496
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Nano techniques: an updated review focused on anthocyanin stability

ORCID Icon, ORCID Icon &

References

  • Aditya, N. P., Y. G. Espinosa, and I. T. Norton. 2017. Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application. Biotechnology Advances 35 (4):450–7. doi: 10.1016/j.biotechadv.2017.03.012.
  • Amin, F. U., S. A. Shah, H. Badshah, M. Khan, and M. O. Kim. 2017. Anthocyanins encapsulated by PLGA@ PEG nanoparticles potentially improved its free radical scavenging capabilities via p38/JNK pathway against Aβ 1–42-induced oxidative stress. Journal of Nanobiotechnology 15 (1):12. doi: 10.1186/s12951-016-0227-4.
  • Andersen, Ø. M., K. R. Markham, Ø. M. Andersen, and K. R. Markham. 2006. Flavonoids: Chemistry, Biochemistry and Applications 7 (3):223–4.
  • Antonio, M., R. Ferreira, R. Vitorino, and A. L. Daniel-da-Silva. 2020. A simple aptamer-based colorimetric assay for rapid detection of C-reactive protein using gold nanoparticles. Talanta 214:120868. doi: 10.1016/j.talanta.2020.120868.
  • Aprodu, I., Ș. A. Milea, R.-M. Anghel, E. Enachi, V. Barbu, O. Crăciunescu, G. Râpeanu, G. E. Bahrim, A. Oancea, and N. Stănciuc. 2019. New functional ingredients based on microencapsulation of aqueous anthocyanin-rich extracts derived from black rice (Oryza sativa L.). Molecules 24 (18):3389. doi: 10.3390/molecules24183389.
  • Arroyo-Maya, I. J., and D. J. McClements. 2015. Biopolymer nanoparticles as potential delivery systems for anthocyanins: Fabrication and properties. Food Research International 69:1–8. doi: 10.1016/j.foodres.2014.12.005.
  • Arts, I. C., A. L. Sesink, M. Faassen-Peters, and P. C. Hollman. 2004. The type of sugar moiety is a major determinant of the small intestinal uptake and subsequent biliary excretion of dietary quercetin glycosides. The British Journal of Nutrition 91 (6):841–7. doi: 10.1079/BJN20041123.
  • Atay, E., M. J. Fabra, M. Martínez-Sanz, L. G. Gomez-Mascaraque, A. Altan, and A. Lopez-Rubio. 2018. Development and characterization of chitosan/gelatin electrosprayed microparticles as food grade delivery vehicles for anthocyanin extracts. Food Hydrocolloids 77:699–710. doi: 10.1016/j.foodhyd.2017.11.011.
  • Ayoub, H. M., M. R. McDonald, J. A. Sullivan, R. Tsao, M. Platt, J. Simpson, and K. A. Meckling. 2017. The effect of anthocyanin-rich purple vegetable diets on metabolic syndrome in obese Zucker rats. Journal of Medicinal Food 20 (12):1240–9. doi: 10.1089/jmf.2017.0025.
  • Azzini, E., E. Venneria, D. Ciarapica, M. S. Foddai, F. Intorre, M. Zaccaria, F. Maiani, L. Palomba, L. Barnaba, C. Tubili, et al. 2017. Effect of red orange juice consumption on body composition and nutritional status in overweight/obese female: A pilot study. Oxidative Medicine and Cellular Longevity 2017:1–9. doi: 10.1155/2017/1672567.
  • Bąkowska-Barczak, A. 2005. Acylated anthocyanins as stable, natural food colorants–a review. Polish Journal of Food and Nutrition Sciences 14:55.
  • Barfoot, K. L., G. May, D. J. Lamport, J. Ricketts, P. M. Riddell, and C. M. Williams. 2019. The effects of acute wild blueberry supplementation on the cognition of 7–10-year-old schoolchildren. European Journal of Nutrition 58 (7):2911–20. doi: 10.1007/s00394-018-1843-6.
  • Beconcini, D., F. Felice, Y. Zambito, A. Fabiano, A. M. Piras, M. H. Macedo, B. Sarmento, and R. Di Stefano. 2019. Anti-inflammatory effect of cherry extract loaded in polymeric nanoparticles: relevance of particle internalization in endothelial cells. Pharmaceutics 11 (10):17. doi: 10.3390/pharmaceutics11100500.
  • Bendokas, V., K. Skemiene, S. Trumbeckaite, V. Stanys, S. Passamonti, V. Borutaite, and J. Liobikas. 2020. Anthocyanins: From plant pigments to health benefits at mitochondrial level. Critical Reviews in Food Science and Nutrition 60 (19):3352–65. doi: 10.1080/10408398.2019.1687421.
  • Bensalem, J., S. Dudonné, D. Gaudout, L. Servant, F. Calon, Y. Desjardins, S. Layé, P. Lafenetre, and V. Pallet. 2018. Polyphenol-rich extract from grape and blueberry attenuates cognitive decline and improves neuronal function in aged mice. Journal of Nutritional Science 7:e19. doi: 10.1017/jns.2018.10.
  • Biddle, M. J., T. A. Lennie, G. V. Bricker, R. E. Kopec, S. J. Schwartz, and D. K. Moser. 2015. Lycopene dietary intervention: A pilot study in patients with heart failure. The Journal of Cardiovascular Nursing 30 (3):205–12. doi: 10.1097/JCN.0000000000000108.
  • Bishayee, A., T. Mbimba, R. J. Thoppil, E. Háznagy-Radnai, P. Sipos, A. S. Darvesh, H. G. Folkesson, and J. Hohmann. 2011. Anthocyanin-rich black currant (Ribes nigrum L.) extract affords chemoprevention against diethylnitrosamine-induced hepatocellular carcinogenesis in rats. The Journal of Nutritional Biochemistry 22 (11):1035–46. doi: 10.1016/j.jnutbio.2010.09.001.
  • Bitsch, R., M. Netzel, T. Frank, G. Strass, and I. Bitsch. 2004. Bioavailability and biokinetics of anthocyanins from red grape juice and red wine. Journal of Biomedicine & Biotechnology 2004 (5):293–8. doi: 10.1155/S1110724304403106.
  • Bontempo, P., L. De Masi, V. Carafa, D. Rigano, L. Scisciola, C. Iside, R. Grassi, A. M. Molinari, R. Aversano, A. Nebbioso, et al. 2015. Anticancer activities of anthocyanin extract from genotyped Solanum tuberosum L.“Vitelotte”. Journal of Functional Foods 19:584–93. doi: 10.1016/j.jff.2015.09.063.
  • Borel, T., and C. Sabliov. 2014. Nanodelivery of bioactive components for food applications: Types of delivery systems, properties, and their effect on ADME profiles and toxicity of nanoparticles. Annual Review of Food Science and Technology 5:197–213. doi: 10.1146/annurev-food-030713-092354.
  • Boulton, R. 2001. The copigmentation of anthocyanins and its role in the color of red wine: A critical review. American Journal of Enology and Viticulture 52 (2):67–87. doi: 10.1016/S0304-4238(00)00170-9.
  • Bouzas, V., T. Haller, N. Hobi, E. Felder, I. Pastoriza-Santos, and J. Pérez-Gil. 2014. Nontoxic impact of PEG-coated gold nanospheres on functional pulmonary surfactant-secreting alveolar type II cells. Nanotoxicology 8 (8):813–23. doi: 10.3109/17435390.2013.829878.
  • Brouillard, R. 1982a. Chemical structure of anthocyanins, vol. 1. New York: Academic Press.
  • Brouillard, R. 1982b. Chemical structure of anthocyanins. Anthocyanins as Food Colors 1:1–38.
  • Bryła, A., G. Lewandowicz, and W. Juzwa. 2015. Encapsulation of elderberry extract into phospholipid nanoparticles. Journal of Food Engineering 167:189–95. doi: 10.1016/j.jfoodeng.2015.07.025.
  • Bulatao, R. M., J. P. A. Samin, J. R. Salazar, and J. J. Monserate. 2017. Encapsulation of anthocyanins from black rice (Oryza sativa L.) bran extract using chitosan-alginate nanoparticles. Journal of Food Research 6 (3):40–7. doi: 10.5539/jfr.v6n3p40.
  • Cai, D., X. Li, J. Chen, X. Jiang, X. Ma, J. Sun, L. Tian, S. K. Vidyarthi, J. Xu, Z. Pan, et al. 2022. A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chemistry 366:130611. doi: 10.1016/j.foodchem.2021.130611.
