1,664
Views
290
CrossRef citations to date
0
Altmetric
Review Article

The endocrine effects of mercury in humans and wildlife

, &
Pages 228-269 | Received 27 May 2008, Accepted 28 May 2008, Published online: 01 Mar 2009

References

  • No authors listed. (2007). The Madison declaration on mercury pollution. Ambio 36(1):62–65.
  • Ackerman, J.T., Takekawa, J.Y., Eagles-Smith, C.A., and Iverson, S.A. (2008). Mercury contamination and effects on survival of American avocet and black-necked stilt chicks in San Francisco Bay. Ecotoxicology 17(2):103–116.
  • Adams, D.H. (2004). Total mercury levels in tunas from offshore waters of the Florida Atlantic coast. Mar. Pollut. Bull. 49(7–8):659–663.
  • Agrawal, R., and Chansouria, J.P. (1989). Chronic effects of mercuric chloride ingestion on rat adrenocortical function. Bull. Environ. Contam. Toxicol. 43(3):481–484.
  • Al Damluji, S.F. (1976a). Intoxication due to alkylmercury-treated seed—1971–72 outbreak in Iraq: Clinical aspects. Bull. World Health Organ. 53(Suppl 6):5–81.
  • Al Damluji, S.F. (1976b). Organomercury poisoning in Iraq: History prior to the 1971–72 outbreak. Bull. World Health Organ. 53(Suppl 1):1–13.
  • Alabi, N.S., Whanger, P.D., and Wu, A.S. (1985). Interactive effects of organic and inorganic selenium with cadmium and mercury on spermatozoal oxygen consumption and motility in vitro. Biol. Reprod. 33(4):911–919.
  • Albers, P.H., Koterba, M.T., Rossmann, R., Link, W.A., French, J.B., Bennett, R.S., and Bauer, W.C. (2007). Effects of methylmercury on reproduction in American kestrels. Environ. Toxicol. Chem. 26(9):1856–1866.
  • Alcser, K.H., Brix, K.A., Fine, L.J., Kallenbach, L.R., and Wolfe, R.A. (1989). Occupational mercury exposure and male reproductive health. Am. J. Ind. Med. 15(5):517–529.
  • Amin-Zaki, L., Elhassani, S., Majeed, M.A., Clarkson, T.W., Doherty, R.A., Greenwood, M.R., Giovanoli-Jakubczak, T. (1976). Perinatal methylmercury poisoning in Iraq. Am J Dis Child 130:1070–1076.
  • Amin-Zaki, L., Elhassani, S., Majeed, M.A., Clarkson, T.W., Doherty, R.A., and Greenwood, M. (1974). Intra-uterine methylmercury poisoning in Iraq. Pediatrics 54(5):587–595.
  • Amin-Zaki, L., Elhassani, S.B., Majeed, M.A., Clarkson, T.W., Doherty, R.A., and Greenwood, M.R. (1980). Methylmercury poisoning in mothers and their suckling infants. Dev. Toxicol. Environ. Sci. 8:75–78.
  • Amin-Zaki, L., Majeed, M.A., Greenwood, M.R., Elhassani, S.B., Clarkson, T.W., and Doherty, R.A. (1981). Methylmercury poisoning in the Iraqi suckling infant: A longitudinal study over five years. J. Appl. Toxicol. 1(4):210–214.
  • Anderson, P., Reid, S.D., Moon, T.W., and Perry, S.F. (1991). Metabolic effects associated with chronically elevated cortisol in rainbow trout (Oncorhynchus mykiss). Can. J. Fisheries Aquat. Sci. 48:1811–1817.
  • Anway, M.D., and Skinner, M.K. (2006). Epigenetic transgenerational actions of endocrine disruptors. Endocrinology 147(6 Suppl):S43–S49.
  • Ask, K., Akesson, A., Berglund, M., and Vahter, M. (2002). Inorganic mercury and methylmercury in placentas of Swedish women. Environ. Health. Perspect. 110(5):523–526.
  • Bajaj, J.S., Misra, A., Rajalakshmi, M., and Madan, R. (1993). Environmental release of chemicals and reproductive ecology. Environ. Health. Perspect. 101(Suppl 2):125–130.
  • Baker, J.R., Ranson, R.M., and Tynen, J. (1939). The chemical composition of volpar contraceptive products. Eugen. Rev. 30:261–268.
  • Bakir, F., Damluji, S.F., Amin-Zaki, L., Murtadha, M., Khalidi, A., al Rawi, N.Y., Tikriti, S., Dahahir, H.I., Clarkson, T.W., Smith, J.C., and Doherty, R.A. (1973). Methylmercury poisoning in Iraq. Science 181(96):230–241.
  • Bank, M.S., Loftin, C.S., and Jung, R.E. (2005). Mercury bioaccumulation in northern two-lined salamanders from streams in the northeastern United States. Ecotoxicology 14(1–2):181–191.
  • Bank, M.S., Crocker, J., Connery, B., and Amirbahman, A. (2007). Mercury bioaccumulation in green frog (Rana clamitans) and bullfrog (Rana catesbeiana) tadpoles from Acadia National Park, Maine, USA. Environ. Toxicol. Chem. 26(1):118–125.
  • Bano, Y., and Hasan, M. (1990). Histopathological lesions in the body organs of catfish (Heteropneustes fossilis) following mercury intoxication. J. Environ. Sci. Health B25(1):67–85.
  • Barnes, D.M., Sykes, D.B., and Miller, D.S. (1999). Multiple effects of mercuric chloride on hexose transport in Xenopus oocytes. Biochim. Biophys. Acta 1419:289–298.
  • Barr, J.F. (1986). Population dynamics of the common loon (Gavia immer) associated with mercury contaminated waters in Northwestern Ontario. Canadian Wildlife Service Occasional Paper 561–23.
  • Barregard, L., Lindstedt, G., Schutz, A., and Sallsten, G. (1994). Endocrine function in mercury exposed chloralkali workers. Occup. Environ. Med. 51(8):536–540.
  • Barregard, L., Svalander, C., Schutz, A., Westberg, G., Sallsten, G., Blohme, I., Molne, J., Attman, P.O., and Haglind, P. (1999). Cadmium, mercury, and lead in kidney cortex of the general Swedish population: A study of biopsies from living kidney donors. Environ. Health Perspect. 107(11):867–871.
  • Barregard, L., Horvat, M., Mazzolai, B., Sallsten, G., Gibicar, D., Fajon, V., Dibona, S., Munthe, J., Wangberg, I., and Haeger, E.M. (2006). Urinary mercury in people living near point sources of mercury emissions. Sci. Total Environ. 368(1):326–334.
  • Barton, B.A., and Iwama, G.K. (1991). Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis. 1:3–26.
  • Beckmen, K.B., Duffy, L.K., Zhang, X., and Pitcher, K.W. (2002). Mercury concentrations in the fur of steller sea lions and northern fur seals from Alaska. Mar. Pollut. Bull. 44(10):1130–1135.
  • Bellas, J., Vasquez, E., and Beiras, R. (2001). Toxicity of Hg, Cu, Cd, and Cr on early developmental stages of Ciona intestinalis (Chordata, Ascidiacea) with potential application in marine water quality assessment. Water Res. 35(12):2905–2912.
  • Bergeron, C.M., Husak, J.E., Unrine, J.M., Romanek, C.S., and Hopkins, W.A. (2007). Influence of feeding ecology on blood mercury concentrations in four species of turtles. Environ. Toxicol. Chem. 26(8):1733–1741.
  • Berlin, M., and Ullberg, S. (1963). Accumulation and retention of mercury in the mouse. III. An autoradiographic comparison of methylmercuric dicyandiamide with inorganic mercury. Arch. Environ. Health 6:610–616.
  • Bhan, A., and Sarkar, N.N. (2005). Mercury in the environment: Effect on health and reproduction. Rev. Environ. Health 20(1):39–56.
  • Bhatnagar, M.K., Vrablic, O.E., and Yamashiro, S. (1982). Ultrastructural alterations of the liver of Pekin ducks fed methyl mercury-containing diets. J. Toxicol. Environ. Health 10:981–1003.
  • Bhattacharya, T., Bhattacharya, S., Ray, A.K., and Dey, S. (1989). Influence of industrial pollutants on thyroid function in Channa puntatus (Bloch). Indian J. Exp. Biol. 27:65–68.
  • Birge, W.J., Black, J.A., Westerman, A.G., and Hudson, J.E. (1979). The effects of mercury on reproduction of fish and amphibians.In, (Ed.) Nriagu J. O., The Biogeochemistry of Mercury in the Environment. Elsevier/North Holland, New York, pp. 629–655.
  • Bleau, H., Daniel, C., Chevalier, G., van Tra, H., and Hontela, A. (1996). Effects of acute exposure to mercury chloride and methylmercury on plasma cortisol, T3, T4, glucose and liver glycogen in rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 34:221–235.
  • Borg, K., Wanntorp, H., Erne, K., and Hanko, E. (1969). Alkyl mercury poisoning in terrestrial Swedish wildlife. Viltrevy 6:301–379.
  • Borg, K. (1987). A review of wildlife diseases from Scandinavia. J. Wildl. Dis. 23(4):527–533.
  • Boudou, A., and Ribeyre, F. (1985). Experimental study of trophic contamination of Salmo gairdneri to mercury compounds HgCl2 and MeHg—Analysis at the organism and organ level. Water Air Soil Pollut. 26:137–148.
  • Branco, V., Canario, J., Vale, C., Raimundo, J., and Reis, C. (2004). Total and organic mercury concentrations in muscle tissue of the blue shark (Prionace glauca L.1758) from the Northeast Atlantic. Mar. Pollut. Bull. 49(9–10):871–874.
  • Branco, V., Vale, C., Canario, J., and Santos, M.N. (2007). Mercury and selenium in blue shark (Prionace glauca, L. 1758) and swordfish (Xiphias gladius, L. 1758) from two areas of the Atlantic Ocean. Environ. Pollut. 150(3):373–380.
  • Brasso, R.L., and Cristol, D.A. (2008). Effects of mercury exposure on the reproductive success of tree swallows (Tachycineta bicolor). Ecotoxicology 17(2):133–141.
  • Braune, B.M., and Gaskin, D.E. (1987). Mercury levels in Bonaparte’s Gulls (Larus philadelphia) during autumn molt in thew Quody Region, New Brunswick, Canada. Arch. Environ. Contam. Toxicol. 16:539–549.
  • Brodsky, J.B., Cohen, E.N., Whitcher, C., Brown, B.W. Jr., and Wu, M.L. (1985). Occupational exposure to mercury in dentistry and pregnancy outcome. J. Am. Dent. Assoc. 111(5):779–780.
  • Burbacher, T.M., Monnett, C., Grant, K.S., and Mottet, N.K. (1984). Methylmercury exposure and reproductive dysfunction in the nonhuman primate. Toxicol. Appl. Pharmacol. 75(1):18–24.
  • Burger, J. (1994). Heavy metals in avian eggshells: another excretion methods. J. Toxicol. Environ. Health 41:207–220.
  • Burger, J., and Gochfeld, M. (1997). Risk, mercury levels and birds: relating adverse laboratory effects to field biomonitoring. Environ. Res. 75:160–172.
