2,238
Views
48
CrossRef citations to date
0
Altmetric
Review Article

Impact of polymicrobial biofilms in catheter-associated urinary tract infections

, , &
Pages 423-439 | Received 28 Jun 2016, Accepted 21 Sep 2016, Published online: 30 Dec 2016

References

  • Al-Bakri AG, Gilbert P, Allison DG. (2005). Influence of gentamicin and tobramycin on binary biofilm formation by co-cultures of Burkholderia cepacia and Pseudomonas aeruginosa. J Basic Microbiol 45:392–96.
  • Almeida C, Azevedo NF, Santos S, et al. (2011). Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH). PLoS One 6:e14786. doi: 10.1371/journal.pone.0014786.
  • Alteri CJ, Himpsl SD, Mobley HL. (2015). Preferential use of central metabolism in vivo reveals a nutritional basis for polymicrobial infection. PLoS Pathog 11:e1004601. doi: 10.1371/journal.ppat.1004601.
  • Alteri CJ, Mobley HL. (2016). The versatile type VI secretion system. Microbiol Spectr 4:VMBF-0026-2015. doi: 10.1128/microbiolspec.VMBF-0026-2015.
  • Alteri CJ, Smith SN, Mobley HL. (2009). Fitness of Escherichia coli during urinary tract infection requires gluconeogenesis and the TCA cycle. PLoS Pathog 5:e1000448. doi: 10.1371/journal.ppat.1000448.
  • Amann R, Fuchs BM, Behrens S. (2001). The identification of microorganisms by fluorescence in situ hybridisation. Curr Opin Biotechnol 12:231–36.
  • Anderson MS, Garcia EC, Cotter PA. (2012). The Burkholderia bcpAIOB genes define unique classes of two-partner secretion and contact dependent growth inhibition systems. PLoS Genet 8:e1002877. doi: 10.1371/journal.pgen.1002877.
  • Anderson MS, Garcia EC, Cotter PA. (2014). Kind discrimination and competitive exclusion mediated by contact-dependent growth inhibition systems shape biofilm community structure. PLoS Pathog 10:e1004076. doi: 10.1371/journal.ppat.1004076.
  • Armbruster CE, Smith SN, Yep A, Mobley HL. (2014). Increased incidence of urolithiasis and bacteremia during Proteus mirabilis and Providencia stuartii coinfection due to synergistic induction of urease activity. J Infect Dis 209:1524–32.
  • Aubert DF, Flannagan RS, Valvano MA. (2008). A novel sensor kinase-response regulator hybrid controls biofilm formation and type VI secretion system activity in Burkholderia cenocepacia. Infect Immun 76:1979–91.
  • Auler ME, Morreira D, Rodrigues FF, et al. (2010). Biofilm formation on intrauterine devices in patients with recurrent vulvovaginal candidiasis. Med Mycol 48:211–16.
  • Azevedo AS, Almeida C, Melo LF, Azevedo NF. (2014). Interaction between atypical microorganisms and E. coli in catheter-associated urinary tract biofilms. Biofouling 30:893–902.
  • Azevedo AS, Almeida C, Pereira B, et al. (2015). Detection and discrimination of biofilm populations using locked nucleic acid/2′-O-methyl-RNA fluorescence in situ hybridization (LNA/2′OMe-FISH). Bioch Eng J 104:64–73.
  • Azevedo AS, Almeida C, Pereira B, et al. (2016). Impact of Delftia tsuruhatensis and Achromobacter xylosoxidans on Escherichia coli dual-species biofilms treated with antibiotic agents. Biofouling 32:227–41.
  • Barnabie PM, Whiteley M. (2015). Iron-mediated control of Pseudomonas aeruginosa-Staphylococcus aureus interactions in the cystic fibrosis lung. J Bacteriol 197:2250–51.
