1,498
Views
57
CrossRef citations to date
0
Altmetric
Review Article

Farnesol signalling in Candida albicans – more than just communication

, , &
Pages 230-243 | Received 16 Sep 2016, Accepted 31 May 2017, Published online: 13 Jun 2017

References

  • Abe S, Tsunashima R, Iijima R, Yamada T, Maruyama N, Hisajima T, Abe Y, Oshima H, Yamazaki M. 2009. Suppression of anti-Candida activity of macrophages by a quorum-sensing molecule, farnesol, through induction of oxidative stress. Microbiol Immunol. 53:323–330.
  • Albuquerque P, Casadevall A. 2012. Quorum sensing in fungi—a review. Med Mycol. 50:337–345.
  • Allison DL, Willems HM, Jayatilake JA, Bruno VM, Peters BM, Shirtliff ME. 2016. Candida–bacteria interactions: their impact on human disease. Microbiol Spectr. 4:VMBF-0030-2016. doi: 10.1128/microbiolspec.VMBF-0030-2016
  • Alonso-Monge R, Navarro-Garcia F, Molero G, Diez-Orejas R, Gustin M, Pla J, Sanchez M, Nombela C. 1999. Role of the mitogen-activated protein kinase Hog1p in morphogenesis and virulence of Candida albicans. J Bacteriol. 181:3058–3068.
  • Alonso-Monge R, Navarro-Garcia F, Roman E, Negredo AI, Eisman B, Nombela C, Pla J. 2003. The Hog1 mitogen-activated protein kinase is essential in the oxidative stress response and chlamydospore formation in Candida albicans. Eukaryot Cell. 2:351–361.
  • Blanco-Colio LM, Tunon J, Martin-Ventura JL, Egido J. 2003. Anti-inflammatory and immunomodulatory effects of statins. Kidney Int. 63:12–23.
  • Braun BR, Johnson AD. 1997. Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science. 277:105–109.
  • Brilhante RS, Caetano EP, Oliveira JS, Castelo-Branco DS, Souza ER, Alencar LP, Cordeiro Rde A, Bandeira TJ, Sidrim JJ, Rocha MF. 2015. Simvastatin inhibits planktonic cells and biofilms of Candida and Cryptococcus species. Braz J Infect Dis. 19:459–465.
  • Bringmann A, Skatchkov SN, Faude F, Enzmann V, Reichenbach A. 2000. Farnesol modulates membrane currents in human retinal glial cells. J Neurosci Res. 62:396–402.
  • Brown AJ, Budge S, Kaloriti D, Tillmann A, Jacobsen MD, Yin Z, Ene IV, Bohovych I, Sandai D, Kastora S, et al. 2014. Stress adaptation in a pathogenic fungus. J Exp Biol. 217:144–155.
  • Cao Y, Huang S, Dai B, Zhu Z, Lu H, Dong L, Cao Y, Wang Y, Gao P, Chai Y, et al. 2009. Candida albicans cells lacking CaMCA1-encoded metacaspase show resistance to oxidative stress-induced death and change in energy metabolism. Fungal Genet Biol. 46:183–189.
  • Cao YY, Cao YB, Xu Z, Ying K, Li Y, Xie Y, Zhu ZY, Chen WS, Jiang YY. 2005. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Chemother. 49:584–589.
  • Chang W, Li Y, Zhang L, Cheng A, Lou H. 2012. Retigeric acid B attenuates the virulence of Candida albicans via inhibiting adenylyl cyclase activity targeted by enhanced farnesol production. PLoS One. 7:e41624.
  • Chin NX, Weitzman I, Della-Latta P. 1997. In vitro activity of fluvastatin, a cholesterol-lowering agent, and synergy with fluconazole and itraconazole against Candida species and Cryptococcus neoformans. Antimicrob Agents Chemother. 41:850–852.
  • Cho T, Aoyama T, Toyoda M, Nakayama H, Chibana H, Kaminishi H. 2007. Transcriptional changes in Candida albicans genes by both farnesol and high cell density at an early stage of morphogenesis in N-acetyl-d-glucosamine medium. Nihon Ishinkin Gakkai Zasshi. 48:159–167.
