798
Views
20
CrossRef citations to date
0
Altmetric
Review Article

Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates

, , , &
Pages 294-312 | Received 22 Feb 2016, Accepted 22 Jun 2016, Published online: 08 Nov 2016

References

  • Akaraonye E, Keshavarz T, Roy I. (2010). Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85:732–43.
  • Alarfaj AA, Arshad M, Sholkamy EN, Munusamy MA. (2015). Extraction and characterization of polyhydroxybutyrates (PHB) from Bacillus thuringiensis KSADL127 isolated from mangrove environments of Saudi Arabia. Braz Arch Biol Technol 58:781–8.
  • Alvarez HM, Pucci OH, Steinbuchel A. (1997). Lipid storage compounds in marine bacteria. Appl Microbiol Biotechnol 47:132–9.
  • Amirul AS. (2014). Biosynthesis of poly(3-hydroxybutyrate) using marine Bacillus megaterium UMTKB-1 [Undergraduate Thesis]. Bachelor of Applied Science in Conservation and Management of Biodiversity, School of Marine Science and Environment, Universiti Malaysia Terengganu. 48 p.
  • Anderson AJ, Dawes EA. (1990). Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–72.
  • Aneja P, Dai M, Lacorre DA, et al. (2004). Heterologous complementation of the exopolysaccharide synthesis and carbon utilization phenotypes of Sinorhizobium meliloti Rm1021 polyhydroxyalkanoate synthesis mutants. FEMS Microbiol Lett 239:277–83.
  • Arun A, Arthi R, Shanmugabalaji V, Eyini M. (2009). Microbial production of poly-beta-hydroxybutyrate by marine microbes isolated from various marine environments. Bioresour Technol 100:2320–3.
  • Balaji S, Gopi K, Lavanya B, Muthuvelan B. (2012). Isolation and optimization of poly β hydroxybutyrate producing cyanobacterial strains. Int J Appl Biol Pharm Technol 3:137–45.
  • Balaji S, Gopi K, Muthuvelan B. (2013). A review on production of poly β hydroxybutyrates from cyanobacteria for the production of bio plastics. Algal Res 2:278–85.
  • Baumann P, Baumann L, Mandel M. (1971). Taxonomy of marine bacteria: the genus Beneckea. J Bacteriol 107:268–94.
  • Bavestrello G, Arillo A, Calcinai B, et al. (2000). Parasitic diatoms inside antarctic sponges. Biol Bull 198:29–33.
  • Bhagowati P, Pradhan S, Dash HR, Das S. (2015). Production, optimization and characterization of polyhydroxybutyrate, a biodegradable plastic by Bacillus spp. Biosci Biotechnol Biochem 79:1454–63.
  • Bhubalan K, Othman MN, Syafiq IM, Amirul A-AA. (2013). Biosynthesis of value-added green material from renewable resources using a marine Bacillus megaterium isolate KB-1. Int Conf Life Sci Biol Eng 405:165–70.
  • Burdon KL. (1946). Fatty material in bacteria and fungi revealed by staining dried, fixed slide preparations. J Bacteriol 52:665–78.
  • Cai J, Wei Y, Zhao Y, et al. (2012). Production of polyhydroxybutyrate by the marine photosynthetic bacterium Rhodovulum sulfidophilum P5. Chin J Oceanol Limnol 30:620–6.
  • Castilho LR, Mitchell DA, Freire DMG. (2009). Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation. Bioresour Technol 100:5996–09.
  • Castro-Sowinski S, Burdman S, Matan O, Okon Y. (2010). In: Chen G-QG, ed. Natural functions of bacterial polyhydroxyalkanoates in plastics from bacteria: natural functions and applications. Berlin (Heidelberg): Springer, 39–61.
  • Chen GQ, Zhang G, Park SJ, Lee SY. (2001). Industrial scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Appl Microbiol Biotechnol 57:50–5.
  • Chen G-Q. (2009). A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–46.
  • Chien C-C, Chen C-C, Choi M-H, et al. (2007). Production of poly-beta-hydroxybutyrate (PHB) by Vibrio spp. isolated from marine environment. J Biotechnol 132:259–63.