  • Castaneda-Ovando, A., M. d L. Pacheco-Hernández, M. E. Páez-Hernández, J. A. Rodríguez, and C. A. Galán-Vidal. 2009. Chemical studies of anthocyanins: A review. Food Chemistry 113 (4):859–71. doi: 10.1016/j.foodchem.2008.09.001.
  • Cavalcanti, R. N., D. T. Santos, and M. A. A. Meireles. 2011. Non-thermal stabilization mechanisms of anthocyanins in model and food systems-An overview. Food Research International 44 (2):499–509. doi: 10.1016/j.foodres.2010.12.007.
  • Chatterjee, N. S., P. K. Dara, S. Perumcherry Raman, D. K. Vijayan, J. Sadasivam, S. Mathew, C. N. Ravishankar, and R. Anandan. 2021. Nanoencapsulation in low‐molecular‐weight chitosan improves in vivo antioxidant potential of black carrot anthocyanin. Journal of the Science of Food and Agriculture 101 (12):5264–71. doi: 10.1002/jsfa.11175.
  • Chen, Y., T. Belwal, Y. Xu, Q. Ma, D. Li, L. Li, H. Xiao, and Z. Luo. 2022a. Updated insights into anthocyanin stability behavior from bases to cases: Why and why not anthocyanins lose during food processing. Critical Reviews in Food Science and Nutrition 1–33. doi: 10.1080/10408398.2022.2063250.
  • Chen, X., Y. Guan, M. Zeng, Z. Wang, F. Qin, J. Chen, and Z. He. 2022b. Effect of whey protein isolate and phenolic copigments in the thermal stability of mulberry anthocyanin extract at an acidic pH. Food Chemistry 377:132005. doi: 10.1016/j.foodchem.2021.132005.
  • Chen, B. H., and B. Stephen Inbaraj. 2019. Nanoemulsion and nanoliposome based strategies for improving anthocyanin stability and bioavailability. Nutrients 11 (5):21. doi: 10.3390/nu11051052.
  • Chen, J. L., B. J. Xu, J. X. Sun, X. W. Jiang, and W. B. Bai. 2022c. Anthocyanin supplement as a dietary strategy in cancer prevention and management: A comprehensive review. Critical Reviews in Food Science and Nutrition 62 (26):7242–54. doi: 10.1080/10408398.2021.1913092.
  • Chung, C., T. Rojanasasithara, W. Mutilangi, and D. J. McClements. 2016. Enhancement of colour stability of anthocyanins in model beverages by gum Arabic addition. Food Chemistry 201:14–22. doi: 10.1016/j.foodchem.2016.01.051.
  • Comunian, T. A., R. Ravanfar, S. D. Alcaine, and A. Abbaspourrad. 2018. Water-in-oil-in-water emulsion obtained by glass microfluidic device for protection and heat-triggered release of natural pigments. Food Research International (Ottawa, Ont.) 106:945–51. doi: 10.1016/j.foodres.2018.02.008.
  • Cortez, R., D. A. Luna‐Vital, D. Margulis, and E. Gonzalez de Mejia. 2017. Natural pigments: Stabilization methods of anthocyanins for food applications. Comprehensive Reviews in Food Science and Food Safety 16 (1):180–98. doi: 10.1111/1541-4337.12244.
  • Cui, H., X. Si, J. Tian, Y. Lang, N. Gao, H. Tan, Y. Bian, Z. Zang, Q. Jiang, Y. Bao, et al. 2022. Anthocyanins-loaded nanocomplexes comprising casein and carboxymethyl cellulose: Stability, antioxidant capacity, and bioaccessibility. Food Hydrocolloids. 122:107073. doi: 10.1016/j.foodhyd.2021.107073.
  • da Rosa, J. R., Nunes, G. L., Motta, M. H., Fortes, J. P., Weis, G. C. C., Hecktheuer, L. H. R., Muller, E. I., de Menezes, C. R. D, and Rosa, C. S. 2019. Microencapsulation of anthocyanin compounds extracted from blueberry (Vaccinium spp.) by spray drying: Characterization, stability and simulated gastrointestinal conditions. Food Hydrocolloids. 89:742–8. doi: 10.1016/j.foodhyd.2018.11.042.
  • Davinelli, S., J. C. Bertoglio, A. Zarrelli, R. Pina, and G. Scapagnini. 2015. A randomized clinical trial evaluating the efficacy of an anthocyanin–maqui berry extract (Delphinol®) on oxidative stress biomarkers. Journal of the American College of Nutrition 34 (sup1):28–33. doi: 10.1080/07315724.2015.1080108.
  • Day, A. J., F. J. Cañada, J. C. Díaz, P. A. Kroon, R. Mclauchlan, C. B. Faulds, G. W. Plumb, M. R. Morgan, and G. Williamson. 2000. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Letters 468 (2-3):166–70. doi: 10.1016/S0014-5793(00)01211-4.
  • de Ferrars, R. M., C. Czank, Q. Zhang, N. P. Botting, P. A. Kroon, A. Cassidy, and C. D. Kay. 2014. The pharmacokinetics of anthocyanins and their metabolites in humans. British Journal of Pharmacology 171 (13):3268–82. doi: 10.1111/bph.12676.
  • de Queiroz, T. B., D. DupeyrAAn, J. C. T. Carvalho, I. O. M. GaivAAo, and E. L. Maistro. 2017. Anthocyanins-loaded Eudragit® L100 nanoparticles: In vitro cytotoxic and genotoxic analysis. Genetics and Molecular Research 16 (4) doi: 10.4238/gmr16039875.
  • Del Bo, C., M. Marino, P. Riso, P. Moller, and M. Porrini. 2019. Anthocyanins and metabolites resolve TNF-alpha-mediated production of E-selection and adhesion of monocytes to endothelial cells. Chemico-Biological Interactions 300:49–55. doi: 10.1016/j.cbi.2019.01.002.
  • Dupeyrón, D., M. Kawakami, J. Rieumont, and J. Carlos Carvalho. 2017. Formulation and characterization of anthocyanins-loaded nanoparticles. Current Drug Delivery 14 (1):54–64. doi: 10.2174/1567201813666160915102151.
  • Eisinaitė, V., D. Leskauskaitė, M. Pukalskienė, and P. R. Venskutonis. 2020. Freeze‐drying of black chokeberry pomace extract–loaded double emulsions to obtain dispersible powders. Journal of Food Science 85 (3):628–38. doi: 10.1111/1750-3841.14995.
  • Eker, M. E., K. Aaby, I. Budic-Leto, S. R. Brncic, E. Nehir, S. Karakaya, S. Simsek, C. Manach, W. Wiczkowski, and S. de Pascual-Teresa. 2020. A review of factors affecting anthocyanin bioavailability: Possible implications for the inter-individual variability. Foods 9 (1):18. doi: 10.3390/foods9010002.
  • Ekici, L., Z. Simsek, I. Ozturk, O. Sagdic, and H. Yetim. 2014. Effects of temperature, time, and pH on the stability of anthocyanin extracts: Prediction of total anthocyanin content using nonlinear models. Food Analytical Methods 7 (6):1328–36. doi: 10.1007/s12161-013-9753-y.
  • Enaru, B., G. Drețcanu, T. D. Pop, A. StǎNilǎ, and Z. Diaconeasa. 2021. Anthocyanins: Factors affecting their stability and degradation. Antioxidants 10 (12):1967. doi: 10.3390/antiox10121967.
  • Ertan, K., M. Türkyılmaz, and M. Özkan. 2020. Color and stability of anthocyanins in strawberry nectars containing various co-pigment sources and sweeteners. Food Chemistry 310:125856. doi: 10.1016/j.foodchem.2019.125856.
  • Escher, G. B., J. S. Santos, N. D. Rosso, M. B. Marques, L. Azevedo, M. A. V. do Carmo, H. Daguer, L. Molognoni, L. d Prado-Silva, A. S. Sant’Ana, et al. 2018. Chemical study, antioxidant, anti-hypertensive, and cytotoxic/cytoprotective activities of Centaurea cyanus L. petals aqueous extract. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 118:439–53. doi: 10.1016/j.fct.2018.05.046.
  • Esfandyari-Manesh, M., M. Abdi, A. H. Talasaz, S. M. Ebrahimi, F. Atyabi, and R. Dinarvand. 2020. S2P peptide-conjugated PLGA-Maleimide-PEG nanoparticles containing Imatinib for targeting drug delivery to atherosclerotic plaques. Daru: Journal of Faculty of Pharmacy, Tehran University of Medical Sciences 28 (1):131–8. doi: 10.1007/s40199-019-00324-w.
  • Fang, J. 2014. Bioavailability of anthocyanins. Drug Metabolism Reviews 46 (4):508–20. doi: 10.3109/03602532.2014.978080.