  • Basioukas P, Vezakis A, Zarkotou O, et al. (2014). Isolated microorganisms in plastic biliary stents placed for benign and malignant diseases. Ann Gastroenterol 27:399–403.
  • Berg JM, Tymoczko JL, Stryer L. (2002). Biochemistry. 5th ed. New York: W H Freeman; 2002. Chapter 16, Glycolysis and Gluconeogenesis. Available from: https://www.ncbi.nlm.nih.gov/books/NBK21150/.
  • Bittar F, Richet H, Dubus JC, et al. (2008). Molecular detection of multiple emerging pathogens in sputa from cystic fibrosis patients. PLoS One 3:e2908. doi: 10.1371/journal.pone.0002908.
  • Braun V, Patzer SI. (2013). Intercellular communication by related bacterial protein toxins: colicins, contact-dependent inhibitors, and proteins exported by the type VI secretion system. FEMS Microbiol Lett 345:13–21.
  • Brockhurst MA, Buckling A, Racey D, Gardner A. (2008). Resource supply and the evolution of public-goods cooperation in bacteria. BMC Biol 6:20. doi: 10.1186/1741-7007-6-20.
  • Broomfield RJ, Morgan SD, Khan A, Stickler DJ. (2009). Crystalline bacterial biofilm formation on urinary catheters by urease-producing urinary tract pathogens: a simple method of control. J Med Microbiol 58:1367–75.
  • Burckhardt I, Zimmermann S. (2011). Streptococcus pneumoniae in urinary tracts of children with chronic kidney disease. Emerg Infect Dis 17:120–22.
  • Burmølle M, Webb JS, Rao D, et al. (2006). Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol 72:3916–23.
  • Busscher HJ, Norde W, van der Mei HC. (2008). Specific molecular recognition and nonspecific contributions to bacterial interaction forces. Appl Environ Microbiol 74:2559–64.
  • Campoccia D, Montanaro L, Arciola CR. (2006). The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27:2331–39.
  • Ceri H, Olson M, Stremick C, et al. (1999). The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771–76.
  • Cerqueira L, Oliveira JA, Nicolau A, et al. (2013). Biofilm formation with mixed cultures of Pseudomonas aeruginosa/Escherichia coli on silicone using artificial urine to mimic urinary catheters. Biofouling 29:829–40.
  • Chang W, Small DA, Toghrol F, Bentley WE. (2005). Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide. BMC Genomics 6:115. doi: 10.1186/1471-2164-6-115.
  • Choe HS, Son SW, Choi HA, et al. (2012). Analysis of the distribution of bacteria within urinary catheter biofilms using four different molecular techniques. Am J Infect Control 40:e249–54.
  • Chu X-M, Yu H, Sun X-X, et al. (2015). Identification of bacteriology and risk factor analysis of asymptomatic bacterial colonization in pacemaker replacement patients. PLoS One 10:e0119232. doi: 10.1371/journal.pone.0119232.
  • Ciofu O, Beveridge TJ, Kadurugamuwa J, et al. (2000). Chromosomal beta-lactamase is packaged into membrane vesicles and secreted from Pseudomonas aeruginosa. J Antimicrob Chemother 45:9–13.
  • Coenye T, Goris J, Spilker T, et al. (2002). Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov., sp. nov. J Clin Microbiol 40:2062–69.
  • Cordero OX, Ventouras LA, DeLong EF, Polz MF. (2012). Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. Proc Natl Acad Sci USA 109:20059–64.
  • Costerton Cheng KJ, Geesey GG, et al. (1987). Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–64.
  • Costerton JW. 2007. The biofilm primer. 6th ed. Berlin: Springer Berlin Heidelberg.
  • Costerton JW, Stewart PS, Greenberg E. (1999). Bacterial biofilms: a common cause of persistent infections. Science 284:1318–22.
  • Croxall G, Weston V, Joseph S, et al. (2011). Increased human pathogenic potential of Escherichia coli from polymicrobial urinary tract infections in comparison to isolates from monomicrobial culture samples. J Med Microbiol 60:102–09.
