538
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Biosynthesis, regulation, and biological significance of fumonisins in fungi: current status and prospects

, , , &
Pages 450-462 | Received 09 Mar 2021, Accepted 06 Sep 2021, Published online: 22 Sep 2021

References

  • Adam MAA, Tabana YM, Musa KB, Sandai DA. 2017. Effects of different mycotoxins on humans, cell genome and their involvement in cancer (Review). Oncol Rep. 37(3):1321–1336.
  • Aerts D, Hauer EE, Ohm RA, Arentshorst M, Teertstra WR, Phippen C, Ram AFJ, Frisvad JC, Wosten HAB. 2018. The FlbA-regulated predicted transcription factor Fum21 of Aspergillus niger is involved in fumonisin production. Anton Leeuw Int J G. 111(3):311–322.
  • Alexander NJ, Proctor RH, McCormick SP. 2009. Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium. Toxin Rev. 28(2–3):198–215.
  • Aoki T, O’Donnell K, Geiser DM. 2014. Systematics of key phytopathogenic Fusarium species: current status and future challenges. J Gen Plant Pathol. 80(3):189–201.
  • Arias SL, Theumer MG, Mary VS, Rubinstein HR. 2012. Fumonisins: probable role as effectors in the complex interaction of susceptible and resistant maize hybrids and Fusarium verticillioides. J Agric Food Chem. 60(22):5667–5675.
  • Bluhm BH, Kim H, Butchko RAE, Woloshuk CP. 2008. Involvement of ZFR1 of Fusarium verticillioides in kernel colonization and the regulation of FST1, a putative sugar transporter gene required for fumonisin biosynthesis on maize kernels. Mol Plant Pathol. 9(2):203–211.
  • Bluhm BH, Woloshuk CP. 2005. Amylopectin induces fumonisin B1 production by Fusarium verticillioides during colonization of maize kernels. Mol Plant Microbe Interact. 18(12):1333–1339.
  • Bojja RS, Cerny RL, Proctor RH, Du LC. 2004. Determining the biosynthetic sequence in the early steps of the fumonisin pathway by use of three gene-disruption mutants of Fusarium verticillioides. J Agric Food Chem. 52(10):2855–2860.
  • Braun MS, Wink M. 2018. Exposure, occurrence, and chemistry of fumonisins and their cryptic derivatives. Compr Rev Food Sci Food Saf. 17(3):769–791.
  • Brown DW, Busman M, Proctor RH. 2014. Fusarium verticillioidesSGE1 is required for full virulence and regulates expression of protein effector and secondary metabolite biosynthetic genes. Mol Plant Microbe Interact. 27(8):809–823.
  • Brown DW, Butchko RAE, Busman M, Proctor RH. 2007. The Fusarium verticillioidesFUM gene cluster encodes a Zn(II)2Cys6 protein that affects FUM gene expression and fumonisin production. Eukaryot Cell. 6(7):1210–1218.
  • Brown DW, Cheung F, Proctor RH, Butchko RAE, Zheng L, Lee Y, Utterback T, Smith S, Feldblyum T, Glenn AE, et al. 2005. Comparative analysis of 87,000 expressed sequence tags from the fumonisin-producing fungus Fusarium verticillioides. Fungal Genet Biol. 42(10):848–861.
  • Butchko RAE, Brown DW, Busman M, Tudzynski B, Wiemann P. 2012. Lae1 regulates expression of multiple secondary metabolite gene clusters in Fusarium verticillioides. Fungal Genet Biol. 49(8):602–612.
  • Butchko RAE, Plattner RD, Proctor RH. 2006. Deletion analysis of FUM genes involved in tricarballylic ester formation during fumonisin biosynthesis. J Agric Food Chem. 54(25):9398–9404.
  • Cendoya E, Nichea MJ, Monge MDP, Zachetti VGL, Chiacchiera SM, Ramirez ML. 2020. Effect of fungicides commonly used for Fusarium head blight management on growth and fumonisin production by Fusarium proliferatum. Rev Argent Microbiol. 53:64–74.
  • Chen Y, Kistler HC, Ma ZH. 2019. Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management. Annu Rev Phytopathol. 57:15–39.
  • Chen ZH, Ponts N. 2020. H2A.Z and chromatin remodelling complexes: a focus on fungi. Crit Rev Microbiol. 46(3):321–337.
  • Chen C, Riley RT, Wu F. 2018. Dietary fumonisin and growth impairment in children and animals: areview. Compr Rev Food Sci Food Saf. 17(6):1448–1464.
