597
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

Small molecule based anti-virulence approaches against Candida albicans infections

, , , , , , , & show all
Pages 743-769 | Received 30 Jun 2021, Accepted 13 Dec 2021, Published online: 02 Mar 2022

References

  • Abirami G, Alexpandi R, Durgadevi R, Kannappan A, Veera Ravi A. 2020. Inhibitory effect of morin against Candida albicans pathogenicity and virulence factor production: an in vitro and in vivo approaches. Front Microbiol. 11:561298.
  • Alalwan H, Rajendran R, Lappin DF, Combet E, Shahzad M, Robertson D, Nile CJ, Williams C, Ramage G. 2017. The anti-adhesive effect of curcumin on Candida albicans biofilms on denture materials. Front Microbiol. 8:659.
  • Albayaty YN, Thomas N, Ramírez-García PD, Davis TP, Quinn JF, Whittaker MR, Prestidge CA. 2021. Polymeric micelles with anti-virulence activity against Candida albicans in a single- and dual-species biofilm. Drug Deliv Transl Res. 11(4):1586–1597.
  • Albuquerque P, Casadevall A. 2012. Quorum sensing in fungi–a review. Med Mycol. 50(4):337–345.
  • Aoki W, Kitahara N, Miura N, Morisaka H, Yamamoto Y, Kuroda K, Ueda M. 2012. Candida albicans possesses Sap7 as a pepstatin A-insensitive secreted aspartic protease. PLoS One. 7(2):e32513.
  • Arendrup MC, Patterson TF. 2017. Multidrug-resistant candida: epidemiology, molecular mechanisms, and treatment. J Infect Dis. 216(suppl_3):S445–S451.
  • Arribas JR, Hernández-Albujar S, González-García JJ, Peña JM, Gonzalez A, Cañedo T, Madero R, Vazquez JJ, Powderly WG. 2000. Impact of protease inhibitor therapy on HIV-related oropharyngeal candidiasis. AIDS. 14:979–985.
  • Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. 2021. Natural products in drug discovery: advances and opportunities. Nat Rev Drug Discov. 20(3):200–216.
  • Badiee P, Hashemizadeh Z. 2014. Opportunistic invasive fungal infections: diagnosis & clinical management. Indian J Med Res. 139(2):195–204.
  • Bar-Yosef H, Vivanco Gonzalez N, Ben-Aroya S, Kron SJ, Kornitzer D. 2017. Chemical inhibitors of Candida albicans hyphal morphogenesis target endocytosis. Sci Rep. 7:1–12.
  • Bektić J, Lell CP, Fuchs A, Stoiber H, Speth C, Lass-Flörl C, Borg-von Zepelin M, Dierich MP, Würzner R. 2001. HIV protease inhibitors attenuate adherence of Candida albicans to epithelial cells in vitro. FEMS Immunol Med Microbiol. 31(1):65–71.
  • Berman J, Sudbery PE. 2002. Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet. 3(12):918–930.
  • Bongomin F, Gago S, Oladele RO, Denning DW. 2017. Global and multi-national prevalence of fungal diseases—estimate precision. J Fungi. 3.DOI:10.3390/jof3040057.
  • Borg-von Zepelin M, Meyer I, Thomssen R, Würzner R, Sanglard D, Telenti A, Monod M. 1999. HIV-protease inhibitors reduce cell adherence of Candida albicans strains by inhibition of yeast secreted aspartic proteases. J Invest Dermatol. 113(5):747–751.
  • Calderone RA, Fonzi WA. 2001. Virulence factors of Candida albicans. Trends Microbiol. 9(7):327–335.
  • Cassone A, De Bernardis F, Torosantucci A, Tacconelli E, Tumbarello M, Cauda R. 1999. In vitro and in vivo anticandidal activity of human immunodeficiency virus protease inhibitors. J Infect Dis. 180(2):448–453.
  • Chavez-Dozal AA, Lown L, Jahng M, Walraven CJ, Lee SA. 2014. In vitro analysis of finasteride activity against Candida albicans urinary biofilm formation and filamentation. Antimicrob Agents Chemother. 58:5855–5862.
  • Clatworthy AE, Pierson E, Hung DT. 2007. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol. 3(9):541–548.
