1,008
Views
47
CrossRef citations to date
0
Altmetric
Review Article

Photodynamic inactivation as an emergent strategy against foodborne pathogenic bacteria in planktonic and sessile states

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 667-684 | Received 08 Jan 2018, Accepted 18 Jun 2018, Published online: 14 Oct 2018

References

  • Abrahamse H, Hamblin MR. 2016. New photosensitizers for photynamic therapy. Biochem J. 28:1304–1314.
  • Addis M, Sisay D. 2015. A review on major food borne bacterial illnesses. J Trop Dis. 3:1–7.
  • Agustí G, Barroso A, Fittipaldi M, Codony F. 2015. Searching photodynamic activity in honey. Photodiagnosis Photodyn Ther. 12:619–620.
  • Akhtar S, Sarker MR, Hossain A. 2014. Microbiological food safety: a dilemma of developing societies. Crit Rev Microbiol. 40:348–359.
  • Almeida A, Faustino MAF, Tomé JPC. 2015. Photodynamic inactivation of bacteria: finding the effective targets. Future Med Chem. 7:1221–1224.
  • Alves E, Faustino MAF, Neves MGPMS, Cunha Â, Nadais H, Almeida A. 2015. Potential applications of porphyrins in photodynamic inactivation beyond the medical scope. J Photochem Photobiol C Photochem Rev. 22:34–57.
  • Alves E, Melo T, Simões C, Faustino MAF, Tomé JPC, Neves MGPMS, Cavaleiro JAS, Cunha Â, Gomes NCM, Domingues P, et al. 2013. Photodynamic oxidation of Staphylococcus warneri membrane phospholipids: new insights based on lipidomics. Rapid Commun Mass Spectrom. 27:1607–1618.
  • Amin RM, Bhayana B, Hamblin MR, Dai T. 2016. Antimicrobial blue light inactivation of Pseudomonas aeruginosa by photo-excitation of endogenous porphyrins: In vitro and in vivo studies. Lasers Surg Med. 48:562–568.
  • Aponiene K, Luksiene Z. 2015. Effective combination of LED-based visible light, photosensitizer and photocatalyst to combat Gram (−) bacteria. J Photochem Photobiol B Biol. 142:257–263.
  • Araújo PA, Lemos M, Mergulhão F, Melo L, Simões M. 2013. The influence of interfering substances on the antimicrobial activity of selected quaternary ammonium compounds. Int. J Food Sci. 2013:1–9.
  • Araújo PA, Mergulhão F, Melo L, Simões M. 2014. The ability of an antimicrobial agent to penetrate a biofilm is not correlated with its killing or removal efficiency. Biofouling. 30:675–683.
  • van Asselt ED, van der Fels-Klerx HJ, Marvin HJP, van Bokhorst-van de Veen H, Groot MN. 2017. Overview of Food Safety Hazards in the European Dairy Supply Chain. Comp Rev Food Sci Food Saf. 16:59–75.
  • Back K-H, Ha J-W, Kang D-H. 2014. Effect of hydrogen peroxide vapor treatment for inactivating Salmonella Typhimurium, Escherichia coli O157:H7 and Listeria monocytogenes on organic fresh lettuce. Food Control. 44:78–85.
  • Baier J, Maisch T, Maier M, Engel E, Landthaler M, Bäumler W. 2006. Singlet oxygen generation by UVA light exposure of endogenous photosensitizers. Biophys J. 91:1452–1459.
  • Barikgugjlu R, Khaniki GJ, Nodehi RN, Alimohammadi M, Mousavi SM. 2016. Efficacy of nanosil (hydrogen peroxide-silver ion) and peracetic acid on reduction of Escherichia coli O157:H7 and Salmonella Enteritidis in raw vegetables. Ann Food Sci Technol. 17:333–339.
  • Bhat R, Stamminger R. 2015. Preserving strawberry quality by employing novel food preservation and processing techniques – recent updates and future scope – an overview. J Food Process Eng. 38:536–554.
  • Biel MA, Sievert C, Usacheva M, Teichert M, Balcom J. 2011. Antimicrobial photodynamic therapy treatment of chronic recurrent sinusitis biofilms. Int Forum Allergy Rhinol. 1:329–334.
  • Borges A, Abreu AC, Dias C, Saavedra MJ, Borges F, Simões M. 2016. New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules 21:841–877.
  • Brancaleon L, Moseley H. 2002. Laser and non-laser light sources for photodynamic therapy. Lasers Med Sci. 17:173–186.