  • Coleman JJ. 2016. The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Mol Plant Pathol. 17(2):146–158.
  • Covarelli L, Stifano S, Beccari G, Raggi L, Lattanzio VMT, Albertini E. 2012. Characterization of Fusarium verticillioides strains isolated from maize in Italy: fumonisin production, pathogenicity and genetic variability. Food Microbiol. 31(1):17–24.
  • Cruz A, Marin P, Gonzalez-Jaen MT, Aguilar KGI, Cumagun CJR. 2013. Phylogenetic analysis, fumonisin production and pathogenicity of Fusarium fujikuroi strains isolated from rice in the Philippines. J Sci Food Agric. 93(12):3032–3039.
  • Dastjerdi R, Karlovsky P. 2015. Systemic infection of maize, sorghum, rice, and beet seedlings with fumonisin-producing and nonproducing Fusarium verticillioides strains. Plant Pathol J. 31(4):334–342.
  • Deepthi BV, Somashekaraiah R, Rao KP, Deepa N, Dharanesha NK, Girish KS, Sreenivasa MY. 2017. Lactobacillus plantarum MYS6 ameliorates fumonisin B1-induced hepatorenal damage in broilers. Front Microbiol. 8:1–14.
  • Desjardins AE, Busman M, Muhitch M, Proctor RH. 2007. Complementary host-pathogen genetic analyses of the role of fumonisins in the Zea mays-Gibberella moniliformis interaction. Physiol Mol Plant Pathol. 70(4–6):149–160.
  • Desjardins AE, Busman M, Proctor RH, Stessman R. 2007. Wheat kernel black point and fumonisin contamination by Fusarium proliferatum. Food Addit Contam. 24(10):1131–1137.
  • Desjardins AE, Munkvold GP, Plattner RD, Proctor RH. 2002. FUM1– a gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests. Mol Plant Microbe Interact. 15(11):1157–1164.
  • Desjardins AE, Plattner RD, Nelsen TC, Leslie JF. 1995.Genetic analysis of fumonisin production and virulence of Gibberella fujikuroi mating population A (Fusarium moniliforme) on maize (Zea mays) seedlings. Appl Environ Microbiol. 61(1):79–86.
  • Ding Y, Bojja RS, Du LC. 2004. Fum3p, a 2-ketoglutarate-dependent dioxygenase required for C-5 hydroxylation of fumonisins in Fusarium verticillioides. Appl Environ Microbiol. 70(4):1931–1934.
  • Du L, Zhu X, Gerber R, Huffman J, Lou L, Jorgenson J, Yu F, Zaleta-Rivera K, Wang Q. 2008. Biosynthesis of sphinganine-analog mycotoxins. J Ind Microbiol Biotechnol. 35(6):455–464.
  • Ferrara M, Logrieco AF, Moretti A, Susca A. 2020. A loop-mediated isothermal amplification (LAMP) assay for rapid detection of fumonisin producing Aspergillus species. Food Microbiol. 90:103469.
  • Flaherty JE, Pirttila AM, Bluhm BH, Woloshuk CP. 2003. PAC1, a pH-regulatory gene from Fusarium verticillioides. Appl Environ Microbiol. 69(9):5222–5227.
  • Flaherty JE, Woloshuk CP. 2004. Regulation of fumonisin biosynthesis in Fusarium verticillioides by a zinc binuclear cluster-type gene, ZFR1. Appl Environ Microbiol. 70(5):2653–2659.
  • Gao ML, Glenn AE, Gu X, Mitchell TR, Satterlee T, Duke MV, Scheffler BE, Gold SE. 2020. Pyrrocidine, a molecular off switch for fumonisin biosynthesis. PLOS Pathog. 16(7):e1008595.
  • Geisen R, Touhami N, Schmidt-Heydt M. 2017. Mycotoxins as adaptation factors to food related environments. Curr Opin Food Sci. 17:1–8.
  • Gil-Serna J, Vazquez C, Patino B. 2020. Genetic regulation of aflatoxin, ochratoxin A, trichothecene, and fumonisin biosynthesis: a review. Int Microbiol. 23(1):89–96.
  • Glenn AE, Zitomer NC, Zimeri AM, Williams LD, Riley RT, Proctor RH. 2008. Transformation-mediated complementation of a FUM gene cluster deletion in Fusarium verticillioides restores both fumonisin production and pathogenicity on maize seedlings. Mol Plant Microbe Interact. 21(1):87–97.