  • Davey ME, O'Toole GA. (2000). Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–67.
  • Davies CE, Hill KE, Wilson MJ, et al. (2004). Use of 16S ribosomal DNA PCR and denaturing gradient gel electrophoresis for analysis of the microfloras of healing and nonhealing chronic venous leg ulcers. J Clin Microbiol 42:3549–57.
  • Davies D. (2003). Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–22.
  • de Pádua RF, Negri MN, Svidzinski AE, et al. (2008). Adherence of Pseudomonas aeruginosa and Candida albicans to urinary catheters. Rev Iberoam Micol 25:173–75.
  • Del Pozo JL, Tran NV, Petty PM, et al. (2009). Pilot study of association of bacteria on breast implants with capsular contracture. J Clin Microbiol 47:1333–37.
  • Demir M, Kaleli I. (2004). Production by Escherichia coli isolates of siderophore and other virulence factors and their pathogenic role in a cutaneous infection model. Clin Microbiol Infect 10:1011–14.
  • Denstedt JD, Reid G, Sofer M. (2000). Advances in ureteral stent technology. World J Urol 18:237–42.
  • Diggle SP, Gardner A, West SA, Griffin AS. (2007). Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Philos Trans R Soc Lond B Biol Sci 362:1241–49.
  • Donelli G, Guaglianone E, Di Rosa R, et al. (2007). Plastic biliary stent occlusion: factors involved and possible preventive approaches. Clin Med Res 5:53–60.
  • Donlan RM. (2001). Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis 33:1387–92.
  • Donlan RM, (2002). Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–90.
  • Donlan RM, Costerton JW. (2002). Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–93.
  • Dowd SE, Sun Y, Secor PR, et al. (2008). Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol 8:43. doi: 10.1186/1471-2180-8-43.
  • Dugatkin LA, Perlin M, Lucas JS, Atlas R. (2005). Group-beneficial traits, frequency-dependent selection and genotypic diversity: an antibiotic resistance paradigm. Proc Biol Sci 272:79–83.
  • Elias S, Banin E. (2012). Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev 36:990–1004.
  • ECDPC – European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2014. (2015) Annual report of the European antimicrobial resistance surveillance network (EARS-Net).
  • Faust K, Raes J. (2012). Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–50.
  • Filloux A, Hachani A, Bleves S. (2008). The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology (Reading, Engl.) 154:1570–83.
  • Flemming H-C, Wingender J. (2010). The biofilm matrix. Nat Rev Microbiol 8:623–33.
  • Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. (2015). Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol 13:269–84.
  • Fouts DE, Pieper R, Szpakowski S, et al. (2012). Integrated next-generation sequencing of 16S rDNA and metaproteomics differentiate the healthy urine microbiome from asymptomatic bacteriuria in neuropathic bladder associated with spinal cord injury. J Transl Med 10:174. doi: 10.1186/1479-5876-10-174.
  • Francolini I, Donelli G. (2010). Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol 59:227–38.
  • Frank DN, Wilson SS, St Amand AL, Pace NR. (2009). Culture-independent microbiological analysis of foley urinary catheter biofilms. PLoS One 4:e7811. doi: 10.1371/journal.pone.0007811.
  • Friedman M. (2014). The inflation calculator. Available from: http://wwwwesteggcom/inflation/.
  • Ganderton L, Chawla J, Winters C, et al. (1992). Scanning electron microscopy of bacterial biofilms on indwelling bladder catheters. Eur J Clin Microbiol Infect Dis 11:789–96.
  • Garcia EC, Anderson MS, Hagar JA, Cotter PA. (2013). Burkholderia BcpA mediates biofilm formation independently of interbacterial contact-dependent growth inhibition. Mol Microbiol 89:1213–25.
  • Ghigo JM. (2001). Natural conjugative plasmids induce bacterial biofilm development. Nature 412:442–45.