  • Cordeiro RDA, Teixeira CE, Brilhante RS, Castelo-Branco DS, Alencar LP, de Oliveira JS, Monteiro AJ, Bandeira TJ, Sidrim JJ, Moreira JL, et al. 2015. Exogenous tyrosol inhibits planktonic cells and biofilms of Candida species and enhances their susceptibility to antifungals. FEMS Yeast Res. 15:fov012.
  • Costa-de-Oliveira S, Rodrigues AG. 2020. Candida albicans antifungal resistance and tolerance in bloodstream infections: the triad yeast-host-antifungal. Microorganisms. 8(2):154.
  • Cottier F, Mühlschlegel FA. 2012. Communication in fungi. Int J Microbiol. 2012:351832.
  • Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS. 2015. Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med. 5:1–22.
  • Cui J, Ren B, Tong Y, Dai H, Zhang L. 2015. Synergistic combinations of antifungals and anti-virulence agents to fight against Candida albicans. Virulence. 6(4):362–371.
  • Cutler J. 1991. Putative virulence factors of Candida albicans. Annu Rev Microbiol. 45:187–218.
  • Delattin N, De Brucker K, Vandamme K, Meert E, Marchand A, Chaltin P, Cammue BPA, Thevissen K. 2014. Repurposing as a means to increase the activity of amphotericin B and caspofungin against Candida albicans biofilms. J Antimicrob Chemother. 69(4):1035–1044.
  • Dixon EF, Hall RA. 2015. Noisy neighbourhoods: quorum sensing in fungal-polymicrobial infections. Cell Microbiol. 17(10):1431–1441.
  • Dong G, Liu Y, Wu Y, Tu J, Chen S, Liu N, Sheng C. 2018. Novel non-peptidic small molecule inhibitors of secreted aspartic protease 2 (SAP2) for the treatment of resistant fungal infections. Chem Commun. 54(96):13535–13538.
  • Dos Santos ALS. 2010. HIV aspartyl protease inhibitors as promising compounds against Candida albicans André Luis Souza dos Santos. World J Biol Chem. 1(2):21–30.
  • Eldesouky HE, Mayhoub A, Hazbun TR, Seleema MN. 2018. Reversal of azole resistance in Candida albicans by sulfa antibacterial drugs. Antimicrob Agents Chemother. 62:1–12.
  • Escobar IE, Possamai Rossatto FC, Kim SM, Kang MH, Kim W, Mylonakis E. 2021. Repurposing kinase inhibitor bay 11-7085 to combat Staphylococcus aureus and Candida albicans biofilms. Front Pharmacol. 12:675300.
  • Farha MA, Brown ED. 2019. Drug repurposing for antimicrobial discovery. Nat Microbiol. 4(4):565–577.
  • Fazly A, Jain C, Dehner AC, Issi L, Lilly EA, Ali A, Cao H, Fidel PL, Rao RP, Kaufman PD. 2013. Chemical screening identifies filastatin, a small molecule inhibitor of Candida albicans adhesion, morphogenesis, and pathogenesis. Proc Natl Acad Sci USA. 110(33):13594–13599.
  • Gácser A, Stehr F, Kröger C, Kredics L, Schäfer W, Nosanchuk JD. 2007. Lipase 8 affects the pathogenesis of Candida albicans. Infect Immun. 75(10):4710–4718.
  • Gao M, Wang H, Zhu L. 2016. Quercetin assists fluconazole to inhibit biofilm formations of fluconazole-resistant Candida albicans in in vitro and in vivo antifungal managements of vulvovaginal candidiasis. Cell Physiol Biochem. 40(3–4):727–742.
  • Garcia C, Burgain A, Chaillot J, Pic É, Khemiri I, Sellam A. 2018. A phenotypic small-molecule screen identifies halogenated salicylanilides as inhibitors of fungal morphogenesis, biofilm formation and host cell invasion. Sci Rep. 8:1–15.
  • Ghannoum MA. 2000. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev. 13(1):122–143.
  • Ghannoum MA, Rice LB. 1999. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev. 12(4):501–517.
  • Gintjee TJ, Donnelley MA, Thompson GR. 2020. Aspiring antifungals: review of current antifungal pipeline developments. JoF. 6(1):28.
  • Girardot M, Imbert C. 2016. Natural sources as innovative solutions against fungal biofilms. Adv Exp Med Biol. 931:105–125.