  • Brovko L, Anany H, Bayoumi M, Giang K, Kunkel E, Lim E, Naboka O, Rahman S, Li J, Filipe CDM, Griffiths MW. 2014. Antimicrobial light-activated materials: Towards application for food and environmental safety. J Appl Microbiol. 117:1260–1266.
  • Brovko LY, Meyer A, Tiwana AS, Chen W, Liu H, Filipe CDM, Griffiths MW. 2009. Photodynamic treatment: a novel method for sanitation of food handling and food processing surfaces. J Food Prot. 72:1020–1024.
  • Buchovec I, Lukseviciūtė V, Kokstaite R, Labeikyte D, Kaziukonyte L, Luksiene Z. 2017. Inactivation of Gram (−) bacteria Salmonella enterica by chlorophyllin-based photosensitization: Mechanism of action and new strategies to enhance the inactivation efficiency. J Photochem Photobiol B Biol. 172:1–10.
  • Buchovec I, Lukseviciute V, Marsalka A, Reklaitis I, Luksiene Z. 2016 . Effective photosensitization-based inactivation of Gram (–) food pathogens and molds using the chlorophyllin-chitosan complex: towards photoactive edible coatings to preserve strawberries. Photochem Photobiol Sci. 15:506–516.
  • Buchovec I, Vaitonis Z, Luksiene Z. 2009. Novel approach to control Salmonella enterica by modern biophotonic technology: Photosensitization. J Appl Microbiol. 106:748–754.
  • Bull RJ, Reckhow DA, Li X, Humpage AR, Joll C, Hrudey SE. 2011. Potential carcinogenic hazards of non-regulated disinfection by-products: haloquinones, halo-cyclopentene and cyclohexene derivatives, N-halamines, halonitriles, and heterocyclic amines. Toxicology 286:1–19.
  • Buzby JC. 2002. Older adults at risk of complications from microbial food borne illness. Food Rev. 25:30–35.
  • Calin MA, Parasca SV. 2009. Light sources for photodynamic inactivation of bacteria. Lasers Med Sci. 24:453–460.
  • Capita R, Alonso-Calleja C. 2013. Antibiotic-resistant bacteria: a challenge for the food industry. Crit Rev Food Sci Nutr. 53:11–48.
  • Castro KADF, Moura NMM, Fernandes A, Faustino MAF, Simões MMQ, Cavaleiro JAS, Nakagaki S, Almeida A, Cunha Â, Silvestre AJD, et al. 2017. Control of Listeria innocua biofilms by biocompatible photodynamic antifouling chitosan based materials. Dye Pigment. 137:265–276.
  • [CDC] Centers for Disease Control and Prevention. 2017. Foodborne Germs and Illnesses | Food Safety | CDC. [accessed 2017 Nov 26]. https://www.cdc.gov/foodsafety/foodborne-germs.html
  • [CDC] Centers for Disease Control and Prevention. 2018a. Guillain-Barré Syndrome | Campylobacter | CDC. [accessed 2018. Apr 9]. https://www.cdc.gov/campylobacter/guillain-barre.html
  • [CDC] Centers for Disease Control and Prevention. 2018b. Emerging Infectious Diseases. [acessed 2018 Apr 9]. http://www.cdc.gov/ncidod/eid/vol4no3/letters.htm#let4
  • Chang JE, Cho HJ, Yi E, Kim DD, Jheon S. 2016. Hypocrellin B and paclitaxel-encapsulated hyaluronic acid-ceramide nanoparticles for targeted photodynamic therapy in lung cancer. J Photochem Photobiol B Biol. 158:113–121.
  • Charlebois A, Jacques M, Boulianne M, Archambault M. 2017. Tolerance of Clostridium perfringens biofilms to disinfectants commonly used in the food industry. Food Microbiol. 62:32–38.
  • Cieplik F, Späth A, Regensburger J, Gollmer A, Tabenski L, Hiller KA, Bäumler W, Maisch T, Schmalz G. 2013 . Photodynamic biofilm inactivation by SAPYR-an exclusive singlet oxygen photosensitizer. Free Radic Biol Med. 65:477–487.
  • Cieplik F, Steinwachs V-S, Muehler D, Hiller K-A, Thurnheer T, Belibasakis GN, Buchalla W, Maisch T. 2018. Phenalen-1-one-mediated antimicrobial photodynamic therapy: antimicrobial efficacy in a periodontal biofilm model and flow cytometric evaluation of cytoplasmic membrane damage. Front Microbiol. 9:688.