  • Giaouris E, Heir E, Desvaux M, et al. (2015). Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front Microbiol 6:841. doi: 10.3389/fmicb.2015.00841.
  • Goldsworthy MJH. (2008). Gene expression of Pseudomonas aeruginosa and MRSA within a catheter-associated urinary tract infection biofilm model. Biosc Horizons 1:28–37.
  • Gould I, van der Meer J, Ciofu O, Høiby N. (2008). Cystic fibros-coping with resistance. Antibiotic policies: fighting resistance. New York: Springer US.
  • Guembe M, Marin M, Martin-Rabadan P, et al. (2013). Use of Universal 16S rRNA gene PCR as a diagnostic tool for venous access port-related bloodstream infections. J Clin Microbiol 51:799–804.
  • Gupta P, Sarkar S, Das B, et al. (2016). Biofilm, pathogenesis and prevention – a journey to break the wall: a review. Arch Microbiol 198:1–15.
  • Hagan EC, Lloyd AL, Rasko DA, et al. (2010). Escherichia coli global gene expression in urine from women with urinary tract infection. PLoS Pathog, 6:e1001187. doi: 10.1371/journal.ppat.1001187.
  • Hall-Stoodley L, Costerton JW, Stoodley P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108.
  • Hall-Stoodley L, Stoodley P. (2009). Evolving concepts in biofilm infections. Cell Microbiol 11:1034–43.
  • Harrison F. (2007). Microbial ecology of the cystic fibrosis lung. Microbiology (Reading, Engl.) 153:917–23.
  • Harrison F, Buckling A. (2009). Siderophore production and biofilm formation as linked social traits. Isme J 3:632–34.
  • Hatt JK, Rather PN. (2008). Role of bacterial biofilms in urinary tract infections. Curr Top Microbiol Immunol 322:163–92.
  • Ho Brian T, Dong Tao G, Mekalanos JJ. (2014). A view to a kill: the bacterial type VI secretion system. Cell Host Microbe 15:9–21.
  • Hogan DA, Kolter R. (2002). Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 296:2229–32.
  • Hoiby N, Bjarnsholt T, Moser C, et al. (2015). ESCMID guideline for the diagnosis and treatment of biofilm infections 2014. Clin Microbiol Infect 21:1–25.
  • Høiby N, Ciofu O, Bjarnsholt T. (2010). Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 5:1663–74.
  • Hola V, Ruzicka F. 2011. The formation of poly-microbial biofilms on urinary catheters. Czech Republic: INTECH Open Access Publisher.
  • Hola V, Ruzicka F, Horka M. (2010). Microbial diversity in biofilm infections of the urinary tract with the use of sonication techniques. FEMS Immunol Med Microbiol 59:525–28.
  • Hood RD, Singh P, Hsu F, et al. (2010). A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe 7:25–37.
  • Hooton (2010). Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin Infect Dis 50:625–63.
  • Inacio RC, Klautau GB, Murça MAS, et al. (2015). Microbial diagnosis of infection and colonization of cardiac implantable electronic devices by use of sonication. Int J Infect Dis 38:54–59.
  • Jacobsen SM, Stickler DJ, Mobley HL, Shirtliff ME. (2008). Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev 21:26–59.
  • Jain R, Douglas R. (2014). When and how should we treat biofilms in chronic sinusitis? Curr Opin Otolaryngol Head Neck Surg 22:16–21.
  • James GA, Swogger E, Wolcott R, et al. (2008). Biofilms in chronic wounds. Wound Repair Regen 16:37–44.
  • Jiricny N, Diggle SP, West SA, et al. (2010). Fitness correlates with the extent of cheating in a bacterium. J Evol Biol 23:738–47.
  • Kania RE, Lamers GE, van de Laar N, et al. (2010). Biofilms on tracheoesophageal voice prostheses: a confocal laser scanning microscopy demonstration of mixed bacterial and yeast biofilms. Biofouling 26:519–26.