  • Grainha TRR, Jorge PAS, Pérez-Pérez M, Rodríguez GP, Pereira MOBO, Lourenço AMG. 2018. Exploring anti-quorum sensing and anti-virulence based strategies to fight Candida albicans infections: an in silico approach. FEMS Yeast Res. 18:1–11.
  • Han TL, Cannon RD, Villas-Bôas SG. 2011. The metabolic basis of Candida albicans morphogenesis and quorum sensing. Fungal Genet Biol. 48(8):747–763.
  • Handler N, Wolkerstorfer A, Buschmann H. 2016. Selective optimization of side activities: an alternative and promising strategy for lead generation. In: Holenz J, editor. Lead generation: methods and strategies (Methods & principles in medicinal chemistry). Wiley.
  • Haque F, Alfatah M, Ganesan K, Bhattacharyya MS. 2016. Inhibitory effect of sophorolipid on Candida albicans biofilm formation and hyphal growth. Sci Rep. 6:1–11.
  • Hube B, Sanglard D, Odds FC, Hess D, Monod M, Schäfer W, Brown AJ, Gow NA. 1997. Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun. 65(9):3529–3538.
  • Hughes JP, Rees S, Kalindjian SB, Philpott KL. 2011. Principles of early drug discovery. Br J Pharmacol. 162(6):1239–1249.
  • Ji C, Liu N, Tu J, Li Z, Han G, Li J, Sheng C. 2020. Drug repurposing of haloperidol: discovery of new benzocyclane derivatives as potent antifungal agents against cryptococcosis and candidiasis. ACS Infect Dis. 6(5):768–786.
  • Kanchanapiboon J, Kongsa U, Pattamadilok D, Kamponchaidet S, Wachisunthon D, Poonsatha S, Tuntoaw S. 2020. Boesenbergia rotunda extract inhibits Candida albicans biofilm formation by pinostrobin and pinocembrin. J Ethnopharmacol. 261:113193.
  • Kim DJ, Lee MW, Choi JS, Lee SG, Park JY, Kim SW. 2017. Inhibitory activity of hinokitiol against biofilm formation in fluconazole-resistant Candida species. PLOS One 12:e0171244.
  • Kim W, Zhu W, Hendricks GL, Van Tyne D, Steele AD, Keohane CE, Fricke N, Conery AL, Shen S, Pan W, et al. 2018. A new class of synthetic retinoid antibiotics effective against bacterial persisters. Nature. 556(7699):103–107.
  • Kornitzer D. 2019. Regulation of Candida albicans hyphal morphogenesis by endogenous signals. J Fungi. 5.DOI:10.3390/jof5010021.
  • Korting HC, Schaller M, Eder G, Hamm G, Böhmer U, Hube B. 1999. Effects of the human immunodeficiency virus (HIV) proteinase inhibitors saquinavir and indinavir on in vitro activities of secreted aspartyl proteinases of Candida albicans isolates from HIV-infected patients. Antimicrob Agents Chemother. 43(8):2038–2042.
  • Kulkarny VV, Chavez-Dozal A, Rane HS, Jahng M, Bernardo SM, Parra KJ, Lee SA. 2014. Quinacrine inhibits Candida albicans growth and filamentation at neutral ph. Antimicrob Agents Chemother. 58(12):7501–7509.
  • Kumar A, Dhamgaye S, Maurya IK, Singh A, Sharma M, Prasad R. 2014. Curcumin targets cell wall integrity via calcineurin-mediated signaling in Candida albicans. Antimicrob Agents Chemother. 58(1):167–175.
  • LaFleur MD, Lucumi E, Napper AD, Diamond SL, Lewis K. 2011. Novel high-throughput screen against Candida albicans identifies antifungal potentiators and agents effective against biofilms. J Antimicrob Chemother. 66(4):820–826.
  • Lee J-H, Kim Y-G, Choi P, Ham J, Park JG, Lee J. 2018. Antibiofilm and antivirulence activities of 6-gingerol and 6-shogaol against Candida albicans due to hyphal inhibition. Front Cell Infect Microbiol. 8:299.
  • Lee J-H, Kim Y-G, Khadke SK, Lee J. 2021. Antibiofilm and antifungal activities of medium-chain fatty acids against Candida albicans via mimicking of the quorum-sensing molecule farnesol. Microb Biotechnol. 14(4):1353–1366.