  • Gu Q, Tahir HAS, Zhang H, Huang H, Ji TT, Sun X, Wu LM, Wu HJ, Gao XW. 2017. Involvement of FvSet1 in fumonisin B1 biosynthesis, vegetative growth, fungal virulence, and environmental stress responses in Fusarium verticillioides. Toxins. 9(2):43.
  • Guo L, Wenner N, Kuldau GA. 2015. FvSO regulates vegetative hyphal fusion, asexual growth, fumonisin B1 production, and virulence in Fusarium verticillioides. Fungal Biol. 119(12):1158–1169.
  • Hanada K, Kumagai K, Tomishige N, Kawano M. 2007. CERT and intracellular trafficking of ceramide. Bba-Mol Cell Biol L. 1771(6):644–653.
  • Hou R, Jiang C, Zheng Q, Wang CF, Xu JR. 2015. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum. Mol Plant Pathol. 16(9):987–999.
  • Huffman J, Gerber R, Du LC. 2010. Recent advancements in the biosynthetic mechanisms for polyketide-derived mycotoxins. Biopolymers. 93(9):764–776.
  • International Agency for Research on Cancer. IARC monographs on the evaluation of carcinogenic risks to humans. 2010. IARC Monog Eval Carc. 95:9–38.
  • JanevskaS, Ferling I, Jojic K, Rautschek J, Hoefgen S, Proctor RH, Hillmann F, Valiante V. 2020. Self-protection against the sphingolipid biosynthesis inhibitor fumonisin B1 is conferred by a FUM cluster-encoded ceramide synthase. Mbio. 11(3):e00455–20.
  • Jian QJ, Li TT, Wang Y, Zhang Y, Zhao ZY, Zhang XH, Gong L, Jiang YM. 2019. New insights into fumonisin production and virulence of Fusarium proliferatum underlying different carbon sources. Food Res Int. 116:397–407.
  • Keller NP. 2015. Translating biosynthetic gene clusters into fungal armor and weaponry. Nat Chem Biol. 11(9):671–677.
  • Kim H, Smith JE, Ridenour JB, Woloshuk CP, Bluhm BH. 2011. HXK1 regulates carbon catabolism, sporulation, fumonisin B production and pathogenesis in Fusarium verticillioides. Microbiology. 157(Pt 9):2658–2669.
  • Kim H, Woloshuk CP. 2008. Role of AREA, a regulator of nitrogen metabolism, during colonization of maize kernels and fumonisin biosynthesis in Fusarium verticillioides. Fungal Genet Biol. 45(6):947–953.
  • Kohut G, Adam AL, Fazekas B, Hornok L. 2009. N-starvation stress induced FUM gene expression and fumonisin production is mediated via the HOG-type MAPK pathway in Fusarium proliferatum. Int J Food Microbiol. 130(1):65–69.
  • Lackner G, Partida-Martinez LP, Hertweck C. 2009. Endofungal bacteria as producers of mycotoxins. Trends Microbiol. 17(12):570–576.
  • Li XR, Cao CY, Zhu XY, Li XW, Wang K. 2020. Fumonisins B1 exposure triggers intestinal tract injury via activating nuclear xenobiotic receptors and attracting inflammation response. Environ Pollut. 267:115461.
  • Li T, Gong L, Jiang G, Wang Y, Gupta VK, Qu H, Duan X, Wang J, Jiang Y. 2017. Carbon sources influence fumonisin production in Fusarium proliferatum. Proteomics. 17(19):1700070.
  • Li TT, Gong L, Wang Y, Chen F, Gupta VK, Jian QJ, Duan XW, Jiang YM. 2017. Proteomics analysis of Fusarium proliferatum under various initial pH during fumonisin production. J Proteomics. 164:59–72.
  • Li X, Huang L, Pan L, Wang B, Pan L. 2021. CRISPR/dCas9-mediated epigenetic modification reveals differential regulation of histone acetylation on Aspergillus niger secondary metabolite. Microbiol Res. 245:126694.
  • Li TT, Wu QX, Wang Y, John A, Qu HX, Gong L, Duan XW, Zhu H, Yun Z, Jiang YM. 2017c. Application of proteomics for the investigation of the effect of initial pH on pathogenic mechanisms of Fusarium proliferatum on banana fruit. Front Microbiol. 8:2327.