  • Cordeiro RA, Teixeira CE, Brilhante RS, Castelo-Branco DS, Paiva MA, Giffoni Leite JJ, Lima DT, Monteiro AJ, Sidrim JJ, Rocha MF. 2013. Minimum inhibitory concentrations of amphotericin B, azoles and caspofungin against Candida species are reduced by farnesol. Med Mycol. 51:53–59.
  • Crick DC, Andres DA, Waechter CJ. 1997. Novel salvage pathway utilizing farnesol and geranylgeraniol for protein isoprenylation. Biochem Biophys Res Commun. 237:483–487.
  • Cuervo G, Garcia-Vidal C, Nucci M, Puchades F, Fernandez-Ruiz M, Mykietiuk A, Manzur A, Gudiol C, Peman J, Viasus D, et al. 2013. Effect of statin use on outcomes of adults with candidemia. PLoS One. 8:e77317.
  • Dai BD, Wang Y, Zhao LX, Li DD, Li MB, Cao YB, Jiang YY. 2013. Cap1p attenuates the apoptosis of Candida albicans. FEBS J. 280:2633–2643.
  • Davis-Hanna A, Piispanen AE, Stateva LI, Hogan DA. 2008. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Mol Microbiol. 67:47–62.
  • de Salas F, Martinez MJ, Barriuso J. 2015. Quorum-sensing mechanisms mediated by farnesol in Ophiostoma piceae: effect on secretion of sterol esterase. Appl Environ Microbiol. 81:4351–4357.
  • Decanis N, Savignac K, Rouabhia M. 2009. Farnesol promotes epithelial cell defense against Candida albicans through Toll-like receptor 2 expression, interleukin-6 and human beta-defensin 2 production. Cytokine. 45:132–140.
  • Derengowski LS, De-Souza-Silva C, Braz SV, Mello-De-Sousa TM, Bao SN, Kyaw CM, Silva-Pereira I. 2009. Antimicrobial effect of farnesol, a Candida albicans quorum sensing molecule, on Paracoccidioides brasiliensis growth and morphogenesis. Ann Clin Microbiol Antimicrob. 8:13.
  • Deveau A, Piispanen AE, Jackson AA, Hogan DA. 2010. Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the Ras-cyclic AMP signaling pathway. Eukaryot Cell. 9:569–577.
  • Dichtl K, Ebel F, Dirr F, Routier FH, Heesemann J, Wagener J. 2010. Farnesol misplaces tip-localized Rho proteins and inhibits cell wall integrity signalling in Aspergillus fumigatus. Mol Microbiol. 76:1191–1204.
  • Douglas LJ. 2003. Candida biofilms and their role in infection. Trends Microbiol. 11:30–36.
  • Duggan S, Leonhardt I, Hunniger K, Kurzai O. 2015. Host response to Candida albicans bloodstream infection and sepsis. Virulence. 6:316–326.
  • Dumitru R, Hornby JM, Nickerson KW. 2004. Defined anaerobic growth medium for studying Candida albicans basic biology and resistance to eight antifungal drugs. Antimicrob Agents Chemother. 48:2350–2354.
  • Dumitru R, Navarathna DH, Semighini CP, Elowsky CG, Dumitru RV, Dignard D, Whiteway M, Atkin AL, Nickerson KW. 2007. In vivo and in vitro anaerobic mating in Candida albicans. Eukaryotic Cell. 6:465–472.
  • Edwards PA, Ericsson J. 1999. Sterols and isoprenoids: signaling molecules derived from the cholesterol biosynthetic pathway. Annu Rev Biochem. 68:157–185.
  • Endo A. 1992. The discovery and development of HMG-CoA reductase inhibitors. J Lipid Res. 33:1569–1582.
  • Enjalbert B, Whiteway M. 2005. Release from quorum-sensing molecules triggers hyphal formation during Candida albicans resumption of growth. Eukaryot Cell. 4:1203–1210.
  • Fairn GD, Macdonald K, McMaster CR. 2007. A chemogenomic screen in Saccharomyces cerevisiae uncovers a primary role for the mitochondria in farnesol toxicity and its regulation by the Pkc1 pathway. J Biol Chem. 282:4868–4874.