  • Cieplik F, Tabenski L, Buchalla W, Maisch T. 2014. Antimicrobial photodynamic therapy for inactivation of biofilms formed by oral key pathogens. Front Microbiol. 5:1–17.
  • de Aguiar Coletti TMSF, de Freitas LM, Almeida AMF, Fontana CR. 2017. Optimization of antimicrobial photodynamic therapy in biofilms by inhibiting efflux pump. Photomed Laser Surg. 35:378–385.
  • Corcoran M, Morris D, De Lappe N, O'Connor J, Lalor P, Dockery P, Cormican M. 2014. Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials. Appl Environ Microbiol. 80:1507–1514.
  • Cossu A, Ercan D, Wang Q, Peer WA, Nitin N, Tikekar RV. 2016. Antimicrobial effect of synergistic interaction between UV-A light and gallic acid against Escherichia coli O157:H7 in fresh produce wash water and biofilm. Innov Food Sci Emerg Technol. 37:44–52.
  • D'Souza C, Yuk H-G, Khoo GH, Zhou W. 2015. Application of light-emitting diodes in food production, postharvest preservation, and microbiological food safety. Comp Rev Food Sci Food Saf. 14:719–740.
  • Davidson PM, Critzer FJ, Taylor TM. 2013. Naturally occurring antimicrobials for minimally processed foods. Annu Rev Food Sci Technol. 4:163–190.
  • Ding Z, Tian S, Meng X, Xu Y. 2009. Hydrogen peroxide is correlated with browning in peach fruit stored at low temperature. Front Chem Eng China. 3:363–374.
  • Flors C, Nonell S. 2006. Light and singlet oxygen in plant defense against pathogens: phototoxic phenalenone phytoalexins. Acc Chem Res. 39:293–300.
  • Food and Agriculture Organization of the United States [FAO]. 2016. The FAO Action Plan on Antimicrobial Resistance 2016-2020. Rome: Food and Agriculture Organization of the United States; [accessed 2018 Jul 7]. http://www.fao.org/3/a-i5996e.pdf
  • FoodSafety. 2017. Food Safety. [accessed 2017 May 10]. https://www.foodsafety.gov/poisoning/causes/bacteriaviruses/index.html
  • Friedman M. 2015. Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts. J Agric Food Chem. 63:3805–3822.
  • Ganesan L, Margolles-Clark E, Song Y, Buchwald P. 2011. The food colorant erythrosine is a promiscuous protein-protein interaction inhibitor. Biochem Pharmacol. 81:810–818.
  • Gassara F, Kouassi AP, Brar SK, Belkacemi K. 2016 . Green alternatives to nitrates and nitrites in meat-based products – a review. Crit Rev Food Sci Nutr. 56:2133–2148.
  • Gerba CP. 2015. Quaternary ammonium biocides: efficacy in application. Appl Environ Microbiol. 81:464–469.
  • Gil MI, Selma MV, López-Gálvez F, Allende A. 2009. Fresh-cut product sanitation and wash water disinfection: problems and solutions. Int J Food Microbiol. 134:37–45.
  • Gong N, Tan Y, Li M, Lu W, Lei X. 2016. ALA-PDT combined with antibiotics for the treatment of multiple skin abscesses caused by Mycobacterium fortuitum. Photodiagnosis Photodyn Ther. 15:70–72.
  • Gursoy H, Ozcakir-Tomruk C, Tanalp J, Yilmaz S. 2013. Photodynamic therapy in dentistry: a literature review. Clin Oral Investig. 17:1113–1125.
  • Hamblin MR, Hasan T. 2004. Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci. 3:436–450.
  • Harding AS, Schwab KJ. 2012. Using limes and synthetic psoralens to enhance solar disinfection of water (SODIS): a laboratory evaluation with norovirus, Escherichia coli, and MS2. Am J Trop Med Hyg. 86:566–572.
  • Haute S, van Sampers I, Jacxsens L, Uyttendaele M. 2015. Selection criteria for water disinfection techniques in agricultural practices. Crit Rev Food Sci Nutr. 55:1529–1551.
  • Hidalgo W, Cano M, Arbelaez M, Zarrazola E, Gil J, Schneider B, Otálvaro F. 2016. 4-Phenylphenalenones as a template for new photodynamic compounds against Mycosphaerella fijiensis. Pest Manag Sci. 72:796–800.