  • MacCabe AP, Van den Hombergh JP, Tilburn J, Arst HN, Visser J. 1996. Identification, cloning and analysis of the Aspergillus niger gene pacC, a wide domain regulatory gene responsive to ambient pH. Mol Gen Genet. 250(3):367–374.
  • Marques MM, Marques MM, de Gonzalez AB, Beland FA, Browne P, Demers PA, Lachenmeier DW, Bahadori T, Barupal DK, Belpoggi F, et al. 2019. Advisory group recommendations on priorities for the IARC monographs. Lancet Oncol. 20(6):763–764.
  • Mogensen JM, Moller KA, von Freiesleben P, Labuda R, Varga E, Sulyok M, Kubatova A, Thrane U, Andersen B, Nielsen KF. 2011. Production of fumonisins B2 and B4 in Tolypocladium species. J Ind Microbiol Biotechnol. 38(9):1329–1335.
  • Montibus M, Pinson-Gadais L, Richard-Forget F, Barreau C, Ponts N. 2015. Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi. Crit Rev Microbiol. 41(3):295–308.
  • Montis V, Pasquali M, Visentin I, Karlovsky P, Cardinale F. 2013. Identification of a cis-acting factor modulating the transcription of FUM1, a key fumonisin-biosynthetic gene in the fungal maize pathogen Fusarium verticillioides. Fungal Genet Biol. 51:42–49.
  • Munkvold GP, Weieneth L, Proctor RH, Busman M, Blandino M, Susca A, Logrieco A, Moretti A. 2018. Pathogenicity of fumonisin-producing and nonproducing strains of Aspergillus species in section Nigri to maize ears and seedlings. Plant Dis. 102(2):282–291.
  • Myung K, Li SJ, Butchko RAE, Busman M, Proctor RH, Abbas HK, Calvo AM. 2009. FvVE1 regulates biosynthesis of the mycotoxins fumonisins and fusarins in Fusarium verticillioides. J Agric Food Chem. 57(11):5089–5094.
  • Niehaus EM, Munsterkotter M, Proctor RH, Brown DW, Sharon A, Idan Y, Oren-Young L, Sieber CM, Novak O, Pencik A, et al. 2016. Comparative "Omics" of the Fusarium fujikuroi species complex highlights differences in genetic potential and metabolite synthesis. Genome Biol Evol. 8(11):3574–3599.
  • Oh M, Son H, Choi GJ, Lee C, Kim JC, Kim H, Lee YW. 2016. Transcription factor ART1 mediates starch hydrolysis and mycotoxin production in Fusarium graminearum and F. verticillioides. Mol Plant Pathol. 17(5):755–768.
  • Ortiz CS, Shim WB. 2013. The role of MADS-box transcription factors in secondary metabolism and sexual development in the maize pathogen Fusarium verticillioides. Microbiology. 159(Pt 11):2259–2268.
  • Park SH, Kim D, Kim J, Moon Y. 2015. Effects of mycotoxins on mucosal microbial infection and related pathogenesis. Toxins (Basel). 7(11):4484–4502.
  • Picot A, Barreau C, Pinson-Gadais L, Caron D, Lannou C, Richard-Forget F. 2010. Factors of the Fusarium verticillioides-maize environment modulating fumonisin production. Crit Rev Microbiol. 36(3):221–231.
  • Ponce-Garcia N, Serna-Saldivar SO, Garcia-Lara S. 2018. Fumonisins and their analogues in contaminated corn and its processed foods –a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 35(11):2183–2203.
  • Proctor RH, Brown DW, Plattner RD, Desjardins AE. 2003. Co-expression of 15 contiguous genes delineates a fumonisin biosynthetic gene cluster in Gibberella moniliformis. Fungal Genet Biol. 38(2):237–249.
  • Proctor RH, Busman M, Seo J-A, Lee YW, Plattner RD. 2008.A fumonisin biosynthetic gene cluster in Fusarium oxysporum strain O-1890 and the genetic basis for B versus C fumonisin production. Fungal Genet Biol. 45(6):1016–1026.
  • Proctor RH, Plattner RD, Desjardins AE, Busman M, Butchko RAE. 2006. Fumonisin production in the maize pathogen Fusarium verticillioides: genetic basis of naturally occurring chemical variation. J Agric Food Chem. 54(6):2424–2430.
  • Ramos JF, Nucci M. 2021. Fusarium and fusariosis. In Reference module in biomedical sciences. New York, NY: Elsevier; p. 1–13.
