1,387
Views
0
CrossRef citations to date
0
Altmetric
Review

A critical analysis on the concentrations of phenolic compounds tested using in vitro and in vivo Parkinson’s disease models

, , , , &

References

  • Abolaji, A. O., A. O. Adedara, M. A. Adie, M. Vicente-Crespo, and E. O. Farombi. 2018. Resveratrol prolongs lifespan and improves 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced oxidative damage and behavioural deficits in drosophila melanogaster. Biochemical and Biophysical Research Communications 503 (2):1042–8. doi: 10.1016/j.bbrc.2018.06.114.
  • Alemán-Jiménez, C., R. Domínguez-Perles, S. Medina, I. Prgomet, I. López-González, A. Simonelli-Muñoz, M. Campillo-Cano, D. Auñón, F. Ferreres, and Á. Gil-Izquierdo. 2021. Pharmacokinetics and bioavailability of hydroxytyrosol are dependent on the food matrix in humans. European Journal of Nutrition 60 (2):905–15. doi: 10.1007/s00394-020-02295-0.
  • Angelopoulou, E., E. S. Pyrgelis, and C. Piperi. 2020. Neuroprotective potential of chrysin in Parkinson’s disease: Molecular mechanisms and clinical implications. Neurochemistry International:(132)
  • Antunes, M. S., F. V. L. Ladd, A. Ladd, A. L. Moreira, S. P. Boeira, and L. Cattelan Souza. 2021. Hesperidin protects against behavioral alterations and loss of dopaminergic neurons in 6-OHDA-lesioned mice: The role of mitochondrial dysfunction and apoptosis. Metabolic Brain Disease 36 (1):153–67. doi: 10.1007/s11011-020-00618-y.
  • Anusha, C., T. Sumathi, and L. D. Joseph. 2017. Protective role of apigenin on rotenone induced rat model of Parkinson’s disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis. Chemico-Biological Interactions 269:67–79. doi: 10.1016/j.cbi.2017.03.016.
  • Aquilano, K., S. Baldelli, G. Rotilio, and M. R. Ciriolo. 2008. Role of nitric oxide synthases in Parkinson’s disease: A review on the antioxidant and anti-inflammatory activity of polyphenols. Neurochemical Research 33 (12):2416–26. doi: 10.1007/s11064-008-9697-6.
  • Ardah, M. T., K. E. Paleologou, G. Lv, S. B. Abul Khair, A. S. Kazim, S. T. Minhas, T. H. Al-Tel, A. A. Al-Hayani, M. E. Haque, D. Eliezer, et al. 2014. Structure activity relationship of phenolic acid inhibitors of α-synuclein fibril formation and toxicity. Frontiers in Aging Neuroscience 6:197. doi: 10.3389/fnagi.2014.00197.
  • Aryal, S., T. Skinner, B. Bridges, and J. T. Weber. 2020. The pathology of Parkinson’s disease and potential benefit of dietary polyphenols. Molecules 25:(19).
  • Ay, M., J. Luo, M. Langley, H. Jin, V. Anantharam, A. Kanthasamy, and A. G. Kanthasamy. 2017. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and mitopark transgenic mouse models of Parkinson’s disease. Journal of Neurochemistry 141 (5):766–82. doi: 10.1111/jnc.14033.
  • Bai, H., Y. Ding, X. Li, D. Kong, C. Xin, X. Yang, C. Zhang, Z. Rong, C. Yao, S. Lu, et al. 2020. Polydatin protects SH-SY5Y in models of Parkinson’s disease by promoting Atg5-mediated but parkin-independent autophagy. Neurochemistry International 134:104671. doi: 10.1016/j.neuint.2020.104671.
  • Baluchnejadmojarad, T., N. Rabiee, S. Zabihnejad, and M. Roghani. 2017. Ellagic acid exerts protective effect in intrastriatal 6-hydroxydopamine rat model of Parkinson’s disease: possible involvement of ERβ/Nrf2/HO-1 signaling. Brain Research 1662:23–30. doi: 10.1016/j.brainres.2017.02.021.
  • Bo’, Bernardi, Marino, Porrini, Tucci, Guglielmetti, Cherubini, Carrieri, Kirkup, Kroon, et al. 2019. Systematic review on polyphenol intake and health outcomes: Is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern? Nutrients 11 (6):1355. doi: 10.3390/nu11061355.
  • Bournival, J., P. Quessy, and M. G. Martinoli. 2009. Protective effects of resveratrol and quercetin against MPP+ -induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cellular and Molecular Neurobiology 29 (8):1169–80. doi: 10.1007/s10571-009-9411-5.