  • Fang, Z. X., and B. Bhandari. 2010. Encapsulation of polyphenols: A review. Trends in Food Science & Technology 21 (10):510–23. doi: 10.1016/j.tifs.2010.08.003.
  • Fang, J. L., Y. Luo, K. Yuan, Y. Guo, and S. H. Jin. 2020. Preparation and evaluation of an encapsulated anthocyanin complex for enhancing the stability of anthocyanin. LWT 117:108543. doi: 10.1016/j.lwt.2019.108543.
  • Fernandes, A., F. Raposo, D. V. Evtuguin, F. Fonseca, F. Ferreira-da-Silva, N. Mateus, M. A. Coimbra, and V. de Freitas. 2021. Grape pectic polysaccharides stabilization of anthocyanins red colour: Mechanistic insights. Carbohydrate Polymers 255:117432. doi: 10.1016/j.carbpol.2020.117432.
  • Fidan-Yardimci, M., S. Akay, F. Sharifi, C. Sevimli-Gur, G. Ongen, and O. Yesil-Celiktas. 2019. A novel niosome formulation for encapsulation of anthocyanins and modelling intestinal transport. Food Chemistry 293:57–65. doi: 10.1016/j.foodchem.2019.04.086.
  • Fleschhut, J., F. Kratzer, G. Rechkemmer, and S. E. Kulling. 2006. Stability and biotransformation of various dietary anthocyanins in vitro. European Journal of Nutrition 45 (1):7–18. doi: 10.1007/s00394-005-0557-8.
  • Flores, F., and F. Kong. 2019. Encapsulation techniques for anthocyanins. Anthocyanins from Natural Sources: Exploiting Targeted Delivery for Improved Health 12:249.
  • Ge, J., P. X. Yue, J. P. Chi, J. Liang, and X. L. Gao. 2018. Formation and stability of anthocyanins-loaded nanocomplexes prepared with chitosan hydrochloride and carboxymethyl chitosan. Food Hydrocolloids. 74:23–31. doi: 10.1016/j.foodhyd.2017.07.029.
  • Ge, J., X. Yue, S. Wang, J. Chi, J. Liang, Y. Sun, X. Gao, and P. Yue. 2019. Nanocomplexes composed of chitosan derivatives and beta-Lactoglobulin as a carrier for anthocyanins: Preparation, stability and bioavailability in vitro. Food Research International (Ottawa, Ont.) 116:336–45. doi: 10.1016/j.foodres.2018.08.045.
  • Gharib, A., Z. Faezizadeh, and S. A. R. Mesbah-Namin. 2013. In vitro and in vivo antibacterial activities of cyanidinum chloride-loaded liposomes against a resistant strain of Pseudomonas aeruginosa. Planta Medica 79 (1):15–9. doi: 10.1055/s-0032-1327952.
  • Gomez, A. G., and Z. Hosseinidoust. 2020. Liposomes for antibiotic encapsulation and delivery. ACS Infectious Diseases 6 (5):896–908. doi: 10.1021/acsinfecdis.9b00357.
  • González-Barrio, R., G. Borges, W. Mullen, and A. Crozier. 2010. Bioavailability of anthocyanins and ellagitannins following consumption of raspberries by healthy humans and subjects with an ileostomy. Journal of Agricultural and Food Chemistry 58 (7):3933–9. doi: 10.1021/jf100315d.
  • Gowd, V., N. Karim, L. Xie, M. R. I. Shishir, Y. Xu, and W. Chen. 2020. In vitro study of bioaccessibility, antioxidant, and α-glucosidase inhibitory effect of pelargonidin-3-O-glucoside after interacting with beta-lactoglobulin and chitosan/pectin. International Journal of Biological Macromolecules 154:380–9. doi: 10.1016/j.ijbiomac.2020.03.126.
  • Grgić, J., G. Šelo, M. Planinić, M. Tišma, and A. Bucić-Kojić. 2020. Role of the encapsulation in bioavailability of phenolic compounds. Antioxidants 9 (10):923. doi: 10.3390/antiox9100923.
  • Guldiken, B., M. Gibis, D. Boyacioglu, E. Capanoglu, and J. Weiss. 2017. Impact of liposomal encapsulation on degradation of anthocyanins of black carrot extract by adding ascorbic acid. Food & Function 8 (3):1085–93. doi: 10.1039/C6FO01385F.
  • Guldiken, B., M. Gibis, D. Boyacioglu, E. Capanoglu, and J. Weiss. 2018. Physical and chemical stability of anthocyanin-rich black carrot extract-loaded liposomes during storage. Food Research International (Ottawa, Ont.) 108:491–7. doi: 10.1016/j.foodres.2018.03.071.
  • Gültekin-Özgüven, M., A. Karadağ, Ş. Duman, B. Özkal, and B. Özçelik. 2016. Fortification of dark chocolate with spray dried black mulberry (Morus nigra) waste extract encapsulated in chitosan-coated liposomes and bioaccessability studies. Food Chemistry 201:205–12. doi: 10.1016/j.foodchem.2016.01.091.
  • Han, N., Y. Wang, J. Bai, J. Liu, Y. Wang, Y. Gao, T. Jiang, W. Kang, and S. Wang. 2016. Facile synthesis of the lipid bilayer coated mesoporous silica nanocomposites and their application in drug delivery. Microporous and Mesoporous Materials 219:209–18. doi: 10.1016/j.micromeso.2015.08.006.
  • He, B., J. Ge, P. X. Yue, X. Y. Yue, R. Y. Fu, J. Liang, and X. L. Gao. 2017. Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage. Food Chemistry 221:1671–7. doi: 10.1016/j.foodchem.2016.10.120.
  • He, J., and M. M. Giusti. 2010. Anthocyanins: Natural colorants with health-promoting properties. Annual Review of Food Science and Technology 1 (1):163–87. doi: 10.1146/annurev.food.080708.100754.
  • Hester, S. N., A. Mastaloudis, R. Gray, J. M. Antony, M. Evans, and S. M. Wood. 2018. Efficacy of an anthocyanin and prebiotic blend on intestinal environment in obese male and female subjects. Journal of Nutrition and Metabolism 2018:7497260. doi: 10.1155/2018/7497260.
  • He, S. Y., N. Zhang, and P. Jing. 2019. Insights into interaction of chlorophylls with sodium caseinate in aqueous nanometre-scale dispersion: Color stability, spectroscopic, electrostatic, and morphological properties. RSC Advances 9 (8):4530–8. doi: 10.1039/c8ra09329f.
  • Hidalgo, M., M. J. Oruna-Concha, S. Kolida, G. E. Walton, S. Kallithraka, J. P. Spencer, and S. de Pascual-Teresa. 2012. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. Journal of Agricultural and Food Chemistry 60 (15):3882–90. doi: 10.1021/jf3002153.
  • Hollman, P. C. 2004. Absorption, bioavailability, and metabolism of flavonoids. Pharmaceutical Biology 42 (sup1):74–83. doi: 10.1080/13880200490893492.
  • Hollman, P. C., M. N. Bijsman, Y. Van Gameren, E. P. Cnossen, J. H. De Vries, and M. B. Katan. 1999. The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radical Research 31 (6):569–73. doi: 10.1080/10715769900301141.
  • Hosseini, S. F., L. Ramezanzade, and D. J. McClements. 2021. Recent advances in nanoencapsulation of hydrophobic marine bioactives: Bioavailability, safety, and sensory attributes of nano-fortified functional foods. Trends in Food Science & Technology 109:322–39. doi: 10.1016/j.tifs.2021.01.045.
  • Huang, Z., X. Li, T. Zhang, Y. Song, Z. She, J. Li, and Y. Deng. 2014. Progress involving new techniques for liposome preparation. Asian Journal of Pharmaceutical Sciences 9 (4):176–82. doi: 10.1016/j.ajps.2014.06.001.
  • Hwang, J.-M., H.-C. Kuo, C.-T. Lin, and E.-S. Kao. 2013. Inhibitory effect of liposome-encapsulated anthocyanin on melanogenesis in human melanocytes. Pharmaceutical Biology 51 (8):941–7. doi: 10.3109/13880209.2013.771376.
  • Isik, B. S., F. Altay, and E. Capanoglu. 2018. The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility. Food Chemistry 265:260–73. doi: 10.1016/j.foodchem.2018.05.064.
  • Jafari, S. M. 2017. 1 - An overview of nanoencapsulation techniques and their classification. In Nanoencapsulation technologies for the food and nutraceutical industries, ed. S. M. Jafari, 1–34. San Diego: Academic Press.