  • Faulkner A, Chen X, Rush J, Horazdovsky B, Waechter CJ, Carman GM, Sternweis PC. 1999. The LPP1 and DPP1 gene products account for most of the isoprenoid phosphate phosphatase activities in Saccharomyces cerevisiae. J Biol Chem. 274:14831–14837.
  • Fernandes RA, Monteiro DR, Arias LS, Fernandes GL, Delbem AC, Barbosa DB. 2016. Biofilm formation by Candida albicans and Streptococcus mutans in the presence of farnesol: a quantitative evaluation. Biofouling. 32:329–338.
  • Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, Noonan DJ, Burka LT, McMorris T, Lamph WW, et al. 1995. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell. 81:687–693.
  • Forrest GN, Kopack AM, Perencevich EN. 2010. Statins in candidemia: clinical outcomes from a matched cohort study. BMC Infect Dis. 10:152.
  • Funari SS, Prades J, Escriba PV, Barcelo F. 2005. Farnesol and geranylgeraniol modulate the structural properties of phosphatidylethanolamine model membranes. Mol Membr Biol. 22:303–311.
  • Ganguly S, Bishop AC, Xu W, Ghosh S, Nickerson KW, Lanni F, Patton-Vogt J, Mitchell AP. 2011. Zap1 control of cell–cell signaling in Candida albicans biofilms. Eukaryot Cell. 10:1448–1454.
  • Geiger J, Wessels D, Lockhart SR, Soll DR. 2004. Release of a potent polymorphonuclear leukocyte chemoattractant is regulated by white-opaque switching in Candida albicans. Infect Immun. 72:667–677.
  • Ghannoum MA, Swairjo I, Soll DR. 1990. Variation in lipid and sterol contents in Candida albicans white and opaque phenotypes. Med Mycol. 28:103–115.
  • Ghosh S, Howe N, Volk K, Tati S, Nickerson KW, Petro TM. 2010. Candida albicans cell wall components and farnesol stimulate the expression of both inflammatory and regulatory cytokines in the murine RAW264.7 macrophage cell line. FEMS Immunol Med Microbiol. 60:63–73.
  • Giacometti R, Kronberg F, Biondi RM, Passeron S. 2011. Candida albicans Tpk1p and Tpk2p isoforms differentially regulate pseudohyphal development, biofilm structure, cell aggregation and adhesins expression. Yeast. 28:293–308.
  • Gori K, Knudsen PB, Nielsen KF, Arneborg N, Jespersen L. 2011. Alcohol-based quorum sensing plays a role in adhesion and sliding motility of the yeast Debaryomyces hansenii. FEMS Yeast Res. 11:643–652.
  • Goto T, Kim YI, Funakoshi K, Teraminami A, Uemura T, Hirai S, Lee JY, Makishima M, Nakata R, Inoue H, et al. 2011. Farnesol, an isoprenoid, improves metabolic abnormalities in mice via both PPARalpha-dependent and -independent pathways. Am J Physiol Endocrinol Metab. 301:E1022–E1032.
  • Gozalbo D, Maneu V, Gil ML. 2014. Role of IFN-gamma in immune responses to Candida albicans infections. Front Biosci. 19:1279–1290.
  • Granshaw T, Tsukamoto M, Brody S. 2003. Circadian rhythms in Neurospora crassa: farnesol or geraniol allow expression of rhythmicity in the otherwise arrhythmic strains frq10, wc-1, and wc-2. J Biol Rhythms. 18:287–296.
  • Grünler J, Ericsson J, Dallner G. 1994. Branch-point reactions in the biosynthesis of cholesterol, dolichol, ubiquinone and prenylated proteins. Biochim Biophys Acta. 1212:259–277.
  • Gyetvai A, Emri T, Takacs K, Dergez T, Fekete A, Pesti M, Pocsi I, Lenkey B. 2006. Lovastatin possesses a fungistatic effect against Candida albicans, but does not trigger apoptosis in this opportunistic human pathogen. FEMS Yeast Res. 6:1140–1148.
