508
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Acrolein: formation, health hazards and its controlling by dietary polyphenols

, , &

References

  • Abraham, K., S. Andres, R. Palavinskas, K. Berg, K. E. Appel, and A. Lampen. 2011. Toxicology and risk assessment of acrolein in food. Molecular Nutrition & Food Research 55 (9):1277–90. doi: 10.1002/mnfr.201100481.
  • Adams, J. D., and L. K. Klaidman. 1993. Acrolein-induced oxygen radical formation. Free Radical Biology & Medicine 15 (2):187–93. doi: 10.1016/0891-5849(93)90058-3.
  • Anderson, M. M., S. L. Hazen, F. F. Hsu, and J. W. Heinecke. 1997. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha,beta-unsaturated aldehydes by phagocytes at sites of inflammation. The Journal of Clinical Investigation 99 (3):424–32. doi: 10.1172/JCI119176.
  • Ansari, M. A., J. N. Keller, and S. W. Scheff. 2008. Protective effect of Pycnogenol in human neuroblastoma SH-SY5Y cells following acrolein-induced cytotoxicity. Free Radical Biology & Medicine 45 (11):1510–9. doi: 10.1016/j.freeradbiomed.2008.08.025.
  • Bastos, L. C., and P. A. Pereira. 2010. Influence of heating time and metal ions on the amount of free fatty acids and formation rates of selected carbonyl compounds during the thermal oxidation of canola oil. Journal of Agricultural and Food Chemistry 58 (24):12777–83. doi: 10.1021/jf1028575.
  • Bastos, L. C. S., E. A. de Almeida Costa, and P. A. P. Pereira. 2017. Development, validation and application of an UFLC-DAD-ESI-MS method for determination of carbonyl compounds in soybean oil during continuous heating. Food Chemistry 218:518–24. doi: 10.1016/j.foodchem.2016.09.036.
  • Bauer, R., D. A. Cowan, and A. Crouch. 2010. Acrolein in wine: Importance of 3-hydroxypropionaldehyde and derivatives in production and detection. Journal of Agricultural and Food Chemistry 58 (6):3243–50. doi: 10.1021/jf9041112.
  • Burcham, P. C. 2018. Carbonyl scavengers as pharmacotherapies in degenerative disease: Hydralazine repurposing and challenges in clinical translation. Biochemical Pharmacology 154:397–406. doi: 10.1016/j.bcp.2018.06.006.
  • Carmella, S. G., M. Chen, Y. Zhang, S. Zhang, D. K. Hatsukami, and S. S. Hecht. 2007. Quantitation of acrolein-derived (3-hydroxypropyl)mercapturic acid in human urine by liquid chromatography-atmospheric pressure chemical ionization tandem mass spectrometry: Effects of cigarette smoking. Chemical Research in Toxicology 20 (7):986–90. doi: 10.1021/tx700075y.
  • Casella, I. G., and M. Contursi. 2004. Quantitative analysis of acrolein in heated vegetable oils by liquid chromatography with pulsed electrochemical detection. Journal of Agricultural and Food Chemistry 52 (19):5816–21. doi: 10.1021/jf049440q.
  • Cecil, T. L., T. M. Brewer, M. Young, and M. R. Holman. 2017. Acrolein yields in mainstream smoke from commercial cigarette and little cigar tobacco products. Nicotine & Tobacco Research : Official Journal of the Society for Research on Nicotine and Tobacco 19 (7):865–70. doi: 10.1093/ntr/ntx003.
  • Chen, W. Y., M. Wang, J. Zhang, S. S. Barve, C. J. McClain, and S. Joshi-Barve. 2017. Acrolein disrupts tight junction proteins and causes endoplasmic reticulum stress-mediated epithelial cell death leading to intestinal barrier dysfunction and permeability. The American Journal of Pathology 187 (12):2686–97. doi: 10.1016/j.ajpath.2017.08.015.
  • Chen, Y., Y. Liu, X. Hou, Z. Ye, and C. Wang. 2019. Quantitative and site-specific chemoproteomic profiling of targets of acrolein. Chemical Research in Toxicology 32 (3):467–73. doi: 10.1021/acs.chemrestox.8b00343.
  • Cui, W., X. Wu, D. Feng, J. Luo, Y. Shi, W. Guo, H. Liu, Q. Wang, L. Wang, S. Ge, et al. 2021. Acrolein induces systemic coagulopathy via autophagy-dependent secretion of von Willebrand factor in mice after traumatic brain injury. Neuroscience Bulletin 37 (8):1160–75. doi: 10.1007/s12264-021-00681-0.
