews in Food Science and Nutrition 62 (2):311–24. doi: 10.1080/10408398.2020.1815171.
  • Wang, Y., Y. Wang, J. Li, L. Hua, B. Han, Y. Zhang, X. Yang, Z. Zeng, H. Bai, H. Yin, et al. 2016. Effects of caffeic acid on learning deficits in a model of Alzheimer’s disease. International Journal of Molecular Medicine 38 (3):869–75. doi: 10.3892/ijmm.2016.2683.
  • Wang, Y., Y. Wu, C. Liang, R. Tan, L. Tan, and R. Tan. 2019. Pharmacodynamic effect of ellagic acid on ameliorating cerebral ischemia/reperfusion injury. Pharmacology 104 (5–6):320–31. doi: 10.1159/000502401.
  • Wei, S. Y., Y. Chen, and X. Y. Xu. 2014. Progress on the pharmacological research of puerarin: A review. Chinese Journal of Natural Medicines 12 (6):407–14. doi: 10.1016/S1875-5364(14)60064-9.
  • Wei, X., Y. Wu, H. Tang, B. Wang, Y. Wang, W. Sun, J. Asenso, F. Xiao, and C. Wang. 2021. CP-25 ameliorates methotrexate induced nephrotoxicity via improving renal apoptosis and methotrexate excretion. Journal of Pharmacological Sciences 146 (1):21–8. doi: 10.1016/j.jphs.2021.02.007.
  • Wen, J., B. Xu, Y. Sun, M. Lian, Y. Li, Y. Lin, D. Chen, Y. Diao, M. Almoiliqy, L. Wang, et al. 2019. Paeoniflorin protects against intestinal ischemia/reperfusion by activating LKB1/AMPK and promoting autophagy. Pharmacological Research 146:104308. doi: 10.1016/j.phrs.2019.104308.
  • Wong, K. H., G. Q. Li, K. M. Li, V. Razmovski-Naumovski, and K. Chan. 2011. Kudzu root: Traditional uses and potential medicinal benefits in diabetes and cardiovascular diseases. Journal of Ethnopharmacology 134 (3):584–607. doi: 10.1016/j.jep.2011.02.001.
  • Wu, D., Z. Zheng, S. Fan, X. Wen, X. Han, S. Wang, Y. Wang, Z. Zhang, Q. Shan, M. Li, et al. 2020. Ameliorating effect of quercetin on epilepsy by inhibition of inflammation in glial cells. Experimental and Therapeutic Medicine 20 (2):854–9. doi: 10.3892/etm.2020.8742.
  • Wu, H.-C., Q.-L. Hu, S.-J. Zhang, Y.-M. Wang, Z.-K. Jin, L.-F. Lv, S. Zhang, Z.-L. Liu, H.-L. Wu, O.-M. Cheng, et al. 2018. Neuroprotective effects of genistein on SH-SY5Y cells overexpressing A53T mutant α-synuclein. Neural Regeneration Research 13 (8):1375–83. doi: 10.4103/1673-5374.235250.
  • Wu, X., J. Kang, C. Xie, R. Burris, M. E. Ferguson, T. M. Badger, and S. Nagarajan. 2010. Dietary blueberries attenuate atherosclerosis in apolipoprotein E-deficient mice by upregulating antioxidant enzyme expression. The Journal of Nutrition 140 (9):1628–32. doi: 10.3945/jn.110.123927.
  • Xian, Y.-F., C. Qu, Y. Liu, S.-P. Ip, Q.-J. Yuan, W. Yang, and Z.-X. Lin. 2020. Magnolol ameliorates behavioral impairments and neuropathology in a transgenic mouse model of Alzheimer’s Disease. Oxidative Medicine and Cellular Longevity 2020 2020:1–17. doi:Artn 5920476. doi: 10.1155/2020/5920476.
  • Xie, R., W. Zhao, S. Lowe, R. Bentley, G. Hu, H. Mei, X. Jiang, C. Sun, Y. Wu, Y. Liu, et al. 2022. Quercetin alleviates kainic acid-induced seizure by inhibiting the Nrf2-mediated ferroptosis pathway. Free Radical Biology & Medicine 191:212–26. doi: 10.1016/j.freeradbiomed.2022.09.001.
  • Xie, Z., J. Zhao, H. Wang, Y. Jiang, Q. Yang, Y. Fu, H. Zeng, C. Hölscher, J. Xu, Z. Zhang, et al. 2020. Magnolol alleviates Alzheimer’s disease-like pathology in transgenic C. elegans by promoting microglia phagocytosis and the degradation of beta-amyloid through activation of PPAR-gamma. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 124:109886. doi: 10.1016/j.biopha.2020.109886.