  • Hall RA, Turner KJ, Chaloupka J, Cottier F, De Sordi L, Sanglard D, Levin LR, Buck J, Muhlschlegel FA. 2011. The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans. Eukaryot Cell. 10:1034–1042.
  • Han TL, Cannon RD, Villas-Boas SG. 2011. The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol. 48:747–763.
  • Hargarten JC, Moore TC, Petro TM, Nickerson KW, Atkin AL. 2015. Candida albicans quorum sensing molecules stimulate mouse macrophage migration. Infect Immun. 83:3857–3864.
  • Hawkins JL, Baddour LM. 2003. Candida lusitaniae infections in the era of fluconazole availability. Clin Infect Dis. 36:e14–e18.
  • Hazen KC, Cutler JE. 1979. Autoregulation of germ tube formation by Candida albicans. Infect Immun. 24:661–666.
  • Henriques M, Martins M, Azeredo J, Oliveira R. 2007. Effect of farnesol on Candida dubliniensis morphogenesis. Lett Appl Microbiol. 44:199–205.
  • Hisajima T, Maruyama N, Tanabe Y, Ishibashi H, Yamada T, Makimura K, Nishiyama Y, Funakoshi K, Oshima H, Abe S. 2008. Protective effects of farnesol against oral candidiasis in mice. Microbiol Immunol. 52:327–333.
  • Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW. 2001. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol. 67:2982–2992.
  • Hornby JM, Kebaara BW, Nickerson KW. 2003. Farnesol biosynthesis in Candida albicans: cellular response to sterol inhibition by zaragozic acid B. Antimicrob Agents Chemother. 47:2366–2369.
  • Hornby JM, Nickerson KW. 2004. Enhanced production of farnesol by Candida albicans treated with four azoles. Antimicrob Agents Chemother. 48:2305–2307.
  • Jabra-Rizk MA, Meiller TF, James CE, Shirtliff ME. 2006. Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. Antimicrob Agents Chemother. 50:1463–1469.
  • Jabra-Rizk MA, Shirtliff M, James C, Meiller T. 2006. Effect of farnesol on Candida dubliniensis biofilm formation and fluconazole resistance. FEMS Yeast Res. 6:1063–1073.
  • Joo JH, Jetten AM. 2010. Molecular mechanisms involved in farnesol-induced apoptosis. Cancer Lett. 287:123–135.
  • Jung SI, Shin JH, Kim SH, Kim J, Kim JH, Choi MJ, Chung EK, Lee K, Koo SH, Chang HH, et al. 2016. Comparison of E,E-farnesol secretion and the clinical characteristics of Candida albicans bloodstream isolates from different multilocus sequence typing clades. PLoS One. 11:e0148400.
  • Kadosh D, Johnson AD. 2005. Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell. 16:2903–2912.
  • Katragkou A, McCarthy M, Alexander EL, Antachopoulos C, Meletiadis J, Jabra-Rizk MA, Petraitis V, Roilides E, Walsh TJ. 2015. In vitro interactions between farnesol and fluconazole, amphotericin B or micafungin against Candida albicans biofilms. J Antimicrob Chemother. 70:470–478.
  • Kebaara BW, Langford ML, Navarathna DH, Dumitru R, Nickerson KW, Atkin AL. 2008. Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-growth induction. Eukaryot Cell. 7:980–987.
  • Kim D, Sengupta A, Niepa TH, Lee BH, Weljie A, Freitas-Blanco VS, Murata RM, Stebe KJ, Lee D, Koo H. 2017. Candida albicans stimulates Streptococcus mutans microcolony development via cross-kingdom biofilm-derived metabolites. Sci Rep. 7:41332.
  • Koo H, Hayacibara MF, Schobel BD, Cury JA, Rosalen PL, Park YK, Vacca-Smith AM, Bowen WH. 2003. Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J Antimicrob Chemother. 52:782–789.
  • Kruppa M, Krom BP, Chauhan N, Bambach AV, Cihlar RL, Calderone RA. 2004. The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. Eukaryot Cell. 3:1062–1065.