  • da Silva, T. O., and P. A. Pereira. 2008. Influence of time, surface-to-volume ratio, and heating process (continuous or intermittent) on the emission rates of selected carbonyl compounds during thermal oxidation of palm and soybean oils. Journal of Agricultural and Food Chemistry 56 (9):3129–35. doi: 10.1021/jf0734525.
  • deCastro, B. R. 2014. Acrolein and asthma attack prevalence in a representative sample of the United States adult population 2000–2009. PloS One 9 (5):e96926. doi: 10.1371/journal.pone.0096926.
  • DeJarnett, N., D. J. Conklin, D. W. Riggs, J. A. Myers, T. E. O'Toole, I. Hamzeh, S. Wagner, A. Chugh, K. S. Ramos, S. Srivastava, et al. 2014. Acrolein exposure is associated with increased cardiovascular disease risk. Journal of the American Heart Association 3 (4):e000934. doi: 10.1161/JAHA.114.000934.
  • Doggui, S., A. Belkacemi, G. D. Paka, M. Perrotte, R. Pi, and C. Ramassamy. 2013. Curcumin protects neuronal-like cells against acrolein by restoring Akt and redox signaling pathways. Molecular Nutrition & Food Research 57 (9):1660–70. doi: 10.1002/mnfr.201300130.
  • Dong, Y., K. Noda, M. Murata, S. Yoshida, W. Saito, A. Kanda, and S. Ishida. 2017. Localization of acrolein-lysine adduct in fibrovascular tissues of proliferative diabetic retinopathy. Current Eye Research 42 (1):111–7. doi: 10.3109/02713683.2016.1150491.
  • Ewert, A., M. Granvogl, and P. Schieberle. 2011. Development of two stable isotope dilution assays for the quantitation of acrolein in heat-processed fats. Journal of Agricultural and Food Chemistry 59 (8):3582–9. doi: 10.1021/jf200467x.
  • Ewert, A., M. Granvogl, and P. Schieberle. 2014. Isotope-labeling studies on the formation pathway of acrolein during heat processing of oils. Journal of Agricultural and Food Chemistry 62 (33):8524–9. doi: 10.1021/jf501527u.
  • Feng, X., R. Liang, D. Shi, D. Wang, T. Xu, and W. Chen. 2022. Urinary acrolein metabolites, systemic inflammation, and blood lipids: Results from the National Health and Nutrition Examination Survey. Chemosphere 286 (Pt 2):131791. doi: 10.1016/j.chemosphere.2021.131791.
  • Feng, Z., W. Hu, Y. Hu, and M. Tang. 2006. Acrolein is a major cigarette-related lung cancer agent: Preferential binding at p53 mutational hotspots and inhibition of DNA repair. Proceedings of the National Academy of Sciences of the United States of America 103 (42):15404–9. doi: 10.1073/pnas.0607031103.
  • Feroe, A. G., R. Attanasio, and F. Scinicariello. 2016. Acrolein metabolites, diabetes and insulin resistance. Environmental Research 148:1–6. doi: 10.1016/j.envres.2016.03.015.
  • Granvogl, M. 2014. Development of three stable isotope dilution assays for the quantitation of (E)-2-butenal (crotonaldehyde) in heat-processed edible fats and oils as well as in food. Journal of Agricultural and Food Chemistry 62 (6):1272–82. doi: 10.1021/jf404902m.
  • Marques, M. M., F. A. Beland, D. W. Lachenmeier, D. H. Phillips, F. L. Chung, D. C. Dorman, S. E. Elmore, S. K. Hammond, S. Krstev, I. Linhart, et al. 2021. Carcinogenicity of acrolein, crotonaldehyde, and arecoline. Lancet Oncology 22 (1):19–20. doi: 10.1016/S1470-2045(20)30727-0.
  • Guth, S., M. Habermeyer, M. Baum, P. Steinberg, A. Lampen, and G. Eisenbrand. 2013. Thermally induced process-related contaminants: The example of acrolein and the comparison with acrylamide. Molecular Nutrition & Food Research 57 (12):2269–82. doi: 10.1002/mnfr.201300418.
  • Herr, S. A., S. S. Gardeen, P. S. Low, and R. Shi. 2022. Targeted delivery of acrolein scavenger hydralazine in spinal cord injury using folate-linker-drug conjugation. Free Radical Biology & Medicine 184:66–73. doi: 10.1016/j.freeradbiomed.2022.04.003.
  • Herr, S. A., L. Shi, T. Gianaris, Y. Jiao, S. Sun, N. Race, S. Shapiro, and R. Shi. 2022. Critical role of mitochondrial aldehyde dehydrogenase 2 in acrolein sequestering in rat spinal cord injury. Neural Regeneration Research 17 (7):1505–11. doi: 10.4103/1673-5374.330613.
