1,187
Views
75
CrossRef citations to date
0
Altmetric
Review Articles

Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans

, , , , , , , , & show all
Pages 1-58 | Received 20 Dec 2015, Accepted 22 Jun 2016, Published online: 18 Aug 2016

References

  • ACGIH. (2015). 2015 TLVs® and BEIs® based on the documentation of the threshold limit values for chemical substances and physical agents and biological exposure indices. Appendix C: particle size-selective sampling criteria for airborne particulate matter. Cincinnati, OH: American Conference of Governmental Industrial Hygienists.
  • Adamson YR. 1997. Early mesothelial cell proliferation after asbestos exposure: in vivo and in vitro studies. Environ Health Perspect. 105:1205–1208.
  • Adamson IYR, Bakowska J. 2001. KGF and HGF are growth factors for mesothelial cells in pleural lavage fluid after intratracheal asbestos. Exp Lung Res. 27:605–616.
  • Adamson IYR, Bakowska J, Bowden DH. 1993. Mesothelial cell proliferation after instillation of long or short asbestos fibers into mouse lung. Am J Pathol. 142:1209–1216.
  • Aiso S, Yamazaki K, Umeda Y, Asakura M, Kasai T, Takaya M, Toya T, Koda S, Nagano K, Arito H, et al. 2010. Pulmonary toxicity of intratracheally instilled multiwall carbon nanotubes in male Fischer 344 rats. Ind Health. 48:783–795.
  • Alarifi S, Ali D, Verma A, Almajhdi FN, Al-Qahtani AA. 2014. Single-walled carbon nanotubes induce cytotoxicity and DNA damage via reactive oxygen species in human hepatocarcinoma cells. In Vitro Cell Dev Biol Anim. 50:714–722.
  • Aldieri E, Fenoglio I, Cesano F, Gazzano E, Gulino G, Scarano D, Attanasio A, Mazzucco G, Ghigo D, Fubini B. 2013. The role of iron impurities in the toxic effects exerted by short multiwalled carbon nanotubes (MWCNT) in murine alveolar macrophages. J Toxicol Environ Health A. 76:1056–1071.
  • Anderson D, Yu T-W, McGregor DB. 1998. Comet assay responses as indicators of carcinogen exposure. Mutagenesis. 13:539–555.
  • Andon FT, Kapralov AA, Yanamala N, Feng W, Baygan A, Chambers BJ, Hultenby K, Ye F, Toprak MS, Brandner BD, et al. 2013. Biodegradation of single-walled carbon nanotubes by eosinophil peroxidase. Small. 9:2721–2729.
  • ARA. (2009). Multiple-path particle dosimetry (MPPD 2.1) model. Raleigh (NC): Applied Research Associates, Inc.
  • Artinian V, Kvale PA. 2004. Cancer and interstitial lung disease. Curr Opin Pulm Med. 10:425–434.
  • Asakura M, Sasaki T, Sugiyama T, Takaya M, Koda S, Nagano K, Arito H, Fukushima S. 2010. Genotoxicity and cytotoxicity of multi-wall carbon nanotubes in cultured Chinese hamster lung cells in comparison with chrysotile A fibers. J Occup Health. 52:155–166.
  • Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Cogliano V, WHO International Agency for Research on Cancer Monograph Working Group. 2006. Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol. 7(4):295–296. [Erratum in: Lancet Oncol. 2006. 7(5):365].
  • Baisch BL, Corson NM, Wade-Mercer P, Gelein R, Kennell AJ, Oberdörster G, Elder A. 2014. Equivalent titanium dioxide nanoparticle deposition by intratracheal instillation and whole body inhalation: the effect of dose rate on acute respiratory tract inflammation. Part Fibre Toxicol. 11:5.
  • Barillet S, Simon-Deckers A, Herlin-Boime N, Mayne-L'Hermite M, Reynaud C, Cassio D, Gouget B, Carriere M. 2010. Toxicological consequences of TiO2, SiC nanoparticles and multi-walled carbon nanotubes exposure in several mammalian cell types: an in vitro study. J Nanopart Res. 12:61–73.
  • Barregard L, Møller P, Henriksen T, Mistry V, Koppen G, Rossner P, Sram R, Weimann A, Poulsen H, Nataf R, et al. 2013. Human and methodological sources of variability in the measurement of urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine. Antioxid Redox Signal. 18:2377–2391.
  • Bayat N, Lopes VR, Scholermann J, Jensen LD, Cristobal S. 2015. Vascular toxicity of ultra-small TiO2 nanoparticles and single walled carbon nanotubes in vitro and in vivo. Biomaterials. 63:1–13.
  • Baylin SB. 2012. The cancer epigenome: its origins, contributions to tumorigenesis, and translational implications. Proc Am Thorac Soc. 9:64–65.
  • Beamer CA, Girtsman TA, Seaver BP, Finsaas KJ, Migliaccio CT, Perry VK, Rottman JB, Smith DE, Holian A. 2013. IL-33 mediates multi-walled carbon nanotube (MWCNT)-induced airway hyper-activity via the mobilization of innate helper cells in the lung. Nanotoxicol. 7:1070–1081.
  • Bellmann B, Muhle H, Creutzenberg O, Dasenbrook C, Kilpper R, MacKenzie JC, Morrow P, Mermelstein R. 1991. Lung clearance and retention of toner, utilizing a tracer technique, during chronic inhalation exposure in rats. Fundam Appl Toxicol. 17:300–313.
  • Bello D, Hart JA, Ahn K, Hallock M, Yamamoto N, Garcia EJ, Ellenbecker MJ, Wardle BL. 2008. Particle exposure levels during CVD growth and subsequent handling of vertically-aligned carbon nanotube films. Carbon. 46:974–981.