  • Jafari, S. M., M. Fathi, and I. Mandala. 2015. Chapter 13: Emerging product formation. In Food Waste Recovery, ed. C. M. Galanakis, 293–317. San Diego: Academic Press.
  • Jeong, D., B-c Bae, S-j Park, and K. Na. 2016. Reactive oxygen species responsive drug releasing nanoparticle based on chondroitin sulfate–anthocyanin nanocomplex for efficient tumor therapy. Journal of Controlled Release: Official Journal of the Controlled Release Society 222:78–85. doi: 10.1016/j.jconrel.2015.12.009.
  • Jia, Z., M.-J. Dumont, and V. Orsat. 2016. Encapsulation of phenolic compounds present in plants using protein matrices. Food Bioscience 15:87–104. doi: 10.1016/j.fbio.2016.05.007.
  • Jiang, X., Q. Guan, M. Feng, M. Wang, N. Yan, M. Wang, L. Xu, and Z. Gui. 2019. Preparation and pH controlled release of Fe3O4/anthocyanin magnetic biocomposites. Polymers 11 (12):2077. doi: 10.3390/polym11122077.
  • Jiang, T., W. Liao, and C. Charcosset. 2020. Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Research International (Ottawa, ON) 132:109035. doi: 10.1016/j.foodres.2020.109035.
  • Jurgonski, A., J. Juskiewicz, and Z. Zdunczyk. 2013. An anthocyanin-rich extract from Kamchatka honeysuckle increases enzymatic activity within the gut and ameliorates abnormal lipid and glucose metabolism in rats. Nutrition 29 (6):898–902. doi: 10.1016/j.nut.2012.11.006.
  • Kamiloglu, S., E. Capanoglu, C. Grootaert, and J. Van Camp. 2015. Anthocyanin absorption and metabolism by human intestinal Caco-2 cells-a review. International Journal of Molecular Sciences 16 (9):21555–74. doi: 10.3390/ijms160921555.
  • Kasote, D. M., G. Jayaprakasha, and B. S. Patil. 2018. Encapsulation of polyphenols: An effective way to enhance their bioavailability for gut health. Advances in Plant Phenolics: From Chemistry to Human Health 239–59.
  • Kim, A.-N., K.-Y. Lee, B. G. Kim, S. W. Cha, E. J. Jeong, W. L. Kerr, and S.-G. Choi. 2021. Thermal processing under oxygen–free condition of blueberry puree: Effect on anthocyanin, ascorbic acid, antioxidant activity, and enzyme activities. Food Chemistry 342:128345. doi: 10.1016/j.foodchem.2020.128345.
  • Kim, M., H. Na, H. Kasai, K. Kawai, Y.-S. Li, and M. Yang. 2017a. Comparison of blueberry (Vaccinium spp.) and vitamin C via antioxidative and epigenetic effects in human. Journal of Cancer Prevention 22 (3):174–81. doi: 10.15430/JCP.2017.22.3.174.
  • Kim, M. J., S. U. Rehman, F. U. Amin, and M. O. Kim. 2017b. Enhanced neuroprotection of anthocyanin-loaded PEG-gold nanoparticles against Aβ1-42-induced neuroinflammation and neurodegeneration via the NF-KB/JNK/GSK3β signaling pathway. Nanomedicine : Nanotechnology, Biology, and Medicine 13 (8):2533–44. doi: 10.1016/j.nano.2017.06.022.
  • Kırca, A., M. Özkan, and B. Cemeroğlu. 2007. Effects of temperature, solid content and pH on the stability of black carrot anthocyanins. Food Chemistry 101 (1):212–8. doi: 10.1016/j.foodchem.2006.01.019.
  • Klisurova, D., I. Petrova, M. Ognyanov, Y. Georgiev, M. Kratchanova, and P. Denev. 2019. Co-pigmentation of black chokeberry (Aronia melanocarpa) anthocyanins with phenolic co-pigments and herbal extracts. Food Chemistry 279:162–70. doi: 10.1016/j.foodchem.2018.11.125.
  • Ko, A., J. S. Lee, H. Sop Nam, and H. G. Lee. 2017. Stabilization of black soybean anthocyanin by chitosan nanoencapsulation and copigmentation. Journal of Food Biochemistry 41 (2):e12316. doi: 10.1111/jfbc.12316.
  • Kong, J. M., L. S. Chia, N. K. Goh, T. F. Chia, and R. Brouillard. 2003. Analysis and biological activities of anthocyanins. Phytochemistry 64 (5):923–33. doi: 10.1016/S0031-9422(03)00438-2.
  • Koop, B. L., d Silva, M. N., d Silva, F. D., dos Santos Lima, K. T., Soares, L. S., de Andrade, C. J. Valencia, G. A, and Monteiro, A. R. 2022. Flavonoids, anthocyanins, betalains, curcumin, and carotenoids: Sources, classification and enhanced stabilization by encapsulation and adsorption. Food Research International 110929 doi: 10.1016/j.foodres.2021.110929.
  • Krga, I., and D. Milenkovic. 2019. Anthocyanins: From sources and bioavailability to cardiovascular-health benefits and molecular mechanisms of action. Journal of Agricultural and Food Chemistry 67 (7):1771–83. doi: 10.1021/acs.jafc.8b06737.
  • Lage, N. N., M. A. A. Layosa, S. Arbizu, B. P. Chew, M. L. Pedrosa, S. Mertens-Talcott, S. Talcott, and G. D. Noratto. 2020. Dark sweet cherry (Prunus avium) phenolics enriched in anthocyanins exhibit enhanced activity against the most aggressive breast cancer subtypes without toxicity to normal breast cells. Journal of Functional Foods 64:103710. doi: 10.1016/j.jff.2019.103710.
  • Lang, Y. X., H. Y. Gao, J. L. Tian, C. Shu, R. Y. Sun, B. Li, and X. J. Meng. 2019. Protective effects of alpha-casein or beta-casein on the stability and antioxidant capacity of blueberry anthocyanins and their interaction mechanism. LWT 115:108434. doi: 10.1016/j.lwt.2019.108434.
  • Lang, Y., B. Li, E. Gong, C. Shu, X. Si, N. Gao, W. Zhang, H. Cui, and X. Meng. 2021. Effects of α-casein and β-casein on the stability, antioxidant activity and bioaccessibility of blueberry anthocyanins with an in vitro simulated digestion. Food Chemistry 334:127526. doi: 10.1016/j.foodchem.2020.127526.
  • Lang, Y., E. Li, X. Meng, J. Tian, X. Ran, Y. Zhang, Z. Zang, W. Wang, and B. Li. 2019. Protective effects of bovine serum albumin on blueberry anthocyanins under illumination conditions and their mechanism analysis. Food Research International (Ottawa, Ont.) 122:487–95. doi: 10.1016/j.foodres.2019.05.021.
  • Lee, C., and K. Na. 2020. Anthocyanin-loaded liposomes prepared by the PH-gradient loading method to enhance the anthocyanin stability, antioxidation effect and skin permeability. Macromolecular Research 28 (3):289–97. doi: 10.1007/s13233-020-8039-7.
  • Liang, T. S., R. F. Guan, Z. Quan, Q. F. Tao, Z. F. Liu, and Q. Hu. 2019a. Cyanidin-3-o-glucoside liposome: Preparation via a green method and antioxidant activity in GES-1 cells. Food Research International (Ottawa, Ont.) 125:108648. doi: 10.1016/j.foodres.2019.108648.
  • Liang, T. S., R. F. Guan, H. T. Shen, Q. L. Xia, and M. Q. Liu. 2017a. Optimization of conditions for cyanidin-3-O-Glucoside (C3G) nanoliposome production by response surface methodology and cellular uptake studies in Caco-2 Cells. Molecules 22 (3):17. doi: 10.3390/molecules22030457.
  • Liang, T. S., R. F. Guan, Z. Wang, H. T. Shen, Q. L. Xia, and M. Q. Liu. 2017b. Comparison of anticancer activity and antioxidant activity between cyanidin-3-O-glucoside liposomes and cyanidin-3-O-glucoside in Caco-2 cells in vitro. RSC Advances 7 (59):37359–68. doi: 10.1039/C7RA06387C.
  • Liang, T. S., Z. T. Zhang, and P. Jing. 2019b. Black rice anthocyanins embedded in self-assembled chitosan/chondroitin sulfate nanoparticles enhance apoptosis in HCT-116 cells. Food Chemistry 301:125280. doi: 10.1016/j.foodchem.2019.125280.
  • Li, F., F. F. Lang, Y. D. Wang, C. X. Zhai, C. B. Zhang, L. P. Zhang, and E. K. Hao. 2018. Cyanidin ameliorates endotoxin-induced myocardial toxicity by modulating inflammation and oxidative stress through mitochondria and other factors. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 120:104–11. doi: 10.1016/j.fct.2018.05.053.