  • Huang, Q., Y. Zhu, L. Lv, and S. Sang. 2020. Translating in vitro acrolein-trapping capacities of tea polyphenol and soy genistein to in vivo situation is mediated by the bioavailability and biotransformation of individual polyphenols. Molecular Nutrition & Food Research 64 (1):e1900274. doi: 10.1002/mnfr.201900274.
  • Hussain, T., B. Tan, Y. Yin, F. Blachier, M. C. Tossou, and N. Rahu. 2016. Oxidative stress and inflammation: What polyphenols can do for us? Oxidative Medicine and Cellular Longevity 2016:7432797. doi: 10.1155/2016/7432797.
  • Igarashi, K., and K. Kashiwagi. 2011. Protein-conjugated acrolein as a biochemical marker of brain infarction. Molecular Nutrition & Food Research 55 (9):1332–41. doi: 10.1002/mnfr.201100068.
  • Jaimes, E. A., E. G. DeMaster, R. X. Tian, and L. Raij. 2004. Stable compounds of cigarette smoke induce endothelial superoxide anion production via NADPH oxidase activation. Arteriosclerosis, Thrombosis, and Vascular Biology 24 (6):1031–6. doi: 10.1161/01.ATV.0000127083.88549.58.
  • Jiang, K., C. Huang, F. Liu, J. Zheng, J. Ou, D. Zhao, and S. Ou. 2022. Origin and fate of acrolein in foods. Foods 11 (13):1976. doi: 10.3390/foods11131976.
  • Jiang, W. B., W. Zhao, H. Chen, Y. Y. Wu, Y. Wang, G. S. Fu, and X. J. Yang. 2018. Baicalin protects H9c2 cardiomyocytes against hypoxia/reoxygenation-induced apoptosis and oxidative stress through activation of mitochondrial aldehyde dehydrogenase 2. Clinical and Experimental Pharmacology & Physiology 45 (3):303–11. doi: 10.1111/1440-1681.12876.
  • Jiang, X., H. Lv, Y. Lu, Y. Lu, and L. Lv. 2021. Trapping of acrolein by curcumin and the synergistic inhibition effect of curcumin combined with quercetin. Journal of Agricultural and Food Chemistry 69 (1):294–301. doi: 10.1021/acs.jafc.0c06692.
  • Kang, J. H. 2013. Modification and inactivation of Cu,Zn-superoxide dismutase by the lipid peroxidation product, acrolein. BMB Reports 46 (11):555–60. doi: 10.5483/bmbrep.2013.46.11.138.
  • Kanogawa, Y., M. Fujiyoshi, Y. Nakazato, K. Watanabe, M. Kurihara, A. Takezawa, M. Uchida, K. Igarashi, T. Suzuki, N. Ariyoshi, et al. 2016. Beta-migrating very low-density lipoprotein conjugates with acrolein in high-cholesterol diet-fed rabbits and localizes to atherosclerotic lesions with macrophages. International Journal of Clinical and Experimental Pathology 9 (11):11149–58.
  • Kim, J. K., J. H. Park, H. J. Ku, S. H. Kim, Y. J. Lim, J. W. Park, and J. H. Lee. 2018. Naringin protects acrolein-induced pulmonary injuries through modulating apoptotic signaling and inflammation signaling pathways in mice. The Journal of Nutritional Biochemistry 59:10–6. doi: 10.1016/j.jnutbio.2018.05.012.
  • Lee, S. E., H. R. Park, S. Jeon, D. Han, and Y. S. Park. 2020. Curcumin attenuates acrolein-induced COX-2 expression and prostaglandin production in human umbilical vein endothelial cells. Journal of Lipid and Atherosclerosis 9 (1):184–94. doi: 10.12997/jla.2020.9.1.184.
  • Liu, M., Y. Huang, J. Qin, Y. Wang, B. Ke, and Y. Yang. 2019. Inhibition of MAPKs signaling pathways prevents acrolein-induced neurotoxicity in HT22 mouse hippocampal cells. Biological & Pharmaceutical Bulletin 42 (4):617–22. doi: 10.1248/bpb.b18-00715.
  • Liu, S., Y. Zhu, N. Liu, D. Fan, M. Wang, and Y. Zhao. 2021. Antioxidative properties and chemical changes of quercetin in fish oil: Quercetin reacts with free fatty acids to form its ester derivatives. Journal of Agricultural and Food Chemistry 69 (3):1057–67. doi: 10.1021/acs.jafc.0c07273.
  • Liu, X. Y., M. X. Zhu, and J. P. Xie. 2010. Mutagenicity of acrolein and acrolein-induced DNA adducts. Toxicology Mechanisms and Methods 20 (1):36–44. doi: 10.3109/15376510903530845.