  • Brunetti, G., G. di Rosa, M. Scuto, M. Leri, M. Stefani, C. Schmitz-Linneweber, V. Calabrese, and N. Saul. 2020. Healthspan maintenance and prevention of Parkinson’s-like phenotypes with hydroxytyrosol and oleuropein aglycone in C. Elegans. International Journal of Molecular Science 21(7):1-23 doi: 10.3390/ijms21072588.
  • Bureau, G., F. Longpré, and M. G. Martinoli. 2008. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. Journal of Neuroscience Research 86 (2):403–10. doi: 10.1002/jnr.21503.
  • Cai, Z. Y., X. M. Li, J. P. Liang, L. P. Xiang, K. R. Wang, Y. L. Shi, R. Yang, M. Shi, J. H. Ye, J. L. Lu, et al. 2018. Bioavailability of tea catechins and its improvement. Molecules 23:(9).
  • Calvo-Castro, L. A., C. Schiborr, F. David, H. Ehrt, J. Voggel, N. Sus, D. Behnam, A. Bosy-Westphal, and J. Frank. 2018. The oral bioavailability of trans-resveratrol from a grapevine-shoot extract in healthy humans is significantly increased by micellar solubilization. Molecular Nutrition & Food Research 62 (9):1701057. doi: 10.1002/mnfr.201701057.
  • Cao, Q., L. Qin, F. Huang, X. Wang, L. Yang, H. Shi, H. Wu, B. Zhang, Z. Chen, and X. Wu. 2017. Amentoflavone protects dopaminergic neurons in MPTP-induced Parkinson’s disease model mice through PI3K/Akt and ERK signaling pathways. Toxicology and Applied Pharmacology 319:80–90. doi: 10.1016/j.taap.2017.01.019.
  • Caruana, M., T. Högen, J. Levin, A. Hillmer, A. Giese, and N. Vassallo. 2011. Inhibition and disaggregation of α-synuclein oligomers by natural polyphenolic compounds. FEBS Letters 585 (8):1113–20. doi: 10.1016/j.febslet.2011.03.046.
  • Chandrasekhar, Y., G. Phani Kumar, E. M. Ramya, and K. R. Anilakumar. 2018. Gallic acid protects 6-OHDA induced neurotoxicity by attenuating oxidative stress in human dopaminergic cell line. Neurochemical Research 43 (6):1150–60. doi: 10.1007/s11064-018-2530-y.
  • Chen, L., H. Cao, and J. Xiao. 2018. Polyphenols: Absorption, bioavailability, and metabolomics. In Polyphenols: Properties, recovery, and applications, 45–67. Austria: Elsevier. ISBN 9780128135723.
  • Chen, Y., D. Q. Zhang, Z. Liao, B. Wang, S. Gong, C. Wang, M. Z. Zhang, G. H. Wang, H. Cai, F. F. Liao, et al. 2015. Anti-oxidant polydatin (piceid) protects against substantia nigral motor degeneration in multiple rodent models of Parkinson’s disease. Molecular Neurodegeneration 10:4. doi: 10.1186/1750-1326-10-4.
  • Cheynier, V., G. Comte, K. M. Davies, V. Lattanzio, and S. Martens. 2013. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry: PPB 72:1–20. doi: 10.1016/j.plaphy.2013.05.009.
  • Cirmi, S., A. Maugeri, G. E. Lombardo, C. Russo, L. Musumeci, S. Gangemi, G. Calapai, D. Barreca, and M. Navarra. 2021. A flavonoid-rich extract of mandarin juice counteracts 6-OHDA-induced oxidative stress in Sh-Sy5y cells and modulates Parkinson-related genes. Antioxidants 10:(4). doi: 10.3390/antiox10040539.
  • Clancy, M. J. 2002. Overview of research designs. Emergency Medicine Journal 19 (6):546–9. doi: 10.1136/emj.19.6.546.
  • Crozier, A., D. del Rio, and M. N. Clifford. 2010. Bioavailability of dietary flavonoids and phenolic compounds. Molecular Aspects of Medicine 31 (6):446–67. doi: 10.1016/j.mam.2010.09.007.
  • Cui, Q., X. Li, and H. Zhu. 2016. Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway. Molecular Medicine Reports 13 (2):1381–8. doi: 10.3892/mmr.2015.4657.
  • Dabeek, W. M., and M. V. Marra. 2019. Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients 11:(10).
  • de Araújo, F. F., D. de Paulo Farias, I. A. Neri-Numa, and G. M. Pastore. 2021. Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chemistry 338:127535. doi: 10.1016/j.foodchem.2020.127535.