  • Burger, J., and Gochfeld, M. (2003). Spatial and temporal patterns in metal levels in eggs of common terns (Sterna hirundo) in New Jersey. Sci. Total Environ. 31:191–100.
  • Burton, G.V., and Meikle, A.W. (1980). Acute and chronic methyl mercury poisoning impairs rat adrenal and testicular function. J. Toxicol. Environ. Health 6(3):597–606.
  • Camara, V.M., and Corey, G. (1994). Epidemiologic surveillance for substances banned from use in agriculture. Bull. Pan. Am. Health Organ. 28(4):355–359.
  • Campbell, L.M., Norstrom, R.J., Hobson, K.A., Muir, D.C.G., Backus, S., and Fisk, A.T. (2005). Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Sci. Total Environ. 351–352:247–263.
  • Cassano, G.B., Amaducci, L., and Viola, P.L. (1966). Distribution of mercury (Hg203) in the brain of chronically intoxicated mice (autoradiographic study). Riv. Patol. Nerv. Ment. 87(2):214–225.
  • Chemical Branch, United Nations Environment Programme. (2008). The global atmospheric mercury assessment: sources, emissions, and transport. United Nations Environment Programme. Geneva, Switzerland. Here is the weblink to this report: http://www.chem.unep.ch/MERCURY/Atmospheric_Emissions/UNEP%20SUMMARY%20REPORT%20-%20final%20for%20WEB%20Dec%202008.pdf.
  • Choe, S.Y., Kim, S.J., Kim, H.G., Lee, J.H., Choi, Y., Lee, H., and Kim, Y. (2003). Evaluation of estrogenicity of major heavy metals. Sci. Total Environ. 312(1–3):15–21.
  • Chowdhury, A.R., and Arora, U. (1982). Toxic effect of mercury on testes in different animal species. Indian J. Physiol. Pharmacol. 26(3):246–249.
  • Chowdhury, A.R., Vachhrajani, K.D., and Chatterjee, B.B. (1985). Inhibition of 3 beta-hydroxy-delta 5-steroid dehydrogenase in rat testicular tissue by mercuric chloride. Toxicol. Lett. 27(1–3):45–49.
  • Chowdhury, A.R., Makhija, S., and Vachhrajani, K.D. (1989). Methylmercury induced biochemical and histochemical alterations in rat testis. Indian J. Physiol. Pharmacol. 33(4):219–222.
  • Choy, C.M., Lam, C.W., Cheung, L.T., Briton-Jones, C.M., Cheung, L.P., and Haines, C.J. (2002a). Infertility, blood mercury concentrations and dietary seafood consumption: a case–control study. BJOG. 109(10):1121–1125.
  • Choy, C.M., Yeung, Q.S., Briton-Jones, C.M., Cheung, C.K., Lam, C.W., and Haines, C.J. (2002b). Relationship between semen parameters and mercury concentrations in blood and in seminal fluid from subfertile males in Hong Kong. Fertil. Steril. 78(2):426–428.
  • Clarkson, T.W., Magos, L., and Greenwood, M.R. (1972). The transport of elemental mercury into fetal tissues. Biol. Neonate. 21(3):239–244.
  • Clement, J.C. (1985). Hormonal consequences of organophsphate poinsoning. Fund. Appl. Toxicol. 5(Suppl):S66–S77.
  • Colborn, T., vom Saal, F.S., and Soto, A.M. (1993). Developmental effects of endocrine disrupting chemicals in wildlife and humans. Environ. Health Perspect. 101:378–384.
  • Cooper, D.Y., Schleyer, H., and Rosenthal, O. (1968). Role of cytochrome p-450 in mixed function oxidases using the reconstituted steroid 11beta-hydroxylase of adrenal mitochondria as an example. Hoppe Seylers Z. Physiol. Chem. 349(11):1592–1598.
  • Cordier, S., Deplan, F., Mandereau, L., and Hemon, D. (1991). Paternal exposure to mercury and spontaneous abortions. Br. J. Ind. Med. 48(6):375–381.
  • Corrosion Doctors., (2008). mercury. Pigment and organic fungicide production. Available at http://www.corrosion-doctors.org/Elements-Toxic/Mercury-pigments.htm.
  • Curley, A., Sedlak, V.A., Girling, E.D., Hawk, R.E., Barthel, W.F., Pierce, P.E., and Likosky, W.H. (1971). Organic mercury identified as the cause of poisoning in humans and hogs. Science 172(978):65–67.
  • Davis, B.J., Price, H.C., O’Connor, R.W., Fernando, R., Rowland, A.S., and Morgan, D.L. (2001). Mercury vapor and female reproductive toxicity. Toxicol. Sci. 59(2):291–296.
  • Day, R.D., Christopher, S.J., Becker, P.R., and Whitaker, D.W. (2005). Monitoring mercury in the loggerhead sea turtle, Caretta caretta. Environ. Sci. Technol. 39(2):437–446.
  • De Rosis, F., Anastasio, S.P., Selvaggi, L., Beltrame, A., and Moriani, G. (1985). Female reproductive health in two lamp factories: effects of exposure to inorganic mercury vapour and stress factors. Br. J. Ind. Med. 42(7):488–494.
  • Deforest, D.K., Brix, K.V., and Adams, W.J. (2007). Assessing metal bioaccumulation in aquatic environments: The inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat. Toxicol. 84(2):236–246.
  • Dehn, L.A., Follmann, E.H., Thomas, D.L., Sheffield, G.G., Rosa, C., Duffy, L.K., and O’Hara, T.M. (2006). Trophic relationships in an Arctic food web and implications for trace metal transfer. Sci. Total Environ. 362(1–3):103–123.
  • Derban, L.K. (1974). Outbreak of food poisoning due to alkyl-mercury fungicide on southern Ghana state farm. Arch. Environ. Health 28(1):49–52.
  • Dey, S., and Bhattacharya, S. (1989). Ovarian damage to Channa punctatus after chronic exposure to low concentrations of Elsan, mercury and ammonia. Ecotoxicol. Environ. Saf. 17:247–257.
  • Dickman, M.D., Leung, C.K., and Leong, M.K. (1998). Hong Kong male subfertility links to mercury in human hair and fish. Sci. Total Environ. 214:165–174.
  • Doherty, R.A., Gates, A.H., Sewell, C.E., and Freer, C. (1978). Methylmercury sexual dimorphism in the mouse. Experientia 34(7):871–872.
  • Donaldson, E.M. (1981). The pituitary-interrenal axis as an indicator of stress in fish. In, (Ed.) Pickering A. D., Stress and fish. Academic Press, London, pp. 11–48.
  • Donaldson, E.M. (1990). Reproductive indices as measures of the effects of environmental stressors in fish. Am. Fisheries Soc. Symp. 8:109–122.
  • Dopp, E., Hartmann, L.M., Florea, A.M., Rettenmeier, A.W., and Hirner, A.V. (2004). Environmental distribution, analysis, and toxicity of organometal(loid) compounds. Crit. Rev. Toxicol. 34(3):301–333.
  • Drasch, G., Mail, d.S., Schlosser, C., and Roider, G. (2000). Content of non-mercury-associated selenium in human tissues. Biol. Trace Elem. Res. 77(3):219–230.
  • Drevnick, P.E., and Sandheinrich, M.B. (2003). Effects of dietary methylmercury on reproductive endocrinology of fathead minnows. Environ. Sci. Technol. 4390–4396.
  • Drevnick, P.E., Sandheinrich, M.B., and Oris, J.T. (2006). Increased ovarian follicular apoptosis in fathead minnows (Pimephales promelas) exposed to dietary methylmercury. Aquat. Toxicol. 79:49–54.
  • Ellingsen, D.G., Efskind, J., Haug, E., Thomassen, Y., Martinsen, I., and Gaarder, P.I. (2000). Effects of low mercury vapour exposure on the thyroid function in chloralkali workers. J. Appl. Toxicol. 20(6):483–489.
  • Erfurth, E.M., Schutz, A., Nilsson, A., Barregard, L., and Skerfving, S. (1990). Normal pituitary hormone response to thyrotrophin and gonadotrophin releasing hormones in subjects exposed to elemental mercury vapour. Br. J. Ind. Med. 47(9):639–644.
  • Ernst, E., and Lauritsen, J.G. (1991). Effect of organic and inorganic mercury on human sperm motility. Pharmacol. Toxicol. 68(6):440–444.
  • Ernst, E., Moller-Madsen, B., and Danscher, G. (1991a). Ultrastructural demonstration of mercury in Sertoli and Leydig cells of the rat following methyl mercuric chloride or mercuric chloride treatment. Reprod. Toxicol. 5(3):205–209.
  • Ernst, E., Christensen, M., and Lauritsen, J.G. (1991b). In vitro exposure of human spermatozoa to mercuric chloride—A histochemical study. Prog. Histochem. Cytochem. 23(1–4):263–268.
  • Ernst, E., Christensen, M.K., and Poulsen, E.H. (1993). Mercury in the rat hypothalamic arcuate nucleus and median eminence after mercury vapor exposure. Exp. Mol. Pathol. 58(3):205–214.
  • Evers, D.C., Kaplan, J.D., Meyer, M.W., Reaman, P.S., Brazelton, W.E., Major, A., Burgess, N., and Scheuhammer, A.M. (1998). Geographic trend in mercury measured in common loon feathers and blood. Environ. Toxicol. Chem. 17:173–183.
  • Evers, D.C., Taylor, K.M., Major, A., Taylor, R.J., Poppenga, R.H., and Scheuhammer, A.M. (2003). Common loon eggs as indicators of methylmercury availability in North America. Ecotoxicology 12(1–4):69–81.
  • Evers, D.C., Burgess, N.M., Champoux, L., Hoskins, B., Major, A., Goodale, W.M., Taylor, R.J., Poppenga, R., and Daigle, T. (2005). Patterns and interpretation of mercury exposure in freshwater avian communities in northeastern North America. Ecotoxicology 14:193–222.
  • Facemire, C.F., Gross, T.S., and Guillette, L.J. Jr. (1995). Reproductive impairment in the Florida panther: Nature or nurture? Environ. Health Perspect. 103(Suppl 4):79–86.
  • Falnoga, I., Tusek-Znidaric, M., Horvat, M., and Stegnar, P. (2000). Mercury, selenium, and cadmium in human autopsy samples from Idrija residents and mercury mine workers. Environ. Res. 84(3):211–218.
  • Food and Drug Administration. (2006). Mercury in drug and biologic products. Available at http://www.fda.gov/cder/fdama/mercury300.htm.
  • Fimreite, N., and Karstad, L. (1971). Effects of dietary methyl mercury on Red-tailed hawks. J. Wildl. Manage. 35:293–330.
  • Fimreite, N. (1974). Mercury contamination of aquatic birds in northwestern Ontario. J. Wildl. Manage. 38:120–131.
  • Finley, M.T., and Stendell, R.C. (1978). Survival and reproductive success of black ducks fed methyl mercury. Environ. Pollut. 16:51–64.