  • Ku CM, Lin JY. 2015. Farnesol, a sesquiterpene alcohol in herbal plants, exerts anti-inflammatory and antiallergic effects on ovalbumin-sensitized and -challenged asthmatic mice. Evid Based Complement Alternat Med. 2015:387357.
  • Langford ML, Atkin AL, Nickerson KW. 2009. Cellular interactions of farnesol, a quorum-sensing molecule produced by Candida albicans. Future Microbiol. 4:1353–1362.
  • Langford ML, Hargarten JC, Patefield KD, Marta E, Blankenship JR, Fanning S, Nickerson KW, Atkin AL. 2013. Candida albicans Czf1 and Efg1 coordinate the response to farnesol during quorum sensing, white-opaque thermal dimorphism, and cell death. Eukaryot Cell. 12:1281–1292.
  • Langford ML, Hasim S, Nickerson KW, Atkin AL. 2010. Activity and toxicity of farnesol towards Candida albicans are dependent on growth conditions. Antimicrob Agents Chemother. 54:940–942.
  • Leger T, Garcia C, Camadro JM. 2016. The metacaspase Mca1p restricts O-glycosylation during farnesol-induced apoptosis in Candida albicans. Mol Cell Proteomics 15:2308–2323.
  • Leger T, Garcia C, Ounissi M, Lelandais G, Camadro JM. 2015. The metacaspase (Mca1p) has a dual role in farnesol-induced apoptosis in Candida albicans. Mol Cell Proteomics. 14:93–108.
  • Leonhardt I, Spielberg S, Weber M, Albrecht-Eckardt D, Blass M, Claus R, Barz D, Scherlach K, Hertweck C, Loffler J, et al. 2015. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity. MBio. 6:e00143.
  • Lindsay AK, Deveau A, Piispanen AE, Hogan DA. 2012. Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans. Eukaryotic Cell. 11:1219–1225.
  • Liu P, Luo L, Guo J, Liu H, Wang B, Deng B, Long CA, Cheng Y. 2010. Farnesol induces apoptosis and oxidative stress in the fungal pathogen Penicillium expansum. Mycologia. 102:311–318.
  • Lohse MB, Johnson AD. 2008. Differential phagocytosis of white versus opaque Candida albicans by Drosophila and mouse phagocytes. PLoS One. 3:e1473.
  • Lorek J, Poggeler S, Weide MR, Breves R, Bockmuhl DP. 2008. Influence of farnesol on the morphogenesis of Aspergillus niger. J Basic Microbiol. 48:99–103.
  • Lu Y, Su C, Unoje O, Liu H. 2014. Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation. Proc Natl Acad Sci USA. 111:1975–1980.
  • Machida K, Tanaka T, Fujita K, Taniguchi M. 1998. Farnesol-induced generation of reactive oxygen species via indirect inhibition of the mitochondrial electron transport chain in the yeast Saccharomyces cerevisiae. J Bacteriol. 180:4460–4465.
  • Macreadie IG, Johnson G, Schlosser T, Macreadie PI. 2006. Growth inhibition of Candida species and Aspergillus fumigatus by statins. FEMS Microbiol Lett. 262:9–13.
  • Martins M, Henriques M, Azeredo J, Rocha SM, Coimbra MA, Oliveira R. 2007. Morphogenesis control in Candida albicans and Candida dubliniensis through signaling molecules produced by planktonic and biofilm cells. Eukaryot Cell. 6:2429–2436.
  • Martins M, Lazzell AL, Lopez-Ribot JL, Henriques M, Oliveira R. 2012. Effect of exogenous administration of Candida albicans autoregulatory alcohols in a murine model of hematogenously disseminated candidiasis. J Basic Microbiol. 52:487–491.
  • Menezes EA, Vasconcelos Junior AA, Silva CL, Plutarco FX, Cunha MC, Cunha FA. 2012. In vitro synergism of simvastatin and fluconazole against Candida species. Rev Inst Med Trop Sao Paulo. 54:197–199.
  • Mira E, Leon B, Barber DF, Jimenez-Baranda S, Goya I, Almonacid L, Marquez G, Zaballos A, Martinez AC, Stein JV, et al. 2008. Statins induce regulatory T cell recruitment via a CCL1 dependent pathway. J Immunol. 181:3524–3534.