  • Hsieh C-M, Huang Y-H, Chen C-P, Hsieh B-C, Tsai T. 2014. 5-Aminolevulinic acid induced photodynamic inactivation on Staphylococcus aureus and Pseudomonas aeruginosa. J Food Drug Anal. 22:311–350.
  • Hudson BJ, Zhou J, Chen J, Harris L, Yip L, HN, Towers G. 1994. Hypocrellin, from Hypocrella bambuase is phototoxic to human immunodeficiency virus. Photochem Photobiol. 60:253–255.
  • Hunter GA, Ferreira GC. 2011. Molecular enzymology of 5-aminolevulinate synthase, the gatekeeper of heme biosynthesis. Biochim Biophys Acta – Proteins Proteomics. 1814:1467–1473.
  • Kairyte K, Lapinskas S, Gudelis V, Luksiene Z. 2012. Effective inactivation of food pathogens Listeria monocytogenes and Salmonella enterica by combined treatment of hypericin-based photosensitization and high power pulsed light. J Appl Microbiol. 112:1144–1151.
  • Ke ES, Nazzal S, Tseng YH, Chen CP, Tsai T. 2012. Erythrosine-mediated photodynamic inactivation of bacteria and yeast using green light-emitting diode light. J Food Drug Anal. 20:951–956.
  • Kettlitz B, Kemendi G, Thorgrimsson N, Cattoor N, Verzegnassi L, Le Bail-Collet Y, Maphosa F, Perrichet A, Christall B, Stadler RH. 2016. Why chlorate occurs in potable water and processed foods: a critical assessment and challenges faced by the food industry. Food Addit Contam Part A. 33:968–982.
  • Keutgen AJ, Pawelzik E. 2008. Influence of pre-harvest ozone exposure on quality of strawberry fruit under simulated retail conditions. Postharvest Biol Technol. 49:10–18.
  • Khadre MA, Yousef AE, Kim J-G. 2001. Microbiological aspects of ozone applications in food: a review. J Food Sci. 66:1242–1252.
  • Kharkwal GB, Sharma SK, Huang Y-Y, Dai T, Hamblin MR. 2011. Photodynamic therapy for infections: clinical applications. Lasers Surg Med. 43:755–767.
  • Kitis M. 2004. Disinfection of wastewater with peracetic acid: a review. Environ Int. 30:47–55.
  • Klančnik A, Šikić Pogačar M, Trošt K, Tušek Žnidarič M, Mozetič Vodopivec B, Smole Možina S. 2017. Anti-Campylobacter activity of resveratrol and an extract from waste Pinot noir grape skins and seeds, and resistance of Camp. jejuni planktonic and biofilm cells, mediated via the CmeABC efflux pump. J Appl Microbiol. 122:65–77.
  • Koluman A, Dikici A. 2013. Antimicrobial resistance of emerging foodborne pathogens: Status quo and global trends. Crit Rev Microbiol. 39:57.
  • Kumar CG, Anand S. 1998. Significance of microbial biofilms in food industry: a review. Int J Food Microbiol. 42:9–27.
  • Kussovski V, Mantareva V, Angelov I, Orozova P, Wöhrle D, Schnurpfeil G, Borisova E, Avramov L. 2009 . Photodynamic inactivation of Aeromonas hydrophila by cationic phthalocyanines with different hydrophobicity. FEMS Microbiol Lett. 294:133–140.
  • Lai EPC, Iqbal Z, Avis TJ. 2016. Combating antimicrobial resistance in foodborne microorganisms. J Food Prot. 79:321–336.
  • Langsrud S, Sidhu MS, Heir E, Holck AL. 2003. Bacterial disinfectant resistance – a challenge for the food industry. Int Biodeterior Biodegradation. 51:283–290.
  • Lazzaro A, Corominas M, Martí C, Flors C, Izquierdo LR, Grillo T. a, Luis JG, Nonell S. 2004. Light- and singlet oxygen-mediated antifungal activity of phenylphenalenone phytoalexins. Photochem Photobiol Sci. 3:706–710.
  • Leite HLA, Cavalcante SIA, de Sousa EM, Gonçalves LM, Paschoal MA. 2016. Streptococcus mutans photoinactivation using a combination of a high potency photopolymerizer and rose bengal. Photodiagnosis Photodyn Ther. 15:11–12.
  • Li L, Ye L, Kromann S, Meng H. 2017. Occurrence of extended-spectrum β-lactamases, plasmid-mediated quinolone resistance, and disinfectant resistance genes in Escherichia coli isolated from ready-to-eat meat products. Foodborne Pathog Dis. 14:109–115.