  • Fisk, A.T., de Wit, C.A., Wayland, M., Kuzyk, Z.Z., Burgess, N., Letcher, R., Braune, B., Norstrom, R., Blum, S.P., Sandau, C., Lie, E., Larsen, H.J., Skaare, J.U., and Muir, D.C. (2005). An assessment of the toxicological significance of anthropogenic contaminants in Canadian arctic wildlife. Sci. Total Environ. 351–352:57–93.
  • Fjeld, E., Haugen, T.O., and Vollestad, L.A. (1998). Permanent impairment in the feeding behavior of grayling (Thymallus thymallus) exposed to methylmercury during embryogenesis. Sci. Total Environ. 213:247–254.
  • Flouriot, G., Pakdel, F., Ducouret, B., and Valotaire, Y. (1995). Influence of xenobiotics on rainbow trout liver estrogen receptor and vitellogenin gene expression. J. Mol. Endocrinol. 15(2):143–151.
  • Forsyth, D.S., Casey, V., Dabeka, R.W., and McKenzie, A. (2004). Methylmercury levels in predatory fish species marketed in Canada. Food Addit. Contam. 21(9):849–856.
  • Fournier, F., Karasov, W.H., Kenow, K.P., Meyer, M.W., and Hines, R.K. (2002). The oral bioavailability of methylmercury in common loon (Gavia immer) chicks. Compar. Biochem. Physiol. Part A. 133:703–714.
  • Fowler, B.A. (1972). Ultrastructural evidence for nephropathy induced by long-term exposure tosmall amounts of methyl mercury. Science 175(23):780–781.
  • Francis, D.R., and Bennett, K.A. (1994). Addition data on mercury accumulation in Northern Michigan river otters. J. Freshw. Ecol. 9(1):1–5.
  • Frederick, P.C., Spalding, M.G., Sepulveda, M.S., Williams, G., Bouton, S., Lynch, H., Arrecis, J., Loerzel, S., and Hoffman, D. (1997). Effects of environmental mercury exposure on reproduction, health and survival of wading birds in the Florida Everglades. Final report to the US Fish and Wildlife Service.
  • Freeman, H.C., Sangalang, G., Uthe, J.F., and Ronald, K. (1975). Steroidogenesis in vitro in the Harp seal (Pagophilus groenlandicus) without and with methyl mercury treatment in vivo. Environ. Physiol. Biochem. 5:428–439.
  • Friedmann, A.S., Watzin, M.C., Brinck-Johnson, T., and Leiter, J.C. (1996). Low levels of dietary methylmercury inhibit growth and gonadal development in juvenile walleye (Stizostedion vitreum). Aquat. Toxicol. 35:265–278.
  • Friedmann, A.S., Costain, E.K., MacLatchy, D.L., Stansley, W., and Washuta, E.J. (2002). Effect of mercury on general and reproductive health of largemouth bass (Micropterus salmonoides) from three lakes in New Jersey. Ecotoxicol. Environ. Saf. 52:117–122.
  • Futatsuka, M., and Eto, K. (1989). A case–control study of mortality in Minamata disease based on pathological findings. Kumamoto Med. J. 41(3):73–79.
  • Galster, W.A. (1976). Mercury in Alaskan Eskimo mothers and infants. Environ. Health Perspect. 15:135–140.
  • Gavrilescu, N., Lancranjan, I., Muica, N., and Popescu, H. (1968). Changes of thyroid function in chronic mercury poisoning [in Romanian]. Med. Interna (Bucur) 20(4):443–453.
  • Gerhard, I., Monga, B., Waldbrenner, A., and Runnebaum, B. (1998). Heavy metals and fertility. J. Toxicol. Environ. Health A. 54(8):593–611.
  • Gerhard, I., Becker, T., Eggert-Kruse, W., Klinga, K., and Runnebaum, B. (1991). Thyroid and ovarian function in infertile women. Hum. Reprod. 6(3):338–345.
  • Gilbert, S.G., Rice, D.C., and Burbacher, T.M. (1996). Fixed interval/fixed ratio performance in adult monkeys exposed in utero to methylmercury. Neurotoxicol. Teratol. 18(5):539–546.
  • Gimenez-Llort, L., Ahlbom, E., Dare, E., Vahter, M., Ogren, S., and Ceccatelli, S. (2001). Prenatal exposure to methylmercury changes dopamine-modulated motor activity during early ontogeny: age and gender-dependent effects. Environ. Toxicol. Pharmacol. 9(3):61–70.
  • Goldman, M., and Blackburn, P. (1979). The effect of mercuric chloride and thyroid function in the rat. Toxicol. Appl. Pharamcol. 48:49–55.
  • Goulet, S., Dore, F.Y., and Mirault, M.E. (2003). Neurobehavioral changes in mice chronically exposed to methylmercury during fetal and early postnatal development. Neurotoxicol. Teratol. 25(3):335–347.
  • Grady, R.R., Kitay, J.I., Spyker, J.M., and Avery, D.L. (1978). Postnatal endocrine dysfunction induced by prenatal methylmercury or cadmium exposure in mice. J. Environ. Pathol. Toxicol. 1(3):187–197.
  • Grandjean, P., Weihe, P., White, R.F., and Debes, F. (1998). Cognitive performance of children prenatally exposed to “safe” levels of methylmercury. Environ. Res. 77(2):165–172.
  • Grandjean, P., Murata, K., Budtz-Jorgensen, E., and Weihe, P. (2004). Cardiac autonomic activity in methylmercury neurotoxicity: 14-year follow-up of a Faroese birth cohort. J. Pediatr. 144(2):169–176.
  • Greeley, M.S. Jr. (2002). Biological indicators of aquatic ecosystem stress. Adams S.M. (ed) American Fisheries Society, pp. 321–378.
  • Greenfield, N., Ponticorvo, L., Chasalow, F., and Lieberman, S. (1980). Activation and inhibition of the adrenal steroid 21-hydroxylation system by cytosolic constituents: influence of glutathione, glutathione reductase, and ascorbate. Arch. Biochem. Biophys. 200(1):232–244.
  • Grim, K.C., Monfort, S., Tan, S.W., Rattner, B.A., Gerould, S., Beasley, V., Aguirre, A., and Rowles, T. (2007). Results of a wildlife toxicology workshop held by the Smithsonian Institution—Identification and prioritization of problem statements. Abstract Book: SETAC North America 28th Annual Meeting. P142–. Available at: http://www.setac.org/milwaukee/pdf/2007_Abstract_Book.pdf
  • Guallar, E., Sanz-Gallardo, M.I., van’t Veer, P., Bode, P., Aro, A., Gomez-Aracena, J., Kark, J.D., Riemersma, R.A., Martin-Moreno, J.M., and Kok, F.J. (2002). Mercury, fish oils, and the risk of myocardial infarction. N. Engl. J. Med. 347(22):1747–1754.
  • Guarino, A.M., Anderson, J.B., Pritchard, J.B., and Rall, D.P. (1976). Tissue distribution of (14C) methyl mercury in the lobster, Homarus americanus. J. Toxicol. Environ. Health 2(1):13–24.
  • Hahn, L.J., Kloiber, R., Vimy, M.J., Takahashi, Y., and Lorscheider, F.L. (1989). Dental “silver” tooth fillings: A source of mercury exposure revealed by whole-body image scan and tissue analysis. FASEB J. 3(14):2641–2646.
  • Hahn, L.J., Kloiber, R., Leininger, R.W., Vimy, M.J., and Lorscheider, F.L. (1990). Whole-body imaging of the distribution of mercury released from dental fillings into monkey tissues. FASEB J. 4(14):3256–3260.
  • Hails, A.J. (1983). Temporal changes in fat and protein levels in the tropical Anadantid Trichogaster pectoralis (Regan). J. Fish Biol. 22:1075–1081.
  • Haines, T.A., May, T.W., Finlayson, R.T., and Mierzykowski, S.E. (2003). Factors affecting food chain transfer of mercury in the vicinity of the Nyanza Site, Sudbury River, Massachusetts. Environ. Monit. Assess. 86(3):211–232.
  • Hammerschmidt, C.R., and Sandheinrich, M.B. (2005). Maternal diet during oogenesis is the major source of methylmercury in fisy embryos. Environ. Sci. Technol. 39:3580–3584.
  • Hammerschmidt, C.R., Wiener, J.G., Frazier, B.E., and Rada, R.G. (1999). Methylmercury content of eggs in yellow perch related to maternal exposure in four Wisconcin lakes. Environ. Sci. Technol. 33:999–1003.
  • Hammerschmidt, C.R., Sandheinrich, M.B., Wiener, J.G., and Rada, R.G. (2002). Effects of dietary methylmercury on reproduction of fathead minnows. Environ. Sci. Technol. 36:877–883.
  • Hanf, V., Forstmann, A., Costea, J.E., Schieferstein, G., Fischer, I., and Schweinsberg, F. (1996). Mercury in urine and ejaculate in husbands of barren couples. Toxicol. Lett. 88(1–3):227–231.
  • Harada, Y., Miyamoto, Y., Nonaka, I., Ohta, S., and Ninomiya, T. (1968). Electroencephalographic studies of Minamata disease in children. Dev. Med. Child Neurol. 10(2):257–258.
  • Harada, M. (1976). Intrauterine poisoning. Bull. Inst. Constitut. Me., Kumamoto Univ. XXV(Suppl):2–31.
  • Harada, M. (1978). Congenital Minamata disease: intrauterine methylmercury poisoning. Teratology 18(2):285–288.
  • Harber, M., and Jennings, R. (1964). Sex differences in renal toxicity of mercury in the rat. Nature 201:1235.
  • Harber, M., and Jennings, R. (1965). Renal response of the rat to mercury: The effect of sex and sex hormones. Arch. Pathol. 79:218–222.
  • Heath, J.A., and Frederick, P.C. (2005). Relationships among mercury concentrations, hormones, and nesting effort of white ibises (Eudocimus albus) in the Florida Everglades. Auk. 122(1):255–267.
  • Heinz, G.H. (1974). Effects of low dietary levels of methyl mercury on mallard reproduction. Bull. Environ. Contamin. Toxicol. 11:386–392.
  • Heinz, G.H. (1976a). Methylmercury: Second generation reproductive and behavioral effects on mallard ducks. J. Wildl. Manage. 40:710–715.
  • Heinz, G.H. (1976b). Methylmercury: Second-year feeding effects on mallard reproduction and duckling behavior. J. Wildl. Manage. 40:82–90.
  • Heinz, G.H. (1979). Methylmercury: Reproductive and behavioral effects on three generations of mallard ducks. J. Wildl. Manage. 43:394–401.
  • Heinz, G.H., and Hoffman, D.J. (2003a). Predicting mercury in mallard ducklings from mercury in chorioallantoic membranes. Bull. Environ. Contamin. Toxicol. 70:1242–1246.
  • Heinz, G.H., and Hoffman, D. (2003b). Embryotoxic thresholds of mercury: estimates from individual mallard eggs. Arch. Environ. Contamin. Toxicol. 44:257–264.
  • Hess, R.A. (2000). Oestrogen in fluid transport in efferent ducts of the male reproductive tract. Rev. Reprod. 5(2):84–92.
  • Hess, R.A., Gist, D.H., Bunick, D., Lubahn, D.B., Farrell, A., Bahr, J., Cooke, P.S., and Greene, G.L. (1997a). Estrogen receptor (alpha and beta) expression in the excurrent ducts of the adult male rat reproductive tract. J. Androl. 18(6):602–611.