  • Kara D, Luppens SB, Cate JM. (2006). Differences between single- and dual-species biofilms of Streptococcus mutans and Veillonella parvula in growth, acidogenicity and susceptibility to chlorhexidine. Eur J Oral Sci 114:58–63.
  • Karau MJ, Greenwood-Quaintance KE, Schmidt SM, et al. (2013). Microbial biofilms and breast tissue expanders. Biomed Res Int 2013:254940. doi: 10.1155/2013/254940.
  • Kazi MMHA, Sale H, Mane D, Yande M, et al. (2015). Catheter associated urinary tract infections (CAUTI) and antibiotic sensitivity pattern from confirmed cases of CAUTI in a tertiary care hospital: a prospective study. Clin Microbiol 4:193. doi: 10.4172/2327-5073.1000193.
  • Khot PD, Ko DL, Fredricks DN. (2009). Sequencing and analysis of fungal rRNA operons for development of broad-range fungal PCR assays. Appl Environ Microbiol 75:1559–65.
  • Kim BH, Gadd GM, Kim BH, Gadd GM. 2008. Bacterial physiology and metabolism. Cambridge: Cambridge University Press, 85–127.
  • Korgaonkar A, Trivedi U, Rumbaugh KP, Whiteley M. (2013). Community surveillance enhances Pseudomonas aeruginosa virulence during polymicrobial infection. Proc Natl Acad Sci USA 110:1059–64.
  • Lehman SM, Donlan RM. (2015). Bacteriophage-mediated control of a two-species biofilm formed by microorganisms causing catheter-associated urinary tract infections in an in vitro urinary catheter model. Antimicrob Agents Chemother 59:1127–37.
  • Leriche V, Briandet R, Carpentier B. (2003). Ecology of mixed biofilms subjected daily to a chlorinated alkaline solution: spatial distribution of bacterial species suggests a protective effect of one species to another. Environ Microbiol 5:64–71.
  • Levison ME, Pitsakis PG. (1987). Susceptibility to experimental Candida albicans urinary tract infection in the rat. J Infect Dis 155:841–46.
  • Lewis DA, Brown R, Williams J, et al. (2013). The human urinary microbiome; bacterial DNA in voided urine of asymptomatic adults. Front Cell Infect Microbiol 3:41. doi: 10.3389/fcimb.2013.00041.
  • Lo E, Nicolle LE, Coffin SE, et al. (2014). Strategies to prevent catheter-associated urinary tract infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol 35:32–47.
  • Lopes SP, Azevedo NF, Pereira MO. (2014). Emergent bacteria in cystic fibrosis: in vitro biofilm formation and resilience under variable oxygen conditions. Biomed Res Int 2014:678301. doi: 10.1155/2014/678301.
  • Lopes SP, Azevedo NF, Pereira MO. (2015). Microbiome in cystic fibrosis: shaping polymicrobial interactions for advances in antibiotic therapy. Crit Rev Microbiol 41:353–65.
  • Lopes SP, Ceri H, Azevedo NF, Pereira MO. (2012). Antibiotic resistance of mixed biofilms in cystic fibrosis: impact of emerging microorganisms on treatment of infection. Int J Antimicrob Agents 40:260–63.
  • Luppens SBI, Kara D, Bandounas L, et al. (2008). Effect of Veillonella parvula on the antimicrobial resistance and gene expression of Streptococcus mutans grown in a dual-species biofilm. Oral Microbiol Immunol 23:183–89.
  • Lynch AS, Robertson GT. (2008). Bacterial and fungal biofilm infections. Annu Rev Med 59:415–28.
  • Macleod SM, Stickler DJ. (2007). Species interactions in mixed-community crystalline biofilms on urinary catheters. J Med Microbiol 56:1549–57.