  • Li X, Farid M. 2016. A review on recent development in non-conventional food sterilization technologies. J Food Eng. 182:33–45.
  • Lin H, Ye C, Chen S, Zhang S, Yu X. 2017 . Viable but non-culturable E. coli induced by low level chlorination have higher persistence to antibiotics than their culturable counterparts. Environ Pollut. 230:242–249.
  • Lin SH, Hu JM, Tang SS, Wu XY, Chen ZQ, Tang SZ. 2012. Photodynamic inactivation of methylene blue and tungsten-halogen lamp light against food pathogen Listeria monocytogenes. Photochem Photobiol. 88:985–991.
  • Linscott AJ. 2011. Food-borne illnesses. Clin Microbiol Newslett. 33:41–45.
  • López-Carballo G, Hernández-Muñoz P, Gavara R, Ocio MJ. 2008. Photoactivated chlorophyllin-based gelatin films and coatings to prevent microbial contamination of food products. Int J Food Microbiol. 126:65–70.
  • Lou F, Neetoo H, Chen H, Li J. 2015. High hydrostatic pressure processing: a promising nonthermal technology to inactivate viruses in high-risk foods. Annu Rev Food Sci Technol. 6:389–409.
  • Luis JG, Fletcher WQ, Echeverri F, Grillo TA, Perales A, González JA. 1995. Intermediates with biosynthetic implications in de novo production of phenyl-phenalenone-type phytoalexins by Musa acuminata revised structure of emenolone. Tetrahedron. 51:4117–4130.
  • Luksiene Z. 2005. New approach to inactivation of harmful and pathogenic microorganisms by photosensitization. Food Technol Biotechnol. 43:411–418.
  • Luksiene Z, Brovko L. 2013. Antibacterial photosensitization-based treatment for food safety. Food Eng Rev. 5:185–199.
  • Luksiene Z, Buchovec I, Paskeviciute E. 2009. Inactivation of food pathogen Bacillus cereus by photosensitization in vitro and on the surface of packaging material. J Appl Microbiol. 107:2037–2046.
  • Luksiene Z, Buchovec I, Paskeviciute E. 2010. Inactivation of Bacillus cereus by Na-chlorophyllin-based photosensitization on the surface of packaging. J Appl Microbiol. 109:1540–1548.
  • Luksiene Z, Paskeviciute E. 2011a. Novel approach to the microbial decontamination of strawberries: Chlorophyllin-based photosensitization. J Appl Microbiol. 110:1274–1283.
  • Luksiene Z, Paskeviciute E. 2011b. Microbial control of food-related surfaces: Na-Chlorophyllin-based photosensitization. J Photochem Photobiol B Biol. 105:69–74.
  • Luukkonen T, Pehkonen SO. 2017. Peracids in water treatment: a critical review. Crit Rev Environ Sci Technol. 47:1–39.
  • Ma G, Khan SI, Jacob MR, Tekwani BL, Li Z, Pasco DS, Walker LA, Khan IA. 2004. Antimicrobial and antileishmanial activities of hypocrellins A and B. Antimicrob Agents Chemother. 48:4450–4452.
  • Maisch T, Eichner A, Späth A, Gollmer A, König B, Regensburger J, Bäumler W. 2014. Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives. PLoS One. 9:e111792.
  • Maisch T, Hackbarth S, Regensburger J, Felgenträger A, Bäumler W, Landthaler M, Röder B. 2011. Photodynamic inactivation of multi-resistant bacteria (PIB) – a new approach to treat superficial infections in the 21st century. J Ger Soc Dermatology. 9:360–367.
  • Makdoumi K, Bäckman A, Mortensen J, Crafoord S. 2010. Evaluation of antibacterial efficacy of photo-activated riboflavin using ultraviolet light (UVA). Graefes Arch Clin Exp Ophthalmol. 248:207–212.
  • Mantareva V, Kussovski V, Angelov I, Wöhrle D, Dimitrov R, Popova E, Dimitrov S. 2011. Non-aggregated Ga(III)-phthalocyanines in the photodynamic inactivation of planktonic and biofilm cultures of pathogenic microorganisms. Photochem Photobiol Sci. 10:91–102.
  • Marqués-Calvo MS, Codony F, Agustí G, Lahera C. 2017. Visible light enhances the antimicrobial effect of some essential oils. Photodiagnosis Photodyn Ther. 17:180–184.