  • Hess, R.A., Bunick, D., Lee, K.H., Bahr, J., Taylor, J.A., Korach, K.S., and Lubahn, D.B. (1997b). A role for oestrogens in the male reproductive system. Nature 390(6659):509–512.
  • Hirano, M., Mitsumori, K., Maita, K., and Shirasu, Y. (1986). Further carcinogenicity study on methylmercury chloride in ICR mice. Nippon Juigaku Zasshi 48(1):127–135.
  • Hirano, M., Ueda, H., Mitsumori, K., Maita, K., and Shirasu, Y. (1988). Hormonal influence on carcinogenicity of methylmercury in mice. Nippon Juigaku Zasshi 50(4):886–893.
  • Hirayama, K., and Yasutake, A. (1986). Sex and age differences in mercury distribution and excretion in methylmercury-administered mice. J. Toxicol. Environ. Health 18(1):49–60.
  • Hirayama, K., Yasutake, A., and Inoue, M. (1987). Effect of sex hormones on the fate of methylmercury and on glutathione metabolism in mice. Biochem. Pharmacol. 36(12):1919–1924.
  • Hoffman, D.J., and Moore, J.M. (1979). Teratogenic effects of external egg applications of methylmercury in the mallard, Anas platyrhynchos. Teratology 20:453–462.
  • Homma-Takeda, S., Kugenuma, Y., Iwamuro, T., Kumagai, Y., and Shimojo, N. (2001). Impairment of spermatogenesis in rats by methylmercury: involvement of stage- and cell- specific germ cell apoptosis. Toxicology 169(1):25–35.
  • Hontela, A., Rasmussen, J.B., Audet, C., and Chevalier, G. (1992). Impaired cortisol stress response in fish from environments polluted by PAHs, PCBs, and mercury. Arch. Environ. Contam. Toxicol. 22(3):278–283.
  • Hontela, A., Dumont, P., Duclos, D., and Fortin, R. (1995). Endocrine and metabolic dysfunction in yellow perch, Perca flavescens, exposed to organic contaminants and heavy metals in the St. Lawrence River. Environ. Toxicol. Chem. 14(4):725–731.
  • Hsu, M.J., Selvaraj, K., and Agoramoorthy, G. (2006). Taiwan’s industrial heavy metal pollution threatens terrestrial biota. Environ. Pollut. 143(2):327–334.
  • Hultman, P., and Nielsen, J.B. (2001). The effect of dose, gender, and non-H-2 genes in murine mercury-induced autoimmunity. J. Autoimmun. 17(1):27–37.
  • Ilan, Z., and Yaron, Z. (1980). Stimulation of cortisol secretion in vitro from the interrenal tissue of the cichlid fish, Sarotherodon aureus, by adrenocorticotropin or cyclic AMP. J. Endocrinol. 86:269–277.
  • Inouye, M., Kajiwara, Y., and Hirayama, K. (1986). Dose- and sex-dependent alterations in mercury distribution in fetal mice following methylmercury exposure. J. Toxicol. Environ. Health 19(3):425–435.
  • Irukayama, Kondo, Kal, Fujiki, and Tajima (1962). An organomercury compound extracted from sludge at the acetaldehyde plant of the Minamata factory [in Japanese]. Nisshin Igaku Jpn. J. Med. Prog. 49:536–541.
  • Jagiello, G., and Lin, J.S. (1973). An assessment of the effects of mercury on the meiosis of mouse ova. Mutat. Res. 17(1):93–99.
  • Janssens, E., Dauwe, T., Pinxten, R., Bervoets, L., Blust, R., and Eens, M. (2003). Effects of heavy metal exposure on the condition and health of nestlings of the great tit (Parus major), a small songbird species. Environ. Pollut. 126:267–274.
  • Johnston, T.A., Bodaly, R.A., Latif, M.A., Fudge, R.J.P., and Strange, N.E. (2001). Intra- and interpopulation variability in maternal transfer of mercury to eggs of walleye (Stizostedion vitreum). Aquat. Toxicol. 52:73–85.
  • Joy, K.P., and Kirubagaran, R. (1989). An immunocytochemical study on the pituitary gonadotropic and thyrotropic cells in the catfish Clarias batrachas. Biol. Struct. Morphog. 2:67–70.
  • Kabuto, M. (1986). Acute endocrine effects of a single administration of methylmercury chloride (MMC) in rats. Endocrinol. Jpn. 33(5):683–690.
  • Kabuto, M. (1991). Chronic effects of methylmercury on the urinary excretion of catecholamines and their responses to hypoglycemic stress. Arch. Toxicol. 65(2):164–167.
  • Kajiwara, Y., and Inouye, M. (1986). Effects of methylmercury and mercuric chloride on preimplantation mouse embryos in vivo. Teratology 33(2):231–237.
  • Kajiwara, Y., and Inouye, M. (1992). Inhibition of implantation caused by methylmercury and mercuric chloride in mouse embryos in vivo. Bull. Environ. Contam. Toxicol. 49(4):541–546.
  • Kawada, J., Nishida, M., Yoshimura, Y., and Mitani, K. (1980). Effects of organic and inorganic mercurials on thyroidal functions. J. Pharmacobiodyn. 3(3):149–159.
  • Keck, C., Bergmann, M., Ernst, E., Muller, C., Kliesch, S., and Nieschlag, E. (1993). Autometallographic detection of mercury in testicular tissue of an infertile man exposed to mercury vapor. Reprod. Toxicol. 7(5):469–475.
  • Kenow, K.P., Gutreuter, S., Hines, R.K., Meyer, M.W., Fournier, F., and Karasov, W.H. (2003). Effects of methyl mercury exposure on the growth of juvenile common loons. Ecotoxicology 12(1–4):171–182.
  • Khan, A.T., and Weis, J.S. (1987). Effects of methylmercury on sperm and egg viability of two populations of killifish (F. heteroclitus). Arch. Environ. Contamin. Toxicol. 16:499–505.
  • Khan, A.T., and Weis, J.S. (1993). Differential effects of organic and inorganic mercury on the micropyle of the eggs of F. heteroclitus. Environ. Biol. Fish. 37:323–327.
  • Khera, K.S. (1973). Reproductive capability of male rats and mice treated with methyl mercury. Toxicol. Appl. Pharmacol. 24(2):167–177.
  • Kirubagaran, R., and Joy, K.P. (1988a). Toxic effects of mercuric chloride, methylmercuric chloride, and emisan 6 (an organic mercurial fungicide) on ovarian recrudescence in the catfish Clarias batrachus (L.). Bull. Environ. Contamin. Toxicol. 41:902–909.
  • Kirubagaran, R., and Joy, K.P. (1988b). Inhibition of testicular 3-hydroxy-5D-steroid dehydrogenase (3b-HSD) activity in catfish Clarias batrachus (L.) by mercurials. Indian J. Exp. Biol. 26:907–908.
  • Kirubagaran, R., and Joy, K.P. (1989). Toxic effects of mercurials on thyroid function of the catfish, Clarias batrachus (L.). Ecotoxicol. Environ. Saf. 17:265–271.
  • Kirubagaran, R., and Joy, K.P. (1990). Changes in brain monoamine levels and monoamine oxidase activity in the catfish, Clarias batrachus, during chronic treatments with mercurials. Bull. Environ. Contamin. Toxicol. 45:88–91.
  • Kirubagaran, R., and Joy, K.P. (1991). Changes in adrenocorticol-pituitary activity in the catfish, Clarias batrachus (L.), after mercury treatment. Ecotoxicol. Environ. Saf. 22:36–44.
  • Kirubagaran, R., and Joy, K.P. (1992). Toxic effects of mercury on testicular activity in the freshwater teleost, Clarias batrachus (L.). J. Fish Biol. 41:305–315.
  • Kirubagaran, R., and Joy, K.P. (1994). Effects of short-term exposure to methylmercury chloride and its withdrawal on serum levels of thyroid hormones in the catfish Clarias batrachus. Bull. Environ. Contamin. Toxicol. 53166–170.
  • Kirubagaran, R., and Joy, K.P. (1995). Changes in lipid profiles and 32P-uptake into phosphoprotein (vitellogenin) content of the ovary and liver in the female catfish, Clarias batrachus, exposed to mercury. Biomed. Environ. Sci. 8:35–44.
  • Kitamura, S. (1971). Epidemiology of Minamata disease—Epidemiological approach to the organomercury poisoning [in Japanese]. Saishin Igaku 26(10):1966–1972.
  • Klaper, R., Rees, C.B., Drevnick, P., Weber, D., Sandheinrich, M., and Carvan, M.J. (2006). Gene expression changes related to endocrine function and decline in reproduction in fathead minnow (Pimephales promelas) after dietary methylmercury exposure. Environ. Health Perspect. 114(9):1337–1343.
  • Kojadinovic, J., Potier, M., Le Corre, M., Cosson, R.P., and Bustamante, P. (2006). Mercury content in commercial pelagic fish and its risk assessment in the Western Indian Ocean. Sci. Total Environ. 366(2–3):688–700.
  • Kojadinovic, J., Potier, M., Le Corre, M., Cosson, R.P., and Bustamante, P. (2007). Bioaccumulation of trace elements in pelagic fish from the Western Indian Ocean. Environ. Pollut. 146(2):548–566.
  • Koos, B.J., and Longo, L.D. (1976). Mercury toxicity in the pregnant woman, fetus, and newborn infant. A review. Am. J. Obstet. Gynecol. 126(3):390–409.
  • Kosta, L., Byrne, A.R., and Zelenko, V. (1975). Correlation between selenium and mercury in man following exposure to inorganic mercury. Nature 254(5497):238–239.
  • Kurland, L., Faro, S.N., and Siedler (1961). Minemata disease. Public Health Rep. 76:671–672.
  • Lamperti, A., and Niewenhuis, R. (1976). The effects of mercury on the structure and function of the hypothalamo-pituitary axis in the hamster. Cell Tissue Res. 170(3):315–324.
  • Lamperti, A.A., and Printz, R.H. (1973). Effects of mercuric chloride on the reproductive cycle of the female hamster. Biol. Reprod. 8(3):378–387.
  • Lamperti, A.A., and Printz, R.H. (1974). Localization, accumulation, and toxic effects of mercuric chloride on the reproductive axis of the female hamster. Biol. Reprod. 11(2):180–186.
  • Langworth, S., Rojdmark, S., and Akesson, A. (1990). Normal pituitary hormone response to thyrotrophin releasing hormone in dental personnel exposed to mercury. Swed. Dent. J. 14(2):101–103.
  • Latif, M.A., Bodaly, R.A., Johnston, T.A., and Fudge, R.J.P. (2001). Effects of environmental and maternally derived methylmercury on the embryonic larval stages of walleye (Stizostedion vitreum). Environ. Pollut. 111:139–148.
  • Lauwerys, R., Buchet, J.P., Roels, H., and Hubermont, G. (1978). Placental transfer of lead, mercury, cadmium, and carbon monoxide in women. I. Comparison of the frequency distributions of the biological indices in maternal and umbilical cord blood. Environ. Res. 15(2):278–289.