  • Bello D, Wardle BL, Yamamoto N, de Villora RG, Garcia EJ, Hart AJ, Ahn K, Ellenbecker MJ, Hallock M. 2009. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J Nanopart Res. 11:231–249.
  • Bello D, Wardle BL, Zhang J, Yamamoto N, Santeufemio C, Hallock M, Virji MA. 2010. Characterization of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites. Int J Occup Environ Health. 16:434–450.
  • Berman DW, Crump KS, Chatfield EJ, Davis JM, Jones AD. 1995. The sizes, shapes, and mineralogy of asbestos structures that induce lung tumors or mesothelioma in AF/HAN rats following inhalation. Risk Anal. 15:181–195.
  • Bianco A, Kostarelos K, Prato M. 2011. Making carbon nanotubes biocompatible and biodegradable. Chem Commun (Camb). 47:10182–10188.
  • Birch ME, Ku B-K, Evans DE, Ruda-Eberenz T. 2011. Exposure and emissions monitoring during carbon nanofiber production-Part I: elemental carbon and iron-soot aerosols. Ann Occup Hyg. 55:1016–1036.
  • Biswas R, Bunderson-Schelvan M, Holian A. 2011. Potential role of the inflammasome-derived inflammatory cytokines in pulmonary fibrosis. Pulm Med. 2011:105707–8.
  • Bolton RE, Vincent HJ, Jones AD, Addison J, Beckett ST. 1983. An overload hypothesis for pulmonary clearance of UICC amosite fibres inhaled by rats. Br J Ind Med. 40:264–272.
  • Bonifazi M, Bravi F, Gasparini S, La Vecchia C, Gabrielli A, Wells AU, Renzoni EA. 2015. Sarcoidosis and cancer risk: systematic review and meta-analysis of observational studies. Chest. 147:778–791.
  • Bonner JC. 2010. Nanoparticles as a potential cause of pleural and interstitial lung disease. Proc Am Thorac Soc. 7:138–141.
  • Bonner JC, Silva RM, Taylor AJ, Brown JM, Hilderbrand SC, Castranova V, Porter D, Elder A, Oberdörster G, Harkema JR, et al. 2013. Interlaboratory evaluation of rodent pulmonary responses to engineered nanomaterials: the NIEHS nano GO consortium. Environ Health Perspec. 121:676–682.
  • Borczuk AC. 2012. Neoplastic and nonneoplastic benign mass lesions of the lung. Arch Pathol Lab Med. 136:1227–1233.
  • Borm P, Cassee FR, Oberdörster G. 2015. Lung particle overload: old school -new insights? Part Fibre Toxicol. 12:10.
  • Borm PJ, Schins RP, Albrecht C. 2004. Inhaled particles and lung cancer, part B: paradigms and risk assessment. Int J Cancer. 110:3–14.
  • Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T. 2006. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett. 160:121–126.
  • Boulanger G, Andujar P, Pairon JC, Billon-Galland MA, Dion C, Dumortier P, Brochard P, Sobaszek A, Bartsch P, Paris C, Jaurand MC. 2014. Quantification of short and long asbestos fibers to assess asbestos exposure: a review of fiber size toxicity. Environ Health. 13:59.
  • Boyles MSP, Stoehr LC, Schlinkert P, Himly M, Duschl A. 2014. The significance and insignificance of carbon nanotube-induced inflammation. Fibers. 2:45–74.
  • Brambilla B, Travis WD, Colby TV, Corrinz B, Shimosato Y. 2001. The new World Health Organization classification of lung tumours. Series Highlights in Lung Cancer. Eur Respir J 18:1059–1068.
  • Broaddus VC, Everitt JI, Black B, Kane AB. 2011. Non-neoplastic and neoplastic pleural endpoints following fiber exposure. J Toxicol Environ Health B Crit Rev. 14:153–178.
  • Buder-Hoffmann S, Palmer C, Vacek P, Taatjes D, Mossman B. 2001. Different accumulation of activated extracellular signal-regulated kinases (ERK 1/2) and role in cell-cycle alterations by epidermal growth factor, hydrogen peroxide, or asbestos in pulmonary epithelial cells. Am J Respir Cell Mol Biol. 24:405–413.
  • Cao Y, Jacobsen NR, Danielsen PH, Lenz AG, Stoeger T, Loft S, Wallin H, Roursgaard M, Mikkelsen L, Møller P. 2014. Vascular effects of multi-walled carbon nanotubes in dyslipidemic ApoE-/- mice and cultured endothelial cells. Toxicol Sci. 138:104–116.
  • Catalán J, Jarventaus H, Vippola M, Savolainen K, Norppa H. 2012. Induction of chromosomal aberrations by carbon nanotubes and titanium dioxide nanoparticles in human lymphocytes in vitro. Nanotoxicology. 6:825–836.
  • Cavallo D, Fanizza C, Ursini CL, Casciardi S, Paba E, Ciervo A, Fresegna AM, Maiello R, Marcelloni AM, Buresti G, et al. 2012. Multi-walled carbon nanotubes induce cytotoxicity and genotoxicity in human lung epithelial cells. J Appl Toxicol. 32:454–464.
  • Cena LG, Peters TM. 2011. Characterization and control of airborne particles emitted during production of epoxy/carbon nanotube nanocomposites. J Occup Environ Hyg. 8:86–92.
  • Cesta MF, Ryman-Rasmussen JP, Wallace DG, Masinde T, Hurlburt G, Taylor AJ, Bonner JC. 2010. Bacterial lipopolysaccharide enhances PDGF signaling and pulmonary fibrosis in rats exposed to carbon nanotubes. Am J Respir Cell Mol Biol. 43:142–151.