  • Rath M, Crenshaw NJ, Lofton LW, Glenn AE, Gold SE. 2020. FvSTUA is a key regulator of sporulation, toxin synthesis, and virulence in Fusarium verticillioides. Mol Plant Microbe Interact. 33(7):958–971.
  • Ridenour JB, Bluhm BH. 2017. The novel fungal-specific gene FUG1 has a role in pathogenicity and fumonisin biosynthesis in Fusarium verticillioides. Mol Plant Pathol. 18(4):513–528.
  • Riley RT, Merrill AH. 2019. Ceramide synthase inhibition by fumonisins: a perfect storm of perturbed sphingolipid metabolism, signaling, and disease. J Lipid Res. 60(7):1183–1189.
  • Riley RT, Torres O, Matute J, Gregory SG, Ashley-Koch AE, Showker JL, Mitchell T, Voss KA, Maddox JR, Gelineau-van Waes JB. 2015. Evidence for fumonisin inhibition of ceramide synthase in humans consuming maize-based foods and living in high exposure communities in Guatemala. Mol Nutr Food Res. 59(11):2209–2224.
  • Ronne H. 1995. Glucose repression in fungi. Trends Genet. 11(1):12–17.
  • Sagaram US, Butchko RAE, Shim W-B. 2006. The putative monomeric G-protein GBP1 is negatively associated with fumonisin B production in Fusarium verticillioides. Mol Plant Pathol. 7(5):381–389.
  • Sagaram US, Shim W-B. 2007. Fusarium verticillioidesGBB1, a gene encoding heterotrimeric G protein beta subunit, is associated with fumonisin B biosynthesis and hyphal development but not with fungal virulence. Mol Plant Pathol. 8(4):375–384.
  • Sánchez-Rangel D, Sánchez-Nieto S, Plasencia J. 2012. Fumonisin B1, a toxin produced by Fusarium verticillioides, modulates maize β-1,3-glucanase activities involved in defense response. Planta. 235(5):965–978.
  • Stępień Ł, Waśkiewicz A, Wilman K. 2015. Host extract modulates metabolism and fumonisin biosynthesis by the plant-pathogenic fungus Fusarium proliferatum. Int J Food Microbiol. 193:74–81.
  • Stone JM, Heard JE, Asai T, Ausubel FM. 2000. Simulation of fungal-mediated cell death by fumonisin B1 and selection of fumonisin B1-resistant (fbr) Arabidopsis mutants. Plant Cell. 12(10):1811–1822.
  • Sultana S, Bao WX, Shimizu M, Kageyama K, Suga H. 2021. Frequency of three mutations in the fumonisin biosynthetic gene cluster of Fusarium fujikuroi that are predicted to block fumonisin production. World Mycotoxin J. 14(1):49–59.
  • Sun L, Chen X, Gao J, Zhao Y, Liu LM, Hou YX, Wang L, Huang SW. 2019. Effects of disruption of five FUM genes on fumonisin biosynthesis and pathogenicity in Fusarium proliferatum. Toxins. 11(6):327.
  • Szabo Z, Pakozdi K, Murvai K, Pusztahelyi T, Kecskemeti A, Gaspar A, Logrieco AF, Emri T, Adam AL, Leiter E, et al. 2020. FvatfA regulates growth, stress tolerance as well as mycotoxin and pigment productions in Fusarium verticillioides. Appl Microbiol Biotechnol. 104(18):7879–7899.
  • Thornton CR. 2020. Detection of the 'Big Five' mold killers of humans: Aspergillus, Fusarium, Lomentospora, Scedosporium and Mucormycetes. Adv Appl Microbiol. 110:1–61.
  • Tidhar R, Futerman AH. 2013. The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. BBA–Mol Cell Res. 1833(11):2511–2518.
  • Tortorano AM, Prigitano A, Esposto MC, Arsenijevic VA, Kolarovic J, Ivanovic D, Paripovic L, Klingspor L, Nordoy I, et al. ECMM Working Group. 2014. European Confederation of Medical Mycology (ECMM) epidemiological survey on invasive infections due to Fusarium species in Europe. Eur J Clin Microbiol Infect Dis. 33(9):1623–1630.
  • Triest D, Stubbe D, De Cremer K, Pierard D, Detandt M, Hendrickx M. 2015. Banana infecting fungus, Fusarium musae, is also an opportunistic human pathogen: are bananas potential carriers and source of fusariosis?Mycologia. 107(1):46–53.