  • Lim, L.-T., A. C. Mendes, and I. S. Chronakis. 2019. Chapter Five - Electrospinning and electrospraying technologies for food applications. In Advances in Food and Nutrition Research, eds. L.-T. Lim and M. Rogers, vol. 88, 167–234. New York: Academic Press.
  • Li, H., T. Wang, Y. Hu, J. Wu, and P. Van der Meeren. 2022. Designing delivery systems for functional ingredients by protein/polysaccharide interactions. Trends in Food Science & Technology 119:272–87. doi: 10.1016/j.tifs.2021.12.007.
  • Li, Z., Y. Wang, B. Song, J. Li, Y. Bao, Q. Jiang, Y. Chen, S. Yang, Y. Yang, J. Tian, et al. 2023. The comparison between zein-anthocyanins complex and nanoparticle systems: Stability enhancement, interaction mechanism, and in silico approaches. Food Chemistry 420:136136. doi: 10.1016/j.foodchem.2023.136136.
  • Lyu, Q., H. Deng, S. Wang, H. El-Seedi, H. Cao, L. Chen, and H. Teng. 2023. Dietary supplementation with casein/cyanidin-3-O-glucoside nanoparticles alters the gut microbiota in high-fat fed C57BL/6 mice. Food Chemistry 412:135494. doi: 10.1016/j.foodchem.2023.135494.
  • Ma, Z., and P. Jing. 2020. Stabilization of black rice anthocyanins by self-assembled silk fibroin nanofibrils: Morphology, spectroscopy and thermal protection. International Journal of Biological Macromolecules 146:1030–9. doi: 10.1016/j.ijbiomac.2019.10.052.
  • Verma, M. L., B. S. Dhanya Sukriti, V. Rani, M. Thakur, J. Jeslin, R. Kushwaha. (2020). Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. International Journal of Biological Macromolecules 154: 390–412. doi: 10.1016/j.ijbiomac.2020.03.105.
  • Malien-Aubert, C., O. Dangles, and M. J. Amiot. 2001. Color stability of commercial anthocyanin-based extracts in relation to the phenolic composition. Protective effects by intra-and intermolecular copigmentation. Journal of Agricultural and Food Chemistry 49 (1):170–6. doi: 10.1021/jf000791o.
  • Manach, C., G. Williamson, C. Morand, A. Scalbert, and C. Rémésy. 2005. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition 81 (1 Suppl):230S–42S. doi: 10.1021/jo070579k.
  • Markakis, P., and L. Jurd. 1974. Anthocyanins and their stability in foods. C R C Critical Reviews in Food Technology 4 (4):437–56. doi: 10.1080/10408397409527165.
  • Marszałek, K., Woźniak Kruszewski, B, and Skąpska, S. Ł. 2017. The effect of high pressure techniques on the stability of anthocyanins in fruit and vegetables. International Journal of Molecular Sciences 18 (2):277. doi: 10.3390/ijms18020277.
  • Martin, K. R., L. Burrell, and J. Bopp. 2018. Authentic tart cherry juice reduces markers of inflammation in overweight and obese subjects: A randomized, crossover pilot study. Food & Function 9 (10):5290–300. doi: 10.1039/c8fo01492b.
  • Martinsen, B. K., K. Aaby, and G. Skrede. 2020. Effect of temperature on stability of anthocyanins, ascorbic acid and color in strawberry and raspberry jams. Food Chemistry 316:126297. doi: 10.1016/j.foodchem.2020.126297.
  • McClements, D. J. 2015. Encapsulation, protection, and release of hydrophilic active components: Potential and limitations of colloidal delivery systems. Advances in Colloid and Interface Science 219:27–53. doi: 10.1016/j.cis.2015.02.002.
  • McGhie, T. K., and M. C. Walton. 2007. The bioavailability and absorption of anthocyanins: Towards a better understanding. Molecular Nutrition & Food Research 51 (6):702–13. doi: 10.1002/mnfr.200700092.
  • Millar, C. L., G. H. Norris, C. Jiang, J. Kry, A. Vitols, C. Garcia, Y. K. Park, J. Y. Lee, and C. N. Blesso. 2018. Long-term supplementation of black elderberries promotes hyperlipidemia, but reduces liver inflammation and improves HDL function and atherosclerotic plaque stability in apolipoprotein e-knockout mice. Molecular Nutrition & Food Research 62 (23):e1800404. doi: 10.1002/mnfr.201800404.
  • Miniati, E., and G. Mazza. 1993. Anthocyanins in fruits, vegetables, and grains. Anthocyanins in Fruits Vegetables & Grains.
  • Mohammadian, M., M. Salami, S. Momen, F. Alavi, Z. Emam-Djomeh, and A. A. Moosavi-Movahedi. 2019. Enhancing the aqueous solubility of curcumin at acidic condition through the complexation with whey protein nanofibrils. Food Hydrocolloids. 87:902–14. doi: 10.1016/j.foodhyd.2018.09.001.
  • Mohammadian, M., M. I. Waly, M. Moghadam, Z. Emam-Djomeh, M. Salami, and A. A. Moosavi-Movahedi. 2020. Nanostructured food proteins as efficient systems for the encapsulation of bioactive compounds. Food Science and Human Wellness 9 (3):199–213. doi: 10.1016/j.fshw.2020.04.009.
  • Mueller, D., K. Jung, M. Winter, D. Rogoll, R. Melcher, U. Kulozik, K. Schwarz, and E. Richling. 2018. Encapsulation of anthocyanins from bilberries–Effects on bioavailability and intestinal accessibility in humans. Food Chemistry 248:217–24. doi: 10.1016/j.foodchem.2017.12.058.
  • Mueller, D., K. Jung, M. Winter, D. Rogoll, R. Melcher, and E. Richling. 2017. Human intervention study to investigate the intestinal accessibility and bioavailability of anthocyanins from bilberries. Food Chemistry 231:275–86. doi: 10.1016/j.foodchem.2017.03.130.
  • Nedovic, V., A. Kalusevic, V. Manojlovic, S. Levic, and B. Bugarski. 2011. An overview of encapsulation technologies for food applications. Procedia Food Science 1:1806–15. doi: 10.1016/j.profoo.2011.09.265.
  • Nicolai, T., M. Britten, and C. Schmitt. 2011. β-Lactoglobulin and WPI aggregates: Formation, structure and applications. Food Hydrocolloids. 25 (8):1945–62. doi: 10.1016/j.foodhyd.2011.02.006.
  • Nielsen, I. L. F., L. O. Dragsted, G. Ravn-Haren, R. Freese, and S. E. Rasmussen. 2003. Absorption and excretion of black currant anthocyanins in humans and watanabe heritable hyperlipidemic rabbits. Journal of Agricultural and Food Chemistry 51 (9):2813–20. doi: 10.1021/jf025947u.
  • Nishinari, K., Y. Fang, S. Guo, and G. O. Phillips. 2014. Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocolloids. 39:301–18. doi: 10.1016/j.foodhyd.2014.01.013.
  • Oancea, A.-M., I. Aprodu, I. O. Ghinea, V. Barbu, E. Ioniţă, G. Bahrim, G. Râpeanu, and N. Stănciuc. 2017. A bottom-up approach for encapsulation of sour cherries anthocyanins by using β-lactoglobulin as matrices. Journal of Food Engineering 210:83–90. doi: 10.1016/j.jfoodeng.2017.04.033.
  • Oksuz, T., Z. Tacer-Caba, D. Nilufer-Erdil, and D. Boyacioglu. 2019. Changes in bioavailability of sour cherry (Prunus cerasus L.) phenolics and anthocyanins when consumed with dairy food matrices. Journal of Food Science and Technology 56 (9):4177–88. doi: 10.1007/s13197-019-03888-2.
  • Oliveira, H., R. Perez-Gregorio, V. de Freitas, N. Mateus, and I. Fernandes. 2019. Comparison of the in vitro gastrointestinal bioavailability of acylated and non-acylated anthocyanins: Purple-fleshed sweet potato vs red wine. Food Chemistry 276:410–8. doi: 10.1016/j.foodchem.2018.09.159.
  • Oliveira, A., and M. Pintado. 2015. In vitro evaluation of the effects of protein–polyphenol–polysaccharide interactions on (+)-catechin and cyanidin-3-glucoside bioaccessibility. Food & Function 6 (11):3444–53. doi: 10.1039/C5FO00799B.