  • Mosel DD, Dumitru R, Hornby JM, Atkin AL, Nickerson KW. 2005. Farnesol concentrations required to block germ tube formation in Candida albicans in the presence and absence of serum. Appl Environ Microbiol. 71:4938–4940.
  • Nash JD, Burgess DS, Talbert RL. 2002. Effect of fluvastatin and pravastatin, HMG-CoA reductase inhibitors, on fluconazole activity against Candida albicans. J Med Microbiol. 51:105–109.
  • Navarathna DH, Hornby JM, Hoerrmann N, Parkhurst AM, Duhamel GE, Nickerson KW. 2005. Enhanced pathogenicity of Candida albicans pre-treated with subinhibitory concentrations of fluconazole in a mouse model of disseminated candidiasis. J Antimicrob Chemother. 56:1156–1159.
  • Navarathna DH, Hornby JM, Krishnan N, Parkhurst A, Duhamel GE, Nickerson KW. 2007. Effect of farnesol on a mouse model of systemic candidiasis, determined by use of a DPP3 knockout mutant of Candida albicans. Infect Immun. 75:1609–1618.
  • Navarathna DH, Nickerson KW, Duhamel GE, Jerrels TR, Petro TM. 2007. Exogenous farnesol interferes with the normal progression of cytokine expression during candidiasis in a mouse model. Infect Immun. 75:4006–4011.
  • Navarro-Garcia F, Eisman B, Fiuza SM, Nombela C, Pla J. 2005. The MAP kinase Mkc1p is activated under different stress conditions in Candida albicans. Microbiology. 151:2737–2749.
  • Nealson KH, Platt T, Hastings JW. 1970. Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol. 104:313–322.
  • Nickerson K, Atkin A, Hargarten J, Pathirana R, Hasim S. 2012. Thoughts on quorum sensing and fungal dimorphism. In: Biocommunication of fungi. Netherlands: Springer; p. 189–204.
  • Nickerson KW, Atkin AL, Hornby JM. 2006. Quorum sensing in dimorphic fungi: farnesol and beyond. Appl Environ Microbiol. 72:3805–3813.
  • Nickerson KW, Atkin AL. 2017. Deciphering fungal dimorphism: farnesol's unanswered questions. Mol Microbiol 103:567–575.
  • Ong TP, Heidor R, de Conti A, Dagli ML, Moreno FS. 2006. Farnesol and geraniol chemopreventive activities during the initial phases of hepatocarcinogenesis involve similar actions on cell proliferation and DNA damage, but distinct actions on apoptosis, plasma cholesterol and HMGCoA reductase. Carcinogenesis. 27:1194–1203.
  • Pasrija R, Prasad T, Prasad R. 2005. Membrane raft lipid constituents affect drug susceptibilities of Candida albicans. Biochem Soc Trans. 33:1219–1223.
  • Perlroth J, Choi B, Spellberg B. 2007. Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol. 45:321–346.
  • Piispanen AE, Grahl N, Hollomon JM, Hogan DA. 2013. Regulated proteolysis of Candida albicans Ras1 is involved in morphogenesis and quorum sensing regulation. Mol Microbiol. 89:166–178.
  • Polke M, Sprenger M, Scherlach K, Albán-Proaño MC, Martin R, Hertweck C, Hube B, Jacobsen ID. 2017. A functional link between hyphal maintenance and quorum sensing in Candida albicans. Mol Microbiol. 103:595–617.
  • Ramage G, Saville SP, Thomas DP, Lopez-Ribot JL. 2005. Candida biofilms: an update. Eukaryotic Cell. 4:633–638.
  • Ramage G, Saville SP, Wickes BL, Lopez-Ribot JL. 2002. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol. 68:5459–5463.
  • Robert R, Nail S, Marot-Leblond A, Cottin J, Miegeville M, Quenouillere S, Mahaza C, Senet JM. 2000. Adherence of platelets to Candida species in vivo. Infect Immun. 68:570–576.