  • Martínez-Suárez JV, Ortiz S, López-Alonso V. 2016. Potential impact of the resistance to quaternary ammonium disinfectants on the persistence of Listeria monocytogenes in food processing environments. Front Microbiol. 7:1–9.
  • Marzorati M, Bigler P, Vermathen M. 2011. Interactions between selected photosensitizers and model membranes: an NMR classification. Biochim Biophys Acta – Biomembr. 1808:1661–1672.
  • McEntire J. 2013 . Foodborne disease: the global movement of food and people. Infect Dis Clin North Am. 27:687–693.
  • Meireles A, Borges A, Giaouris E, Simões M. 2016a. The current knowledge on the application of anti-biofilm enzymes in the food industry. Food Res Int. 86:140–146.
  • Meireles A, Giaouris E, Simões M. 2016b. Alternative disinfection methods to chlorine for use in the fresh-cut industry. Food Res Int. 82:71–85.
  • de Melo WCMA, Avci P, de Oliveira MN, Gupta A, Vecchio D, Sadasivam M, Chandran R, Huang Y-Y, Yin R, Perussi LR, et al. 2013. Photodynamic inactivation of biofilm: taking a lightly colored approach to stubborn infection. Expert Rev Anti Infect Ther. 11:669–693.
  • Metcalf D, Robinson C, Devine D, Wood SR. 2006. Enhancement of erythrosine-mediated photodynamic therapy of Streptococcus mutans biofilms by light fractionation. J Antimicrob Chemother. 58:190–192.
  • Miñán A, Lorente C, Ipiña A, Thomas AH, Fernández Lorenzo de Mele M, Schilardi PL. 2015. Photodynamic inactivation induced by carboxypterin: a novel non-toxic bactericidal strategy against planktonic cells and biofilms of Staphylococcus aureus. Biofouling. 31:459–468.
  • Misba L, Zaidi S, Khan AU. 2017. A comparison of antibacterial and antibiofilm efficacy of phenothiazinium dyes between Gram positive and Gram negative bacterial biofilm. Photodiagnosis Photodyn Ther. 18:24–33.
  • Montero E, García MA, Villegas MA, Llopis J. 2008. Spectral pH dependence of erythrosin B in sol-gel silica coatings and buffered solutions. Bol Soc Esp Ceram Vidr. 47:1–6.
  • Moreau M, Orange N, Feuilloley MGJ. 2008. Non-thermal plasma technologies: new tools for bio-decontamination. Biotechnol. Adv. 26:610–617.
  • Morente EO, Fernández-Fuentes MA, Grande Burgos MJ, Abriouel H, Pérez Pulido R, Gálvez A. 2013. Biocide tolerance in bacteria. Int J Food Microbiol. 162:13–25.
  • Navasconi TR, dos Reis VN, Freitas CF, Pereira PC, de S, Caetano W, Hioka N, Lonardoni MVC, Aristides SMA, Silveira TGV. 2017. Photodynamic therapy with bengal rose and derivatives against Leishmania amazonensis. J Lasers Med Sci. 8:46–50.
  • Nichol CA, Smith GK, Duch DS. 1985. Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin. Annu Rev Biochem. 54:729–764.
  • Nyenje ME, Ndip RN. 2013. The challenges of foodborne pathogens and antimicrobial chemotherapy: a global perspective. African J Microbiol Res. 7:1158–1172.
  • Oliveira A, Almeida A, Carvalho CMB, Tomé JPC, Faustino MAF, Neves MGPMS, Tomé AC, Cavaleiro JAS, Cunha A. 2009. Porphyrin derivatives as photosensitizers for the inactivation of Bacillus cereus endospores. J Appl Microbiol. 106:1986–1995.
  • de Oliveira A, Cataneli Pereira V, Pinheiro L, Moraes Riboli D, Benini Martins K, Ribeiro de Souza da Cunha M. 2016. Antimicrobial resistance profile of planktonic and biofilm cells of Staphylococcus aureus and coagulase-negative staphylococci. IJMS 17:1412–1423.
  • Oliveros E, Dántola ML, Vignoni M, Thomas AH, Lorente C. 2010. Production and quenching of reactive oxygen species by pterin derivatives, an intriguing class of biomolecules. Pure Appl Chem. 83:801–811.
  • Ölmez H, Kretzschmar U. 2009. Potential alternative disinfection methods for organic fresh-cut industry for minimizing water consumption and environmental impact. LWT – Food Sci Technol. 42:686–693.
  • Ormond AB, Freeman HS. 2013. Dye sensitizers for photodynamic therapy. Materials (Basel). 6:817–840.