  • LoPachin, R. M., T. Gavin, D. R. Petersen, and D. S. Barber. 2009. Molecular mechanisms of 4-hydroxy-2-nonenal and acrolein toxicity: Nucleophilic targets and adduct formation. Chemical Research in Toxicology 22 (9):1499–508. doi: 10.1021/tx900147g.
  • Lu, Q., M. Mundy, E. Chambers, T. Lange, J. Newton, D. Borgas, H. Yao, G. Choudhary, R. Basak, M. Oldham, et al. 2017. Alda-1 protects against acrolein-induced acute lung injury and endothelial barrier dysfunction. American Journal of Respiratory Cell and Molecular Biology 57 (6):662–73. doi: 10.1165/rcmb.2016-0342OC.
  • Lu, Y., J. Liu, A. Q. Tong, Y. L. Lu, and L. S. Lv. 2021. Interconversion and acrolein-trapping capacity of cardamonin/alpinetin and their metabolites in vitro and in vivo. Journal of Agricultural and Food Chemistry 69 (40):11926–36. doi: 10.1021/acs.jafc.1c04373.
  • Luo, J., and R. Shi. 2005. Acrolein induces oxidative stress in brain mitochondria. Neurochemistry International 46 (3):243–52. doi: 10.1016/j.neuint.2004.09.001.
  • Manach, C., G. Williamson, C. Morand, A. Scalbert, and C. Remesy. 2005. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition 81 (1 Suppl):230S–42S. doi: 10.1093/ajcn/81.1.230S.
  • McGraw, K. E., D. W. Riggs, S. Rai, A. Navas-Acien, Z. Xie, P. Lorkiewicz, J. Lynch, N. Zafar, S. Krishnasamy, K. C. Taylor, et al. 2021. Exposure to volatile organic compounds - acrolein, 1,3-butadiene, and crotonaldehyde - is associated with vascular dysfunction. Environmental Research 196:110903. doi: 10.1016/j.envres.2021.110903.
  • Murata, M., K. Noda, A. Kawasaki, S. Yoshida, Y. Dong, M. Saito, Z. Dong, R. Ando, S. Mori, W. Saito, et al. 2017. Soluble vascular adhesion protein-1 mediates spermine oxidation as semicarbazide-sensitive amine oxidase: Possible role in proliferative diabetic retinopathy. Current Eye Research 42 (12):1674–83. doi: 10.1080/02713683.2017.1359847.
  • Murata, M., K. Noda, S. Yoshida, M. Saito, A. Fujiya, A. Kanda, and S. Ishida. 2019. Unsaturated aldehyde acrolein promotes retinal glial cell migration. Investigative Ophthalmology & Visual Science 60 (13):4425–35. doi: 10.1167/iovs.19-27346.
  • Myers, C. R., J. M. Myers, T. D. Kufahl, R. Forbes, and A. Szadkowski. 2011. The effects of acrolein on the thioredoxin system: Implications for redox-sensitive signaling. Molecular Nutrition & Food Research 55 (9):1361–74. doi: 10.1002/mnfr.201100224.
  • Nath, R. G., M. Y. Wu, A. Emami, and F. L. Chung. 2010. Effects of epigallocatechin gallate, L-ascorbic acid, alpha-tocopherol, and dihydrolipoic acid on the formation of deoxyguanosine adducts derived from lipid peroxidation. Nutrition and Cancer 62 (5):622–9. doi: 10.1080/01635580903532424.
  • Noon, J., T. B. Mills, and I. T. Norton. 2020. The use of natural antioxidants to combat lipid oxidation in O/W emulsions. Journal of Food Engineering 281:110006. doi: 10.1016/j.jfoodeng.2020.110006.
  • O'Toole, T. E., Y. T. Zheng, J. Hellmann, D. J. Conklin, O. Barski, and A. Bhatnagar. 2009. Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages. Toxicology and Applied Pharmacology 236 (2):194–201. doi: 10.1016/j.taap.2009.01.024.
  • Osório, V. M., and Z. de Lourdes Cardeal. 2013. Using SPME-GC/MS to evaluate acrolein production in cassava and pork sausage fried in different vegetable oils. Journal of the American Oil Chemists’ Society 90 (12):1795–800. doi: 10.1007/s11746-013-2338-5.
  • Ou, J., J. Zheng, J. Huang, C. T. Ho, and S. Ou. 2020. Interaction of acrylamide, acrolein, and 5-hydroxymethylfurfural with amino acids and DNA. Journal of Agricultural and Food Chemistry 68 (18):5039–48. doi: 10.1021/acs.jafc.0c01345.