  • Malic S, Hill KE, Hayes A, et al. (2009). Detection and identification of specific bacteria in wound biofilms using peptide nucleic acid fluorescent in situ hybridization (PNA FISH). Microbiology (Reading, Engl.) 155:2603–11.
  • Marić S, Vraneš J. (2007). Characteristics and significance of microbial biofilm formation. Period Biol 109:115–21.
  • Mashburn LM, Jett AM, Akins DR, Whiteley M. (2005). Staphylococcus aureus serves as an iron source for Pseudomonas aeruginosa during in vivo coculture. J Bacteriol 187:554–66.
  • Matsukawa M, Kunishima Y, Takahashi S, et al. (2005). Bacterial colonization on intraluminal surface of urethral catheter. Urology 65:440–44.
  • Mercy C, Ize B, Salcedo SP, et al. (2016). Correction: functional characterization of Pseudomonas contact dependent growth inhibition (CDI) systems. PLoS One 11:e0150538. doi: 10.1371/journal.pone.0150538.
  • Michel-Briand Y, Baysse C. (2002). The pyocins of Pseudomonas aeruginosa. Biochimie 84:499–510.
  • Morales DK, Grahl N, Okegbe C, et al. (2013). Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. mBio 4:e00526–12.
  • Morales DK, Hogan DA. (2010). Candida albicans interactions with bacteria in the context of human health and disease. PLoS Pathog 6:e1000886. doi: 10.1371/journal.ppat.1000886.
  • Moscoso JA, Mikkelsen H, Heeb S, et al. (2011). The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol 13:3128–38.
  • Murdoch DR, Corey GR, Hoen B, et al. (2009). Clinical presentation, etiology and outcome of infective endocarditis in the 21(st) century: The international collaboration on endocarditis prospective cohort study. Arch Intern Med 169:463–73.
  • Nadell CD, Xavier JB, Foster KR. (2009). The sociobiology of biofilms. FEMS Microbiol Rev 33:206–24.
  • Nicolle LE. (2001). The chronic indwelling catheter and urinary infection in long-term-care facility residents. Infect Control Hosp Epidemiol 22:316–21.
  • Nicolle LE. (2005). Catheter-related urinary tract infection. Drugs Aging 22:627–39.
  • Nicolle LE. (2014a). Catheter-related urinary tract infection: practical management in the elderly. Drugs Aging 31:1–10.
  • Nicolle LE. (2014b). Catheter associated urinary tract infections. Antimicrob Resist Infect Control 3:23. doi: 10.1186/2047-2994-3-23.
  • O'Toole GA, Kolter R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304.
  • Ohkawa M, Sugata T, Sawaki M, et al. (1990). Bacterial and crystal adherence to the surfaces of indwelling urethral catheters. J Urol 143:717–21.
  • Oliva A, Nguyen BL, Mascellino MT, et al. (2013). Sonication of explanted cardiac implants improves microbial detection in cardiac device infections. J Clin Microbiol 51:496–502.
  • Pal Z, Urban E, Dosa E, et al. (2005). Biofilm formation on intrauterine devices in relation to duration of use. J Med Microbiol 54:1199–203.
  • Periasamy S, Kolenbrander PE. (2009). Aggregatibacter actinomycetemcomitans builds mutualistic biofilm communities with Fusobacterium nucleatum and Veillonella species in saliva. Infect Immun 77:3542–51.
  • Price LB, Liu CM, Melendez JH, et al. (2009). Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota. PLoS One 4:e6462. doi: 10.1371/journal.pone.0006462.
  • Prüss A, Giroult E, Rushbrook P. 1999. Safe management of wastes from health-care activities. 2nd ed. Switzerland: World Health Organization.
  • Rastall RA, Gibson GR, Gill HS, et al. (2005). Modulation of the microbial ecology of the human colon by probiotics, prebiotics and synbiotics to enhance human health: an overview of enabling science and potential applications. FEMS Microbiol Ecol 52:145–52.