  • Chan JK, Roth J, Oppenheim JJ, Tracey KJ, Vogl T, Feldmann M, Horwood N, Nanchahal J. 2012. Alarmins: awaiting a clinical response. J Clin Invest. 122:2711–2719.
  • Chapman SJ, Cookson WOC, Musk AW, Lee YC. 2003. Benign asbestos pleural diseases. Curr Opin Pulm Med. 9:266–271.
  • Chaput C, Sander LE, Suttorp N, Opitz B. 2013. NOD-like receptors in lung diseases. Front Immunol. 4:393.
  • Charlier JC. 2002. Defects in carbon nanotubes. Acc Chem Res. 35:1063–1069.
  • Chen BT, Schwegler-Berry D, McKinney W, Stone S, Cumpston JL, Friend S, Porter DW, Castranova V, Frazer DG. 2012. Multi-walled carbon nanotubes: sampling criteria and aerosol characterization. Inhal Toxicol. 24:798–820.
  • Chen D, Stueckle TA, Luanpitpong S, Rojanasakul Y, Lu Y, Wang L. 2015. Gene expression profile of human lung epithelial cells chronically exposed to single-walled carbon nanotubes. Nanoscale Res Lett. 10:12.
  • Cheng J, Fernando KA, Veca LM, Sun YP, Lamond AI, Lam YW, Cheng SH. 2008. Reversible accumulation of PEGylated single-walled carbon nanotubes in the mammalian nucleus. ACS Nano. 2:2085–2094.
  • Chopra A, Judson MA. 2015. How are cancer and connective tissue diseases related to sarcoidosis? Curr Opin Pulm Med. 21:517–524.
  • Chou CC, Hsiao HY, Hong QS, Chen CH, Peng YW, Chen HW, Yang PC. 2008. Single-walled carbon nanotubes can induce pulmonary injury in mouse model. Nano Lett. 8:437–445.
  • Chow MT, Tschopp J, Möller A, Smyth MJ. 2012. NLRP3 promotes inflammation-induced skin cancer but is dispensable for asbestos-induced mesothelioma. Immunol Cell Biol. 90:983–986.
  • Cicchetti R, Divizia M, Valentini F, Argentin G. 2011 Effects of single-wall carbon nanotubes in human cells of the oral cavity: geno-cytotoxic risk. Toxicol In Vitro. 25:1811–1819.
  • Cogliano VJ, Baan RA, Straif K, Grosse Y, Secretan B, El Ghissassi F. 2008. Use of mechanistic data in IARC evaluations. Environ Mol Mutagen. 49:100–109.
  • Cogliano V. (2011). A comparison of carcinogen classification systems. Presentation to NIOSH. Sept. 6, 2011.
  • Collado M, Serrano M. 2005. The senescent side of tumor suppression. Cell Cycle. 4:1722–1724.
  • Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. 2009. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 30:1073–1081.
  • Cortez BA, Rezende-Teixeira P, Redick S, Doxsey S, Machado-Santelli GM. 2016. Multipolar mitosis and aneuploidy after chrysotile treatment: a consequence of abscission failure and cytokinesis regression. Oncotarget. 7:8979–8992.
  • Crouzier D, Follot S, Gentilhomme E, Flahaut E, Arnaud R, Dabouis V, Castellarin C, Debouzy JC. 2010. Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung. Toxicology. 272:39–45.
  • Cveticanin J, Joksic G, Leskovac A, Petrovic S, Sobot AV, Neskovic O. 2010. Using carbon nanotubes to induce micronuclei and double strand breaks of the DNA in human cells. Nanotechnology. 21:015102.
  • Czarny B, Georgin D, Berthon F, Plastow G, Pinault M, Patriarche G, Thuleau A, L’Hermite MM, Taran F, Dive V. 2014. Carbon nanotube translocation to distant organs after pulmonary exposure: insights from in situ (14)C-radiolabeling and tissue radioimaging. ACS Nano. 8:5715–5724.
  • Dahm MM, Evans DE, Schubauer-Berigan MK, Birch ME, Fernback JE. 2012. Occupational exposure assessment in carbon nanotube and nanofiber primary and secondary manufacturers. Ann Occup Hyg. 56:542–556.
  • Dahm MM, Yencken MS, Schubauer-Berigan MK. 2011. Exposure control strategies in the carbonaceous nanomaterial industry. J Occup Environ Med. 53:S68–S73.
  • Dahm MM, Schubauer-Berigan MK, Evans DE, Birch ME, Fernback JE, Deddens JA. 2015. Carbon nanotube and nanofiber exposure assessments: an analysis of 14 site visits. Ann Occup Hyg. 59:705–723.
  • Darne C, Terzetti F, Coulais C, Fontana C, Binet S, Gate L, Guichard Y. 2014. Cytotoxicity and genotoxicity of panel of single- and multiwalled carbon nanotubes: in vitro effects on normal Syrian hamster embryo and immortalized v79 hamster lung cells. J Toxicol. 2014:872195.
  • Davis JM, Addison J, Bolton RE, Donaldson K, Jones AD, Smith T. 1986. The pathogenicity of long versus short fibre samples of amosite asbestos administered to rats by inhalation and intraperitoneal injection. Br J Exp Pathol. 67:415–430.
  • De Nardo D, De Nardo CM, Latz E. 2014. New insights into mechanisms controlling the NLRP3 inflammasome and its role in lung disease. Am J Pathol. 184:42–54.