  • Christo Melba DC, Ananthan G. (2016). Production and optimization of poly (3-hydroxybutyrate) biopolymer by ascidian associated bacterium Vibrio proteolyticus DCM CAS2. Int J Sci Inven Today 5:13–21.
  • Dash S, Jin C, Lee O, et al. (2009). Antibacterial and antilarval-settlement potential and metabolite profiles of novel sponge-associated marine bacteria. J Ind Microbiol Biot 36:1047–56.
  • Dash S, Nogata Y, Zhou X, et al. (2011). Poly-ethers from Winogradskyella poriferorum: antifouling potential, time-course study of production and natural abundance. Bioresour Technol 102:7532–7.
  • Dey J, Aravena-Roman M, Mee BJ, et al. (2004). Bacterial diversity and antibiotic activity in temperate Australian marine sponges. Boll Mus Ist Biol Univ Genova 68:263–77.
  • Dhangdhariya JH, Dubey S, Trivedi HB, et al. (2015). Polyhydroxyalkanoate from marine Bacillus megaterium using CSMCRI's Dry Sea Mix as a novel growth medium. Int J Biol Macromol 76:254–61.
  • Dhasayan A, Kiran GS, Selvin J. (2014). Production and characterisation of glycolipid biosurfactant by Halomonas sp. MB-30 for potential application in enhanced oil recovery. Appl Biochem Biotechnol 174:2571–84.
  • Doi Y. (1990). Microbial polyesters. New York, USA: VCH Publishers.
  • Egan S, Thomas T. (2015). Editorial for: microbial symbiosis of marine sessile hosts–diversity and function. Front Microbiol 6:585.
  • Erwin PM, Olson JB, Thacker RW. (2011). Phylogenetic diversity, host-specificity and community profiling of sponge-associated bacteria in the Northern Gulf of Mexico. PLoS One 6:e26806.
  • Foong CP, Lau N-S, Deguchi S, et al. (2014). Whole genome amplification approach reveals novel polyhydroxyalkanoate synthases (PhaCs) from Japan Trench and Nankai Trough seawater. BMC Microbiol 14:318.
  • Galego N, Rozsa C, Sánchez R, et al. (2000). Characterization and application of poly(β-hydroxyalkanoates) family as composite biomaterials. Polym Test 19:485–92.
  • Garson MJ, Zimmermann MP, Battershill CN. (1994). The distribution of brominated long-chain fatty acids in sponge and symbiont cell types from the tropical marine sponge Amphimedon terpenensis. Lipids 29:509–16.
  • Gasser I, Müller H, Berg G. (2009). Ecology and characterization of polyhydroxyalkanoate-producing microorganisms on and in plants. FEMS Microbiol Ecol 70:142–50.
  • Gillan FT, Stoilov IL, Thompson JE, et al. (1988). Fatty acids as biological markers for bacterial symbionts in sponges. Lipids 23:1139–45.
  • González-García Y, Nungaray J, Córdova J, et al. (2008). Biosynthesis and characterization of polyhydroxyalkanoates in the polysaccharide-degrading marine bacterium Saccharophagus degradans ATCC 43961. J Ind Microbiol Biot 35:629–33.
  • Gopi K, Balaji S, Muthuvelan B. (2014). Isolation, purification and screening of biodegradable polymer PHB producing cyanobacteria from marine and fresh water resources. Iran J Ener Environ 5:94–100.
  • Grage K, Jahns AC, Parlane N, et al. (2009). Bacterial polyhydroxyalkanoate granules: biogenesis, structure, and potential use as nano-/micro-beads in biotechnological and biomedical applications. Biomacromolecules 10:660–9.
  • Grozdanov L, Hentschel U. (2007). An environmental genomics perspective on the diversity and function of marine sponge-associated microbiota. Curr Opin Microbiol 10:215–20.
  • Hochmuth T, Niederkrüger H, Gernert C, et al. (2010). Linking chemical and microbial diversity in marine sponges: possible role for Poribacteria as producers of methyl-branched fatty acids. ChemBioChem 11:2572–8.
  • Hoffmann F, Radax R, Woebken D, et al. (2009). Complex nitrogen cycling in the sponge Geodia barretti. Environ Microbiol 11:2228–43.