  • Leblond, V.S., and Hontela, A. (1999). Effects of in vitro exposures to cadmium, mercury, zinc, and 1-(2-chlorophenyl)-1-1(4-chlorophenyl)-2,2-dichloroethane on steroidogenesis by dispersed interrenal cells of rainbow trout (Oncorhynchus mykiss). Toxicol. Appl. Pharamcol. 157:16–22.
  • Lee, I.P., and Dixon, R.L. (1975). Effects of mercury on spermatogenesis studied by velocity sedimentation cell separation and serial mating. J. Pharmacol. Exp. Ther. 194(1):171–181.
  • Leung, T.Y., Choy, C.M., Yim, S.F., Lam, C.W., and Haines, C.J. (2001). Whole blood mercury concentrations in sub-fertile men in Hong Kong. Aust. NZ J. Obstet. Gynaecol. 41(1):75–77.
  • Lewis, S.A., and Furness, R.W. (1993). The role of eggs in mercury excretion by quail Coturnix coturnix and the implications for monitoring mercury pollution by analysis of feathers. Ecotoxicology 2:55–64.
  • Lewis, S.A., Becker, P.H., and Furness, R.W. (1993). Mercury levels in eggs, tissues, and feathers of herring gulls Larus argentatus from the German Wadden Sea Coast. Environ. Pollut. 80(3):293–299.
  • Licata, P., Trombetta, D., Cristani, M., Naccari, C., Martino, D., Calo, M., and Naccari, F. (2005). Heavy metals in liver and muscle of bluefin tunA (Thunnus thynnus) caught in the Straits of Messina (Sicily, Italy). Environ. Monit. Assess. 107(1–3):239–248.
  • Lie, A., Gundersen, N., and Korsgaard, K.J. (1982). Mercury in urine.—Sex, age and geographic differences in a reference population. Scand. J. Work Environ. Health. 8(2):129–133.
  • Likosky, W.H., Hinman, A.R., and Barthel, W.F. (1970). Organic mercury poisoning, New Mexico. Neurology 20(4):401.
  • Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., Pirrone, N., Prestbo, E., and Seigneur, C. (2007). A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio 36(1):19–32.
  • Lindbohm, M.L., Ylostalo, P., Sallmen, M., Henriks-Eckerman, M.L., Nurminen, T., Forss, H., and Taskinen, H. (2007). Occupational exposure in dentistry and miscarriage. Occup. Environ. Med. 64(2):127–133.
  • Lockhart, W.L., Uthe, J.F., Kenney, A.R., and Mehrle, P.M. (1972). Methylmercury in Northern Pike (Esox lucius): Distribution, elimination, and some biochemical characteristics of contaminated fish. J. Fisheries Res. Board Can. 29:1519–1523.
  • Lommel, A., Kruse, H., Muller, E., and Wassermann, O. (1992). Organochlorine pesticides, octachlorostyrene, and mercury in the blood of Elb River residents, Germany. Arch. Environ. Contam. Toxicol. 22(1):14–20.
  • Lundholm, C.E. (1995). Effects of methyl mercury at different dose regimes on eggshell formation and some biochemical characteristics of the eggshell gland mucosa of the domestic fowl. Compar. Biochem. Physiol. Part C. 110(1):23–28.
  • Magos, L. (1993). Paternal exposure to chemicals before conception. BMJ 307(6913):1214.
  • Magos, L., Peristianis, G.C., Clarkson, T.W., Brown, A., Preston, S., and Snowden, R.T. (1981). Comparative study of the sensitivity of male and female rats to methylmercury. Arch. Toxicol. 48(1):11–20.
  • Mahaffey, K.R. (2005). Mercury exposure: Medical and public health issues. Trans. Am. Clin. Climatol. Assoc. 116:127–153.
  • Mahaffey, K.R., and Mergler, D. (1998). Blood levels of total and organic mercury in residents of the upper St. Lawrence River basin, Quebec: association with age, gender, and fish consumption. Environ. Res. 77(2):104–114.
  • Mahaffey, K.R., Clickner, R.P., and Bodurow, C.C. (2004). Blood organic mercury and dietary mercury intake: National Health and Nutrition Examination Survey, 1999 and 2000. Environ. Health Perspect. 112(5):562–570.
  • Maretta, M., Marettova, E., Skrobanek, P., and Ledec, M. (1995). Effect of mercury on the seminiferous epithelium of the fowl testis. Acta Vet. Hung. 43(1):153–161.
  • Martin, M.B., Reiter, R., Pham, T., Avellanet, Y.R., Camara, J., Lahm, M., Pentecost, E., Pratap, K., Gilmore, B.A., Divekar, S., Dagata, R.S., Bull, J.L., and Stoica, A. (2003). Estrogen-like activity of metals in MCF-7 breast cancer cells. Endocrinology 144(6):2425–2436.
  • Mason, H.J., Hindell, P., and Williams, N.R. (2001). Biological monitoring and exposure to mercury. Occup. Med. (Lond). 51(1):2–11.
  • Matsumoto, H., Koya, G., and Takeuchi, T. (1965). Fetal Minamata disease. A neuropathological study of two cases of intrauterine intoxication by a methyl mercury compound. J. Neuropathol. Exp. Neurol. 24(4):563–574.
  • Matta, M.B., Linse, J., Cairncross, C., Francendese, L., and Kocan, R.M. (2001). Reproductive and transgenerational effects of methylmercury or Aroclor 1268 on Fundulus heteroclitus. Environ. Toxicol. Chem. 20(2):327–335.
  • Maule, A.G., Tripp, R.A., Kaattari, S.A., and Schreck, C.B. (1989). Stress alters immune function and disease resistance in chinook salmon (Oncorhynchus tshawytscha). J. Endocrinol. 120:135–142.
  • McDowell, M.A., Dillon, C.F., Osterloh, J., Bolger, P.M., Pellizzari, E., Fernando, R., Montes, d.O., Schober, S.E., Sinks, T., Jones, R.L., and Mahaffey, K.R. (2004). Hair mercury levels in US children and women of childbearing age: reference range data from NHANES 1999–2000. Environ. Health Perspect. 112(11):1165–1171.
  • McFarland, R.B., and Reigel, H. (1978). Chronic mercury poisoning from a single brief exposure. J. Occup. Med. 20(8):532–534.
  • McGregor, A.J., and Mason, H.J. (1991). Occupational mercury vapour exposure and testicular, pituitary and thyroid endocrine function. Hum. Exp. Toxicol. 10(3):199–203.
  • McKenney, C.L., Jr., and Costlow, J.D., Jr. (1982). The effects of mercury on developing larvae of Rhithropanopeus harrisii (Gould). Estuarine Coast. Shelf Stud. 14:193–213.
  • McKeown-Eyssen, G.E., Ruedy, J., and Neims, A. (1983b). Methyl mercury exposure in northern Quebec. II. Neurologic findings in children. Am. J. Epidemiol. 118(4):470–479.
  • McKim, J.M., Olson, G.F., Holcombe, G.W., and Hunt, E.P. (1976). Long-term effects of methylmercuric chloride on three generations of Brook Trout (Salvelinus fontinalis): toxicity, accumulation, distribution, and elimination. J. Fisheries Res. Board Can. 33:2726–2739.
  • McLachlan, J.A. (2001). Environmental signaling: What embryos and evolution teach us about endocrine disrupting chemicals. Endocr. Rev. 22(3):319–341.
  • McNeil, S.I., and Bhatnagar, M.K. (1985). Ultrastructure of the testis of Pekin ducks fed methyl mercury chloride: Seminiferous epithelium. Am. J. Vet. Res. 46(9):2019–2025.
  • McVey, M.J., Cooke, G.M., Curran, I.H., Chan, H.M., Kubow, S., Lok, E., and Mehta, R. (2007). An investigation of the effects of methylmercury in rats fed different dietary fats and proteins: Testicular steroidogenic enzymes and serum testosterone levels. Food Chem. Toxicol. 46(1):270–279.
  • Meador, J.P., Ernest, D., Hohn, A.A., Tilbury, K., Gorzelany, J., Worthy, G., and Stein, J.E. (1999). Comparison of elements in bottlenose dolphins stranded on the beaches of Texas and Florida in the Gulf of Mexico over a one-year period. Arch. Environ. Contamin. Toxicol. 36:87–98.
  • Mergler, D., Anderson, H.A., Chan, L.H., Mahaffey, K.R., Murray, M., Sakamoto, M., and Stern, A.H. (2007). Methylmercury exposure and health effects in humans: a worldwide concern. Ambio 36(1):3–11.
  • Miettinen, J.K., Rahola, T., Hattula, T., Rissanen, K., and Tillander, M. (1971). Elimination of 203Hg-methylmercury in man. Ann. Clin. Res. 3(2):116–122.
  • Mitsumori, K., Hirano, M., Ueda, H., Maita, K., and Shirasu, Y. (1990). Chronic toxicity and carcinogenicity of methylmercury chloride in B6C3F1 mice. Fundam. Appl. Toxicol. 14(1):179–190.
  • Mochizuki, Y., and Asahara, H. (1978). Effect of mercuric chloride on the thyroid function in rats. Kawasaki Med. J. 4(2):113–119.
  • Mohamed, M.K., Evans, T.C., Mottet, N.K., and Burbacher, T.M. (1986a). Effects of methyl mercury on sperm oxygen consumption. Acta Pharmacol. Toxicol. (Copenh). 58(3):219–224.
  • Mohamed, M.K., Lee, W.I., Mottet, N.K., and Burbacher, T.M. (1986b). Laser light-scattering study of the toxic effects of methylmercury on sperm motility. J. Androl. 7(1):11–15.
  • Mohamed, M.K., Burbacher, T.M., and Mottet, N.K. (1987). Effects of methyl mercury on testicular functions in Macaca fascicularis monkeys. Pharmacol. Toxicol. 60(1):29–36.
  • Moller-Madsen, B., and Thorlacius-Ussing, O. (1986). Accumulation of mercury in the anterior pituitary of rats following oral or intraperitoneal administration of methyl mercury. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 51(4):303–311.
  • Mondal, S., Mukhopadhyay, B., and Bhattacharya, S. (1997). Inorganic mercury binding to fish oocyte plasma membrane induces steroidogenesis and translatable messenger RNA synthesis. Biometals 10:285–190.
  • Monteiro, L.R., and Furness, R.W. (2001). Kinetics, dose-response and excretion of methylmercury in free-living adult Cory’s Shearwaters. Environ. Sci. Technol. 35:739–746.
  • Monteiro-Neto, C., Itavo, R.V., and Moraes, L.E. (2003). Concentrations of heavy metals in Sotalia fluviatilis (Cetacea: Delphinidae) off the coast of Ceara, northeast Brazil. Environ. Pollut. 123(2):319–324.
  • Morris, M.E., Lee, H.J., and Predko, L.M. (2003). Gender differences in the membrane transport of endogenous and exogenous compounds. Pharmacol. Rev. 55(2):229–240.
  • Mulder, K.M., and Kostyniak, P.J. (1985). Involvement of glutathione in the enhanced renal excretion of methyl mercury in CFW Swiss mice. Toxicol. Appl. Pharmacol. 78(3):451–457.