  • Lee J-H, Kim Y-G, Khadke SK, Yamano A, Watanabe A, Lee J. 2019. Inhibition of biofilm formation by Candida albicans and polymicrobial microorganisms by nepodin via hyphal-growth suppression. ACS Infect Dis. 5(7):1177–1187.
  • Lin J-N, Lin C-C, Lai C-H, Yang Y-L, Chen H-T, Weng H-C, Hsieh L-Y, Kuo Y-C, Lauderdale T-L, Tseng F-C, et al. 2013. Predisposing factors for oropharyngeal colonization of yeasts in human immunodeficiency virus-infected patients: a prospective cross-sectional study. J Microbiol Immunol Infect. 46(2):129–135.
  • Lindsay AK, Piispanen AE, Hogan DA, Nancy CD. 2012. Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans. Eukaryot Cell. 11:1–16.
  • Lohse MB, Ennis CL, Hartooni N, Johnson AD, Nobile CJ. 2020. A screen for small molecules to target Candida albicans biofilms. J Fungi. 7(1):9.
  • Lohse MB, Gulati M, Craik CS, Johnson AD, Nobile CJ. 2020. Combination of antifungal drugs and protease inhibitors prevent Candida albicans biofilm formation and disrupt mature biofilms. Front Microbiol. 11:1027.
  • Lohse MB, Gulati M, Johnson AD, Nobile CJ. 2018. Development and regulation of single- and multi-species Candida albicans biofilms. Nat Rev Microbiol. 16(1):19–31.
  • Lv Z, Chu Y, Wang Y. 2015. HIV protease inhibitors: a review of molecular selectivity and toxicity. HIV AIDS. 7:95–104.
  • Mamouei Z, Alqarihi A, Singh S, Xu S, Mansour MK, Ibrahim AS, Uppuluri P. 2018. Alexidine dihydrochloride has broad-spectrum activities against diverse fungal pathogens. mSphere. 3(5):1–11.
  • Manoharan RK, Lee J-H, Kim Y-G, Kim S-I, Lee J. 2017. Inhibitory effects of the essential oils α-longipinene and linalool on biofilm formation and hyphal growth of Candida albicans. Biofouling. 33(2):143–155.
  • Manoharan RK, Lee J-H, Lee J. 2017. Antibiofilm and antihyphal activities of cedar leaf essential oil, camphor, and fenchone derivatives against Candida albicans. Front Microbiol. 8:1476.
  • Manoharan RK, Lee J-H, Lee J. 2018. Efficacy of 7-benzyloxyindole and other halogenated indoles to inhibit Candida albicans biofilm and hyphal formation. Microb Biotechnol. 11(6):1060–1069.
  • Mayer FL, Wilson D, Hube B. 2013. Candida albicans pathogenicity mechanisms. Virulence. 4(2):119–128.
  • Messier C, Epifano F, Genovese S, Grenier D. 2011. Inhibition of Candida albicans biofilm formation and yeast-hyphal transition by 4-hydroxycordoin. Phytomedicine. 18(5):380–383.
  • Montoya MC, Beattie S, Alden KM, Krysan DJ. 2020. Derivatives of the antimalarial drug mefloquine are broad-spectrum antifungal molecules with activity against drug-resistant clinical isolates. Antimicrob Agents Chemother. 64:e02331-19.
  • Moran C, Grussemeyer CA, Spalding JR, Benjamin DK, Reed SD. 2009. Candida albicans and non-albicans bloodstream infections in adult and pediatric patients: comparison of mortality and costs. Pediatr Infect Dis J. 28(5):433–435.
  • Muhammed M, Arvanitis M, Mylonakis E. 2016. Whole animal HTS of small molecules for antifungal compounds. Expert Opin Drug Discov. 11(2):177–184.
  • Muthamil S, Prasath KG, Priya A, Precilla P, Pandian SK. 2020. Global proteomic analysis deciphers the mechanism of action of plant derived oleic acid against Candida albicans virulence and biofilm formation. Sci Rep. 10(1):5113.
  • Naglik JR, Challacombe SJ, Hube B. 2003. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 67(3):400–428.