  • Ouyang, Y. Z., L. Chen, L. Qian, X. J. Lin, X. Y. Fan, H. Teng, and H. Cao. 2020. Fabrication of caseins nanoparticles to improve the stability of cyanidin 3-O-glucoside. Food Chemistry 317:126418. doi: 10.1016/j.foodchem.2020.126418.
  • Pacheco-Palencia, L. A., and S. T. Talcott. 2010. Chemical stability of açai fruit (Euterpe oleracea Mart.) anthocyanins as influenced by naturally occurring and externally added polyphenolic cofactors in model systems. Food Chemistry 118 (1):17–25. doi: 10.1016/j.foodchem.2009.02.032.
  • Pan, Y. Z., Y. Guan, Z. F. Wei, X. Peng, T. T. Li, X. L. Qi, Y. G. Zu, and Y. J. Fu. 2014. Flavonoid C-glycosides from pigeon pea leaves as color and anthocyanin stabilizing agent in blueberry juice. Industrial Crops and Products 58:142–7. doi: 10.1016/j.indcrop.2014.04.029.
  • Pan, P., C. W. Skaer, S. M. Stirdivant, M. R. Young, G. D. Stoner, J. F. Lechner, Y.-W. Huang, and L.-S. Wang. 2015. Beneficial regulation of metabolic profiles by black raspberries in human colorectal cancer patients. Cancer Prevention Research (Philadelphia, Pa.) 8 (8):743–50. doi: 10.1158/1940-6207.CAPR-15-0065.
  • Park, E., I. Edirisinghe, H. Wei, L. P. Vijayakumar, K. Banaszewski, J. C. Cappozzo, and B. Burton‐Freeman. 2016. A dose–response evaluation of freeze‐dried strawberries independent of fiber content on metabolic indices in abdominally obese individuals with insulin resistance in a randomized, single‐blinded, diet‐controlled crossover trial. Molecular Nutrition & Food Research 60 (5):1099–109. doi: 10.1002/mnfr.201500845.
  • Patras, A., N. P. Brunton, C. O'Donnell, and B. K. Tiwari. 2010. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends in Food Science & Technology 21 (1):3–11. doi: 10.1016/j.tifs.2009.07.004.
  • Perry, S. L., and D. J. McClements. 2020. Recent advances in encapsulation, protection, and oral delivery of bioactive proteins and peptides using colloidal systems. Molecules 25 (5):1161. doi: 10.3390/molecules25051161.
  • Perumcherry Raman, S., P. K. Dara, D. K. Vijayan, N. S. Chatterjee, M. Raghavankutty, S. Mathew, C. N. Ravishankar, and R. Anandan. 2022. Anti-ulcerogenic potential of anthocyanin-loaded chitosan nanoparticles against alcohol-HCl induced gastric ulcer in rats. Natural Product Research 36 (5):1306–10. doi: 10.1080/14786419.2020.1860041.
  • Phan, M. A. T., M. P. Bucknall, and J. Arcot. 2019. Co-ingestion of red cabbage with cherry tomato enhances digestive bioaccessibility of anthocyanins but decreases carotenoid bioaccessibility after simulated in vitro gastro-intestinal digestion. Food Chemistry 298:125040. doi: 10.1016/j.foodchem.2019.125040.
  • Poulose, S. M., D. R. Fisher, J. Larson, D. F. Bielinski, A. M. Rimando, A. N. Carey, A. G. Schauss, and B. Shukitt-Hale. 2012. Anthocyanin-rich açai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells. Journal of Agricultural and Food Chemistry 60 (4):1084–93. doi: 10.1021/jf203989k.
  • Pourrat, H., P. Bastide, P. Dorier, and P. Tronche. 1967. Préparation et activité thérapeutique de quelques glycosides d‘anthocyanes. Chim. Thérap 2:33–8.
  • Prior, R. L., and X. Wu. 2006. Anthocyanins: Structural characteristics that result in unique metabolic patterns and biological activities. Free Radical Research 40 (10):1014–28. doi: 10.1080/10715760600758522.
  • Prior, R. L., and X. Wu. 2012. Analysis methods of Anthocyanins. Analysis of Antioxidant-Rich Phytochemicals 149–80.
  • Qian, B.-J., J.-H. Liu, S.-J. Zhao, J.-X. Cai, and P. Jing. 2017. The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability. Food Chemistry 228:526–32. doi: 10.1016/j.foodchem.2017.01.120.
  • Quan, Z., R. F. Guan, H. Z. Huang, K. Yang, M. Cai, and X. H. Meng. 2020a. Antioxidant activity and absorption of cyanidin-3-O-glucoside liposomes in GES-1 cells in vitro. Bioscience, Biotechnology, and Biochemistry 84 (6):1239–49. doi: 10.1080/09168451.2020.1736507.
  • Quan, W., W. He, X. J. Qie, Y. Chen, M. M. Zeng, F. Qin, J. Chen, and Z. Y. He. 2020b. Effects of beta-cyclodextrin, whey protein, and soy protein on the thermal and storage stability of anthocyanins obtained from purple-fleshed sweet potatoes. Food Chemistry 320:126655. doi: 10.1016/j.foodchem.2020.126655.
  • Rashwan, A. K., N. Karim, Y. Xu, J. Xie, H. Cui, M. Mozafari, and W. Chen. 2023. Potential micro-/nano-encapsulation systems for improving stability and bioavailability of anthocyanins: An updated review. Critical Reviews in Food Science and Nutrition 63 (19):3362–85. doi: 10.1080/10408398.2021.1987858.
  • Ravanfar, R., A. M. Tamaddon, M. Niakousari, and M. R. Moein. 2016. Preservation of anthocyanins in solid lipid nanoparticles: Optimization of a microemulsion dilution method using the Placket-Burman and Box-Behnken designs. Food Chemistry 199:573–80. doi: 10.1016/j.foodchem.2015.12.061.
  • Rechner, A. R., G. Kuhnle, P. Bremner, G. P. Hubbard, K. P. Moore, and C. A. Rice-Evans. 2002. The metabolic fate of dietary polyphenols in humans. Free Radical Biology & Medicine 33 (2):220–35. doi: 10.1016/S0891-5849(02)00877-8.
  • Ribnicky, D. M., D. E. Roopchand, A. Oren, M. Grace, A. Poulev, M. A. Lila, R. Havenaar, and I. Raskin. 2014. Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1). Food Chemistry 142:349–57. doi: 10.1016/j.foodchem.2013.07.073.
  • Rodriguez-Amaya, D. B. 2019. Update on natural food pigments-A mini-review on carotenoids, anthocyanins, and betalains. Food Research International (Ottawa, Ont.) 124:200–5. doi: 10.1016/j.foodres.2018.05.028.
  • Rosales, T. K. O., M. P. da Silva, F. R. Lourenço, N. M. A. Hassimotto, and J. P. Fabi. 2021. Nanoencapsulation of anthocyanins from blackberry (Rubus spp.) through pectin and lysozyme self-assembling. Food Hydrocolloids. 114:106563. doi: 10.1016/j.foodhyd.2020.106563.
  • Rosales, T. K. O., L. de Freitas Pedrosa, K. R. Nascimento, A. M. Fioroto, T. Toniazzo, C. C. Tadini, E. Purgatto, N. M. A. Hassimotto, and J. P. Fabi. 2023. Nanoencapsulated anthocyanins: A new technological approach to increase physical-chemical stability and bioaccessibility. Food Hydrocolloids. 139:108516. doi: 10.1016/j.foodhyd.2023.108516.
  • Salah, M., M. Mansour, D. Zogona, and X. Xu. 2020. Nanoencapsulation of anthocyanins-loaded β-lactoglobulin nanoparticles: Characterization, stability, and bioavailability in vitro. Food Research International (Ottawa, Ont.) 137:109635. doi: 10.1016/j.foodres.2020.109635.
  • Sandoval-Ramírez, B. A., U. Catalan, S. Fernandez-Castillejo, L. Rubio, A. Macia, and R. Sola. 2018. Anthocyanin tissue bioavailability in animals: Possible implications for human health. A systematic review. Journal of Agricultural and Food Chemistry 66 (44):11531–43. doi: 10.1021/acs.jafc.8b04014.
  • Santos-Buelga, C., and A. M. González-Paramás. 2019. Anthocyanins. In Encyclopedia of Food Chemistry, eds. L. Melton, F. Shahidi, & P. Varelis, 10–21. Oxford: Academic Press.
  • Schon, C., R. Wacker, A. Micka, J. Steudle, S. Lang, and B. Bonnlander. 2018. Bioavailability study of Maqui berry extract in healthy subjects. Nutrients 10 (11):11. doi: 10.3390/nu10111720.