  • van der Does HC, Rep M. 2017. Adaptation to the host environment by plant-pathogenic fungi. Annu Rev Phytopathol. 55:427–450.
  • Visentin I, Montis V, Doll K, Alabouvette C, Tamietti G, Karlovsky P, Cardinale F. 2012. Transcription of genes in the biosynthetic pathway for fumonisin mycotoxins is epigenetically and differentially regulated in the fungal maize pathogen Fusarium verticillioides. Eukaryot Cell. 11(3):252–259.
  • Wan J, Chen BC, Rao JJ. 2020. Occurrence and preventive strategies to control mycotoxins in cereal-based food. Compr Rev Food Sci Food Saf. 19(3):928–953.
  • WiemannP, SieberCMK, von BargenKW, StudtL, NiehausE-M, EspinoJJ, HußK, MichielseCB, AlbermannS, WagnerD, et al. 2013. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLOS Pathog. 9(6):e1003475.
  • Williams LD, Glenn AE, Zimeri AM, Bacon CW, Smith MA, Riley RT. 2007. Fumonisin disruption of ceramide biosynthesis in maize roots and the effects on plant development and Fusarium verticillioides-induced seedling disease. J Agric Food Chem. 55(8):2937–2946.
  • Wu Y, Li TT, Gong L, Wang Y, Jiang YM. 2019. Effects of different carbon sources on fumonisin production and FUM gene expression by Fusarium proliferatum. Toxins. 11(5):289.
  • Yan HJ, Huang J, Zhang H, Shim WB. 2020. A Rab GTPase protein FvSec4 is necessary for fumonisin B1 biosynthesis and virulence in Fusarium verticillioides. Curr Genet. 66(1):205–216.
  • Yan HJ, Zhou ZH, Shim WB. 2021.Two regulators of G-protein signaling (RGS) proteins FlbA1 and FlbA2 differentially regulate fumonisin B1 biosynthesis in Fusarium verticillioides. Curr Genet. 67:305–315.
  • Yu S, Jia B, Liu N, Yu D, Zhang S, Wu A. 2021. Fumonisin B1 triggers carcinogenesis via HDAC/PI3K/Akt signalling pathway in human esophageal epithelial cells. Sci Total Environ. 787:147405.
  • Yu FG, Zhu XC, Du LC. 2005. Developing a genetic system for functional manipulations of FUM1, a polyketide synthase gene for the biosynthesis of fumonisins in Fusarium verticillioides. FEMS Microbiol Lett. 248(2):257–264.
  • Zaleta-Rivera K, Xu CP, Yu FG, Butchko RAE, Proctor RH, Hidalgo-Lara ME, Raza A, Dussault PH, Du LC. 2006. A bidomain nonribosomal peptide synthetase encoded by FUM14 catalyzes the formation of tricarballylic esters in the biosynthesis of fumonisins. Biochemistry. 45(8):2561–2569.
  • Zeilinger S, Gupta VK, Dahms TES, Silva RN, Singh HB, Upadhyay RS, Gomes EV, Tsui CKM, Nayak S C, van der Meer JR. 2016. Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol Rev. 40(2):182–207.
  • Zhang YP, Choi YE, Zou XX, Xu JR. 2011. The FvMK1 mitogen-activated protein kinase gene regulates conidiation, pathogenesis, and fumonisin production in Fusarium verticillioides. Fungal Genet Biol. 48(2):71–79.
  • Zhang CK, Wang JQ, Tao H, Dang X, Wang Y, Chen MP, Zhai ZZ, Yu WY, Xu LP, Shim WB, et al. 2015. FvBck1, a component of cell wall integrity MAP kinase pathway, is required for virulence and oxidative stress response in sugarcane Pokkah Boeng pathogen. Front Microbiol. 6:1096.
  • Zhang X, Wu Q, Cui S, Ren J, Qian WQ, Yang Y, He SP, Chu JF, Sun XH, Yan CY, et al. 2015. Hijacking of the jasmonate pathway by the mycotoxin fumonisin B1 (FB1) to initiate programmed cell death in Arabidopsis is modulated by RGLG3 and RGLG4. J Exp Bot. 66(9):2709–2721.
  • Zhao X, Wang Y, Liu JL, Zhang JH, Zhang SC, Ouyang Y, Huang JT, Peng XY, Zeng Z, Hu ZQ. 2020. Fumonisin B1 affects the biophysical properties, migration and cytoskeletal structure of human umbilical vein endothelial cells. Cell Biochem Biophys. 78(3):375–382.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.