  • Xu, W., X.-B. Wang, Z.-M. Wang, J.-J. Wu, F. Li, J. Wang, and L.-Y. Kong. 2016. Synthesis and evaluation of donepezil-ferulic acid hybrids as multi-target-directed ligands against Alzheimer’s disease. MedChemComm 7 (5):990–8. doi: 10.1039/C6MD00053C.
  • Xu, X.-Y., X. Meng, S. Li, R.-Y. Gan, Y. Li, and H.-B. Li. 2018. Bioactivity, health benefits, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives. Nutrients 10 (10):1553. doi: 10.3390/nu10101553.
  • Yan, J., Z. Yang, N. Zhao, Z. Li, and X. Cao. 2019. Gastrodin protects dopaminergic neurons via insulin-like pathway in a Parkinson’s disease model. BMC Neuroscience 20 (1):31. doi: 10.1186/s12868-019-0512-x.
  • Yan, T., B. He, M. Xu, B. Wu, F. Xiao, K. Bi, and Y. Jia. 2019. Kaempferide prevents cognitive decline via attenuation of oxidative stress and enhancement of brain-derived neurotrophic factor/tropomyosin receptor kinase B/cAMP response element-binding signaling pathway. Phytotherapy Research: PTR 33 (4):1065–73. doi: 10.1002/ptr.6300.
  • Yang, C., K. E. Hawkins, S. Dore, and E. Candelario-Jalil. 2019. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. American Journal of Physiology-Cell Physiology 316 (2):C135–C153. doi: 10.1152/ajpcell.00136.2018.
  • Yang, Y. L., X. Cheng, W. H. L. M. Liu, Y. H. Wang, and G. H. Du. 2019. Kaempferol attenuates LPS-induced striatum injury in mice involving anti-neuroinflammation, maintaining BBB integrity, and down-regulating the HMGB1/TLR4 pathway. International Journal of Molecular Sciences 20 (3):491. doi: 10.3390/ijms20030491.
  • Yang, Z., D. D. Zhou, S. Y. Huang, A. P. Fang, H. B. Li, and H. L. Zhu. 2021. Effects and mechanisms of natural products on Alzheimer’s disease. Critical Reviews in Food Science and Nutrition:1–21. doi: 10.1080/10408398.2021.1985428.
  • Yao, H., J. Sun, J. Wei, X. Zhang, B. Chen, and Y. Lin. 2020. Kaempferol protects blood vessels from damage induced by oxidative stress and inflammation in association with the Nrf2/HO-1 signaling pathway. Frontiers in Pharmacology 11:1118. doi: 10.3389/fphar.2020.01118.
  • Yoon, H.-Y., E.-G. Lee, H. Lee, I. J. Cho, Y. J. Choi, M.-S. Sung, H.-G. Yoo, and W.-H. Yoo. 2013. Kaempferol inhibits IL-1beta-induced proliferation of rheumatoid arthritis synovial fibroblasts and the production of COX-2, PGE2 and MMPs. International Journal of Molecular Medicine 32 (4):971–7. doi: 10.3892/ijmm.2013.1468.
  • Youdim, K. A., M. S. Dobbie, G. Kuhnle, A. R. Proteggente, N. J. Abbott, and C. Rice-Evans. 2003. Interaction between flavonoids and the blood-brain barrier: In vitro studies. Journal of Neurochemistry 85 (1):180–92. doi: 10.1046/j.1471-4159.2003.01652.x.
  • Youdim, K. A., M. Z. Qaiser, D. J. Begley, C. A. Rice-Evans, and N. J. Abbott. 2004. Flavonoid permeability across an in situ model of the blood-brain barrier. Free Radical Biology & Medicine 36 (5):592–604. doi: 10.1016/j.freeradbiomed.2003.11.023.
  • Yu, K. C., P. Kwan, S. K. K. Cheung, A. Ho, and L. Baum. 2018. Effects of resveratrol and morin on insoluble tau in tau transgenic mice. Translational Neuroscience 9:54–60. doi: 10.1515/tnsci-2018-0010.
  • Yu, L., C. Chen, L.-F. Wang, X. Kuang, K. Liu, H. Zhang, and J.-R. Du. 2013. Neuroprotective effect of kaempferol glycosides against brain injury and neuroinflammation by inhibiting the activation of NF-kappaB and STAT3 in transient focal stroke. PloS One 8 (2):e55839. doi: 10.1371/journal.pone.0055839.
  • Yuen, A. W. C., M. R. Keezer, and J. W. Sander. 2018. Epilepsy is a neurological and a systemic disorder. Epilepsy & Behavior: E&B 78:57–61. doi: 10.1016/j.yebeh.2017.10.010.