  • DeLorme MP, Muro Y, Arai T, Banas DA, Frame SR, Reed KL, Warheit DB. 2012. Ninety-day inhalation toxicity study with a vapor grown carbon nanofiber in rats. Toxicol Sci. 128:449–460.
  • DiDonato JA, Mercurio F, Karin M. 2012. NF-κB and the link between inflammation and cancer . Immunol Rev. 246:379–400.
  • Di Giorgio ML, Di BS, Ragnelli AM, Aimola P, Santucci S, Poma A. 2011. Effects of single and multi walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy. Mutat Res. 722:20–31.
  • Dinu CZ, Bale SS, Zhu G, Dordick JS. 2009. Tubulin encapsulation of carbon nanotubes into functional hybrid assemblies. Small. 5:310–315.
  • Di Sotto A, Chiaretti M, Carru GA, Bellucci S, Mazzanti G. 2009. Multi-walled carbon nanotubes: lack of mutagenic activity in the bacterial reverse mutation assay. Toxicol Lett. 184:192–197.
  • Donaldson K, Murphy FA, Duffin R, Poland CA. 2010. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol. 7:5.
  • Donaldson K, Murphy F, Schinwald A, Duffin R, Poland CA. 2011. Identifying the pulmonary hazard of high aspect ratio nanoparticles to enable their safety-by-design. Nanomedicine (Lond). 6:143–156.
  • Donaldson K, Poland CA, Murphy FA, MacFarlane M, Chernova T, Schinwald A. 2013. Pulmonary toxicity of carbon nanotubes and asbestos – similarities and differences. Adv Drug Deliv Rev. 65:2078–2086.
  • Dostert C, Pétrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. 2008. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science. 320:674–677.
  • Duesberg P, Mandrioli D, McCormack A, Nicholson JM. 2011. Is carcinogenesis a form of speciation? Cell Cycle. 10:2100–2114.
  • Ebbesen TW, Takada T. 1995. Topological and sp3 defect structures in nanotubes. Carbon. 33:973–978.
  • Elder A, Gelein R, Finkelstein JN, Driscoll KE, Harkema J, Oberdörster G. 2005. Effects of subchronically inhaled carbon black in three species. I. Retention kinetics, lung inflammation, and histopathology. Toxicol Sci. 88:614–629.
  • Elgrabli D, Abella-Gallart S, Robidel F, Rogerieux F, Boczkowski J, Lacroix G. 2008. Induction of apoptosis and absence of inflammation in rat lung after intratracheal instillation of multiwalled carbon nanotubes. Toxicology. 253:131–136.
  • Elgrabli D, Dachraoui W, Menard-Moyon C, Liu XJ, Begin D, Begin-Colin S, Bianco A, Gazeau F, Alloyeau D. 2015. Carbon nanotube degradation in macrophages: live nanoscale monitoring and understanding of biological pathway. ACS Nano. 9:10113–10124.
  • Ellinger-Ziegelbauer H, Pauluhn J. 2009. Pulmonary toxicity of multi-walled carbon nanotubes (Baytubes®) relative to alpha-quartz following a single 6h inhalation exposure of rats and a 3 months post-exposure period. Toxicology. 266:16–29.
  • Ema M, Imamura T, Suzuki H, Kobayashi N, Naya M, Nakanishi J. 2012. Evaluation of genotoxicity of multi-walled carbon nanotubes in a battery of in vitro and in vivo assays. Regul Toxicol Pharmacol. 63:188–195.
  • Ema M, Imamura T, Suzuk H, Kobayashi N, Naya M, Nakanishi J. 2013a. Genotoxicity evaluation for single-walled carbon nanotubes in a battery of in vitro and in vivo assays. J Appl Toxicol. 33:933–939.
  • Ema M, Masumori S, Kobayashi N, Naya M, Endoh S, Maru J, Hosoi M, Uno F, Nakajima M, Hayashi M, Nakanishi J. 2013b. In vivo comet assay of multi-walled carbon nanotubes using lung cells of rats intratracheally instilled. J Appl Toxicol. 33:1053–1060.
  • Engström W, Darbre P, Eriksson S, Gulliver L, Hultman T, Karamouzis MV, Klaunig JE, Mehta R, Moorwood K, Sanderson T, et al. 2015. The potential for chemical mixtures from the environment to enable the cancer hallmark of sustained proliferative signalling. Carcinogenesis. 36:S38–S60.
  • ESCODD (European Standards Committee on Oxidative DNA Damage). 2003. Measurement of DNA oxidation in human cells by chromatographic and enzymic methods. Free Radic Biol Med. 34:1089–1099.
  • Evans DE, Ku B-K, Birch ME, Dunn KH. 2010. Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling. Ann Occup Hyg. 54:514–531.
  • Fan Y, Mao R, Yang J. 2013. NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell. 4:176–185.
  • Fatkhutdinova LM, Khaliullin TO, Vasil'yeva OL, Zalyalov RR, Mustafin IG, Kisin ER, Birch ME, Yanamala N, Shvedova AA. 2016. Fibrosis biomarkers in workers exposed to MWCNTs. Toxicol Appl Pharmacol. 299:125–131.
  • Fenoglio I, Aldieri E, Gazzano E, Cesano F, Colonna M, Scarano D, Mazzucco G, Attanasio A, Yakoub Y, Lison D, et al. 2012. Thickness of multiwalled carbon nanotubes affects their lung toxicity. Chem Res Toxicol. 25:74–82.
  • Fenoglio I, Greco G, Tomatis M, Muller J, Raymundo-Piñero E, Béguin F, Fonseca A, Nagy JB, Lison D, Fubini B. 2008. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: physicochemical aspects. Chem Res Toxicol. 21:1690–1697.