  • Sengul, H., E. Surek, and D. Nilufer-Erdil. 2014. Investigating the effects of food matrix and food components on bioaccessibility of pomegranate (Punica granatum) phenolics and anthocyanins using an in-vitro gastrointestinal digestion model. Food Research International 62:1069–79. doi: 10.1016/j.foodres.2014.05.055.
  • Sercombe, L., T. Veerati, F. Moheimani, S. Y. Wu, A. K. Sood, and S. Hua. 2015. Advances and challenges of liposome assisted drug Delivery. Frontiers in Pharmacology 6:286. doi: 10.3389/fphar.2015.00286.
  • Shaddel, R., J. Hesari, S. Azadmard-Damirchi, H. Hamishehkar, B. Fathi-Achachlouei, and Q. Huang. 2018a. Double emulsion followed by complex coacervation as a promising method for protection of black raspberry anthocyanins. Food Hydrocolloids. 77:803–16. doi: 10.1016/j.foodhyd.2017.11.024.
  • Shaddel, R., J. Hesari, S. Azadmard-Damirchi, H. Hamishehkar, B. Fathi-Achachlouei, and Q. Huang. 2018b. Use of gelatin and gum Arabic for encapsulation of black raspberry anthocyanins by complex coacervation. International Journal of Biological Macromolecules 107 (Pt B):1800–10. doi: 10.1016/j.ijbiomac.2017.10.044.
  • Shen, Y., L. Posavec, S. Bolisetty, F. M. Hilty, G. Nyström, J. Kohlbrecher, M. Hilbe, A. Rossi, J. Baumgartner, M. B. Zimmermann, et al. 2017. Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron. Nature Nanotechnology 12 (7):642–7. doi: 10.1038/nnano.2017.58.
  • Shishir, M. R. I., L. Xie, C. Sun, X. Zheng, and W. Chen. 2018. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science & Technology 78:34–60. doi: 10.1016/j.tifs.2018.05.018.
  • Sreerekha, P., P. K. Dara, D. K. Vijayan, N. S. Chatterjee, M. Raghavankutty, S. Mathew, C. N. Ravishankar, and R. Anandan. 2021. Dietary supplementation of encapsulated anthocyanin loaded-chitosan nanoparticles attenuates hyperlipidemic aberrations in male Wistar rats. Carbohydrate Polymer Technologies and Applications 2:100051. doi: 10.1016/j.carpta.2021.100051.
  • Stănciuc, N., M. Turturică, A. M. Oancea, V. Barbu, E. Ioniţă, I. Aprodu, and G. Râpeanu. 2017. Microencapsulation of anthocyanins from grape skins by whey protein isolates and different polymers. Food and Bioprocess Technology 10 (9):1715–26. doi: 10.1007/s11947-017-1938-8.
  • Steiner, B. M., D. J. McClements, and G. Davidov-Pardo. 2018. Encapsulation systems for lutein: A review. Trends in Food Science & Technology 82:71–81. doi: 10.1016/j.tifs.2018.10.003.
  • Stintzing, F. C., A. S. Stintzing, R. Carle, B. Frei, and R. E. Wrolstad. 2002. Color and antioxidant properties of cyanidin-based anthocyanin pigments. Journal of Agricultural and Food Chemistry 50 (21):6172–81. doi: 10.1021/jf0204811.
  • Student, V., A. Vidlar, J. Bouchal, J. Vrbkova, Z. Kolar, M. Kral, P. Kosina, and J. Vostalova. 2016. Cranberry intervention in patients with prostate cancer prior to radical prostatectomy. Clinical, pathological and laboratory findings. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia 160 (4):559–65. doi: 10.5507/bp.2016.056.
  • Sun, J., Y. Wu, C. Long, P. He, J. Gu, L. Yang, Y. Liang, and Y. Wang. 2018. Anthocyanins isolated from blueberry ameliorates CCl4 induced liver fibrosis by modulation of oxidative stress, inflammation and stellate cell activation in mice. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 120:491–9. doi: 10.1016/j.fct.2018.07.048.
  • Tan, C., Y. Dadmohammadi, M. C. Lee, and A. Abbaspourrad. 2021. Combination of copigmentation and encapsulation strategies for the synergistic stabilization of anthocyanins. Comprehensive Reviews in Food Science and Food Safety 20 (4):3164–91. doi: 10.1111/1541-4337.12772.
  • Tan, C., M. J. Selig, and A. Abbaspourrad. 2018a. Anthocyanin stabilization by chitosan-chondroitin sulfate polyelectrolyte complexation integrating catechin co-pigmentation. Carbohydrate Polymers 181:124–31. doi: 10.1016/j.carbpol.2017.10.034.
  • Tan, C., M. J. Selig, M. C. Lee, and A. Abbaspourrad. 2018b. Encapsulation of copigmented anthocyanins within polysaccharide microcapsules built upon removable CaCO3 templates. Food Hydrocolloids. 84:200–9. doi: 10.1016/j.foodhyd.2018.05.036.
  • Taylor, T. M., P. M. Davidson, B. D. Bruce, and J. Weiss. 2005. Liposomal nanocapsules in food science and agriculture. Critical Reviews in Food Science and Nutrition 45 (7-8):587–605. doi: 10.1080/10408390591001135.
  • Teixe-Roig, J., G. Oms-Oliu, G. R. Velderrain-Rodriguez, I. Odriozola-Serrano, and O. Martin-Belloso. 2018. The effect of sodium carboxymethylcellulose on the stability and bioaccessibility of anthocyanin water-in-oil-in-water emulsions. Food and Bioprocess Technology 11 (12):2229–41. doi: 10.1007/s11947-018-2181-7.
  • Tena, N., J. Martín, and A. G. Asuero. 2020. State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants 9 (5):451. doi: 10.3390/antiox9050451.
  • Thompson, K., H. Hosking, W. Pederick, I. Singh, and A. B. Santhakumar. 2017. The effect of anthocyanin supplementation in modulating platelet function in sedentary population: A randomised, double-blind, placebo-controlled, cross-over trial. The British Journal of Nutrition 118 (5):368–74. doi: 10.1017/s0007114517002124.
  • Tong, Y., H. Deng, Y. Kong, C. Tan, J. Chen, M. Wan, M. Wang, T. Yan, X. Meng, and L. Li. 2020. Stability and structural characteristics of amylopectin nanoparticle-binding anthocyanins in Aronia melanocarpa. Food Chemistry 311:125687. doi: 10.1016/j.foodchem.2019.125687.
  • Tong, Y., L. Li, and X. Meng. 2023. Anthocyanins from aronia melanocarpa bound to amylopectin nanoparticles: Tissue distribution and in vivo oxidative damage protection. Journal of Agricultural and Food Chemistry 71 (1):430–42. doi: 10.1021/acs.jafc.2c06115.
  • Tong, Y., Y. Ma, Y. Kong, H. Deng, M. Wan, C. Tan, M. Wang, L. Li, and X. Meng. 2021. Pharmacokinetic and excretion study of Aronia melanocarpa anthocyanins bound to amylopectin nanoparticles and their main metabolites using high-performance liquid chromatography-tandem mass spectrometry. Food & Function 12 (21):10917–25. doi: 10.1039/D1FO02423J.
  • Trouillas, P., J. C. Sancho-García, V. De Freitas, J. Gierschner, M. Otyepka, and O. Dangles. 2016. Stabilizing and modulating color by copigmentation: Insights from theory and experiment. Chemical Reviews 116 (9):4937–82. doi: 10.1021/acs.chemrev.5b00507.
  • Tsuda, T., K. Shiga, K. Ohshima, S. Kawakishi, and T. Osawa. 1996. Inhibition of lipid peroxidation and the active oxygen radical scavenging effect of anthocyanin pigments isolated from Phaseolus vulgaris L. Biochemical Pharmacology 52 (7):1033–9. doi: 10.1016/0006-2952(96)00421-2.
  • Tucakovic, L., N. Colson, A. B. Santhakumar, A. R. Kundur, M. Shuttleworth, and I. Singh. 2018. The effects of anthocyanins on body weight and expression of adipocyte’s hormones: Leptin and adiponectin. Journal of Functional Foods 45:173–80. doi: 10.1016/j.jff.2018.03.042.
  • Ul Haq Z., M. Riaz, and Saad, B. 2016. Biosynthesis and stability of anthocyanins. Anthocyanins and Human Health: Biomolecular and Therapeutic Aspects 71–86. doi: 10.1007/978-3-319-26456-1_6.
  • Urquiaga, I., F. Ávila, G. Echeverria, D. Perez, S. Trejo, and F. Leighton. 2017. A Chilean berry concentrate protects against postprandial oxidative stress and increases plasma antioxidant activity in healthy humans. Oxidative Medicine and Cellular Longevity 2017:8361493. doi: 10.1155/2017/8361493.