  • James BW, Mauchline WS, Dennis PJ, et al. (1999). Poly-3-hydroxybutyrate in Legionella pneumophila, an energy source for survival in low-nutrient environments. Appl Environ Microbiol 65:822–7.
  • Jamil N, Ahmed N, Edwards DH. (2007). Characterization of biopolymer produced by Pseudomonas sp. CMG607w of marine origin. J Gen Appl Microbiol 53:105–9.
  • Jensen PR, Fenical W. (1994). Strategies for the discovery of secondary metabolites from marine bacteria: ecological perspectives. Annu Rev Microbiol 48:559–84.
  • Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S. (2005). Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol 31:55–67.
  • Kaesler I, Graeber I, Borchert MS, et al. (2008). Spongiispira norvegica gen. nov., sp. nov., a marine bacterium isolated from the boreal sponge Isops phlegraei. Int J Syst Evol Microbiol 58:1815–20.
  • Kalaivani R, Sukumaran V. (2013). Isolation and identification of new strains to enhance the production of biopolymers from marine sample in Karankura, Tamil Nadu. Eur J Exp Biol 3:56–64.
  • Kalaivani R, Sukumaran V. (2015). Enhancement of technique for optimized production of PHA from marine bacteria, utilizing cheaply available carbon sources at Thanjavur district, India. Int J Curr Microbiol Appl Sci 4:408–17.
  • Kawata Y, Nishimura T, Matsushita I, Tsubota J. (2016). Efficient production and secretion of pyruvate from Halomonas sp. KM-1 under aerobic conditions. AMB Exp 6:1–8.
  • Kefalas E, Castritsi-Catharios J, Miliou H. (2003). Bacteria associated with the sponge Spongia officinalis as indicators of contamination. Ecol Indic 2:339–43.
  • Kim TK, Fuerst JA. (2006). Diversity of polyketide synthase genes from bacteria associated with the marine sponge Pseudoceratina clavata: culture-dependent and culture-independent approaches. Environ Microbiol 8:1460–70.
  • Kiran GS, Lipton AN, Priyadharshini S, et al. (2014). Antiadhesive activity of poly-hydroxy butyrate biopolymer from a marine Brevibacterium casei MSI04 against shrimp pathogenic vibrios. Microb Cell Fact 13:114.
  • Kiran GS, Ninawe AS, Lipton AN, et al. (2015). Rhamnolipid biosurfactants: evolutionary implications, applications and future prospects from untapped marine resource. Crit Rev Biotechnol 36:399–15.
  • Kiran GS, Sabarathnam B, Selvin J. (2010). Biofilm disruption potential of a glycolipid biosurfactant from marine Brevibacterium casei. FEMS Immunol Med Microbiol 59:432–8.
  • Kiran GS, Shanmughapriya S, Jayalakshmi J, et al. (2008). Optimization of extracellular psychrophilic alkaline lipase produced by marine Pseudomonas sp. (MSI057). Bioprocess Biosyst Eng 31:483–92.
  • Kirk RG, Ginzburg M. (1972). Ultrastructure of two species of halobacterium. J Ultrastruct Res 41:80–94.
  • Koller M, Salerno A, Braunegg G. (2013). Polyhydroxyalkanoates: basics, production and applications of microbial biopolyesters in bio-based plastics. Chichester: John Wiley & Sons Ltd, 137–70.
  • Lakshmi PD, Chakrapani R, Rao CSVR. (2011). Production of poly (3-hydroxybutyrates) by Bacillus species isolated from marine. Int J Chem Sci 9:1963–72.
  • Lee SY. (1996). Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14.
  • Lemoigne M. (1926). Produits de dehydration et de polymerization de l’acide ß-oxobutyrique. Bull Soc Chim Biol 8:770–82.
  • Li R, Zhang H, Qi Q. (2007). The production of polyhydroxyalkanoates in recombinant Escherichia coli. Bioresour Technol 98:2313–20.
  • López-Cortés A, Lanz-Landázuri A, García-Maldonado JQ. (2008). Screening and isolation of PHB-producing bacteria in a polluted marine microbial mat. Microb Ecol 56:112–20.
  • Lstrok S, Radecka I. (2001). Biosynthesis of PHB tercopolymer by Bacillus cereus UW85. J Appl Microbiol 90:353–7.