  • Fenoglio I, Tomatis M, Lison D, Muller J, Fonseca A, Nagy JB, Fubini B. 2006. Reactivity of carbon nanotubes: free radical generation or scavenging activity? Free Radic Biol Med. 40:1227–1233.
  • Foley JF, Anderson MW, Stoner GD, Gaul BW, Hardisty JF, Maronpot RR. 1991. Proliferative lesions of the mouse lung: progression studies in strain a mice. Exp Lung Res. 17:157–168.
  • Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Møller P. 2009. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect. 117:703–708.
  • Forchhammer L, Bräuner EV, Folkmann JK, Danielsen PH, Nielsen C, Jensen A, Loft S, Friis G, Møller P. 2008. Variation in assessment of oxidatively damaged DNA in mononuclear blood cells by the comet assay with visual scoring. Mutagenesis. 23:223–231.
  • Forchhammer L, Ersson C, Loft S, Möller L, Godschalk RW, van Schooten FJ, Jones GD, Higgins JA, Cooke M, Mistry V, et al. 2012. Inter-laboratory variation in DNA damage using a standard comet assay protocol. Mutagenesis. 27:665–672.
  • Freedman AP, Robinson SE. (1988). Noninvasive magnetopneumographic studies of lung dust retention and clearance in coal miners. In: Frantz RL, Ramani RV, editors. Respirable dust in the mineral industries: health effects, characterization, and control. University Park (PA): The Pennsylvania State University. pp. 181–186.
  • Fröhlich E, Meindl C, Hofler A, Leitinger G, Roblegg E. 2013. Combination of small size and carboxyl functionalisation causes cytotoxicity of short carbon nanotubes. Nanotoxicology. 7:1211–1224.
  • Fubini B, Otero-Aréan C. 1999. Chemical aspects of the toxicity of inhaled mineral dusts. Chem Soc Rev. 28:373–381.
  • Fubini B, Ghiazza M, Fenoglio I. 2010. Physico-chemical features of engineered nanoparticles relevant to their toxicity. Nanotoxicology. 4:347–363.
  • Fubini B, Fenoglio I, Tomatis M, Turci F. 2011. Effect of chemical composition and state of the surface on the toxic response to high aspect ratio nanomaterials. Nanomedicine (Lond). 6:899–920.
  • Fujita K, Fukuda M, Fukui H, Horie M, Endoh S, Uchida K, Shichiri M, Morimoto Y, Ogami A, Iwahashi H. 2015. Intratracheal instillation of single-wall carbon nanotubes in the rat lung induces time-dependent changes in gene expression. Nanotoxicology. 9:290–301.
  • Galano A. 2010. Carbon nanotubes: promising agents against free radicals. Nanoscale. 2:373–380.
  • Galano A, Francisco-Marquez M, Martinez A. 2010. Influence of point defects on the free-radical scavenging capability of single-walled carbon nanotubes. J Phys Chem C. 114:8302–8308.
  • Gernand JM, Casman EA. 2014. A meta-analysis of carbon nanotube pulmonary toxicity studies-how physical dimensions and impurities affect the toxicity of carbon nanotubes. Risk Anal. 34:583–597.
  • Ghosh M, Chakraborty A, Bandyopadhyay M, Mukherjee A. 2011. Multi-walled carbon nanotubes (MWCNT): induction of DNA damage in plant and mammalian cells. J Hazard Mater. 197:327–336.
  • Girtsman TA, Beamer CA, Wu N, Buford M, Holian A. 2014. IL-1R signalling is critical for regulation of multi-walled carbon nanotubes-induced acute lung inflammation in C57Bl/6 mice. Nanotoxicology. 8:17–27.
  • Goodman GB, Kaplan PD, Stachura I, Castranova V, Pailes WH, Lapp NL. 1992. Acute silicosis responding to corticosteroid therapy. Chest. 101:366–370.
  • Gregoratto D, Bailey MR, Marsh JW. 2010. Modelling particle retention in the alveolar-interstitial region of the human lungs. J Radiol Prot. 30:491–512.
  • Grivennikov SI, Greten FR, Karin M. 2010. Immunity, inflammation, and cancer. Cell. 140:883–899.
  • Grosse Y, Loomis D, Guyton KZ, Lauby-Secretan B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Scoccianti C, International Agency for Research on Cancer Monograph Working Group, et al. 2014. Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. Lancet Oncol. 15:1427–1428.
  • Guerard M, Baum M, Bitsch A, Eisenbrand G, Elhajouji A, Epe B, Habermeyer M, Kaina B, Martus HJ, Pfuhler S, et al. 2015. Assessment of mechanisms driving non-linear dose–response relationships in genotoxicity testing. Mutat Res Rev Mutat Res. 763:181–201.
  • Guirouilh-Barbat J, Lambert S, Bertrand P, Lopez BS. 2014. Is homologous recombination really an error-free process? Front Genet. 5:175.
  • Guo NL, Wan YW, Denvir J, Porter DW, Pacurari M, Wolfarth MG, Castranova V, Qian Y. 2012. Multiwalled carbon nanotube-induced gene signatures in the mouse lung: potential predictive value for human lung cancer risk and prognosis. J Toxicol Environ Health Part A. 75:1129–1153.
  • Guo YY, Zhang J, Zheng YF, Yang J, Zhu XQ. 2011. Cytotoxic and genotoxic effects of multi-wall carbon nanotubes on human umbilical vein endothelial cells in vitro. Mutat Res. 721:184–191.
  • Hamilton RF, Wu N, Porter Buford M, Wolfarth M Holian A. 2009. Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol. 6:35.