  • Zbarsky, V., K. P. Datla, S. Parkar, D. K. Rai, O. I. Aruoma, and D. T. Dexter. 2005. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radical Research 39 (10):1119–25. doi: 10.1080/10715760500233113.
  • Zhang, H.-a., M. Gao, L. Zhang, Y. Zhao, L.-l. Shi, B.-n. Chen, Y.-h. Wang, S.-b. Wang, and G.-h. Du. 2012. Salvianolic acid A protects human SH-SY5Y neuroblastoma cells against H2O2-induced injury by increasing stress tolerance ability. Biochemical and Biophysical Research Communications 421 (3):479–83. doi: 10.1016/j.bbrc.2012.04.021.
  • Zhang, L., D. Xing, W. Wang, R. Wang, and L. Du. 2006. Kinetic difference of baicalin in rat blood and cerebral nuclei after intravenous administration of Scutellariae Radix extract. Journal of Ethnopharmacology 103 (1):120–5. doi: 10.1016/j.jep.2005.07.013.
  • Zhang, L., H. Wang, T. Wang, N. Jiang, P. Yu, Y. Chong, and F. Fu. 2015. Ferulic acid ameliorates nerve injury induced by cerebral ischemia in rats. Experimental and Therapeutic Medicine 9 (3):972–6. doi: 10.3892/etm.2014.2157.
  • Zhang, W., J.-k. Song, R. Yan, G.-r. He, X. Zhang, Q.-m. Zhou, Z.-y. Xiao, W.-x. Zhou, and G.-h. Du. 2016. Salvianolic acid A alleviate the brain damage in rats after cerebral ischemia-reperfusion through Nrf2/HO-1 pathway. Yao Xue Xue Bao = Acta Pharmaceutica Sinica 51 (11):1717–23.
  • Zhang, X., H. M. Zhang, L. Si, and Y. Li. 2011. Curcumin mediates presenilin-1 activity to reduce beta-amyloid production in a model of Alzheimer’s disease. Pharmacological Reports 63 (5):1101–8. doi: 10.1016/S1734-1140(11)70629-6.
  • Zhang, X., J. Xiong, S. Liu, L. Wang, J. Huang, L. Liu, J. Yang, G. Zhang, K. Guo, Z. Zhang, et al. 2014. Puerarin protects dopaminergic neurons in Parkinson’s disease models. Neuroscience 280:88–98. doi: 10.1016/j.neuroscience.2014.08.052.
  • Zhang, Y., X. Zhang, L. Cui, R. Chen, C. Zhang, Y. Li, T. He, X. Zhu, Z. Shen, L. Dong, et al. 2017. Salvianolic Acids for Injection (SAFI) promotes functional recovery and neurogenesis via sonic hedgehog pathway after stroke in mice. Neurochemistry International 110:38–48. doi: 10.1016/j.neuint.2017.09.001.
  • Zhao, C.-N., X. Meng, Y. Li, S. Li, Q. Liu, G.-Y. Tang, and H.-B. Li. 2017. Fruits for prevention and treatment of cardiovascular diseases. Nutrients 9 (6):598. doi: 10.3390/nu9060598.
  • Zhao, H., Q. Wang, X. Cheng, X. Li, N. Li, T. Liu, J. Li, Q. Yang, R. Dong, Y. Zhang, et al. 2018. Inhibitive effect of resveratrol on the inflammation in cultured astrocytes and microglia induced by A beta(1-42). Neuroscience 379:390–404. doi: 10.1016/j.neuroscience.2018.03.047.
  • Zhao, J., S. Yu, W. Zheng, G. Feng, G. Luo, L. Wang, and Y. Zhao. 2010. Curcumin improves outcomes and attenuates focal cerebral ischemic injury via antiapoptotic mechanisms in rats. Neurochemical Research 35 (3):374–9. doi: 10.1007/s11064-009-0065-y.
  • Zhao, J., Y. Cheng, C. Yang, S. Lau, L. Lao, B. Shuai, J. Cai, and J. Rong. 2016. Botanical drug puerarin attenuates 6-hydroxydopamine (6-OHDA)-induced neurotoxicity via upregulating mitochondrial enzyme arginase-2. Molecular Neurobiology 53 (4):2200–11. doi: 10.1007/s12035-015-9195-1.
  • Zhen, J.-L., Y.-N. Chang, Z.-Z. Qu, T. Fu, J.-Q. Liu, and W.-P. Wang. 2016. Luteolin rescues pentylenetetrazole-induced cognitive impairment in epileptic rats by reducing oxidative stress and activating PKA/CREB/BDNF signaling. Epilepsy & Behavior: E&B 57 (Pt A):177–84. doi: 10.1016/j.yebeh.2016.02.001.