  • Roman E, Alonso-Monge R, Gong Q, Li D, Calderone R, Pla J. 2009. The Cek1 MAPK is a short-lived protein regulated by quorum sensing in the fungal pathogen Candida albicans. FEMS Yeast Res. 9:942–955.
  • Roman E, Nombela C, Pla J. 2005. The Sho1 adaptor protein links oxidative stress to morphogenesis and cell wall biosynthesis in the fungal pathogen Candida albicans. Mol Cell Biol. 25:10611–10627.
  • Romani L. 2011. Immunity to fungal infections. Nat Rev Immunol. 11:275–288.
  • Rossignol T, Logue ME, Reynolds K, Grenon M, Lowndes NF, Butler G. 2007. Transcriptional response of Candida parapsilosis following exposure to farnesol. Antimicrob Agents Chemother. 51:2304–2312.
  • Ryan KR, Hong M, Arkwright PD, Gennery AR, Costigan C, Dominguez M, Denning D, McConnell V, Cant AJ, Abinun M, et al. 2008. Impaired dendritic cell maturation and cytokine production in patients with chronic mucocutaneous candidiasis with or without APECED. Clin Exp Immunol. 154:406–414.
  • Sabra A, Bessoule JJ, Atanasova-Penichon V, Noel T, Dementhon K. 2014. Host–pathogen interaction and signaling molecule secretion are modified in the dpp3 knockout mutant of Candida lusitaniae. Infect Immun. 82:413–422.
  • Saidi S, Luitaud C, Rouabhia M. 2006. In vitro synergistic effect of farnesol and human gingival cells against Candida albicans. Yeast. 23:673–687.
  • Scheper MA, Shirtliff ME, Meiller TF, Peters BM, Jabra-Rizk MA. 2008. Farnesol, a fungal quorum-sensing molecule triggers apoptosis in human oral squamous carcinoma cells. Neoplasia. 10:954–963.
  • Semighini CP, Hornby JM, Dumitru R, Nickerson KW, Harris SD. 2006. Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol Microbiol. 59:753–764.
  • Semighini CP, Murray N, Harris SD. 2008. Inhibition of Fusarium graminearum growth and development by farnesol. FEMS Microbiol Lett. 279:259–264.
  • Sharma M, Prasad R. 2011. The quorum-sensing molecule farnesol is a modulator of drug efflux mediated by ABC multidrug transporters and synergizes with drugs in Candida albicans. Antimicrob Agents Chemother. 55:4834–4843.
  • Shchepin R, Dumitru R, Nickerson KW, Lund M, Dussault PH. 2005. Biologically active fluorescent farnesol analogs. Chem Biol. 12:639–641.
  • Shchepin R, Hornby JM, Burger E, Niessen T, Dussault P, Nickerson KW. 2003. Quorum sensing in Candida albicans: probing farnesol's mode of action with 40 natural and synthetic farnesol analogs. Chem Biol. 10:743–750.
  • Shea JM, Del Poeta M. 2006. Lipid signaling in pathogenic fungi. Curr Opin Microbiol. 9:352–358.
  • Shirtliff ME, Krom BP, Meijering RA, Peters BM, Zhu J, Scheper MA, Harris ML, Jabra-Rizk MA. 2009. Farnesol-induced apoptosis in Candida albicans. Antimicrob Agents Chemother. 53:2392–2401.
  • Smith DA, Nicholls S, Morgan BA, Brown AJ, Quinn J. 2004. A conserved stress-activated protein kinase regulates a core stress response in the human pathogen Candida albicans. Mol Biol Cell. 15:4179–4190.
  • Spanakis EK, Kourkoumpetis TK, Livanis G, Peleg AY, Mylonakis E. 2010. Statin therapy and decreased incidence of positive Candida cultures among patients with type 2 diabetes mellitus undergoing gastrointestinal surgery. Mayo Clin Proc. 85:1073–1079.
  • Tashiro M, Kimura S, Tateda K, Saga T, Ohno A, Ishii Y, Izumikawa K, Tashiro T, Kohno S, Yamaguchi K. 2012. Pravastatin inhibits farnesol production in Candida albicans and improves survival in a mouse model of systemic candidiasis. Med Mycol. 50:353–360.