  • Rieger UM, Mesina J, Kalbermatten DF, et al. (2013). Bacterial biofilms and capsular contracture in patients with breast implants. Br J Surg 100:768–74.
  • Rodríguez-Martínez JM, Pascual A. (2006). Antimicrobial resistance in bacterial biofilms. Rev Med Microbiol 17:65–75.
  • Römling U, Balsalobre C. (2012). Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med 272:541–61.
  • Ruhe ZC, Low DA, Hayes CS. (2013). Bacterial contact-dependent growth inhibition. Trends Microbiol 21:230–37.
  • Ruhe ZC, Townsley L, Wallace AB, et al. (2015). CdiA promotes receptor-independent intercellular adhesion. Mol Microbiol 98:175–92.
  • Russell AB, Peterson SB, Mougous JD. (2014). Type VI secretion system effectors: poisons with a purpose. Nat Rev Microbiol 12:137–48.
  • Sankaridurg PR, Sharma S, Willcox M, et al. (2000). Bacterial colonization of disposable soft contact lenses is greater during corneal infiltrative events than during asymptomatic extended lens wear. J Clin Microbiol 38:4420–24.
  • Sayed SI, Kazi R, Sengupta S, et al. (2012). Microbial colonization of Blom-Singer indwelling voice prostheses in laryngectomized patients: a perspective from India. Ear Nose Throat J 91:19–22.
  • Schneider J, Hapfelmeier A, Fremd J, et al. (2014). Biliary endoprosthesis: a prospective analysis of bacterial colonization and risk factors for sludge formation. PLoS One 9:e110112. doi: 10.1371/journal.pone.0110112.
  • Shand GH, Anwar H, Kadurugamuwa J, et al. (1985). In vivo evidence that bacteria in urinary tract infection grow under iron-restricted conditions. I Infect Immun 48:35–39.
  • Smith RN, Nolan JP. (2013). Central venous catheters. Bmj 347. doi: 10.1136/bmj.f6570.
  • Snyder JA, Haugen BJ, Buckles EL, et al. (2004). Transcriptome of uropathogenic Escherichia coli during urinary tract infection. Infect Immun 72:6373–81.
  • Socransky S, Haffajee A, Cugini M, et al. (1998). Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–44.
  • Song H, Ding MZ, Jia XQ, et al. (2014). Synthetic microbial consortia: from systematic analysis to construction and applications. Chem Soc Rev 43:6954–81.
  • Soto S, Smithson A, Horcajada J, et al. (2006). Implication of biofilm formation in the persistence of urinary tract infection caused by uropathogenic Escherichia coli. Clin Microbiol Infect 12:1034–36.
  • Stamm WE. (1991). Catheter-associated urinary tract infections: epidemiology, pathogenesis, and prevention. Am J Med 91:65S–71.
  • Stamm WE, Norrby SR. (2001). Urinary tract infections: disease panorama and challenges. J Infect Dis 183:1–4.
  • Stewart PS, Franklin MJ. (2008). Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210.
  • Stickler DJ. (2008). Bacterial biofilms in patients with indwelling urinary catheters. Nat Clin Pract Urol 5:598–608.
  • Stickler DJ. (2014). Clinical complications of urinary catheters caused by crystalline biofilms: something needs to be done. J Intern Med 276:120–29.
  • Subashchandrabose S, Mobley HLT. (2015). Virulence and fitness determinants of uropathogenic Escherichia coli. Microbiol Spectr 3. doi: 10.1128/microbiolspec.UTI-0015-2012.
  • Sutherland IW. (1999). Polysaccharases for microbial exopolysaccharides. Carbohydrate Polymers 38:319–28.
  • Tambyah PA, Halvorson KT, Maki DG. (1999). A prospective study of pathogenesis of catheter-associated urinary tract infections. Mayo Clin Proc 74:131–36.