  • Van de Velde, F., M. E. Pirovani, and S. R. Drago. 2018. Bioaccessibility analysis of anthocyanins and ellagitannins from blackberry at simulated gastrointestinal and colonic levels. Journal of Food Composition and Analysis 72:22–31. doi: 10.1016/j.jfca.2018.05.007.
  • Vergara, C., M. T. Pino, O. Zamora, J. Parada, R. Perez, M. Uribe, and J. Kalazich. 2020. Microencapsulation of anthocyanin extracted from purple flesh cultivated potatoes by spray drying and its effects on in vitro gastrointestinal digestion. Molecules 25 (3):14. doi: 10.3390/molecules25030722.
  • Vicente, J., T. de Souza Cezarino, L. J. B. Pereira, E. P. da Rocha, G. R. Sá, O. D. Gamallo, M. G. de Carvalho, and E. E. Garcia-Rojas. 2017. Microencapsulation of sacha inchi oil using emulsion-based delivery systems. Food Research International (Ottawa, Ont.) 99 (Pt 1):612–22. doi: 10.1016/j.foodres.2017.06.039.
  • Wallace, T. C., and M. M. Giusti. 2015. Anthocyanins. Advances in Nutrition (Bethesda, Md.) 6 (5):620–2. doi: 10.1002/9780470015902.a0001909.pub2.
  • Wang, S., M. F. Marcone, S. Barbut, and L.-T. Lim. 2013. Electrospun soy protein isolate-based fiber fortified with anthocyanin-rich red raspberry (Rubus strigosus) extracts. Food Research International 52 (2):467–72. doi: 10.1016/j.foodres.2012.12.036.
  • Warji, S., S. Mardjan, S. Yuliani, N. Purwanti. (2017). Characterisation of nanofibrils from soy protein and their potential applications for food thickener and building blocks of microcapsules. International Journal of Food Properties, sup1, 20, S1121–S1131. doi: 10.1080/10942912.2017.1336720.
  • Wen, P., Y. Wen, M.-H. Zong, R. J. Linhardt, and H. Wu. 2017. Encapsulation of bioactive compound in electrospun fibers and its potential application. Journal of Agricultural and Food Chemistry 65 (42):9161–79. doi: 10.1021/acs.jafc.7b02956.
  • Whyte, A. R., G. Schafer, and C. M. Williams. 2016. Cognitive effects following acute wild blueberry supplementation in 7-to 10-year-old children. European Journal of Nutrition 55 (6):2151–62. doi: 10.1007/s00394-015-1029-4.
  • Wiczkowski, W., D. Szawara-Nowak, and J. Romaszko. 2016. The impact of red cabbage fermentation on bioavailability of anthocyanins and antioxidant capacity of human plasma. Food Chemistry 190:730–40. doi: 10.1016/j.foodchem.2015.06.021.
  • Xie, C., Q. Wang, R. Ying, Y. Wang, Z. Wang, and M. Huang. 2020. Binding a chondroitin sulfate-based nanocomplex with kappa-carrageenan to enhance the stability of anthocyanins. Food Hydrocolloids. 100:105448. doi: 10.1016/j.foodhyd.2019.105448.
  • Xu, Y., Y. Li, J. Xie, L. Xie, J. Mo, and W. Chen. 2021. Bioavailability, absorption, and metabolism of pelargonidin-based anthocyanins using sprague–dawley rats and Caco-2 cell monolayers. Journal of Agricultural and Food Chemistry 69 (28):7841–50. doi: 10.1021/acs.jafc.1c00257.
  • Xu, C., Y. Wang, H. Yu, H. Tian, and X. Chen. 2018. Multifunctional theranostic nanoparticles derived from fruit-extracted anthocyanins with dynamic disassembly and elimination abilities. ACS Nano 12 (8):8255–65. doi: 10.1021/acsnano.8b03525.
  • Yan, Y., Z. Li, and M. A. Koffas. 2008. High‐yield anthocyanin biosynthesis in engineered Escherichia coli. Biotechnology and Bioengineering 100 (1):126–40. doi: 10.1002/bit.21721.
  • Yang, M. I., Koo, S. O., Song, W. K, and Chun, O. 2011. Food matrix affecting anthocyanin bioavailability. Current Medicinal Chemistry 18 (2):291–300. doi: 10.2174/092986711794088380.
  • Yao, L., J. Xu, L. Zhang, L. Liu, and L. Zhang. 2021. Nanoencapsulation of anthocyanin by an amphiphilic peptide for stability enhancement. Food Hydrocolloids. 118:106741. doi: 10.1016/j.foodhyd.2021.106741.
  • Yesil-Celiktas, O., C. Pala, E. O. Cetin-Uyanikgil, and C. Sevimli-Gur. 2017. Synthesis of silica-PAMAM dendrimer nanoparticles as promising carriers in Neuro blastoma cells. Analytical Biochemistry 519:1–7. doi: 10.1016/j.ab.2016.12.004.
  • Yousuf, B., K. Gul, A. A. Wani, and P. Singh. 2016. Health benefits of anthocyanins and their encapsulation for potential use in food systems: A review. Critical Reviews in Food Science and Nutrition 56 (13):2223–30. doi: 10.1080/10408398.2013.805316.
  • Zang, Z., S. Chou, J. Tian, Y. Lang, Y. Shen, X. Ran, N. Gao, and B. Li. 2021. Effect of whey protein isolate on the stability and antioxidant capacity of blueberry anthocyanins: A mechanistic and in vitro simulation study. Food Chemistry 336:127700. doi: 10.1016/j.foodchem.2020.127700.
  • Zhang, F., F. He, L. Li, L. Guo, B. Zhang, S. Yu, and W. Zhao. 2020. Bioavailability based on the gut microbiota: A new perspective. Microbiology and Molecular Biology Reviews: MMBR 84 (2) doi: 10.1128/mmbr.00072-19.
  • Zhang, X., H. Q. Huo, X. H. Sun, J. Zhu, H. Y. Dai, and Y. G. Zhang. 2019. Nanocrystallization of anthocyanin extract from red-fleshed Apple ‘ QN-5 ‘ improved its antioxidant effect through enhanced stability and activity under stressful conditions. Molecules 24 (7):11. doi: 10.3390/molecules24071421.
  • Zhang, J., X. Liang, X. Li, Z. Guan, Z. Liao, Y. Luo, and Y. Luo. 2016a. Ocular delivery of cyanidin-3-glycoside in liposomes and its prevention of selenite-induced oxidative stress. Drug Development and Industrial Pharmacy 42 (4):546–53. doi: 10.3109/03639045.2015.1088867.
  • Zhang, T., C. Lv, L. Chen, G. Bai, G. Zhao, and C. Xu. 2014. Encapsulation of anthocyanin molecules within a ferritin nanocage increases their stability and cell uptake efficiency. Food Research International 62:183–92. doi: 10.1016/j.foodres.2014.02.041.
  • Zhang, X., Y. Yang, Z. Wu, and P. Weng. 2016b. The modulatory effect of anthocyanins from purple sweet potato on human intestinal microbiota in vitro. Journal of Agricultural and Food Chemistry 64 (12):2582–90. doi: 10.1021/acs.jafc.6b00586.
  • Zhao, L., F. Pan, A. Mehmood, H. Zhang, A. U. Rehman, J. Li, S. Hao, and C. Wang. 2021. Improved color stability of anthocyanins in the presence of ascorbic acid with the combination of rosmarinic acid and xanthan gum. Food Chemistry 351:129317. doi: 10.1016/j.foodchem.2021.129317.
  • Zhao, L. S., F. Temelli, and L. Y. Chen. 2017a. Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: Effects of anthocyanin and sterol concentrations. Journal of Functional Foods 34:159–67. doi: 10.1016/j.jff.2017.04.021.
  • Zhao, C. L., Y.-Q. Yu, Z.-J. Chen, G.-S. Wen, F.-G. Wei, Q. Zheng, C.-D. Wang, and X.-L. Xiao. 2017b. Stability-increasing effects of anthocyanin glycosyl acylation. Food Chemistry 214:119–28. doi: 10.1016/j.foodchem.2016.07.073.
  • Zhao, X., X. Zhang, S. Tie, S. Hou, H. Wang, Y. Song, R. Rai, and M. Tan. 2020. Facile synthesis of nano-nanocarriers from chitosan and pectin with improved stability and biocompatibility for anthocyanins delivery: An in vitro and in vivo study. Food Hydrocolloids. 109:106114. doi: 10.1016/j.foodhyd.2020.106114.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.