  • Parke DV, Lewis DFV. 1992. Safety aspects of food preservatives. Food Addit Contam. 9:561–577.
  • Pascal MA, Lin S-J. 2012. The application of edible polymeric films and coatings in the food industry. J Food Process Technol. 4:1–2.
  • Penha CB, Bonin E, da Silva AF, Hioka N, Zanqueta ÉB, Nakamura TU, de Abreu Filho BA, et al. 2016. Photodynamic inactivation of foodborne and food spoilage bacteria by curcumin. LWT - Food Sci Technol. 76:1–5.
  • Pereira MA, Faustino MAF, Tomé JPC, Neves MGPMS, Tomé AC, Cavaleiro JAS, Cunha Â, Almeida A. 2014. Influence of external bacterial structures on the efficiency of photodynamic inactivation by a cationic porphyrin. Photochem Photobiol Sci. 13:680.
  • Pereira RN, Vicente AA. 2010. Environmental impact of novel thermal and non-thermal technologies in food processing. Food Res Int. 43:1936–1943.
  • Pettas IA, Karayannis MI. 2004. Simultaneous spectra-kinetic determination of peracetic acid and hydrogen peroxide in a brewery cleaning-in-place disinfection process. Anal Chim Acta. 522:275–280.
  • Piovezan M, Uchida NS, Silva AF, da S, Grespan R, Santos PR, Leite Silva E, Cuman RKN, Junior MM, Mikcha JMG. 2014. Effect of cinnamon essential oil and cinnamaldehyde on Salmonella Saintpaul biofilm on a stainless steel surface. J Gen Appl Microbiol. 60:119–121.
  • Ríos-Castillo AG, González-Rivas F, Rodríguez-Jerez JJ. 2017. Bactericidal efficacy of hydrogen peroxide-based disinfectants against gram-positive and gram-negative bacteria on stainless steel surfaces. J Food Sci. 82:2351–2356.
  • de Freitas Saccol AL, Serafim AL, Hecktheuer LH, Medeiros LB, Silva EAD. 2016. Food safety in feeding services: a requirement in Brazil. Crit Rev Food Sci Nutr. 56:1363–1369.
  • Sadekuzzaman M, Yang S, Mizan MFR, Kim HS, Ha SD. 2017. Effectiveness of a phage cocktail as a biocontrol agent against L. monocytogenes biofilms. Food Control. 78:256–263.
  • Santos AR, da Silva AF, Amaral VCS, Ribeiro AB, de Abreu Filho BA, Mikcha JMG. 2016. Application of edible coating with starch and carvacrol in minimally processed pumpkin. J Food Sci Technol. 53:1975–1983.
  • Schuyler R. 2001. Use of riboflavin for photoinactivation of pathogens in blood components. Transfus Apher Sci. 25:189–190.
  • Sellera FP, Sabino CP, Ribeiro MS, Gargano RG, Benites NR, Melville PA, Pogliani FC. 2016. In vitro photoinactivation of bovine mastitis related pathogens. Photodiagnosis Photodyn Ther. 13:276–281.
  • Simões M, Simões LC, Vieira MJ. 2010. A review of current and emergent biofilm control strategies. LWT – Food Sci Technol. 43:573–583.
  • Song R, Feng Y, Wang D, Xu Z, Li Z, Shao X. 2017. Phytoalexin phenalenone derivatives inactivate mosquito larvae and root-knot nematode as Type-II photosensitizer. Sci Rep. 7:42058–42059.
  • Soria-Lozano P, Gilaberte Y, Paz-Cristobal M, Pérez-Artiaga L, Lampaya-Pérez V, Aporta J, Pérez-Laguna V, García-Luque I, Revillo M, Rezusta A. 2015. In vitro effect photodynamic therapy with differents photosensitizers on cariogenic microorganisms. BMC Microbiol. 15:187.
  • Spagnul C, Turner LC, Boyle RW. 2015. Immobilized photosensitizers for antimicrobial applications. J Photochem Photobiol B Biol. 150:11–30.
  • Srey S, Jahid IK, Ha SD. 2013. Biofilm formation in food industries: a food safety concern. Food Control. 31:572–585.
  • Stewart PS, Roe F, Rayner J, Elkins JG, Lewandowski Z, Ochsner UA, Hassett DJ. 2000. Effect of catalase on hydrogen peroxide penetration into Pseudomonas aeruginosa biofilms. Appl Environ Microbiol. 66:836–838.