  • DeRango-Adem, E. F., and J. Blay. 2021. Does oral apigenin have real potential for a therapeutic effect in the context of human gastrointestinal and other cancers? Frontiers in Pharmacology: (12).
  • Dexter, D. T., and P. Jenner. 2013. Parkinson Disease: From pathology to molecular disease mechanisms. Free radical Biology & Medicine 62:132–44.
  • di Rosa, G., G. Brunetti, M. Scuto, A. T. Salinaro, E. J. Calabrese, R. Crea, C. Schmitz-Linneweber, V. Calabrese, and N. Saul. 2020. Healthspan enhancement by olive polyphenols in C. Elegans wild type and Parkinson’s models. International Journal of Molecualar Science 21:1–22. doi: 10.3390/ijms21113893.
  • Djulbegovic, B., and G. H. Guyatt. 2017. Progress in evidence-based medicine: A quarter century on. The Lancet 390 (10092):415–23. doi: 10.1016/S0140-6736(16)31592-6.
  • Duda-Chodak, A., T. Tarko, P. Satora, and P. Sroka. 2015. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. European Journal of Nutrition 54 (3):325–41. doi: 10.1007/s00394-015-0852-y.
  • El-Horany, H. E., R. N. A. El-Latif, M. M. ElBatsh, and M. N. Emam. 2016. Ameliorative effect of quercetin on neurochemical and behavioral deficits in rotenone rat model of Parkinson’s disease: Modulating autophagy (quercetin on experimental Parkinson’s disease). Journal of Biochemical and Molecular Toxicology 30 (7):360–9. doi: 10.1002/jbt.21821.
  • Elmazoglu, Z., A. S. Yar Saglam, C. Sonmez, and C. Karasu. 2020. Luteolin protects microglia against rotenone-induced toxicity in a hormetic manner through targeting oxidative stress response, genes associated with Parkinson’s disease and inflammatory pathways. Drug and Chemical Toxicology 43 (1):96–103. doi: 10.1080/01480545.2018.1504961.
  • Ferreira, I., N. Martins, and L. Barros. 2017. Phenolic compounds and its bioavailability: In vitro bioactive compounds or health promoters? Advances in Food and Nutrition Research 82:1–44. doi: 10.1016/bs.afnr.2016.12.004.
  • Gao, X., A. Cassidy, M. Schwarzschild, E. Rimm, S. A. Ascherio, and E. Ebr. 2012. Habitual intake of dietary flavonoids and risk of Parkinson Disease. Neurology 78 (15):1138–1145.
  • Giuliano, C., S. Cerri, and F. Blandini. 2021. Potential therapeutic effects of polyphenols in Parkinson’s disease: In vivo and in vitro pre-clinical studies. Neural Regeneration Research 16 (2):234–41. doi: 10.4103/1673-5374.290879.
  • Goes, A. T. R., C. R. Jesse, M. S. Antunes, F. v Lobo Ladd, A. A. B. Lobo Ladd, C. Luchese, N. Paroul, and S. P. Boeira. 2018. Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson’s disease: involvement of neuroinflammation and neurotrophins. Chemico-Biological Interactions 279:111–20. doi: 10.1016/j.cbi.2017.10.019.
  • Han, X., S. Zhao, H. Song, T. Xu, Q. Fang, G. Hu, and L. Sun. 2021. Kaempferol alleviates LD-mitochondrial damage by promoting autophagy: Implications in Parkinson’s disease. Redox Biology 41:101911. doi: 10.1016/j.redox.2021.101911.
  • Ho, L., D. Zhao, K. Ono, K. Ruan, I. Mogno, M. Tsuji, E. Carry, J. Brathwaite, S. Sims, T. Frolinger, et al. 2019. Heterogeneity in gut microbiota drive polyphenol metabolism that influences α-synuclein misfolding and toxicity. The Journal of Nutritional Biochemistry 64:170–81. doi: 10.1016/j.jnutbio.2018.10.019.
  • Holst, B., and G. Williamson. 2008. Nutrients and phytochemicals: From bioavailability to bioefficacy beyond antioxidants. Current Opinion in Biotechnology 19 (2):73–82. doi: 10.1016/j.copbio.2008.03.003.
  • Hu, M., F. Li, and W. Wang. 2018. Vitexin protects dopaminergic neurons in Mptp-induced Parkinson’s disease through Pi3k/Akt signaling pathway. Drug Design, Development and Therapy 12:565–73. doi: 10.2147/DDDT.S156920.
  • Hussain, G., L. Zhang, A. Rasul, H. Anwar, M. U. Sohail, A. Razzaq, N. Aziz, A. Shabbir, M. Ali, and T. Sun. 2018. Role of plant-derived flavonoids and their mechanism in attenuation of Alzheimer’s and Parkinson’s diseases: An update of recent data. Molecules 23 (4):814. doi: 10.3390/molecules23040814.