  • Mahitha G, Madhuri RJ. (2015). Purification and characterization of polyhydroxybutyrate produced from marine bacteria. Int J Sci Eng Res 6:71–5.
  • Matias F, Bonatto D, Padilla G, et al. (2009). Polyhydroxyalkanoates production by actinobacteria isolated from soil. Can J Microbiol 55:790–800.
  • Mcfall-Nagi MJ. (1994). Animal-bacterial interactions in the early life history of marine invertebrates: the Euprymna scolopes/Vibrio fischeri symbiosis. Am Zool 34:554–61.
  • Mehbub MF, Lei J, Franco C, Zhang W. (2014). Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Mar Drugs 12:4539–77.
  • Muthazhagan K, Thangaraj M. (2014). Production and FTIR analysis of bio-polymer by Bacillus sp. isolated from vellar estuary sediment. Int J Sci Invent Today 3:625–38.
  • Nair DS, Thomas C, Singh ISB. (2014). Preliminary optimization of PHB production by Vibrio sp. MCCB 237 isolated from marine environment. Res J Chem Sci 4:10–13.
  • Nigmatullin R, Thomas P, Lukasiewicz B, et al. (2015). Polyhydroxyalkanoates, a family of natural polymers, and their applications in drug delivery. J Chem Technol Biotechnol 90:1209–21.
  • Nishijima M, Adachi K, Katsuta A, et al. (2013). Endozoicomonas numazuensis sp. nov., a gammaproteobacterium isolated from marine sponges, and emended description of the genus Endozoicomonas Kurahashi and Yokota 2007. Int J Syst Evol Microbiol 63:709–14.
  • Numata K, Doi Y. (2012). Biosynthesis of polyhydroxyalkanoates by a novel facultatively anaerobic Vibrio sp. under marine conditions. Mar Biotechnol 14:323–31.
  • Numata K, Morisaki K, Tomizawa S, et al. (2013). Synthesis of poly- and oligo(hydroxyalkanoate)s by deep-sea bacteria, Colwellia spp., Moritella spp., and Shewanella spp. Polym J 45:1094–100.
  • Numata K, Morisaki K. (2015). Screening of marine bacteria to synthesize polyhydroxyalkanoate from lignin: contribution of lignin derivatives to biosynthesis by Oceanimonas doudoroffii. ACS Sustain Chem Eng 3:569–73.
  • Oliveira FC, Freire DMG, Castilho LR. (2004). Production of poly(3-hydroxybutyrate) by solid-state fermentation with Ralstonia eutropha. Biotechnol Lett 26:1851–5.
  • Oliver JD, Colwell RR. (1973). Extractable lipids of Gram-negative marine bacteria: phospholipid composition. J Bacteriol 114:897–08.
  • Patnayak S, Sree A. (2005). Screening of bacterial associates of marine sponges for single cell oil and PUFA. Lett Appl Microbiol 40:358–63.
  • Peña C, Castillo T, García A, et al. (2014). Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work. Microb Biotechnol 7:278–93.
  • Pham TH, Webb JS, Rehm BHA. (2004). The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150:3405–13.
  • Philip S, Keshavarz T, Roy I. (2007). Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–47.
  • Poli A, DiDonato P, Abbamondi GR, Nicolaus B. (2011). Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by Archaea. Archaea 2011:693253.
  • Qian P-Y, Chen L, Xu Y. (2013). Mini-review: molecular mechanisms of antifouling compounds. Biofouling 29:381–400.
  • Radhakrishnan M, Vijayalakshmi G, Balagurunathan R. (2014). Optimization of polyhydroxyalkanoates (PHA) production from marine Carnobacterium sp E3. J Chem Pharm Res 6:390–3.
  • Rawte T, Mavinkurve S. (2004). Factors influencing polyhydroxyalkanoate accumulation in marine bacteria. Ind J Mar Sci 33:181–6.
  • Reghul Subin S, Varghese SM, Bhat SG. (2013). Isolation and characterization of polyhydroxyalkanoates accumulating Vibrio sp. strain BTTC26 from marine sediments and its production kinetics. J Sci Indus Res 72:228–35.
  • Rehm BHA. (2010). Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8:578–92.