  • Tateda K, Ishii Y, Horikawa M, Matsumoto T, Miyairi S, Pechere JC, Standiford TJ, Ishiguro M, Yamaguchi K. 2003. The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect Immun. 71:5785–5793.
  • Toke DA, Bennett WL, Dillon DA, Wu WI, Chen X, Ostrander DB, Oshiro J, Cremesti A, Voelker DR, Fischl AS, et al. 1998. Isolation and characterization of the Saccharomyces cerevisiae DPP1 gene encoding diacylglycerol pyrophosphate phosphatase. J Biol Chem. 273:3278–3284.
  • Toke DA, Bennett WL, Oshiro J, Wu WI, Voelker DR, Carman GM. 1998. Isolation and characterization of the Saccharomyces cerevisiae LPP1 gene encoding a Mg2+−independent phosphatidate phosphatase. J Biol Chem. 273:14331–14338.
  • Trinchieri G, Pflanz S, Kastelein RA. 2003. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity. 19:641–644.
  • Tsui C, Kong EF, Jabra-Rizk MA. 2016. Pathogenesis of Candida albicans biofilm. Pathog Dis. 74:ftw018.
  • Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Kohler JR, Kadosh D, Lopez-Ribot JL. 2010. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog. 6:e1000828.
  • Uppuluri P, Mekala S, Chaffin WL. 2007. Farnesol-mediated inhibition of Candida albicans yeast growth and rescue by a diacylglycerol analogue. Yeast. 24:681–693.
  • Vinces MD, Kumamoto CA. 2007. The morphogenetic regulator Czf1p is a DNA-binding protein that regulates white opaque switching in Candida albicans. Microbiology. 153:2877–2884.
  • Wang X, Wang Y, Zhou Y, Wei X. 2014. Farnesol induces apoptosis-like cell death in the pathogenic fungus Aspergillus flavus. Mycologia. 106:881–888.
  • Weber K, Schulz B, Ruhnke M. 2010. The quorum-sensing molecule E,E-farnesol – its variable secretion and its impact on the growth and metabolism of Candida species. Yeast. 27:727–739.
  • Weber K, Sohr R, Schulz B, Fleischhacker M, Ruhnke M. 2008. Secretion of E,E-farnesol and biofilm formation in eight different Candida species. Antimicrob Agents Chemother. 52:1859–1861.
  • Welch ML, Liappis AP, Kan VL. 2013. Candidemia outcomes not improved with statin use. Med Mycol. 51:219–222.
  • Williams P, Winzer K, Chan WC, Camara M. 2007. Look who's talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci. 362:1119–1134.
  • Wongsuk T, Pumeesat P, Luplertlop N. 2016. Fungal quorum sensing molecules: role in fungal morphogenesis and pathogenicity. J Basic Microbiol. 56:440–447.
  • Yapar N. 2014. Epidemiology and risk factors for invasive candidiasis. Ther Clin Risk Manag. 10:95–105.
  • Yen CM, Howard DH. 1970. Germination of blastospores of Histoplasma capsulatum. Sabouraudia. 8:242–252.
  • Yu LH, Wei X, Ma M, Chen XJ, Xu SB. 2012. Possible inhibitory molecular mechanism of farnesol on the development of fluconazole resistance in Candida albicans biofilm. Antimicrob Agents Chemother. 56:770–775.
  • Zhang L, Chang W, Sun B, Groh M, Speicher A, Lou H. 2011. Bisbibenzyls, a new type of antifungal agent, inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in Candida albicans. PLoS One. 6:e28953.
  • Zhu J, Krom BP, Sanglard D, Intapa C, Dawson CC, Peters BM, Shirtliff ME, Jabra-Rizk MA. 2011. Farnesol-induced apoptosis in Candida albicans is mediated by Cdr1-p extrusion and depletion of intracellular glutathione. PLoS One. 6:e28830.
  • Zordan RE, Miller MG, Galgoczy DJ, Tuch BB, Johnson AD. 2007. Interlocking transcriptional feedback loops control white-opaque switching in Candida albicans. PLoS Biol. 5:e256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.