  • Hamilton RF, Jr., Xiang C, Li M, Ka I, Yang F, Ma D, Porter DW, Wu N, Holian A. 2013. Purification and sidewall functionalization of multiwalled carbon nanotubes and resulting bioactivity in two macrophage models. Inhal Toxicol. 25:199–210.
  • Han SG, Andrews R, Gairola CG. 2010. Acute pulmonary response of mice to multi-wall carbon nanotubes. Inhal Toxicol. 22:340–347.
  • Han JH, Lee EJ, Lee JH, So KP, Lee YH, Bae GN, Lee SB, Ji JH, Cho MH, Yu IJ. 2008. Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal Toxicol. 20:741–749.
  • Hanahan D, Coussens LM. 2012. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 21:309–322.
  • Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell. 100:57–70.
  • Hanahan D, Weinberg W. 2011. Hallmarks of cancer: the next generation. Cell. 144:646–674.
  • Hanawalt PC, Spivak G. 2008. Transcription-coupled DNA repair: two decades of progress and surprises. Nat Rev Mol Cell Biol. 9:958–970.
  • Heintz NH, Janssen-Heininger YM, Mossman BT. 2010. Asbestos, lung cancers, and mesotheliomas: from molecular approaches to targeting tumor survival pathways. Am J Respir Cell Mol Biol. 42:133–139.
  • Hill AB. 1965. The environment and disease: association or causation? Proc R Soc Med. 58:295–300.
  • Huang X, Zhang F, Sun X, Choi KY, Niu G, Zhang G, Guo J, Lee S, Chen X. 2014. The genotype-dependent influence of functionalized multiwalled carbon nanotubes on fetal development. Biomaterials. 35:856–865.
  • Huizar I, Malur A, Midgette YA, Kukoly C, Chen P, Ke PC, Podila R, Rao AM, Wingard CJ, Dobbs L, et al. 2011. Novel murine model of chronic granulomatous lung inflammation elicited by carbon nanotubes. Am J Respir Cell Mol Biol. 45:858–866.
  • IARC [Internet]. 1997. IARC monographs on the evaluation of carcinogenic risks to humans. Vol. 68. Silica, some silicates, coal dust and para-aramid fibrils. Lyon, France: International Agency for Research on Cancer. Available from: http://monographs.iarc.fr/.
  • IARC [Internet]. 2002. IARC monographs on the evaluation of carcinogenic risks to human: Man-made vitreous fibres. Vol 81. Lyon, France: International Agency for Research on Cancer. Available from: http://monographs.iarc.fr/.
  • IARC [Internet]. 2006. Preamble to the IARC Monographs. Lyon, France: International Agency for Research on Cancer. Available from: http://monographs.iarc.fr/.
  • IARC [Internet]. 2010. IARC monographs on the evaluation of carcinogenic risks to humans: Carbon black, titanium dioxide, and talc. Vol. 93. Lyon, France: International Agency for Research on Cancer. Available from: http://monographs.iarc.fr.
  • IARC [Internet]. 2012. IARC monographs: Arsenic, metals, fibres, and dusts. Vol 100C. A review of human carcinogens. Lyon, France: International Agency for Research on Cancer. Available from: http://monographs.iarc.fr/.
  • IARC [in press]. IARC monographs on the evaluation of carcinogenic risks to humans: Volume 111. Some nanomaterials and some fibres. Lyon: IARC.
  • ICRP. 1994. Human respiratory tract model for radiological protection. International commission on radiological protection. Tarrytown (NY): Elsevier Science Ltd.
  • Ingle T, Dervishi E, Biris AR, Mustafa T, Buchanan RA, Biris AS. 2013. Raman spectroscopy analysis and mapping the biodistribution of inhaled carbon nanotubes in the lungs and blood of mice. J Appl Toxicol. 33:1044–1052.
  • ISO. 1995. Air Quality – particle size fraction definitions for health-related sampling, ISO 7708. Geneva: International Standards Organisation.
  • Jackson P, Kling K, Jensen KA, Clausen PA, Madsen AM, Wallin H, Vogel U. 2015. Characterization of genotoxic response to 15 multiwalled carbon nanotubes with variable physicochemical properties including surface functionalizations in the FE1-Muta(TM) mouse lung epithelial cell line. Environ Mol Mutagen. 56:183–203.
  • Jacobsen NR, Møller P, Jensen JA, Vogel U, Ladefoged O, Loft S, Wallin H. 2009. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice. Part Fibre Toxicol. 6:2.
  • Jacobsen NR, Pojana G, White P, Møller P, Cohn CA, Korsholm KS, Vogel U, Marcomini A, Loft S, Wallin H. 2008. Genotoxicity, cytotoxicity and reactive oxygen species induced by single-walled carbon nanotubes and C60 fullerenes in the FE1-MutaTMMouse lung epithelial cells. Environ Mol Mutagen. 49:476–487.
  • Jacobsen NR, Saber AT, White P, Møller P, Pojana G, Vogel U, Loft S, Gingerich J, Soper L, Douglas GR, Wallin H. 2007. Increased mutant frequency by carbon black, but not quartz, in the lacZ and cII transgenes of muta mouse lung epithelial cells. Environ Mol Mutagen. 48:451–461.
  • Jacobsen NR, White PA, Gingerich J, Møller P, Saber AT, Douglas GR, Vogel U, Wallin H. 2011. Mutation spectrum in FE1-MUTA(TM) mouse lung epithelial cells exposed to nanoparticulate carbon black. Environ Mol Mutagen. 52:331–337.