  • Jeong, S. H., J. H. Jang, H. Y. Cho, I. J. Oh, and Y. B. Lee. 2020. A sensitive UPLC–ESI–MS/MS method for the quantification of cinnamic acid in vivo and in vitro: Application to pharmacokinetic and protein binding study in human plasma. Journal of Pharmaceutical Investigation 50 (2):159–72. doi: 10.1007/s40005-019-00444-0.
  • Joshi, R., Y. A. Kulkarni, and S. Wairkar. 2018. Pharmacokinetic, pharmacodynamic and formulations aspects of naringenin: An update. Life Sciences 215:43–56. doi: 10.1016/j.lfs.2018.10.066.
  • Jude, S., A. Amalraj, A. B. Kunnumakkara, C. Divya, B. M. Löffler, and S. Gopi. 2018. Development of validated methods and quantification of curcuminoids and curcumin metabolites and their pharmacokinetic study of oral administration of complete natural turmeric formulation (CureitTM) in human plasma via UPLC/ESI-Q-TOF-MS spectrometry. Molecules 23(10). doi: 10.3390/molecules23102415.
  • Jung, U. J., and S. R. Kim. 2018. Beneficial effects of flavonoids against Parkinson’s disease. Journal of Medicinal Food 21 (5):421–32. doi: 10.1089/jmf.2017.4078.
  • Karuppagounder, S. S., S. K. Madathil, M. Pandey, R. Haobam, U. Rajamma, and K. P. Mohanakumar. 2013. Quercetin up-regulates mitochondrial complex-I activity to protect against programmed cell death in rotenone model of Parkinson’s disease in rats. Neuroscience 236:136–48. doi: 10.1016/j.neuroscience.2013.01.032.
  • Kesh, S., R. R. Kannan, and A. Balakrishnan. 2021. Naringenin alleviates 6-hydroxydopamine induced Parkinsonism in SHSY5Y cells and Zebrafish model. Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP 239:108893. doi: 10.1016/j.cbpc.2020.108893.
  • Khan, M. M., A. Ahmad, T. Ishrat, M. B. Khan, M. N. Hoda, G. Khuwaja, S. S. Raza, A. Khan, H. Javed, K. Vaibhav, et al. 2010. Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease. Brain Research 1328:139–51. doi: 10.1016/j.brainres.2010.02.031.
  • Kim, S. J., H. Shin, S. M. Cheon, S. M. Ko, S. H. Ham, Y. D. Kwon, Y. B. Lee, and H. Y. Cho. 2017. A sensitive UHPLC–MS/MS method for the simultaneous quantification of three lignans in human plasma and its application to a pharmacokinetic study. Journal of Separation Science 40 (17):3430–9. doi: 10.1002/jssc.201700588.
  • Kim, T. Y., E. Leem, J. M. Lee, and S. R. Kim. 2020. Control of reactive oxygen species for the prevention of Parkinson’s disease: The possible application of flavonoids. Antioxidants 9:1–28. doi: 10.3390/antiox9070583.
  • Kumar, R., R. Kumar, N. Khurana, S. K. Singh, S. Khurana, S. Verma, N. Sharma, B. Kapoor, M. Vyas, R. Khursheed, et al. 2020. Enhanced oral bioavailability and neuroprotective effect of fisetin through its SNEDDS against rotenone-induced Parkinson’s disease rat model. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 144:111590. doi: 10.1016/j.fct.2020.111590.
  • Kung, H. C., K. J. Lin, C. t Kung, and T. K. Lin. 2021. Oxidative stress, mitochondrial dysfunction, and neuroprotection of polyphenols with respect to resveratrol in Parkinson’s disease. Biomedicines 9(8).
  • Lambkin, I., and C. Pinilla. 2002. Targeting approaches to oral drug delivery. Expert Opinion on Biological Therapy 2 (1):67–73. doi: 10.1517/14712598.2.1.67.
  • Levites, Y., B. H. Youdim, G. Maor, and S. Mandel. 2002. Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-KappaB (NF-B) activation and cell death by tea extracts in neuronal cultures. Biochemical Pharmacology 63 (1):21–29.
  • Levites, Y., O. Weinreb, G. Maor, 2. Moussa, B. H. Youdim, and S. Mandel. 2001. Green tea polyphenol (±)-epigallocatechin-3-gallate prevents-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration. Journal of Neurochemistry 78 (5):1073–82. doi: 10.1046/j.1471-4159.2001.00490.x.