  • Su Y, Sun J, Rao S, Cai Y, Yang Y. 2011. Photodynamic antimicrobial activity of hypocrellin A. J Photochem Photobiol B Biol. 103:29–34.
  • Surowsky B, Schlüter O, Knorr D. 2015. Interactions of non-thermal atmospheric pressure plasma with solid and liquid food systems: a review. Food Eng Rev. 7:82–108.
  • Swami S, Muzammil R, Saha S, Shabeer A, Oulkar D, Banerjee K, Singh SB. 2016. Evaluation of ozonation technique for pesticide residue removal and its effect on ascorbic acid, cyanidin-3-glucoside, and polyphenols in apple (Malus domesticus) fruits. Environ Monit Assess. 188:1–11.
  • Temba BA, Fletcher MT, Fox GP, Harvey JJW, Sultanbawa Y. 2016. Inactivation of Aspergillus flavus spores by curcumin-mediated photosensitization. Food Control. 59:708–713.
  • Thakur K, Tomar SK, Singh AK, Mandal S, Arora S. 2017. Riboflavin and health: a review of recent human research. Crit Rev Food Sci Nutr. 57:3650–3660.
  • Thi ANT, Sampers I, Van Haute S, Samapundo S, Ly Nguyen B, Heyndrickx M, Devlieghere F. 2015. Decontamination of Pangasius fish (Pangasius hypophthalmus) with chlorine or peracetic acid in the laboratory and in a Vietnamese processing company. Int J Food Microbiol. 208:93–101.
  • Tofant A, Vučemilo M, Pavičić Ž, Milić D. 2006. The hydrogen peroxide, as a potentially useful slurry disinfectant. Livest Sci. 102:243–247.
  • Tsuda T. 2018. Curcumin: an effective or deceptive dietary factor? Challenges for functional food scientists. J Agric Food Chem. 66:1059–1060.
  • Varghese KS, Pandey MC, Radhakrishna K, Bawa AS. 2014. Technology, applications and modelling of ohmic heating: a review. J Food Sci Technol. 51:2304–2317.
  • Wainwright M. 1998. Photodynamic antimicrobial chemotherapy (PACT). J Antimicrob Chemother. 42:13–28.
  • Wainwright M, Crossley KB. 2004. Photosensitising agents – circumventing resistance and breaking down biofilms: a review. Int Biodeterior Biodegrad. 53:119–126.
  • Wainwright M, Maisch T, Nonell S, Plaetzer K, Almeida A, Tegos GP, Hamblin MR. 2017. Photoantimicrobials – Are we afraid of the light? Lancet Infect Dis. 17:e49–e55.
  • Walsh C, Fanning S. 2008. Antimicrobial resistance in foodborne pathogens – a cause for concern? Curr Drug Targets. 9:808–815.
  • White DG, Zhao S, Simjee S, Wagner DD, McDermott PF. 2002. Antimicrobial resistance of foodborne pathogens. Microbes Infect. 4:405–412.
  • [WHO] World Health Organization. 2015. WHO estimates of the global burden of diseases. WHO 46:1–15.
  • [WHO] World Health Organization. 2017. Food Safety. [accessed 2017 May 12]. http://www.who.int/mediacentre/factsheets/fs399/en/
  • Yang Y, Mikš-Krajnik M, Zheng Q, Lee SB, Lee SC, Yuk HG. 2016. Biofilm formation of Salmonella Enteritidis under food-related environmental stress conditions and its subsequent resistance to chlorine treatment. Food Microbiol. 54:98–105.
  • Yassunaka NN, de Freitas CF, Rabello BR, Santos PR, Caetano W, Hioka N, Nakamura TU, de Abreu Filho BA, Mikcha JMG. 2015. Photodynamic inactivation mediated by erythrosine and its derivatives on foodborne pathogens and spoilage bacteria. Curr Microbiol. 71:243–251.
  • Yu Z, Gunn L, Wall P, Fanning S. 2017. Antimicrobial resistance and its association with tolerance to heavy metals in agriculture production. Food Microbiol. 64:23–32.
  • Zanin ICJ, Gonçalves RB, Junior AB, Hope CK, Pratten J. 2005. Susceptibility of Streptococcus mutans biofilms to photodynamic therapy: an in vitro study. J Antimicrob Chemother. 56:324–330.
  • Ziuzina D, Boehm D, Patil S, Cullen PJ, Bourke P. 2015. Cold plasma inactivation of bacterial biofilms and reduction of quorum sensing regulated virulence factors. PLoS One. 10:e0138209–e0138221.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.