  • Jaurand MC, Renier A, Daubriac J. 2009. Mesothelioma: do asbestos and carbon nanotubes pose the same health risk? Part Fibre Toxicol. 6:16.
  • Jessop F, Holian A. 2014. Extracellular HMGB1 regulates multi-walled carbon nanotube-induced inflammation in vivo. Nanotoxicol. 1:1–8.
  • Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Aschberger K, Stone V. 2010. A critical review of the biological mechanisms underlying the in vivo and in vitro toxicity of carbon nanotubes: the contribution of physico-chemical characteristics. Nanotoxicology. 4:207–246.
  • Johnson DR, Methner MM, Kennedy AJ, Steevens JA. 2010. Potential for occupational exposure to engineered carbon-based nanomaterials in environmental laboratory studies. Environ Health Perspect. 118:49–54.
  • Johnston H, Pojana G, Zuin S, Jacobsen NR, Møller P, Loft S, Semmler-Behnke M, McGuiness C, Balharry D, Marcomini A, et al. 2013. Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges. Crit Rev Toxicol. 43:1–20.
  • JRC. 1999. European Commission Joint Research Centre: II3. Carcinogenicity of synthetic mineral fibres after intraperitoneal injection in rats. In: Bernstein DM, Sintes JMR, editors. Methods for the determination of the hazardous properties for human health of man made mineral fibres (MMMF). ECB/TM/18(97) rev. Ispra (Italy): European Commission Joint Research Centre, Institute for Health and Consumer Protection. JRC EUR 18748 EN.
  • Ju L, Zhang G, Zhang X, Jia Z, Gao X, Jiang Y, Yan C, Duerksen-Hughes PJ, Chen FF, Li H, et al. 2014. Proteomic analysis of cellular response induced by multi-walled carbon nanotubes exposure in a549 cells. PLoS One. 9: e84974.
  • Kagan VE, Konduru NV, Feng W, Allen BL, Conroy J, Volkov Y, Vlasova II, Belikova NA, Yanamala N, Kapralov A, et al. 2010. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat Nanotechnol. 5:354–359.
  • Karlsson HL, Cronholm P, Gustafsson J, Möller L. 2008. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol. 21:1726–1732.
  • Karlsson HL, Di Bucchianico S, Collins AR, Dusinska M. 2015. Can the comet assay be used reliably to detect nanoparticle-induced genotoxicity? Environ Mol Mutagen. 56:82–96.
  • Kasai T, Umeda Y, Ohnishi M, Kondo H, Takeuchi T, Aiso S, Nishizawa T, Matsumoto M, Fukushima S. 2015. Thirteen-week study of toxicity of fiber-like multi-walled carbon nanotubes with whole-body inhalation exposure in rats. Nanotoxicology. 9:413–422.
  • Katabami M, Dosaka-Akita H, Honma K, Saitoh Y, Kimura K, Uchida Y, Mikami H, Ohsaki Y, Kawakami Y, Kikuchi K. 2000. Pneumoconiosis-related lung cancers: preferential occurrence from diffuse interstitial fibrosistype pneumoconiosis. Am J Respir Crit Care Med. 162:295–300.
  • Kato T, Totsuka Y, Ishino K, Matsumoto Y, Tada Y, Nakae D, Goto S, Masuda S, Ogo S, Kawanishi M, et al. 2013. Genotoxicity of multi-walled carbon nanotubes in both in vitro and in vivo assay systems. Nanotoxicology. 7:452–461.
  • Katwa P, Wang X, Urankar RN, Podila R, Hilderbrand SC, Fick RB, Rao AM, Ke PC, Wingard CJ, Brown JM. 2012. A carbon nanotube toxicity paradigm driven by mast cells and the IL-33/ST2 axis. Small. 8:2904–2912.
  • Katzenstein AL, Mukhopadhyay S, Zanardi C, Dexter E. 2010. Clinically occult interstitial fibrosis in smokers: classification and significance of a surprisingly common finding in lobectomy specimens. Hum Pathol. 41:316–325.
  • Kermanizadeh A, Gaiser BK, Hutchison GR, Stone V. 2012. An in vitro liver model—assessing oxidative stress and genotoxicity following exposure of hepatocytes to a panel of engineered nanomaterials. Part Fibre Toxicol. 9:28.
  • Kermanizadeh A, Vranic S, Boland S, Moreau K, Baeza-Squiban A, Gaiser BK, Andrzejczuk LA, Stone V. 2013. An in vitro assessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity. BMC Nephrol. 14:96.
  • Kidane D, Chae WJ, Czochor J, Eckert KA, Glazer PM, Bothwell AL, Sweasy JB. 2014. Interplay between DNA repair and inflammation, and the link to cancer. Crit Rev Biochem Mol Biol. 49:116–139.
  • Kilbey A, Terry A, Cameron ER, Neil JC. 2008. Oncogene-induced senescence: an essential role for Runx. Cell Cycle. 7:2333–2340.
  • Kim JS, Lee K, Lee YH, Cho HS, Kim KH, Choi KH, Lee SH, Song KS, Kang CS, Yu IJ. 2011. Aspect ratio has no effect on genotoxicity of multi-wall carbon nanotubes. Arch Toxicol. 85:775–786.
  • Kim JS, Sung JH, Song KS, Lee JH, Kim SM, Lee GH, Ahn KH, Lee JS, Shin JH, Park JD, Yu IJ. 2012. Persistent DNA damage measured by comet assay of Sprague Dawley rat lung cells after five days of inhalation exposure and 1 month post-exposure to dispersed multi-wall carbon nanotubes (MWCNTs) generated by new MWCNT aerosol generation system. Toxicol Sci. 128:439–448.