  • Tenke P, Kovacs B, Jackel M, Nagy E. (2006). The role of biofilm infection in urology. World J Urol 24:13–20.
  • Thomsen TR, Aasholm MS, Rudkjobing VB, et al. (2010). The bacteriology of chronic venous leg ulcer examined by culture-independent molecular methods. Wound Repair Regen 18:38–49.
  • Tićac B, Tićac R, Rukavina T, et al. (2010). Microbial colonization of tracheoesophageal voice prostheses (Provox2) following total laryngectomy. Eur Arch Otorhinolaryngol 267:1579–86.
  • Trautner BW, Darouiche RO. (2004). Role of biofilm in catheter-associated urinary tract infection. Am J Infect Control 32:177–83.
  • Tuttle MS, Mostow E, Mukherjee P, et al. (2011). Characterization of bacterial communities in venous insufficiency wounds by use of conventional culture and molecular diagnostic methods. J Clin Microbiol 49:3812–19.
  • van der Mei HC, Buijssen KJDA, van der Laan BFAM, et al. (2014). Voice prosthetic biofilm formation and Candida morphogenic conversions in absence and presence of different bacterial strains and species on silicone-rubber. PLoS One 9:e104508. doi: 10.1371/journal.pone.0104508.
  • Warren JW. (1991). The catheter and urinary tract infection. Med Clin North Am 75:481–93.
  • Warren JW. (2001). Catheter-associated urinary tract infections. Int J Antimicrob Agents 17:299–303.
  • Wessman M, Bjarnsholt T, Eickhardt-Sørensen SR, et al. (2015). Mucosal biofilm detection in chronic otitis media: a study of middle ear biopsies from Greenlandic patients. Eur Arch Otorhinolaryngol 272:1079–85.
  • West SA, Griffin AS, Gardner A, Diggle SP. (2006). Social evolution theory for microorganisms. Nat Rev Microbiol 4:597–607.
  • Willcox MD. (2007). Pseudomonas aeruginosa infection and inflammation during contact lens wear: a review. Optom Vis Sci 84:273–78.
  • Willett JLE, Gucinski GC, Fatherree JP, et al. (2015). Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways. Proc Natl Acad Sci USA 112:11341–46.
  • Wolcott R, Costerton JW, Raoult D, Cutler SJ. (2013). The polymicrobial nature of biofilm infection. Clin Microbiol Infect 19:107–12.
  • Wolfe AJ, Toh E, Shibata N, et al. (2012). Evidence of uncultivated bacteria in the adult female bladder. J Clin Microbiol 50:1376–83.
  • Woyke T, Teeling H, Ivanova NN, et al. (2006). Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443:950–55.
  • Wu H, Moser C, Wang H-Z, et al. (2015). Strategies for combating bacterial biofilm infections. Int J Oral Sci 7:1–7.
  • Xavier JB. (2011). Social interaction in synthetic and natural microbial communities. Mol Syst Biol 7:483. doi: 10.1038/msb.2011.16.
  • Xu Y, Moser C, Al-Soud WA, et al. (2012). Culture-dependent and -independent investigations of microbial diversity on urinary catheters. J Clin Microbiol 50:3901–908.
  • Zarb P, Coignard B, Griskeviciene J, et al. (2012). The European Centre for Disease Prevention and Control (ECDC) pilot point prevalence survey of healthcare-associated infections and antimicrobial use. Euro Surveill 17.
  • Zhanel GG, Karlowsky JA, Harding GK, et al. (2000). A Canadian national surveillance study of urinary tract isolates from outpatients: comparison of the activities of trimethoprim-sulfamethoxazole, ampicillin, mecillinam, nitrofurantoin, and ciprofloxacin. The Canadian Urinary Isolate Study Group. Antimicrob Agents Chemother 44:1089–92.
  • Zimmerli W, Trampuz A, Ochsner PE. (2004). Prosthetic-joint infections. N Engl J Med 351:1645–54.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.