  • Levites, Y., T. Amit, M. B. H. Youdim, and S. Mandel. 2002. Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. The Journal of Biological Chemistry 277 (34):30574–80. doi: 10.1074/jbc.M202832200.
  • Limboonreung, T., P. Tuchinda, and S. Chongthammakun. 2020. Chrysoeriol mediates mitochondrial protection via PI3K/Akt pathway in MPP + treated SH-SY5Y cells. Neuroscience Letters 714:134545. doi: 10.1016/j.neulet.2019.134545.
  • Lorenzen, N., S. B. Nielsen, Y. Yoshimura, B. S. Vad, C. B. Andersen, C. Betzer, J. D. Kaspersen, G. Christiansen, J. S. Pedersen, P. H. Jensen, et al. 2014. How epigallocatechin gallate can inhibit α-synuclein oligomer toxicity in vitro. The Journal of Biological Chemistry 289 (31):21299–310. doi: 10.1074/jbc.M114.554667.
  • Lou, H., X. Jing, X. Wei, H. Shi, D. Ren, and X. Zhang. 2014. Naringenin protects against 6-OHDA-induced neurotoxicity via activation of the Nrf2/ARE signaling pathway. Neuropharmacology 79:380–8. doi: 10.1016/j.neuropharm.2013.11.026.
  • Magalingam, K. B., A. K. Radhakrishnan, and N. Haleagrahara. 2015. Protective mechanisms of flavonoids in Parkinson’s disease. Oxidative medicine and Cellular Longevity 2015:314560. doi: 10.1155/2015/314560.
  • Malar, D. S., M. I. Prasanth, J. M. Brimson, R. Sharika, B. S. Sivamaruthi, C. Chaiyasut, and T. Tencomnao. 2020. Neuroprotective properties of green tea (Camellia Sinensis) in Parkinson’s disease: A review. Molecules 25 (17):3926. doi: 10.3390/molecules25173926.
  • Mancuso, C., R. Siciliano, and E. Barone. 2011. Curcumin and Alzheimer disease: This is not to be performed. Journal of Biological Chemistry:286(3). doi: 10.1074/jbc.L110.133520.
  • Mercer, L. D., B. L. Kelly, M. K. Horne, and P. M. Beart. 2005. Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: Investigations in primary rat mesencephalic cultures. Biochemical Pharmacology 69 (2):339–45. doi: 10.1016/j.bcp.2004.09.018.
  • Mignani, S., S. el Kazzouli, M. Bousmina, and J. P. Majoral. 2013. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: A concise overview. Advanced Drug Delivery Reviews 65 (10):1316–30. doi: 10.1016/j.addr.2013.01.001.
  • Mohammad-Beigi, H., F. Aliakbari, C. Sahin, C. Lomax, A. Tawfike, N. P. Schafer, A. Amiri-Nowdijeh, H. Eskandari, I. M. Møller, M. Hosseini-Mazinani, et al. 2019. Oleuropein derivatives from olive fruit extracts reduce - synuclein fibrillation and oligomer toxicity. Journal of Biological Chemistry 294 (11):4215–32. doi: 10.1074/jbc.RA118.005723.
  • Mu, X., G. He, Y. Cheng, X. Li, B. Xu, and G. Du. 2009. Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental Parkinsonism in vivo and in vitro. Pharmacology, Biochemistry, and Behavior 92 (4):642–8. doi: 10.1016/j.pbb.2009.03.008.
  • Murad, H., N. Asi, M. Alsawas, and F. Alahdab. 2016. New evidence pyramid. Evidence Based Medicine:(21). doi: 10.1136/ebmed.
  • Mythri, R. B., and M. M. S. Bharath. 2012. Curcumin: A potential neuroprotective agent in Parkinson’s disease. Current Pharmaceutical Design 18 (1):91–99.
  • Okawara, M., H. Katsuki, E. Kurimoto, H. Shibata, T. Kume, and A. Akaike. 2007. Resveratrol protects dopaminergic neurons in midbrain slice culture from multiple insults. Biochemical Pharmacology 73 (4):550–60. doi: 10.1016/j.bcp.2006.11.003.
  • Palazzi, L., E. Bruzzone, G. Bisello, M. Leri, M. Stefani, M. Bucciantini, and P. P. de Laureto. 2018. Oleuropein aglycone stabilizes the monomeric α-synuclein and favours the growth of non-toxic aggregates. Scientific Reports 8 (1):528–533. doi: 10.1038/s41598-018-26645-5.
  • Pan, X., X. Liu, H. Zhao, B. Wu, and G. A. Liu. 2020. Anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson’s disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. Journal of Functional Foods 74:104140. doi: 10.1016/j.jff.2020.104140.