  • Remminghorst U, Rehm BA. (2006). Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 28:1701–12.
  • Ren Q, Grubelnik A, Hoerler M, et al. (2005). Bacterial poly(hydroxyalkanoates) as a source of chiral hydroxyalkanoic acids. Biomacromolecules 6:2290–8.
  • Sabirova JS, Ferrer M, Lünsdorf H, et al. (2006). Mutation in a “tesB-Like” hydroxyacyl-Coenzyme A-specific thioesterase gene causes hyperproduction of extracellular polyhydroxyalkanoates by Alcanivorax borkumensis SK2. J Bacteriol 188:8452–9.
  • Santos-Gandelman J, Cruz K, Crane S, et al. (2014). Potential application in mercury bioremediation of a marine sponge-isolated Bacillus cereus strain Pj1. Curr Microbiol 69:374–80.
  • Sasidharan RS, Bhat SG, Chandrasekaran M. (2015). Biocompatible polyhydroxybutyrate (PHB) production by marine Vibrio azureus BTKB33 under submerged fermentation. Ann Microbiol 65:455–65.
  • Sathiyanarayanan G, Gandhimathi R, Sabarathnam B, et al. (2014a). Optimization and production of pyrrolidone antimicrobial agent from marine sponge-associated Streptomyces sp. MAPS15. Bioprocess Biosyst Eng 37:561–73.
  • Sathiyanarayanan G, Kiran GS, Selvin J, Saibaba G. (2013a). Optimization of polyhydroxybutyrate production by marine Bacillus megaterium MSBN04 under solid state culture. Int J Biol Macromol 60:253–61.
  • Sathiyanarayanan G, Kiran GS, Selvin J. (2013). Synthesis of silver nanoparticles by polysaccharide bioflocculant produced from marine Bacillus subtilis MSBN17. Colloids Surf B Biointerfaces 102:13–20.
  • Sathiyanarayanan G, Saibaba G, Kiran GS, Selvin J. (2013b). Process optimization and production of polyhydroxybutyrate using palm jaggery as economical carbon source by marine sponge-associated Bacillus licheniformis MSBN12. Bioprocess Biosyst Eng 36:1817–27.
  • Sathiyanarayanan G, Saibaba G, Kiran GS, Selvin J. (2013c). A statistical approach for optimization of polyhydroxybutyrate production by marine Bacillus subtilis MSBN17. Int J Biol Macromol 59:170–7.
  • Sathiyanarayanan G, Vignesh V, Saibaba G, et al. (2014b). Synthesis of carbohydrate polymer encrusted gold nanoparticles using bacterial exopolysaccharide: a novel and greener approach. RSC Adv 4:22817–27.
  • Schallmey M, Ly A, Wang C, et al. (2011). Harvesting of novel polyhydroxyalkanoate (PHA) synthase encoding genes from a soil metagenome library using phenotypic screening. FEMS Microbiol Lett 321:150–6.
  • Schmitt S, Angermeier H, Schiller R, et al. (2008). Molecular microbial diversity survey of sponge reproductive stages and mechanistic insights into vertical transmission of microbial symbionts. Appl Environ Microbiol 74:7694–08.
  • Segura D, Cruz T, Espín G. (2003). Encystment and alkylresorcinol production by Azotobacter vinelandii strains impaired in poly-[beta]-hydroxybutyrate synthesis. Arch Microbiol 179:437–43.
  • Selvin J, Joseph S, Asha KRT, et al. (2004). Antibacterial potential of antagonistic Streptomyces sp. isolated from marine sponge Dendrilla nigra. FEMS Microbiol Ecol 50:117–22.
  • Selvin J, Kennedy J, Lejon DPH, et al. (2012). Isolation identification and biochemical characterization of a novel halo-tolerant lipase from the metagenome of the marine sponge Haliclona simulans. Microb Cell Fact 11:72.
  • Selvin J, Ninawe AS, Kiran GS, Lipton AP. (2010). Sponge-microbial interactions: ecological implications and bioprospecting avenues. Crit Rev Microbiol 36:82–90.