  • Park, J. H., H. J. Ku, and J. W. Park. 2018. Hesperetin mitigates acrolein-induced apoptosis in lung cells in vitro and in vivo. Redox Report : Communications in Free Radical Research 23 (1):188–93. doi: 10.1080/13510002.2018.1535640.
  • Park, M. H., and K. Igarashi. 2013. Polyamines and their metabolites as diagnostic markers of human diseases. Biomolecules & Therapeutics 21 (1):1–9. doi: 10.4062/biomolther.2012.097.
  • Perez, C. M., M. S. Hazari, A. D. Ledbetter, N. Haykal-Coates, A. P. Carll, W. E. Cascio, D. W. Winsett, D. L. Costa, and A. K. Farraj. 2015. Acrolein inhalation alters arterial blood gases and triggers carotid body-mediated cardiovascular responses in hypertensive rats. Inhalation Toxicology 27 (1):54–63. doi: 10.3109/08958378.2014.984881.
  • Saison, D., D. P. De Schutter, F. Delvaux, and F. R. Delvaux. 2009. Determination of carbonyl compounds in beer by derivatisation and headspace solid-phase microextraction in combination with gas chromatography and mass spectrometry. Journal of Chromatography. A 1216 (26):5061–8. doi: 10.1016/j.chroma.2009.04.077.
  • Sarkar, P., and B. E. Hayes. 2013. Protective effect of quercetin on acrolein-induced COX-2 expression in lung epithelial cells. Toxicological & Environmental Chemistry 95 (5):837–45. doi: 10.1080/02772248.2013.812683.
  • Seaman, V. Y., D. H. Bennett, and T. M. Cahill. 2009. Indoor acrolein emission and decay rates resulting from domestic cooking events. Atmospheric Environment 43 (39):6199–204. doi: 10.1016/j.atmosenv.2009.08.043.
  • Seiner, D. R., J. N. LaButti, and K. S. Gates. 2007. Kinetics and mechanism of protein tyrosine phosphatase 1B inactivation by acrolein. Chemical Research in Toxicology 20 (9):1315–20. doi: 10.1021/tx700213s.
  • Shao, B., D. O'Brien, K. T. O. McDonald, X. Fu, J. F. Oram, K. Uchida, and J. W. Heinecke. 2005. Acrolein modifies apolipoprotein A-I in the human artery wall. Annals of the New York Academy of Sciences 1043:396–403. doi: 10.1196/annals.1333.046.
  • Shi, L. Y., L. Zhang, H. Li, T. L. Liu, J. C. Lai, Z. B. Wu, and J. Qin. 2018. Protective effects of curcumin on acrolein-induced neurotoxicity in HT22 mouse hippocampal cells. Pharmacological Reports : PR 70 (5):1040–6. doi: 10.1016/j.pharep.2018.05.006.
  • Shibata, A., M. Uemura, M. Hosokawa, and K. Miyashita. 2018. Acrolein as a major volatile in the early stages of fish oil TAG oxidation. Journal of Oleo Science 67 (5):515–24. doi: 10.5650/jos.ess17235.
  • Siri-Tarino, P. W., Q. Sun, F. B. Hu, and R. M. Krauss. 2010. Saturated fatty acids and risk of coronary heart disease: Modulation by replacement nutrients. Current Atherosclerosis Reports 12 (6):384–90. doi: 10.1007/s11883-010-0131-6.
  • Song, X., Y. Lu, Y. Lu, and L. Lv. 2021. Adduct formation of acrolein with cyanidin-3-O-glucoside and its degradants/metabolites during thermal processing or in vivo after consumption of red bayberry. Journal of Agricultural and Food Chemistry 69 (44):13143–54. doi: 10.1021/acs.jafc.1c05727.
  • Srivastava, S., S. D. Sithu, E. Vladykovskaya, P. Haberzettl, D. J. Hoetker, M. A. Siddiqui, D. J. Conklin, S. E. D'Souza, and A. Bhatnagar. 2011. Oral exposure to acrolein exacerbates atherosclerosis in apoE-null mice. Atherosclerosis 215 (2):301–8. doi: 10.1016/j.atherosclerosis.2011.01.001.
  • Stevens, J. F., and C. S. Maier. 2008. Acrolein: Sources, metabolism, and biomolecular interactions relevant to human health and disease. Molecular Nutrition & Food Research 52 (1):7–25. doi: 10.1002/mnfr.200700412.
  • Sugimoto, K., Y. Matsuoka, K. Sakai, N. Fujiya, H. Fujii, and J. Mano. 2021. Catechins in green tea powder (matcha) are heat-stable scavengers of acrolein, a lipid peroxide-derived reactive carbonyl species. Food Chemistry 355:129403. doi: 10.1016/j.foodchem.2021.129403.