  • Pandey, N., J. Strider, W. C. Nolan, S. X. Yan, and J. E. Galvin. 2008. Curcumin inhibits aggregation of α-synuclein. Acta Neuropathologica 115 (4):479–89. doi: 10.1007/s00401-007-0332-4.
  • Patil, S. P., P. D. Jain, J. S. Sancheti, P. J. Ghumatkar, R. Tambe, and S. Sathaye. 2014. Neuroprotective and neurotrophic effects of apigenin and luteolin in MPTP induced Parkinsonism in mice. Neuropharmacology 86:192–202. doi: 10.1016/j.neuropharm.2014.07.012.
  • Pinto, P., and C. N. Santos. 2017. Worldwide (poly)phenol intake: Assessment methods and identified gaps. European Journal of Nutrition 56 (4):1393–408. doi: 10.1007/s00394-016-1354-2.
  • Reagan‐Shaw, S., M. Nihal, and N. Ahmad. 2008. Dose translation from animal to human studies revisited. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 22 (3):659–61. doi: 10.1096/fj.07-9574lsf.
  • Reglodi, D., J. Renaud, A. Tamas, Y. Tizabi, S. B. Socías, E. Del-Bel, and R. Raisman-Vozari. 2017. Novel tactics for neuroprotection in Parkinson’s disease: Role of antibiotics, polyphenols and neuropeptides. Progress in Neurobiology 155:120–48. doi: 10.1016/j.pneurobio.2015.10.004.
  • Ren, Z. X., Y. F. Zhao, T. Cao, and X. C. Zhen. 2016. Dihydromyricetin protects neurons in an MPTP-induced model of Parkinson’s disease by suppressing glycogen synthase kinase-3 beta activity. Acta Pharmacologica Sinica 37 (10):1315–24. doi: 10.1038/aps.2016.42.
  • Rui, W., S. Li, H. Xiao, M. Xiao, and J. Shi. 2020. Baicalein attenuates neuroinflammation by inhibiting NLRP3/Caspase-1/GSDMD pathway in MPTP-induced mice model of Parkinson’s disease. The International Journal of Neuropsychopharmacology 23 (11):762–73. doi: 10.1093/ijnp/pyaa060.
  • Sang, S., J. D. Lambert, and C. S. Yang. 2006. Bioavailability and stability issues in understanding the cancer preventive effects of tea polyphenols. Journal of the Science of Food and Agriculture 86 (14):2256–65. doi: 10.1002/jsfa.2660.
  • Sergi, D., A. Gélinas, J. Beaulieu, J. Renaud, E. Tardif-Pellerin, J. Guillard, and M. G. Martinoli. 2021. Anti-apoptotic and anti-inflammatory role of trans ε-viniferin in a neuron–glia co-culture cellular model of Parkinson’s disease. Foods:10(3). doi: 10.3390/foods10030586.
  • Singh, A., P. Tripathi, A. K. Yadawa, and S. Singh. 2020. Promising polyphenols in Parkinson’s disease therapeutics. Neurochemical Research 45 (8):1731–45. doi: 10.1007/s11064-020-03058-3.
  • Singh, S., S. N. Sen Rai, H. Birla, W. Zahra, A. S. Rathore, and S. P. Singh. 2020. NF-ΚB-mediated neuroinflammation in Parkinson’s disease and potential therapeutic effect of polyphenols. Neurotoxicity Research 37 (3):491–507. doi: 10.1007/s12640-019-00147-2.
  • Soyata, A., A. N. Hasanah, and T. Rusdiana. 2021. Isoflavones in soybean as a daily nutrient: The mechanisms of action and how they alter the pharmacokinetics of drugs. Turkish Journal of Pharmaceutical Sciences 18 (6):799–810. doi: 10.4274/tjps.galenos.2020.79106.
  • Stefania, D. S., M. L. Clodoveo, M. Cariello, G. D’Amato, C. Franchini, M. F. Faienza, and F. Corbo. 2021. Polyphenols and obesity prevention: Critical insights on molecular regulation, bioavailability and dose in preclinical and clinical settings. Critical Reviews in Food Science and Nutrition 61 (11):1804–26. doi: 10.1080/10408398.2020.1765736.
  • Strathearn, K. E., G. G. Yousef, M. H. Grace, S. L. Roy, M. A. Tambe, M. G. Ferruzzi, Q. L. Wu, J. E. Simon, M. A. Lila, and J. C. Rochet. 2014. Neuroprotective effects of anthocyanin- and proanthocyanidin-rich extracts in cellular models of Parkinson’s disease. Brain Research 1555:60–77. doi: 10.1016/j.brainres.2014.01.047.