  • Munthe, J., Bodaly, R.A., Branfireun, B.A., Driscoll, C.T., Gilmour, C.C., Harris, R., Horvat, M., Lucotte, M., and Malm, O. (2007). Recovery of mercury-contaminated fisheries. Ambio 36(1):33–44.
  • Naganuma, A., Oda-Urano, N., Tanaka, T., and Imura, N. (1988). Possible role of hepatic glutathione in transport of methylmercury into mouse kidney. Biochem. Pharmacol. 37(2):291–296.
  • Nath, P., and Sundararaj, B.I. (1981a). Isolation and identification of female-specific serum lipophosphoprotein (vitellogenin) in the catfish, Heteropneustes fossilis. Gen. Compar. Endocrinol. 43:184–190.
  • Nath, P., and Sundararaj, B.I. (1981b). Induction of vitellogenesis in the hypophysectomized catfish, Heteropneustes fossilis (Bloch): Effects of piscine and mammalian hormones. Gen. Compar. Endocrinol. 43:191–200.
  • National Research Council. (2000). Toxicological effects of methylmercury. R.E. Crossgrove, Ed.; National Academy Press: Washington, D.C. Available at: http://books.nap.edu/catalog.php?record_id=9899
  • Needleman, H.L., Leviton, A., and Bellinger, D. (1982). Lead-associated intellectual deficit. N. Engl. J. Med. 306(6):367.
  • Newland, M.C., and Reile, P.A. (1999). Blood and brain mercury levels after chronic gestational exposure to methylmercury in rats. Toxicol. Sci. 50(1):106–116.
  • Ng, T.B., and Idler, D.R. (1983). Yolk formation and differentiation in teleost fishes. In: Fish Physiology, Vol. IXA.; W.S. Hoar; D.J. Randall; E.M. Donaldson, Eds.; Academic Press: New York; 373–404.
  • Ng, T.B., and Liu, W.K. (1990). Toxic effect of heavy metals on cells isolated from the rat adrenal and testis. In Vitro Cell Dev. Biol. 26(1):24–28.
  • Nice, H.E., Morritt, D., Crane, M., and Thorndyke, M. (2003). Long-term and transgenerational effects of nonylphenol exposure at a key stage in the development in Crassostrea gigas. Possible endocrine disruption? Mar. Ecol. Prog. Ser. 256:293–300.
  • Nicoletto, P.F., and Hendricks, A.C. (1988). Sexual differences in accumulation of mercury in four species of centrarchid fish. Can. J. Zool. 66:944–949.
  • Nielsen, J.B., and Andersen, O. (1989). Oral mercuric chloride exposure in mice: Effects of dose on intestinal absorption and relative organ distribution. Toxicology 59(1):1–10.
  • Nielsen, J.B., and Andersen, O. (1990). Disposition and retention of mercuric chloride in mice after oral and parenteral administration. J. Toxicol. Environ. Health. 30(3):167–180.
  • Nielsen, J.B., and Andersen, O. (1991a). Methyl mercuric chloride toxicokinetics in mice. I: Effects of strain, sex, route of administration and dose. Pharmacol. Toxicol. 68(3):201–207.
  • Nielsen, J.B., and Andersen, O. (1991b). Methyl mercuric chloride toxicokinetics in mice. II: Sexual differences in whole-body retention and deposition in blood, hair, skin, muscles and fat. Pharmacol. Toxicol. 68(3):208–211.
  • Nielsen, J.B., and Andersen, O. (1995). A comparison of the lactational and transplacental deposition of mercury in offspring from methylmercury-exposed mice. Effect of seleno-L-methionine. Toxicol. Lett. 76(2):165–171.
  • Nielsen, J.B., Andersen, O., and Grandjean, P. (1994). Evaluation of mercury in hair, blood and muscle as biomarkers for methylmercury exposure in male and female mice. Arch. Toxicol. 68(5):317–321.
  • Nielsen, J.B., and Hultman, P. (2002). Mercury-induced autoimmunity in mice. Environ. Health Perspect. 110(Suppl 5):877–881.
  • Niimi, A.J. (1983). Biological and toxicological efects of environmental contaminants in fish and their eggs. Can. J. Fisheries Aquat. Sci. 40:306–312.
  • Nishida, M., Yamamoto, T., Yoshimura, Y., and Kawada, J. (1986). Subacute toxicity of methylmercuric chloride and mercuric chloride on mouse thyroid. J. Pharmacobiodyn. 9(4):331–338.
  • Nishida, M., Muraoka, K., Nishikawa, K., Takagi, T., and Kawada, J. (1989). Differential effects of methylmercuric chloride and mercuric chloride on the histochemistry of rat thyroid peroxidase and the thyroid peroxidase activity of isolated pig thyroid cells. J. Histochem. Cytochem. 37(5):723–727.
  • Nishida, M., Sato, K., and Kawada, J. (1990a). Differential effects of methylmercuric chloride and mercuric chloride on oxidation and iodination reactions catalyzed by thyroid peroxidase. Biochem. Int. 22(2):369–378.
  • Nishida, M., Matsumoto, H., Asano, A., Umazume, K., Yoshimura, Y., and Kawada, J. (1990b). Direct evidence for the presence of methylmercury bound in the thyroid and other organs obtained from mice given methylmercury; differentiation of free and bound methylmercuries in biological materials determined by volatility of methylmercury. Chem. Pharm. Bull. (Tokyo) 38(5):1412–1413.
  • Nishikido, N., Furuyashiki, K., Naganuma, A., Suzuki, T., and Imura, N. (1987). Maternal selenium deficiency enhances the fetolethal toxicity of methyl mercury. Toxicol. Appl. Pharmacol. 88(3):322–328.
  • Nocera, J.J., and Taylor, P.D. (1998). In situ behavioral response of common loons associated with elevated mercury (Hg) exposure. Conserv. Ecol. 210.
  • Nordberg, G.F., and Serenius, F. (1969). Distribution of inorganic mercury in the guinea pig brain. Acta Pharmacol. Toxicol. (Copenh). 27(4):269–283.
  • Norris, D.O., Felt, S.B., Woodling, J.D., and Dores, R.M. (1997). Immunocytochemical and histological differences in the interrenal axis of feral brown trout, Salmo trutta, in metal-contaminated waters. Gen. Comp. Endocrinol. 108(3):343–351.
  • Norris, D.O., Donahue, S., Dores, R.M., Lee, J.K., Maldonado, T.A., Ruth, T., and Woodling, J.D. (1999). Impaired adrenocortical response to stress by brown trout, Salmo trutta, living in metal-contaminated waters of the Eagle River, Colorado. Gen. Comp. Endocrinol. 113(1):1–8.
  • National Toxicology Program (NTP). (1993). Toxicology and carcinogenesis studies of mercuric chloride (CAS No. 7487-94-7) in F344 rats and B6C3F1 mice (gavage studies). Natl. Toxicol. Program. Tech. Rep. Ser. 408:1–260.
  • Nylander, M. (1986). Mercury in pituitary glands of dentists. Lancet 1(8478):442.
  • Nylander, M., and Weiner, J. (1991). Mercury and selenium concentrations and their interrelations in organs from dental staff and the general population. Br. J. Ind. Med. 48(11):729–734.
  • Olfert, S.M. (2006). Reproductive outcomes among dental personnel: A review of selected exposures. J. Can. Dent. Assoc. 72(9):821–825.
  • Oliveira, F.R., Ferreira, J.R., dos Santos, C.M., Macedo, L.E., de Oliveira, R.B., Rodrigues, J.A., do Nascimento, J.L., Faro, L.R., and Diniz, D.L. (2006). Estradiol reduces cumulative mercury and associated disturbances in the hypothalamus–pituitary axis of ovariectomized rats. Ecotoxicol. Environ. Saf. 63(3):488–493.
  • Olsen, A.M. (1984). Synopsis of biological data on the school shark Galeorhinus australis (Macleay 1881). Rome, FAO.
  • Ordonez, J.V., Carrillo, J.A., Miranda, M., and Gale, J.L. (1966). Epidemiologic study of a disease believed to be encephalitis in the region of the highlands of Guatemala [in Spanish]. Bol. Oficina Sanit. Panam. 60(6):510–519.
  • Orisakwe, O.E., Afonne, O.J., Nwobodo, E., Asomugha, L., and Dioka, C.E. (2001). Low-dose mercury induces testicular damage protected by zinc in mice. Eur. J. Obstet. Gynecol. Reprod. Biol. 95(1):92–96.
  • Pamphlett, R., Ewan, K.B., McQuilty, R., and Waley, P. (1997). Gender differences in the uptake of inorganic mercury by motor neurons. Neurotoxicol. Teratol. 19(4):287–293.
  • Pankhurst, N.W., and Van Der Kraak, G. (2000). Evidence that acute stress inhibits ovarian steroidogenesis in rainbow trout in vivo, through the action of cortisol. Gen. Comp. Endocrinol. 117(2):225–237.
  • Penedo de Pinho, A., Guimaraes, J.R.D., Martins, A.S., Costa, P.A.S., Olavo, G., and Valentin, J. (2002). Total mercury in muscle tissue of five shark species from Brazilian offshore waters: effects of feeding habit, sex, and length. Environ. Res. 89(section A):250–258.
  • Penedo, d.P., Davee, G. Jr., Martins, A.S., Costa, P.A., Olavo, G., and Valentin, J. (2002). Total mercury in muscle tissue of five shark species from Brazilian offshore waters: Effects of feeding habit, sex, and length. Environ. Res. 89(3):250–258.
  • Pickering, A.D. (1993). Endocrine pathology in stressed salmonid fish. Fisheries Res. 17:35–50.
  • Pirrone, N., and Mahaffey, K. (2005). Dynamics of mercury pollution on regional and global scales. Norwell, MA, Springer Verlag.
  • Popescu, H.I. (1978). Poisoning with alkylmercury compounds. Br. Med. J. 1(6123):1347.
  • Prins, G.S., Huang, L., Birch, L., and Pu, Y. (2006). The role of estrogens in normal and abnormal development of the prostate gland. Ann. NY Acad. Sci. 1089:1–13.
  • Rachootin, P., and Olsen, J. (1983). The risk of infertility and delayed conception associated with exposures in the Danish workplace. J. Occup. Med. 25(5):394–402.
  • Rahola, T., Hattula, T., Korolainen, A., and Miettinen, J.K. (1973). Elimination of free and protein-bound ionic mercury (20Hg2+) in man. Ann. Clin. Res. 5(4):214–219.
  • Ram, R.N., and Joy, K.P. (1988). Mercurial induced changes in the hypothalamo-neurohypophysical complex in relation to reproduction in the teleostan fish, Channa punctatus (Bloch). Bull. Environ. Contamin. Toxicol. 41:329–336.
  • Ram, R.N., and Sathyanesan, A.G. (1983). Effect of mercuric chloride on the reproductive cycle of the Teleostan fish Channa punctatus. Bull. Environ. Contamin. Toxicol. 30:24–27.
  • Ram, R.N., and Sathyanesan, A.G. (1984). Effect of mercuric chloride on thyroid function in the teleost fish Channa punctatus (Bloch). Matsya. 9–10:194–196.