  • Sun, L., C. Luo, J. Long, D. Wei, and J. Liu. 2006. Acrolein is a mitochondrial toxin: Effects on respiratory function and enzyme activities in isolated rat liver mitochondria. Mitochondrion 6 (3):136–42. doi: 10.1016/j.mito.2006.04.003.
  • Taghiabadi, E., M. Imenshahidi, K. Abnous, F. Mosafa, M. Sankian, B. Memar, and G. Karimi. 2012. Protective effect of silymarin against acrolein-induced cardiotoxicity in mice. Evidence-Based Complementary and Alternative Medicine : eCAM 2012:352091. https://www.ncbi.nlm.nih.gov/pubmed/23320028. doi: 10.1155/2012/352091.
  • Tao, Z. H., C. Li, X. F. Xu, and Y. J. Pan. 2019. Scavenging activity and mechanism study of ferulic acid against reactive carbonyl species acrolein. Journal of Zhejiang University. Science. B 20 (11):868–76. doi: 10.1631/jzus.B1900211.
  • Tomitori, H., T. Usui, N. Saeki, S. Ueda, H. Kase, K. Nishimura, K. Kashiwagi, and K. Igarashi. 2005. Polyamine oxidase and acrolein as novel biochemical markers for diagnosis of cerebral stroke. Stroke 36 (12):2609–13. doi: 10.1161/01.STR.0000190004.36793.2d.
  • Tsai, H.-C., H.-H. Tsou, C.-C. Lin, S.-C. Chen, H.-W. Cheng, T.-Y. Liu, W.-S. Chen, J.-K. Jiang, S.-H. Yang, S.-C. Chang, et al. 2021. Acrolein contributes to human colorectal tumorigenesis through the activation of RAS-MAPK pathway. Scientific Reports 11 (1):12590. doi: 10.1038/s41598-021-92035-z.
  • Uchida, K., M. Kanematsu, K. Sakai, T. Matsuda, N. Hattori, Y. Mizuno, D. Suzuki, T. Miyata, N. Noguchi, E. Niki, et al. 1998. Protein-bound acrolein: Potential markers for oxidative stress. Proceedings of the National Academy of Sciences of the United States of America 95 (9):4882–7. doi: 10.1073/pnas.95.9.4882.
  • Uemura, T., Y. Akasaka, and H. Ikegaya. 2020. Correlation of polyamines, acrolein-conjugated lysine and polyamine metabolic enzyme levels with age in human liver. Heliyon 6 (9):e05031. doi: 10.1016/j.heliyon.2020.e05031.
  • Uemura, T., T. Suzuki, K. Ko, K. Watanabe, N. Dohmae, A. Sakamoto, Y. Terui, T. Toida, K. Kashiwagi, and K. Igarashi. 2019. Inhibition of dendritic spine extension through acrolein conjugation with alpha-, beta-tubulin proteins. The International Journal of Biochemistry & Cell Biology 113:58–66. doi: 10.1016/j.biocel.2019.05.016.
  • Uemura, T., Y. Tanaka, K. Higashi, D. Miyamori, T. Takasaka, T. Nagano, T. Toida, K. Yoshimoto, K. Igarashi, and H. Ikegaya. 2013. Acetaldehyde-induced cytotoxicity involves induction of spermine oxidase at the transcriptional level. Toxicology 310:1–7. doi: 10.1016/j.tox.2013.05.008.
  • Wang, S., S. Wu, and S. Liu. 2019. Integration of (+)-catechin and beta-sitosterol to achieve excellent radical-scavenging activity in emulsions. Food Chemistry 272:596–603. doi: 10.1016/j.foodchem.2018.08.098.
  • Wang, T. W., J. H. Liu, H. H. Tsou, T. Y. Liu, and H. T. Wang. 2019. Identification of acrolein metabolites in human buccal cells, blood, and urine after consumption of commercial fried food. Food Science & Nutrition 7 (5):1668–76. doi: 10.1002/fsn3.1001.
  • Wang, W., Y. Qi, J. R. Rocca, P. J. Sarnoski, A. Jia, and L. Gu. 2015. Scavenging of toxic acrolein by resveratrol and hesperetin and identification of adducts. Journal of Agricultural and Food Chemistry 63 (43):9488–95. doi: 10.1021/acs.jafc.5b03949.
  • Wang, W. X., R. Yang, H. Yao, Y. Wu, W. D. Pan, and A. Q. Jia. 2019. Inhibiting the formation of advanced glycation end-products by three stilbenes and the identification of their adducts. Food Chemistry 295:10–5. doi: 10.1016/j.foodchem.2019.02.137.