  • Selvin J, Sathiyanarayanan G, Lipton AN, et al. (2016). Ketide synthase (KS) domain prediction and analysis of iterative type II PKS gene in marine sponge-associated actinobacteria producing biosurfactants and antimicrobial agents. Front Microbiol 7:68.
  • Selvin J, Shanmughapriya S, Gandhimathi R, et al. (2009b). Optimization and production of novel antimicrobial agents from sponge associated marine actinomycetes Nocardiopsis dassonvillei MAD08. Appl Microbiol Biotechnol 83:435–45.
  • Selvin J, Shanmughapriya S, Kiran GS, et al. (2009a). Sponge-associated marine bacteria as indicators of heavy metal pollution. Microbiol Res 164:352–63.
  • Selvin J. (2009). Exploring the antagonistic producer Streptomyces MSI051: implications of polyketide synthase gene type II and a ubiquitous defense enzyme phospholipase A2 in the host sponge Dendrilla nigra. Curr Microbiol 58:459–63.
  • Shanmughapriya S, Kiran GS, Selvin J, et al. (2009). Optimization, production, and partial characterization of an alkalophilic amylase produced by sponge associated marine bacterium Halobacterium salinarum MMD047. Biotechnol Bioprocess Eng 14:67–75.
  • Shanmughapriya S, Kiran GS, Selvin J, et al. (2010). Optimization, purification, and characterization of extracellular mesophilic alkaline cellulase from sponge-associated Marinobacter sp. MSI032. Appl Biochem Biotechnol 162:625–40.
  • Shanmughapriya S, Krishnaveni J, Selvin J, et al. (2008). Optimization of extracellular thermotolerant alkaline protease produced by marine Roseobacter sp. (MMD040). Bioprocess Biosyst Eng 31:427–33.
  • Shrivastav A, Kim H-Y, Kim Y-R. (2013). Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. BioMed Res Int 2013:581684.
  • Shrivastav A, Mishra SK, Mishra S. (2010a). Polyhydroxyalkanoate (PHA) synthesis by Spirulina subsalsa from Gujarat coast of India. Int J Biol Macromol 46:255–60.
  • Shrivastav A, Mishra SK, Shethia B, et al. (2010b). Isolation of promising bacterial strains from soil and marine environment for polyhydroxyalkanoates (PHAs) production utilizing Jatropha biodiesel byproduct. Int J Biol Macromol 47:283–7.
  • Simon-Colin C, Raguénès G, Costa B, Guezennec J. (2008a). Biosynthesis of medium chain length poly-3-hydroxyalkanoates by Pseudomonas guezennei from various carbon sources. React Funct Polym 68:1534–41.
  • Simon-Colin C, Raguénès G, Cozien J, Guezennec JG. (2008b). Halomonas profundus sp. nov., a new PHA-producing bacterium isolated from a deep-sea hydrothermal vent shrimp. J Appl Microbiol 104:1425–32.
  • Singh Saharan B, Grewal A, Kumar P. (2014). Biotechnological production of polyhydroxyalkanoates: a review on trends and latest developments. Chin J Biol 2014:18.
  • Spiekermann P, Rehm BH, Kalscheuer R, et al. (1999). A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80.
  • Stabili L, Cardone F, Alifano P, et al. (2012). Epidemic mortality of the sponge Ircinia variabilis (Schmidt, 1862) associated to proliferation of a Vibrio bacterium. Microbial Ecol 64:802–13.
  • Sudesh K, Abe H, Doi Y. (2000). Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–55.
  • Sung C, Tachibana Y, Suzuki M, et al. (2016). Identification of a poly(3-hydroxybutyrate)-degrading bacterium isolated from coastal seawater in japan as Shewanella sp. Polym Degrad Stab 129:268–74.
  • Tai YT, Foong CP, Najimudin N, Sudesh K. (2016). Discovery of a new polyhydroxyalkanoate synthase from limestone soil through metagenomic approach. J Biosci Bioeng 121:355–64.
  • Tan G-Y, Chen C-L, Li L, et al. (2014). Start a research on biopolymer polyhydroxyalkanoate (PHA): a review. Polymers 6:706.
  • Taylor MW, Radax R, Steger D, Wagner M. (2007). Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–47.
  • Thomas T, Rusch D, DeMaere MZ, et al. (2010). Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J 4:1557–67.