  • Ram, R.N., and Sathyanesan, A.G. (1986). Effect of a mercurial fungicide on the gonadal development of the teleost fish Channa punctatus (Bloch). Ecotoxicol. Environ. Saf. 11:352–360.
  • Rao, M.V. (1989). Histophysiological changes of sex organs in methylmercury intoxicated mice. Endocrinol. Exp. 23(1):55–62.
  • Rao, M.V., and Sharma, P.S. (2001). Protective effect of vitamin E against mercuric chloride reproductive toxicity in male mice. Reprod. Toxicol. 15(6):705–712.
  • Rejinders, P.J.H. (1988). Ecotoxicological perspectives in marine mammology: research principles and goals for a conservation policy. Mar. Mamm. Sci. 4:91–102.
  • Riget, F., Dietz, R., Born, E.W., Sonne, C., and Hobson, K.A. (2007). Temporal trends of mercury in marine biota of west and northwest Greenland. Mar. Pollut. Bull. 54(1):72–80.
  • Risher, J.F., and Amler, S.N. (2005). Mercury exposure: Evaluation and intervention the inappropriate use of chelating agents in the diagnosis and treatment of putative mercury poisoning. Neurotoxicol. 26(4):691–699.
  • Ritchie, K.A., Burke, F.J., Gilmour, W.H., Macdonald, E.B., Dale, I.M., Hamilton, R.M., McGowan, D.A., Binnie, V., Collington, D., and Hammersley, R. (2004). Mercury vapour levels in dental practices and body mercury levels of dentists and controls. Br. Dent. J. 197(10):625–632.
  • Roels, H.A., Hoet, P., and Lison, D. (1999). Usefulness of biomarkers of exposure to inorganic mercury, lead, or cadmium in controlling occupational and environmental risks of nephrotoxicity. Ren. Fail. 21(3–4):251–262.
  • Rossi, A.D., Ahlbom, E., Ogren, S.O., Nicotera, P., and Ceccatelli, S. (1997). Prenatal exposure to methylmercury alters locomotor activity of male but not female rats. Exp. Brain Res. 117(3):428–436.
  • Rowland, A.S., Baird, D.D., Weinberg, C.R., Shore, D.L., Shy, C.M., and Wilcox, A.J. (1994). The effect of occupational exposure to mercury vapour on the fertility of female dental assistants. Occup. Environ. Med. 51(1):28–34.
  • Rurangwa, E., Roelants, I., Huyskens, G., Ebrahimi, M., Kime, D.E., and Ollevier, F. (1998). The minimum effective spermatozoa: Egg ratio for artificial insemination and the effects of mercury on sperm motility and fertilization ability in Clarias gariepinus. J. Fish Biol. 53:402–413.
  • Sager, P.R., Aschner, M., and Rodier, P.M. (1984). Persistent, differential alterations in developing cerebellar cortex of male and female mice after methylmercury exposure. Brain Res. 314(1):1–11.
  • Sakai, K. (1972). Effect of methyl mercuric chloride on rat spermatogenesis. Kumamoto Med. J. 25(3):94–100.
  • Sakamoto, M., Nakano, A., and Akagi, H. (2001). Declining Minamata male birth ratio associated with increased male fetal death due to heavy methylmercury pollution. Environ. Res. 87(2):92–98.
  • Sakamoto, M., Kakita, A., Wakabayashi, K., Takahashi, H., Nakano, A., and Akagi, H. (2002). Evaluation of changes in methylmercury accumulation in the developing rat brain and its effects: A study with consecutive and moderate dose exposure throughout gestation and lactation periods. Brain Res. 949(1–2):51–59.
  • Salonen, J.T., Seppanen, K., Lakka, T.A., Salonen, R., and Kaplan, G.A. (2000). Mercury accumulation and accelerated progression of carotid atherosclerosis: a population-based prospective 4-year follow-up study in men in eastern Finland. Atherosclerosis 148(2):265–273.
  • Savitz, D.A., Sonnenfeld, N.L., and Olshan, A.F. (1994). Review of epidemiologic studies of paternal occupational exposure and spontaneous abortion. Am. J. Ind. Med. 25(3):361–383.
  • Savitz, D.A., Sonnenfeld, N.L., and Olshan, A.F. (1995). Reply to Dr. Magos. Am. J. Ind. Med. 27:609–610.
  • Scheuhammer, A.M. (1988). Chronic toxicity of methylmercury in the Zebra finch, Poephila guttata. Bull. Environ. Contamin. Toxicol. 40:123–130.
  • Scheuhammer, A.M., and Blancher, P.B. (1994). Potential risk to common loons (Gavia immer) from methylmercury exposure in acidified lakes. Hydrobiologia 279/280:445–455.
  • Scheuhammer, A.M., Meyer, M.W., Sandheinrich, M.B., and Murray, M.W. (2007). Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio 36(1):12–18.
  • Schober, S.E., Sinks, T.H., Jones, R.L., Bolger, P.M., McDowell, M., Osterloh, J., Garrett, E.S., Canady, R.A., Dillon, C.F., Sun, Y., Joseph, C.B., and Mahaffey, K.R. (2003). Blood mercury levels in US children and women of childbearing age, 1999–2000. JAMA 289(13):1667–1674.
  • Schreck, C.B. (1990). Physiological, behavioral, and performance indicators of stress. Am. Fisheries Soc. Symp. 8:29–37.
  • Schuurs, A.H. (1999). Reproductive toxicity of occupational mercury. A review of the literature. J. Dent. 27(4):249–256.
  • Sharma, A.K., Kapadia, A.G., Fransis, P., and Rao, M.V. (1996). Reversible effects of mercuric chloride on reproductive organs of the male mouse. Reprod. Toxicol. 10(2):153–159.
  • Sharp, J.R., and Neff, J.M. (1982). The toxicity of mercuric chloride and methylmercuric chloride to Fundulus heteroclitus embryos in relation to exposure conditions. Environ. Biol. Fish. 7:277–284.
  • Sheridan, M.A. (1986). Effects of thyroxin, cortisol, growth hormone, and prolactin on lipid metabolism of coho salmon, Oncorhynchus kisutch, during smoltification. Gen. Compar. Endocrinol. 64:220–238.
  • Shimomura, S., Kimura, A., Nakagawa, H., and Takao, M. (1980). Mercury levels in human hair and sex factors. Environ. Res. 22(1):22–30.
  • Sikorski, R., Juszkiewicz, T., Paszkowski, T., and Szprengier-Juszkiewicz, T. (1987). Women in dental surgeries: reproductive hazards in occupational exposure to metallic mercury. Int. Arch. Occup. Environ. Health 59(6):551–557.
  • Silva, I.A., El Nabawi, M., Hoover, D., and Silbergeld, E.K. (2005). Prenatal HgCl2 exposure in BALB/c mice: Gender-specific effects on the ontogeny of the immune system. Dev. Comp. Immunol. 29(2): 171–183.
  • Sin, Y.M., and Teh, W.F. (1992). Effect of long-term uptake of mercuric sulphide on thyroid hormones and glutathione in mice. Bull. Environ. Contam. Toxicol. 49(6):847–854.
  • Sin, Y.M., Teh, W.F., Wong, M.K., and Reddy, P.K. (1990). Effect of mercury on glutathione and thyroid hormones. Bull Environ Contam Toxicol. 44(4):616–622.
  • Skerfving, S. (1988). Mercury in women exposed to methylmercury through fish consumption, and in their newborn babies and breast milk. Bull Environ Contam Toxicol. 41(4):475–482.
  • Snarski, V.M., and Olson, G.F. (1982). Chronic toxicity and bioaccumulation of mercuric chloride in the fathead minnow (Pimephales promelas). Aquatic Toxicology. 2143–156.
  • Sorensen, K., Kristensen, K.S., Bang, L.E., Svendsen, T.L., Wiinberg, N., Buttenschon, L., and Talleruphuus, U. (2004). Increased systolic ambulatory blood pressure and microalbuminuria in treated and non-treated hypertensive smokers. Blood Press. 13(6):362–368.
  • Spann, J.W., Heath, R.G., Kreitzer, J.F., and Locke, L.N. (1972). Ethyl mercury p-toluene sulfonanilide: Lethal and reproductive effects on pheasants. Science 175:128–131.
  • Spry, D.J., and Wiener, J.G. (1991). Metal bioavailability and toxicity to fish in low alkalinity lakes: A critical review. Environ. Pollut. 71:243–304.
  • Stern, A.H., and Smith, A.E. (2003). An assessment of the cord blood:maternal blood methylmercury ratio: Implications for risk assessment. Environ. Health Perspect. 111(12):1465–1470.
  • Stoewsand, G.S., Anderson, J.L., Gutenmann, W.H., Bache, C.A., and Lisk, D.J. (1971). Eggshell thinning in Japanese quail fed mercuric chloride. Science 173(4001):1030–1031.
  • Storelli, M.M., and Marcotrigiano, G.O. (2003). Heavy metal residues in tissues of marine turtles. Mar. Pollut. Bull. 46(4):397–400.
  • Storelli, M.M., Giacominelli-Stuffler, R., Storelli, A., and Marcotrigiano, G.O. (2005a). Accumulation of mercury, cadmium, lead and arsenic in swordfish and bluefin tuna from the Mediterranean Sea: A comparative study. Mar. Pollut. Bull. 50(9):1004–1007.
  • Storelli, M.M., Storelli, A., D′Addabbo, R., Marano, C., Bruno, R., and Marcotrigiano, G.O. (2005b). Trace elements in loggerhead turtles (Caretta caretta) from the eastern Mediterranean Sea: Overview and evaluation. Environ. Pollut. 135(1):163–170.
  • Stortebecker, P. (1989). Mercury poisoning from dental amalgam through a direct nose–brain transport. Lancet 1(8648):1207.
  • Swain, E.B., Jakus, P.M., Rice, G., Lupi, F., Maxson, P.A., Pacyna, J.M., Penn, A., Spiegel, S.J., and Veiga, M.M. (2007). Socioeconomic consequences of mercury use and pollution. Ambio 36(1):45–61.
  • Takeuchi, T. (1977). Pathology of fetal minamata disease—The effect of methylmercury on human intrauterine life. Paediatrician 6:69–87.
  • Tamashiro, H., Arakaki, M., Akagi, H., Futatsuka, M., and Roht, L.H. (1985). Mortality and survival for Minamata disease. Int. J. Epidemiol. 14(4):582–588.
  • Tamashiro, H., Arakaki, M., Akagi, H., Hirayama, K., Murao, K., and Smolensky, M.H. (1986). Sex differential of methylmercury toxicity in spontaneously hypertensive rats (SHR). Bull. Environ. Contam. Toxicol. 37(6):916–924.
  • Tanaka, T., Naganuma, A., and Imura, N. (1990). Role of gamma-glutamyltranspeptidase in renal uptake and toxicity of inorganic mercury in mice. Toxicology 60(3):187–198.
  • Tanaka, T., Naganuma, A., Kobayashi, K., and Imura, N. (1991). An explanation for strain and sex differences in renal uptake of methylmercury in mice. Toxicology 69(3):317–329.
  • Tanaka, T., Naganuma, A., Miura, N., and Imura, N. (1992). Role of testosterone in gamma-glutamyltranspeptidase-dependent renal methylmercury uptake in mice. Toxicol. Appl. Pharmacol. 112(1):58–63.