  • Wang, Y. T., H. C. Lin, W. Z. Zhao, H. J. Huang, Y. L. Lo, H. T. Wang, and A. M. Lin. 2017. Acrolein acts as a neurotoxin in the nigrostriatal dopaminergic system of rat: Involvement of alpha-synuclein aggregation and programmed cell death. Scientific Reports 7:45741. doi: 10.1038/srep45741.
  • Watzek, N., D. Scherbl, J. Feld, F. Berger, O. Doroshyenko, U. Fuhr, D. Tomalik-Scharte, M. Baum, G. Eisenbrand, and E. Richling. 2012. Profiling of mercapturic acids of acrolein and acrylamide in human urine after consumption of potato crisps. Molecular Nutrition & Food Research 56 (12):1825–37. doi: 10.1002/mnfr.201200323.
  • Wei, P., X. Li, S. Wang, Y. Dong, H. Yin, Z. Gu, X. Na, X. Wei, J. Yuan, J. Cao, et al. 2022. Silibinin ameliorates formaldehyde-induced cognitive impairment by inhibiting oxidative stress. Oxidative Medicine and Cellular Longevity 2022:5981353. doi: 10.1155/2022/5981353.
  • Weng, M. W., H. W. Lee, S. H. Park, Y. Hu, H. T. Wang, L. C. Chen, W. N. Rom, W. C. Huang, H. Lepor, X. R. Wu, et al. 2018. Aldehydes are the predominant forces inducing DNA damage and inhibiting DNA repair in tobacco smoke carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America 115 (27):E6152–E6161. doi: 10.1073/pnas.1804869115.
  • Wheat, L. A., P. Haberzettl, J. Hellmann, S. P. Baba, M. Bertke, J. Lee, J. McCracken, T. E. O'Toole, A. Bhatnagar, and D. J. Conklin. 2011. Acrolein inhalation prevents vascular endothelial growth factor-induced mobilization of Flk-1+/Sca-1+ cells in mice. Arteriosclerosis, Thrombosis, and Vascular Biology 31 (7):1598–606. doi: 10.1161/ATVBAHA.111.227124.
  • Wu, X., G. R. Beecher, J. M. Holden, D. B. Haytowitz, S. E. Gebhardt, and R. L. Prior. 2006. Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. Journal of Agricultural and Food Chemistry 54 (11):4069–75. doi: 10.1021/jf060300l.
  • Wu, X., W. X. Cui, W. Guo, H. X. Liu, J. N. Luo, L. Zhao, H. Guo, L. L. Zheng, H. Bai, D. Y. Feng, et al. 2020. Acrolein aggravates secondary brain injury after intracerebral hemorrhage through Drp1-mediated mitochondrial oxidative damage in mice. Neuroscience Bulletin 36 (10):1158–70. doi: 10.1007/s12264-020-00505-7.
  • Wu, X., C. Li, Z. Mariyam, P. Jiang, M. Zhou, F. Zeb, I. U. Haq, A. Chen, and Q. Feng. 2018. Acrolein-induced atherogenesis by stimulation of hepatic flavin containing monooxygenase 3 and a protection from hydroxytyrosol. Journal of Cellular Physiology 234 (1):475–85. doi: 10.1002/jcp.26600.
  • Xu, L., M.-J. Zhu, X.-M. Liu, and J.-R. Cheng. 2018. Inhibitory effect of mulberry (Morus alba) polyphenol on the lipid and protein oxidation of dried minced pork slices during heat processing and storage. Lwt 91:222–8. doi: 10.1016/j.lwt.2018.01.040.
  • Yousefipour, Z., C. Zhang, M. Monfareed, J. Walker, and M. Newaz. 2014. Acrolein-induced oxidative stress in NAD(P)H pxidase subunit gp91phox knock-out mice and its modulation of NFkappaB and CD36. Journal of Health Care for the Poor and Underserved 24 (4A):118–31. doi: 10.1353/hpu.2014.0002.
  • Zarkovic, K., K. Uchida, D. Kolenc, L. Hlupic, and N. Zarkovic. 2006. Tissue distribution of lipid peroxidation product acrolein in human colon carcinogenesis. Free Radical Research 40 (6):543–52. doi: 10.1080/10715760500370048.
  • Zhang, D., X. Jiang, L. Xiao, Y. Lu, S. Sang, L. Lv, and W. Dong. 2020. Mechanistic studies of inhibition on acrolein by myricetin. Food Chemistry 323:126788. doi: 10.1016/j.foodchem.2020.126788.
  • Zhang, H., A. D. Troise, Y. Qi, G. Wu, H. Zhang, and V. Fogliano. 2021. Insoluble dietary fibre scavenges reactive carbonyl species under simulated physiological conditions: The key role of fibre-bound polyphenols. Food Chemistry 349:129018. doi: 10.1016/j.foodchem.2021.129018.