  • Stromsnes, K., R. Lagzdina, G. Olaso‐gonzalez, L. Gimeno‐mallench, and J. Gambini. 2021. Pharmacological properties of polyphenols: Bioavailability, mechanisms of action and biological effects in in vitro studies, animal models and humans. Biomedicines 9 (8):1074. doi: 10.3390/biomedicines9081074.
  • Su, C. F., L. Jiang, X. W. Zhang, A. Iyaswamy, and M. Li. 2021. Resveratrol in rodent models of Parkinson’s disease: A systematic review of experimental studies. Frontiers in Pharmacology:12.
  • Tamilselvam, K., N. Braidy, T. Manivasagam, M. M. Essa, N. R. Prasad, S. Karthikeyan, A. J. Thenmozhi, S. Selvaraju, and G. J. Guillemin. 2013. Neuroprotective effects of hesperidin, a plant flavanone, on rotenone-induced oxidative stress and apoptosis in a cellular model for Parkinson’s disease. Oxidative Medicine and Cellular Longevity 2013:1–11. doi: 10.1155/2013/102741.
  • Tieu, K. 2011. A guide to neurotoxic animal models of Parkinson’s disease. Cold Spring Harbor Perspectives in Medicine 1:a009316. doi: 10.1101/cshperspect.a009316.
  • Trapani, A., L. Guerra, F. Corbo, S. Castellani, E. Sanna, L. Capobianco, A. G. Monteduro, D. E. Manno, D. Mandracchia, S. di Gioia, et al. 2021. Cyto/biocompatibility of dopamine combined with the antioxidant grape seed-derived polyphenol compounds in solid lipid nanoparticles. Molecules 26 (4):916. doi: 10.3390/molecules26040916.
  • Tsimogiannis, D., and V. Oreopoulou. 2019. Classification of phenolic compounds in plants. In Polyphenols in plants, 263–84. Massachusetts, EUA, Elsevier.
  • Ullah, H., and H. Khan. 2018. Anti-Parkinson potential of silymarin: Mechanistic insight and therapeutic standing. Frontiers in Pharmacology 9: 1–10.
  • Uversky, V. N., X. Meng, L. A. Munishkina, and A. L. Fink. 2010. Effects of various flavonoids on the -synuclein fibrillation process. Parkinson’s Disease 2010:650794. doi: 10.4061/2010/650794.
  • Wang, W.-W., R. Han, H.-J. He, J. Li, S.-Y. Chen, Y. Gu, and C. Xie. 2021. Administration of quercetin improves mitochondria quality control and protects the neurons in 6-OHDA-lesioned Parkinson’s disease models. Aging 13 (8):11738–51. doi: 10.18632/aging.202868.
  • Wang, X. S., Z. R. Zhang, M. M. Zhang, M. X. Sun, W. W. Wang, and C. L. Xie. 2017. Neuroprotective properties of curcumin in toxin-base animal models of Parkinson’s disease: A systematic experiment literatures review. BMC Complementary and Alternative Medicine 17 (1):1–10. doi: 10.1186/s12906-017-1922-x.
  • Wruck, C. J., M. Claussen, G. Fuhrmann, L. Römer, A. Schulz, T. Pufe, V. Waetzig, M. Peipp, T. Herdegen, and M. E. Götz. 2007. Luteolin protects rat PC12 and C6 cells against MPP 1 induced toxicity via an ERK dependent Keap1-Nrf2-ARE pathway. Journal of Neural Transmission 57–67.
  • Wu, H., G. Oliveira, and M. A. Lila. 2022. Protein-binding approaches for improving bioaccessibility and bioavailability of anthocyanins. Comprehensive Reviews in Food Science and Food Safety (1):333–354. doi: 10.1111/1541-4337.13070
  • Xia, D., R. Sui, and Z. Zhang. 2019. Administration of resveratrol improved Parkinson’s disease-like phenotype by suppressing apoptosis of neurons via modulating the MALAT1/MiR-129/SNCA signaling pathway. Journal of Cellular Biochemistry 120 (4):4942–51. doi: 10.1002/jcb.27769.
  • Xiong, S., W. Liu, Y. Zhou, Y. Mo, Y. Liu, X. Chen, H. Pan, D. Yuan, Q. Wang, and T. Chen. 2020. Enhancement of oral bioavailability and anti-parkinsonian efficacy of resveratrol through a nanocrystal formulation. Asian Journal of Pharmaceutical Sciences 15 (4):518–28. doi: 10.1016/j.ajps.2019.04.003.
  • Xu, Q., M. Langley, A. G. Kanthasamy, and M. B. Reddy. 2017. Epigallocatechin gallate has a neurorescue effect in a mouse model of Parkinson disease. The Journal of Nutrition 147 (10):1926–31. doi: 10.3945/jn.117.255034.