  • Zheng, M., C. Liu, Y. Fan, P. Yan, D. Shi, and Y. Zhang. 2017. Neuroprotection by Paeoniflorin in the MPTP mouse model of Parkinson’s disease. Neuropharmacology 116:412–20. doi: 10.1016/j.neuropharm.2017.01.009.
  • Zheng, Y. Y., L. S. Yu, Y. G. Zhang, G. H. Ye, and J. P. Yi. 2009. Effects of curcumin on malondialdehyde and c-fos protein in hypoxia ischemia brain tissue in rats. ]. Fa Yi Xue Za Zhi 25 (1):6–8.
  • Zhong, X., L. Zhang, Y. Li, P. Li, J. Li, and G. Cheng. 2018. Kaempferol alleviates ox-LDL-induced apoptosis by up-regulation of miR-26a-5p via inhibiting TLR4/NF-kappaB pathway in human endothelial cells. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 108:1783–9. doi: 10.1016/j.biopha.2018.09.175.
  • Zhou, Y. X., H. Zhang, and C. Peng. 2014. Puerarin: A review of pharmacological effects. Phytotherapy Research: PTR 28 (7):961–75. doi: 10.1002/ptr.5083.
  • Zhou, Y., N. Xie, L. Li, Y. Zou, X. Zhang, and M. Dong. 2014. Puerarin alleviates cognitive impairment and oxidative stress in APP/PS1 transgenic mice. The International Journal of Neuropsychopharmacology 17 (4):635–44. doi: 10.1017/S146114571300148X.
  • Zhu, G. M., Y. Fang, X. L. Cui, et al. 2021. Magnolol upregulates CHRM1 to attenuate Amyloid-beta-triggered neuronal injury through regulating the cAMP/PKA/CREB pathway. Journal of Natural Medicines-Tokyo 76 (1):188–199. doi: 10.1007/s11418-021-01574-2.
  • Zhu, G., X. Wang, S. Wu, and Q. Li. 2012. Involvement of activation of PI3K/Akt pathway in the protective effects of puerarin against MPP+-induced human neuroblastoma SH-SY5Y cell death. Neurochemistry International 60 (4):400–8. doi: 10.1016/j.neuint.2012.01.003.
  • Zhu, G., X. Wang, S. Wu, X. Li, and Q. Li. 2014. Neuroprotective effects of puerarin on 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine induced Parkinson’s disease model in mice. Phytotherapy Research: PTR 28 (2):179–86. doi: 10.1002/ptr.4975.
  • Zhu, G., X. Wang, Y. Chen, S. Yang, H. Cheng, N. Wang, and Q. Li. 2010. Puerarin protects dopaminergic neurons against 6-hydroxydopamine neurotoxicity via inhibiting apoptosis and upregulating glial cell line-derived neurotrophic factor in a rat model of Parkinson’s disease. Planta Medica 76 (16):1820–6. doi: 10.1055/s-0030-1249976.
  • Zhu, H., C. Liu, J. Hou, H. Long, B. Wang, D. Guo, M. Lei, and W. Wu. 2019. Gastrodia elata blume polysaccharides: A review of their acquisition, analysis, modification, and pharmacological activities. Molecules 24 (13):2436. doi: 10.3390/molecules24132436.
  • Zhuang, P., Y. Wan, S. Geng, Y. He, B. Feng, Z. Ye, D. Zhou, D. Li, H. Wei, H. Li, et al. 2017. Salvianolic Acids for Injection (SAFI) suppresses inflammatory responses in activated microglia to attenuate brain damage in focal cerebral ischemia. Journal of Ethnopharmacology 198:194–204. doi: 10.1016/j.jep.2016.11.052.
  • Zhuang, P., Y. Zhang, G. Cui, Y. Bian, M. Zhang, J. Zhang, Y. Liu, X. Yang, A. O. Isaiah, Y. Lin, et al. 2012. Direct stimulation of adult neural stem/progenitor cells in vitro and neurogenesis in vivo by salvianolic acid B. PloS One 7 (4):e35636. doi:ARTN1371/journal. doi: 10.1371/journal.pone.0035636.
  • Zou, Y., B. Hong, L. Fan, L. Zhou, Y. Liu, Q. Wu, X. Zhang, and M. Dong. 2013. Protective effect of puerarin against beta-amyloid-induced oxidative stress in neuronal cultures from rat hippocampus: Involvement of the GSK-3beta/Nrf2 signaling pathway. Free Radical Research 47 (1):55–63. doi: 10.3109/10715762.2012.742518.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.