  • Tatara, C.P., Mulvey, M., and Newman, M.C. (2002). Genetic and demographic responses of mercury-exposed mosquitofish (Gambusia holbrooki) populations: temporal stability and reproductive components of fitness. Environ. Toxicol. Chem. 21(10):2191–2197.
  • Tchounwou, P.B., Ayensu, W.K., Ninashvili, N., and Sutton, D. (2003). Environmental exposure to mercury and its toxicopathologic implications for public health. Environ. Toxicol. 18(3):149–175.
  • Teraoka, H., Kumagai, Y., Iwai, H., Haraguchi, K., Ohba, T., Nakai, K., Satoh, H., Sakamoto, M., Momose, K., Masatomi, H., and Hiraga, T. (2007). Heavy metal contamination status of Japanese cranes (Grus japonensis) in east Hokkaido, Japan—Extensive mercury pollution. Environ. Toxicol. Chem. 26(2):307–312.
  • Thaxton, J.P., Gilbert, J., Hester, P.Y., and Brake, J. (1982). Mercury toxicity as compared to adrenocorticotropin-induced physiological stress in the chicken. Arch. Environ. Contam. Toxicol. 11(4):509–514.
  • Thaxton, J.P., and Parkhurst, C.R. (1973). Abnormal mating behavior and reproductive dysfunction caused by mercury in Japanese quail. Proc. Soc. Exp. Biol. Med. 144(1):252–255.
  • Thaxton, P., Parkhurst, C.R., Cogburn, L.A., and Young, P.S. (1975). Adrenal function in chickens experiencing mercury toxicity. Poult. Sci. 54(2):578–584.
  • Thomas, D.J., Fisher, H.L., Sumler, M.R., Marcus, A.H., Mushak, P., and Hall, L.L. (1986). Sexual differences in the distribution and retention of organic and inorganic mercury in methyl mercury-treated rats. Environ. Res. 41(1):219–234.
  • Thomas, D.J., Fisher, H.L., Sumler, M.R., Mushak, P., and Hall, L.L. (1987). Sexual differences in the excretion of organic and inorganic mercury by methyl mercury-treated rats. Environ. Res. 43(1):203–216.
  • Thomas, P. (1990). Molecular and biochemical responses of fish to stressors and their potential use in environmental monitoring. Am. Fisheries Soc. Symp. 8:9–28.
  • Thomas, P., and Khan, I.A. (1997). Mechanisms of chemical interference with reproductive endocrine function in sciaenid fishes. In: Chemically induced alterations in functional development and reproduction of fishes. R.M. Rolland; M. Gilbertson; R.F. Peterson, Eds.; SETAC Press: Pensacola, FL; pp. 29–52.
  • Thompson, D.R. (1996). Mercury in birds and terrestrial mammals. In: Environmental contaminants in wildlife: interpreting tissue concentrations. W.N. Beyer; G.H. Heinz; A.W. Redmom-Norwood, Eds.; Lewis Publishers: Boca Raton, FL; 341–356.
  • Thorlacius-Ussing, O., Moller-Madsen, B., and Danscher, G. (1985). Intracellular accumulation of mercury in the anterior pituitary of rats exposed to mercuric chloride. Exp. Mol. Pathol. 42(2):278–286.
  • Tsubaki, T., and Irukayama, K. (1977). Methylmercury poisoning in Minamata and Niigata, Japan.
  • United Nations Environment Programme. (2006). Rotterdam convention: PIC Circular XXIII. XXIII1–316.
  • Unrine, J.M., and Jagoe, C.H. (2004). Dietary mercury exposure and bioaccumulation in southern leopard frog (Rana sphenocephala) larvae. Environ. Toxicol. Chem. 23(12):2956–2963.
  • US Environmental Protection Agency. (1998). Great lakes binational toxics strategy. Available at http://www.epa.gov/glnpo/bnsdocs/mercsrce/merc_srce.html#II.
  • US Environmental Protection Agency. (1998b). Great lakes binational toxics strategy. Appendix C: Regulations on products that contain mercury. Available at: http://www.epa.gov/grtlakes/bnsdocs/mercsrce/images/9409merc.pdf
  • US Geological Survey. (2000). Mercury in the environment. Fact Sheet 146-00. Available at http://www.usgs.gov/themes/factsheet/146-00
  • Vachhrajani, K.D., and Chowdhury, A.R. (1990). Distribution of mercury and evaluation of testicular steroidogenesis in mercuric chloride and methylmercury administered rats. Indian J. Exp. Biol. 28(8): 746–751.
  • Vachhrajani, K.D., Chowdhury, A.R., and Dutta, K.K. (1992). Testicular toxicity of methylmercury: analysis of cellular distribution pattern at different stages of the seminiferous epithelium. Reprod. Toxicol. 6(4):355–361.
  • Van Bohemen, C.G., Lambert, J.G.D., and Van Oordt, P.G.W.J. (1982). Vitellogenin induction by estradiol in estrone-primed rainbow trout, Salmo gairdneri. Gen. Compar. Endocrinol. 46:136–139.
  • Veltman, J.C., and Maines, M.D. (1986). Alterations of heme, cytochrome P-450, and steroid metabolism by mercury in rat adrenal. Arch. Biochem. Biophys. 248(2):467–478.
  • Vijayan, M.M., and Moon, T.W. (1992). Acute handling stress alters hepatic glycogen metabolism in fiid deprived rainbow trout (Oncorhynchus mykiss). Can. J. Fisheries Aquat. Sci. 49:243–249.
  • Vimy, M.J., Takahashi, Y., and Lorscheider, F.L. (1990). Maternal-fetal distribution of mercury (203Hg) released from dental amalgam fillings. Am. J. Physiol. 258(4 Pt 2):R939–R945.
  • Virtanen, J.K., Voutilainen, S., Rissanen, T.H., Mursu, J., Tuomainen, T.P., Korhonen, M.J., Valkonen, V.P., Seppanen, K., Laukkanen, J.A., and Salonen, J.T. (2005). Mercury, fish oils, and risk of acute coronary events and cardiovascular disease, coronary heart disease, and all-cause mortality in men in eastern Finland. Arterioscler. Thromb. Vasc. Biol. 25(1):228–233.
  • Vogel, D.G., Margolis, R.L., and Mottet, N.K. (1985). The effects of methyl mercury binding to microtubules. Toxicol. Appl. Pharmacol. 80(3):473–486.
  • Vorhees, C.V. (1985). Behavioral effects of prenatal methylmercury in rats: a parallel trial to the Collaborative Behavioral Teratology Study. Neurobehav. Toxicol. Teratol. 7(6):717–725.
  • Wakisaka, I., Yanagihashi, T., Sato, M., and Nakano, A. (1990). Factors contributing to the difference of hair mercury concentrations between the sexes [in Japanese]. Nippon Eiseigaku Zasshi. 45(2):654–664.
  • Watanabe, T., Shimada, T., and Endo, A. (1982). Effects of mercury compounds on ovulation and meiotic and mitotic chromosomes in female golden hamsters. Teratology 25(3):381–384.
  • Watanabe, C., Yoshida, K., Kasanuma, Y., Kun, Y., and Satoh, H. (1999). In utero methylmercury exposure differentially affects the activities of selenoenzymes in the fetal mouse brain. Environ. Res. 80(3):208–214.
  • Webb, M.A., Feist, G.W., Fitzpatrick, M.S., Foster, E.P., Schreck, C.B., Plumlee, M., Wong, C., and Gundersen, D.T. (2006). Mercury concentrations in gonad, liver, and muscle of white sturgeon Acipenser transmontanus in the lower Columbia River. Arch. Environ. Contam. Toxicol. 50(3):443–451.
  • Weiss, C.M. (1947). The comparative tolerances of some fouling organisms to copper and mercury. Biol. Bull. 93:56–63.
  • Wendelaar Bonga, S.E. (1997). The stress response in fish. Physiol. Review. 77:591–625.
  • Wester, P.W., and Canton, H.H. (1992). Histopathological effects in Poecilia reiculata (Guppy) exposed to methylmercury chloride. Toxicol. Pathol. 20(1):81–92.
  • World Health Organization (WHO). (1974). The use of mercury and alternative compounds as seed dressings. Report of a joint FAO-WHO meeting. World Health Organ. Tech. Rep. Ser. 0(555):3–29.
  • World Health Organization (WHO). (1976). Environmental health criteria 1. Geneva, World Health Organization.
  • World Health Organization (WHO). (1990). Environmental health criteria 101—Methylmercury. Geneva, World Health Organization.
  • World Health Organization (WHO). (1991). Environmental health criteria 118. Geneva, World Health Organization.
  • Wright, F.C., Younger, R.L., and Riner, J.C. (1974). Residues of mercury in tissues and eggs of chickens given oral doses of Panogen 15. Bull. Environ. Contamin. Toxicol. 12:366–372.
  • Yaron, Z., Terkatin-Shimony, A., Shaham, Y., and Salzer, H. (1977). Occurence and biological activity of estradiol-17b in the intact and ovariectomized Tilapia aurea (Cichlidae, Teleostei). Gen. Compar. Endocrinol. 33:45–52.
  • Yasutake, A., and Hirayama, K. (1988). Sex and strain differences of susceptibility to methylmercury toxicity in mice. Toxicology 51(1):47–55.
  • Yasutake, A., Hirayama, K., and Inouye, M. (1990). Sex difference in acute renal dysfunction induced by methylmercury in mice. Ren. Fail. 12(4):233–240.
  • Yasutake, A., Matsumoto, M., Yamaguchi, M., and Hachiya, N. (2003). Current hair mercury levels in Japanese: Survey in five districts. Tohoku J. Exp. Med. 199(3):161–169.
  • Yoneda, S., and Suzuki, K.T. (1997a). Detoxification of mercury by selenium by binding of equimolar Hg-Se complex to a specific plasma protein. Toxicol. Appl. Pharmacol. 143(2):274–280.
  • Yoneda, S., and Suzuki, K.T. (1997b). Equimolar Hg-Se complex binds to selenoprotein P. Biochem. Biophys. Res. Commun. 231(1):7–11.
  • Yoshida, M., Watanabe, C., Satoh, H., Kishimoto, T., and Yamamura, Y. (1994). Milk transfer and tissue uptake of mercury in suckling offspring after exposure of lactating maternal guinea pigs to inorganic or methylmercury. Arch. Toxicol. 68(3):174–178.
  • Yoshizawa, K., Rimm, E.B., Morris, J.S., Spate, V.L., Hsieh, C.C., Spiegelman, D., Stampfer, M.J., and Willett, W.C. (2002). Mercury and the risk of coronary heart disease in men. N. Engl. J. Med. 347(22):1755–1760.
  • Zielhuis, R.L. (1977). Second international workshop permissible levels for occupational exposure to inorganic lead. Int. Arch. Occup. Environ. Health 39(2):59–72.
  • Zoeller, R.T., Tan, S.W., and Tyl, R.W. (2007). General background on the hypothalamic-pituitary-thyroid (HPT) axis. Crit. Rev. Toxicol. 37(1–2):11–53.
  • No authors listed. (2007). The Madison declaration on mercury pollution. Ambio 36(1):62–65.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.