  • Trainer M, Charles T. (2006). The role of PHB metabolism in the symbiosis of rhizobia with legumes. Appl Microbiol Biotechnol 71:377–86.
  • Trautwein K, Kühner S, Wöhlbrand L, et al. (2008). Solvent stress response of the denitrifying bacterium “Aromatoleum aromaticum” strain EbN1. Appl Environ Microbiol 74:2267–74.
  • Valappil SP, Boccaccini AR, Bucke C, Roy I. (2007). Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces. Anton Van Leeuwenhoek 91:1–17.
  • Valappil SP, Misra SK, Boccaccini AR, Roy I. (2006). Biomedical applications of polyhydroxyalkanoates: an overview of animal testing and in vivo responses. Expert Rev Med Devices 3:853–68.
  • Verlinden RAJ, Hill DJ, Kenward MA, et al. (2007). Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–49.
  • Villanueva L, Navarrete A, Urmeneta J, et al. (2007). Monitoring diel variations of physiological status and bacterial diversity in an estuarine microbial mat: an integrated biomarker analysis. Microb Ecol 54:523–31.
  • Vogel S. (1977). Current-induced flow through living sponges in nature. Proc Natl Acad Sci USA 74:2069–71.
  • Wada M, Fukunaga N, Sasaki S. (1989). Mechanism of biosynthesis of unsaturated fatty acids in Pseudomonas sp. strain E-3, a psychrotrophic bacterium. J Bacteriol 171:4267–71.
  • Wang C, Meek DJ, Panchal P, et al. (2006). Isolation of poly-3-hydroxybutyrate metabolism genes from complex microbial communities by phenotypic complementation of bacterial mutants. Appl Environ Microbiol 72:384–91.
  • Wang G. (2006). Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol 33:545–51.
  • Wang Q, Zhang H, Chen Q, et al. (2010). A marine bacterium accumulates polyhydroxyalkanoate consisting of mainly 3-hydroxydodecanoate and 3-hydroxydecanoate. World J Microbiol Biotechnol 26:1149–53.
  • Webster NS, Blackall LL. (2008). What do we really know about sponge-microbial symbioses? ISME J 3:13.
  • Webster NS, Negri AP, Webb RI, Hill RT. (2002). A spongin-boring proteobacterium is the etiological agent of disease in the Great Barrier Reef sponge Rhopaloeides odorabile. Mar Ecol Prog Ser 232:305–9.
  • Webster NS, Taylor MW. (2012). Marine sponges and their microbial symbionts: love and other relationships. Environ Microbiol 14:335–46.
  • Webster NS, Wilson KJ, Blackall LL, Hill RT. (2001). Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl Environ Microbiol 67:434–44.
  • Wei Y-H, Chen W-C, Wu H-S, Janarthanan O-M. (2011). Biodegradable and biocompatible biomaterial, polyhydroxybutyrate, produced by an indigenous Vibrio sp. BM-1 isolated from marine environment. Mar Drugs 9:615–24.
  • Wilkinson CR. (1984). Immunological evidence for the Precambrian origin of bacterial symbioses in marine sponges. Proc R Soc Lond B 220:509–18.
  • Williams Simon F, Rizk S, Martin David P. (2013). Poly-4-hydroxybutyrate (P4HB): a new generation of resorbable medical devices for tissue repair and regeneration. Biomed Tech (Berl) 58:439.
  • Xiao N, Jiao N. (2011). Formation of polyhydroxyalkanoate in aerobic anoxygenic phototrophic bacteria and its relationship to carbon source and light availability. Appl Environ Microbiol 77:7445–50.
  • Xiong Y-C, Yao Y-C, Zhan X-Y, Chen G-Q. (2010). Application of polyhydroxyalkanoates nanoparticles as intracellular sustained drug-release vectors. J Biomater Sci Polym Ed 21:127–40.
  • Yang J, Sun J, Lee OO, et al. (2011). Phylogenetic diversity and community structure of sponge-associated bacteria from mangroves of the Caribbean Sea. Aquat Microb Ecol 62:231–40.
  • Zinn M, Hany R. (2005). Tailored material properties of polyhydroxyalkanoates through biosynthesis and chemical modification. Adv Eng Mater 7:408–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.