  • Xu, Y., Y. Zhang, Z. Quan, W. Wong, J. Guo, R. Zhang, Q. Yang, R. Dai, P. L. McGeer, and H. Qing. 2016. Epigallocatechin Gallate (EGCG) inhibits alpha-synuclein aggregation: A potential agent for Parkinson’s disease. Neurochemical Research 41 (10):2788–96. doi: 10.1007/s11064-016-1995-9.
  • Yang, J., M. Jia, X. Zhang, and P. Wang. 2019. Calycosin attenuates MPTP-induced Parkinson’s disease by suppressing the activation of TLR/NF-ΚB and MAPK pathways. Phytotherapy Research: PTR 33 (2):309–18. doi: 10.1002/ptr.6221.
  • Zbarsky, V., K. P. Datla, S. Parkar, D. K. Rai, O. I. Aruoma, and D. T. Dexter. 2005. Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radical Research 39 (10):1119–25. doi: 10.1080/10715760500233113.
  • Zhang, F., J. S. Shi, H. Zhou, B. Wilson, J. S. Hong, and H. M. Gao. 2010. Resveratrol protects dopamine neurons against lipopolysaccharide-induced neurotoxicity through its anti-inflammatory actions. Molecular Pharmacology 78 (3):466–77. doi: 10.1124/mol.110.064535.
  • Zhang, L. F., X. L. Yu, M. Ji, S. Y. Liu, X. L. Wu, Y. J. Wang, and R. T. Liu. 2018. Resveratrol alleviates motor and cognitive deficits and neuropathology in the A53T α-synuclein mouse model of Parkinson’s disease. Food & Function 9 (12):6414–26. doi: 10.1039/C8FO00964C.
  • Zhang, S., Z. Yu, J. Xia, X. Zhang, K. Liu, A. Sik, and M. Jin. 2020. Anti-Parkinson’s disease activity of phenolic acids from: Eucommia ulmoides oliver leaf extracts and their autophagy activation mechanism. Food & Function 11 (2):1425–40. doi: 10.1039/c9fo02288k.
  • Zhang, X., L. Du, W. Zhang, Y. Yang, Q. Zhou, and G. Du. 2017. Therapeutic effects of baicalein on rotenone-induced Parkinson’s disease through protecting mitochondrial function and biogenesis. Scientific Reports 7:1–14.doi: 10.1038/s41598-017-07442-y.
  • Zhang, Z., G. Li, S. S. W. Szeto, C. M. Chong, Q. Quan, C. Huang, W. Cui, B. Guo, Y. Wang, Y. Han, et al. 2015. Examining the neuroprotective effects of protocatechuic acid and chrysin on in vitro and in vivo models of Parkinson disease. Free Radical Biology & Medicine 84:331–43. doi: 10.1016/j.freeradbiomed.2015.02.030.
  • Zhang, Z., W. Cui, G. Li, S. Yuan, D. Xu, M. P. M. Hoi, Z. Lin, J. Dou, Y. Han, and S. M. Y. Lee. 2012. Baicalein protects against 6-OHDA-induced neurotoxicity through activation of Keap1/Nrf2/HO-1 and involving PKCα and PI3K/AKT signaling pathways. Journal of Agricultural and Food Chemistry 60 (33):8171–82. doi: 10.1021/jf301511m.
  • Zhao, X., D. Kong, Q. Zhou, G. Wei, J. Song, Y. Liang, and G. Du. 2021. Baicalein alleviates depression-like behavior in rotenone- induced Parkinson’s disease model in mice through activating the BDNF/TrkB/CREB pathway. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 140:111556. doi: 10.1016/j.biopha.2021.111556.
  • Zheng, J., H. Xiong, Q. Li, L. He, H. Weng, W. Ling, and D. Wang. 2019. Protocatechuic acid from chicory is bioavailable and undergoes partial glucuronidation and sulfation in healthy humans. Food Science & Nutrition 7 (9):3071–80. doi: 10.1002/fsn3.1168.
  • Zhou, T., M. Zhu, and Z. Liang. 2018. (-)-Epigallocatechin-3-gallate modulates peripheral immunity in the MPTP-induced mouse model of Parkinson’s disease. Molecular Medicine Reports 17 (4):4883–8. doi: 10.3892/mmr.2018.8470.
  • Zhu, M., S. Rajamani, J. Kaylor, S. Han, F. Zhou, and A. L. Fink. 2004. The flavonoid baicalein inhibits fibrillation of α-synuclein and disaggregates existing fibrils. The Journal of Biological Chemistry 279 (26):26846–57. doi: 10.1074/jbc.M403129200.