  • Zhang, J., S. Sturla, C. Lacroix, and C. Schwab. 2018. Gut microbial glycerol metabolism as an endogenous acrolein source. mBio 9 (1):e01947-17. doi: 10.1128/mBio.01947-17.
  • Zhang, J., Q. Tian, S. Y. Chan, S. Chuen Li, S. Zhou, W. Duan, and Y. Z. Zhu. 2005. Metabolism and transport of oxazaphosphorines and the clinical implications. Drug Metabolism Reviews 37 (4):611–703. doi: 10.1080/03602530500364023.
  • Zhang, X., L. Ni, Y. Zhu, N. Liu, D. Fan, M. Wang, and Y. Zhao. 2021. Quercetin inhibited the formation of lipid oxidation products in thermally treated soybean oil by trapping intermediates. Journal of Agricultural and Food Chemistry 69 (11):3479–88. doi: 10.1021/acs.jafc.1c00046.
  • Zhang, X. W., W. F. Li, W. W. Li, K. H. Ren, C. M. Fan, Y. Y. Chen, and Y. L. Shen. 2011. Protective effects of the aqueous extract of Scutellaria baicalensis against acrolein-induced oxidative stress in cultured human umbilical vein endothelial cells. Pharmaceutical Biology 49 (3):256–61. doi: 10.3109/13880209.2010.501803.
  • Zhao, W. Z., H. T. Wang, H. J. Huang, Y. L. Lo, and A. M. Lin. 2018. Neuroprotective effects of baicalein on acrolein-induced neurotoxicity in the nigrostriatal dopaminergic system of rat brain. Molecular Neurobiology 55 (1):130–7. doi: 10.1007/s12035-017-0725-x.
  • Zhou, Q., K. W. Cheng, J. B. Xiao, and M. F. Wang. 2020. The multifunctional roles of flavonoids against the formation of advanced glycation end products (AGEs) and AGEs-induced harmful effects. Trends in Food Science & Technology 103:333–47. doi: 10.1016/j.tifs.2020.06.002.
  • Zhou, Q., N. Zhang, T. Hu, H. Xu, X. Duan, B. Liu, F. Chen, and M. Wang. 2022. Dietary phenolic-type Nrf2-activators: Implications in the control of toxin-induced hepatic disorders. Food & Function 13 (10):5480–97. doi: 10.1039/d1fo04237h.
  • Zhou, Y., H. Xu, K. W. Cheng, F. Chen, Q. Zhou, and M. F. Wang. 2022. Acrolein evokes inflammation and autophagy-dependent apoptosis through oxidative stress in vascular endothelial cells and its protection by 6-C-(E-2-fluorostyryl)naringenin. Journal of Functional Foods 98:105283. doi: 10.1016/j.jff.2022.105283.
  • Zhou, Y., J. Zheng, Y. Li, D. P. Xu, S. Li, Y. M. Chen, and H. B. Li. 2016. Natural polyphenols for prevention and treatment of cancer. Nutrients 8 (8):515. doi: 10.3390/nu8080515.
  • Zhu, Q., Z. Sun, Y. Jiang, F. Chen, and M. Wang. 2011. Acrolein scavengers: Reactivity, mechanism and impact on health. Molecular Nutrition & Food Research 55 (9):1375–90. doi: 10.1002/mnfr.201100149.
  • Zhu, Q., N. Q. Zhang, C. F. Lau, J. Chao, Z. Sun, R. C. Chang, F. Chen, and M. Wang. 2012. In vitro attenuation of acrolein-induced toxicity by phloretin, a phenolic compound from apple. Food Chemistry 135 (3):1762–8. doi: 10.1016/j.foodchem.2012.06.053.
  • Zhu, Q., Z. P. Zheng, K. W. Cheng, J. J. Wu, S. Zhang, Y. S. Tang, K. H. Sze, J. Chen, F. Chen, and M. Wang. 2009. Natural polyphenols as direct trapping agents of lipid peroxidation-derived acrolein and 4-hydroxy-trans-2-nonenal. Chemical Research in Toxicology 22 (10):1721–7. doi: 10.1021/tx900221s.
  • Zhu, Y. D., W. X. Wang, Q. J. Huang, C. L. Hu, and S. M. Sang. 2022. Metabolic investigation on the interaction mechanism between dietary dihydrochalcone intake and lipid peroxidation product acrolein reduction. Molecular Nutrition & Food Research 66 (9):2101107. doi: 10.1002/mnfr.202101107.
  • Zirak, M. R., S. Mehri, A. Karimani, M. Zeinali, A. W. Hayes, and G. Karimi. 2019. Mechanisms behind the atherothrombotic effects of acrolein, a review. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 129:38–53. doi: 10.1016/j.fct.2019.04.034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.