  • Nile C, Falleni M, Cirasola D, Alghamdi A, Anderson OF, Delaney C, Ramage G, Ottaviano E, Tosi D, Bulfamante G, et al. 2019. Repurposing pilocarpine hydrochloride for treatment of Candida albicans infections. mSphere. 4(1):1–14.
  • Nithyanand P, Beema Shafreen RM, Muthamil S, Karutha Pandian S. 2015. Usnic acid inhibits biofilm formation and virulent morphological traits of Candida albicans. Microbiol Res. 179:20–28.
  • Nobile CJ, Ennis CL, Hartooni N, Johnson AD, Lohse MB. 2020. A selective serotonin reuptake inhibitor, a proton pump inhibitor, and two calcium channel blockers inhibit Candida albicans biofilms. Microorganisms. 8(5):756.
  • Nogueira MF, Istel F, Jenull S, Walker LA, Gow NA, Lion T. 2017. Quantitative analysis of candida cell wall components by flow cytometry with triple-fluorescence staining. J Microbiol Mod Tech. 2:1–9.
  • Ohlmeyer M, Zhou M-M. 2010. Integration of small-molecule discovery in academic biomedical research. Mt Sinai J Med. 77(4):350–357.
  • Padder SA, Prasad R, Shah AH. 2018. Quorum sensing: a less known mode of communication among fungi. Microbiol Res. 210:51–58.
  • Palella FJ, Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, Aschman DJ, Holmberg SD. 1998. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med. 338(13):853–860.
  • Palmer GE, Kelly MN, Sturtevant JE. 2005. The Candida albicans vacuole is required for differentiation and efficient macrophage killing. Eukaryot Cell. 4(10):1677–1686.
  • Paula SB, Morey AT, Santos JP, Santos PM, Gameiro DG, Kerbauy G, Sena EM, Ueda LT, Carneiro M, Pinge-Filho P, et al. 2015. Oral Candida colonization in HIV-infected patients in Londrina-PR, Brazil: antifungal susceptibility and virulence factors. J Infect Dev Ctries. 9:1350–1359.
  • Perea S, López-Ribot JL, Kirkpatrick WR, McAtee RK, Santillán RA, Martínez M, Calabrese D, Sanglard D, Patterson TF. 2001. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother. 45(10):2676–2684.
  • Pericolini E, Gabrielli E, Amacker M, Kasper L, Roselletti E, Luciano E, Sabbatini S, Kaeser M, Moser C, Hube B, et al. 2015. Secretory aspartyl proteinases cause vaginitis and can mediate vaginitis caused by Candida albicans in mice. MBio. 6(3):e00724.
  • Perlroth J, Choi B, Spellberg B. 2007. Nosocomial fungal infections: epidemiology, diagnosis, and treatment. Med Mycol. 45(4):321–346.
  • Pierce CG, Chaturvedi AK, Lazzell AL, Powell AT, Saville SP, McHardy SF, Lopez-Ribot JL. 2015. A novel small molecule inhibitor of Candida albicans biofilm formation, filamentation and virulence with low potential for the development of resistance. NPJ Biofilms Microbiomes. 1(1):1–8.
  • Pierce CG, Lopez-Ribot JL. 2013. Candidiasis drug discovery and development: new approaches targeting virulence for discovering and identifying new drugs. Expert Opin Drug Discov. 8(9):1117–1126.
  • Piispanen AE, Bonnefoi O, Carden S, Deveau A, Bassilana M, Hogan DA. 2011. Roles of Ras1 membrane localization during Candida albicans hyphal growth and farnesol response. Eukaryot Cell. 10(11):1473–1484.
  • Polke M, Hube B, Jacobsen ID. 2015. Candida survival strategies. Adv Appl Microbiol. 91:139–235.
  • Priya A, Pandian SK. 2020. Piperine impedes biofilm formation and hyphal morphogenesis of Candida albicans. Front Microbiol. 11:756.
  • Puri S, Kumar R, Rojas IG, Salvatori O, Edgertonb M. 2019. Iron chelator deferasirox reduces Candida albicans invasion. Antimicrob Agents Chemother. 63:1–14.
  • Rajasekar V, Darne P, Prabhune A, Kao RYT, Solomon AP, Ramage G, Samaranayake L, Neelakantan P. 2021. A curcumin-sophorolipid nanocomplex inhibits Candida albicans filamentation and biofilm development. Colloids Surf B Biointerfaces. 200:111617.
  • Rajasekharan SK, Byun J, Lee J. 2018. Inhibitory effects of deoxynivalenol on pathogenesis of Candida albicans. J Appl Microbiol. 125(5):1266–1275.
  • Rajasekharan SK, Lee JH, Lee J. 2019. Aripiprazole repurposed as an inhibitor of biofilm formation and sterol biosynthesis in multidrug-resistant Candida albicans. Int J Antimicrob Agents. 54(4):518–523.
  • Rajasekharan SK, Lee J-H, Zhao Y, Lee J. 2018. The mycotoxin zearalenone hinders Candida albicans biofilm formation and hyphal morphogenesis. Indian J Microbiol. 58(1):19–27.
  • Romo JA, Zhang H, Cai H, Kadosh D, Koehler JR, Saville SP, Wang Y, Lopez-Ribot JL. 2019. Global transcriptomic analysis of the Candida albicans response to treatment with a novel inhibitor of filamentation. mSphere. 4:1–12.
  • Romo JA, Pierce CG, Chaturvedi AK, Lazzell AL, McHardy SF, Saville SP, Lopez-Ribot JL. 2017. Development of anti-virulence approaches for candidiasis via a novel series of small-molecule inhibitors of Candida albicans filamentation. MBio. 8(6):1–16.
  • Romo JA, Pierce CG, Esqueda M, Hung C-Y, Saville SP, Lopez-Ribot JL. 2018. In vitro characterization of a biaryl amide anti-virulence compound targeting Candida albicans filamentation and biofilm formation. Front Cell Infect Microbiol. 8:217–227.
  • Rudrapal M. 2020. Drug repurposing (DR): an emerging approach in drug discovery. In: Khairnar SJ, editor. Chapter 1. London: IntechOpen.
  • Saito H, Tamura M, Imai K, Ishigami T, Ochiai K. 2013. Catechin inhibits Candida albicans dimorphism by disrupting Cek1 phosphorylation and cAMP synthesis. Microb Pathog. 56:16–20.
  • Shahzad M, Sherry L, Rajendran R, Edwards CA, Combet E, Ramage G. 2014. Utilising polyphenols for the clinical management of Candida albicans biofilms. Int J Antimicrob Agents. 44(3):269–273.
  • Shareck J, Belhumeur P. 2011. Modulation of morphogenesis in Candida albicans by various small molecules. Eukaryot Cell. 10(8):1004–1012.
  • Sheehan DJ, Hitchcock CA, Sibley CM. 1999. Current and emerging azole antifungal agents. Clin Microbiol Rev. 12(1):40–79.
  • Siles SA, Srinivasan A, Pierce CG, Lopez-Ribot JL, Ramasubramanian AK. 2013. High-throughput screening of a collection of known pharmacologically active small compounds for identification of Candida albicans biofilm inhibitors. Antimicrob Agents Chemother. 57(8):3681–3687.
  • Singh BN, Upreti DK, Singh BR, Pandey G, Verma S, Roy S, Naqvi AH, Rawat AKS. 2015. Quercetin sensitizes fluconazole-resistant Candida albicans to induce apoptotic cell death by modulating quorum sensing. Antimicrob Agents Chemother. 59(4):2153–2168.
  • Singla RK, Dubey AK. 2019. Molecules and metabolites from natural products as inhibitors of biofilm in Candida spp. pathogens. Curr Top Med Chem. 19(28):2567–2578.
  • Soliman S, Alnajdy D, El-Keblawy AA, Mosa KA, Khoder G, Noreddin AM. 2017. Plants' natural products as alternative promising anti-candida drugs. Pharmacogn Rev. 11(22):104–122.
  • Sucher AJ, Chahine EB, Balcer HE. 2009. Echinocandins: the newest class of antifungals. Ann Pharmacother. 43(10):1647–1657.
  • Sun H, Tawa G, Wallqvist A. 2012. Classification of scaffold-hopping approaches. Drug Discov Today. 17(7–8):310–324.
  • Tournu H, Carroll J, Latimer B, Dragoi A-M, Dykes S, Cardelli J, Peters TL, Eberle KE, Palmer GE. 2017. Identification of small molecules that disrupt vacuolar function in the pathogen Candida albicans. PLOS One. 12(2):e0171145.
  • Truong T, Suriyanarayanan T, Zeng G, Le TD, Liu L, Li J, Tong C, Wang Y, Seneviratne CJ. 2018. Use of haploid model of Candida albicans to uncover mechanism of action of a novel antifungal agent. Front Cell Infect Microbiol. 8:164.
  • Tsang PWK, Bandara HMHN, Fong WP. 2012. Purpurin suppresses Candida albicans biofilm formation and hyphal development. PLOS One. 7(11):e50866.
  • Tsui C, Kong EF, Jabra-Rizk MA. 2016. Pathogenesis of Candida albicans biofilm. Pathog Dis. 74(4):ftw018.
  • Underhill DM, Iliev ID. 2014. The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol. 14(6):405–416.
  • Uppuluri P, Chaturvedi AK, Srinivasan A, Banerjee M, Ramasubramaniam AK, Köhler JR, Kadosh D, Lopez-Ribot JL. 2010. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLOS Pathog. 6(3):e1000828.
  • Vargas-Blanco D. 2017. A pre-therapeutic coating for medical devices that prevents the attachment of Candida albicans. Ann Clin Microbiol Antimicrob. 16:1–12.
  • Vasudevan S, Prabhune AA. 2018. Photophysical studies on curcumin-sophorolipid nanostructures: applications in quorum quenching and imaging. R Soc Open Sci. 5(2):170865.
  • Ventola CL. 2015. The antibiotic resistance crisis: part 1: causes and threats. P T. 40(4):277–283.
  • Mavor A, Thewes S, Hube B. 2005. Systemic fungal infections caused by Candida species: epidemiology, infection process and virulence attributes. Curr Drug Targets. 6(8):863–874.
  • Vila T, Lopez-Ribot JL. 2017. Screening the pathogen box for identification of Candida albicans biofilm inhibitors. Antimicrob Agents Chemother. 61:e02006-16.
  • Vila T, Romo JA, Pierce CG, McHardy SF, Saville SP, Lopez-Ribot JL. 2017. Targeting Candida albicans filamentation for antifungal drug development. Virulence. 8(2):150–158.
  • Wang X, You J, King JB, Powell DR, Cichewicz RH. 2012. Waikialoid A suppresses hyphal morphogenesis and inhibits biofilm development in pathogenic Candida albicans. J Nat Prod. 75(4):707–715.
  • WHO. 2016. United Nations meeting on antimicrobial resistance. Bull World Health Organ. 94:638–639.
  • Wiederhold NP, Grabinski JL, Garcia-Effron G, Perlin DS, Lee SA. 2008. Pyrosequencing to detect mutations in FKS1 that confer reduced echinocandin susceptibility in Candida albicans. Antimicrob Agents Chemother. 52(11):4145–4148.
  • Wong SSW, Kao RYT, Yuen KY, Wang Y, Yang D, Samaranayake LP, Seneviratne CJ. 2014. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections. PLOS One. 9(1):e85836.
  • Xu K, Wang JL, Chu MP, Jia C. 2019. Activity of coumarin against Candida albicans biofilms. J Mycol Med. 29(1):28–34.
  • Yang YL. 2003. Virulence factors of Candida species. J Microbiol Immunol Infect. 36(4):223–228.
  • Yang L, Liu X, Sui Y, Ma Z, Feng X, Wang F, Ma T. 2019. Lycorine hydrochloride inhibits the virulence traits of Candida albicans. Biomed Res Int. 2019:1–10.
  • Ying L, Mingzhu S, Mingju Y, Ye X, Yuechen W, Ying C, Bing G, Hongchun L, Zuobin Z. 2019. The inhibition of trans-cinnamaldehyde on the virulence of Candida albicans via enhancing farnesol secretion with low potential for the development of resistance. Biochem Biophys Res Commun. 515(4):544–550.
  • Zhang L, Chang W, Sun B, Groh M, Speicher A, Lou H. 2011. Bisbibenzyls, a new type of antifungal agent, inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in Candida albicans. PLOS One. 6(12):e28953.
  • Zhao L-X, Li D-D, Hu D-D, Hu G-H, Yan L, Wang Y, Jiang Y-Y. 2013. Effect of tetrandrine against Candida albicans biofilms. PLoS One. 8(11):e79671.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.