  • Kim JS, Sung JH, Choi BG, Ryu HY, Song KS, Shin JH, Lee JS, Hwang JH, Lee JH, Lee GH, et al. 2014. In vivo genotoxicity evaluation of lung cells from Fischer 344 rats following 28 days of inhalation exposure to MWCNTs, plus 28 days and 90 days post-exposure. Inhal Toxicol. 26:222–234.
  • Kim JS, Song KS, Yu IJ. 2015. Evaluation of in vitro and in vivo genotoxicity of single-walled carbon nanotubes. Toxicol Ind Health. 31:747–757.
  • Kim JS, Song KS, Yu IJ. 2016. Multiwall carbon nanotube-induced DNA damage and cytotoxicity in male human peripheral blood lymphocytes. Int J Toxicol. 35:27–37.
  • Kim JS, Yu IJ. 2014. Single-wall carbon nanotubes (SWCNT) induce cytotoxicity and genotoxicity produced by reactive oxygen species (ROS) generation in phytohemagglutinin (PHA)-stimulated male human peripheral blood lymphocytes. J Toxicol Environ Health A. 77:1141–1153.
  • Kisin ER, Murray AR, Keane MJ, Shi XC, Schwegler-Berry D, Gorelik O, Arepalli S, Castranova V, Wallace WE, Kagan VE, Shvedova AA. 2007. Single-walled carbon nanotubes: geno- and cytotoxic effects in lung fibroblast V79 cells. J Toxicol Environ Health A. 70:2071–2079.
  • Kisin ER, Murray AR, Sargent L, Lowry D, Chirila M, Siegrist KJ, Schwegler-Berry D, Leonard S, Castranova V, Fadeel B, et al. 2011. Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos? Toxicol Appl Pharmacol. 252:1–10.
  • Knaapen AM, Güngör N, Schins RP, Borm PJ, Van Schooten FJ. 2006. Neutrophils and respiratory tract DNA damage and mutagenesis: a review. Mutagenesis. 21:225–236.
  • Kobayashi N, Naya M, Ema M, Endoh S, Maru J, Mizuno K, Nakanishi J. 2010. Biological response and morphological assessment of individually dispersed multi-wall carbon nanotubes in the lung after intratracheal instillation in rats. Toxicology. 276:143–153.
  • Kobayashi N, Naya M, Mizuno K, Yamamoto K, Ema M, Nakanishi J. 2011. Pulmonary and systemic responses of highly pure and well-dispersed single-wall carbon nanotubes after intratracheal instillation in rats. Inhal Toxicol. 23:814–828.
  • Kolb R, Liu G-H, Janowski AM, Sutterwala FS, Zhang W. 2014. Inflammasomes in cancer: a double-edged sword. Protein Cell. 5:12–20.
  • Kolosnjaj-Tabi J, Hartman KB, Boudjemaa Ananta JS, Morgant G, Szwarc H, Wilson LJ Moussa F. 2010. In vivo behavior of large doses of ultrashort and full-length single-walled carbon nanotubes after oral and intraperitoneal administration to Swiss mice. ACS Nano. 4:1481–1492.
  • Kuempel ED, O’Flaherty EJ, Stayner LT, Smith RJ, Green FHY, Vallyathan V. 2001. A biomathematical model of particle clearance and retention in the lungs of coal miners. Regul Toxicol Pharmacol 34:69–87.
  • Kuempel ED, Geraci CL, Schulte PA. 2012. Risk assessment and risk management of nanomaterials in the workplace: translating research to practice. Ann Occup Hyg. 56:491–505.
  • Kulkarni P, Baron P. (2011). Introduction to aerosol characterization in aerosol measurements: principles, applications, and techniques. New York: John Wiley & Sons, Inc.
  • Kundu JK, Surh Y-J. 2012. Emerging avenues linking inflammation and cancer. Free Radic Biol Med. 52:2013–2037.
  • Kunzmann A, Andersson B, Thurnherr T, Krug H, Scheynius A, Fadeel B. 2011. Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. Biochim Biophys Acta. 1810:361–373.
  • Kuriashy A, Karin M, Grivennikov SI. 2011. Tumor promotion via injury- and death-induced inflammation. Immunity. 35:467–477.
  • Kurowska-Stolarska M, Stolarski B, Kewin P, Murphy G, Corrigan CJ, Ying S, Pitman N, Mirchandani A, Rana B, Van Rooijen N, et al. 2009. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol. 183:6469–6477.
  • Kyjovska ZO, Jacobsen NR, Saber AT, Bengtson S, Jackson P, Wallin H, Vogel U. 2015. DNA damage following pulmonary exposure by instillation to low doses of carbon black (Printex 90) nanoparticles in mice. Environ Mol Mutagen. 56:41–49.
  • Lam CW, James JT, McCluskey R, Hunter RL. 2004. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci. 77:126–134.
  • Lambert IB, Singer TM, Boucher SE, Douglas GR. 2005. Detailed review of transgenic rodent mutation assays. Mutat Res. 590:1–280.
  • Landsiedel R, Sauer UG, Ma-Hock L, Schnekenburger J, Wiemann M. 2014. Pulmonary toxicity of nanomaterials: a critical comparison of published in vitro assays and in vivo inhalation or instillation studies. Nanomedicine (Lond) 9:2557–2585.
  • Lapp NL, Castranova V. 1993. How silicosis and coal workers' pneumoconiosis develop-a cellular assessment. State Art Rev Occup Med. 8:35–56.
  • Laskin DL, Sunil VR, Gardner CR, Laskin JD. 2011. Macrophages and tissue injury: agents of defense or destruction? Annu Rev Pharmacol Toxicol. 51:267–288.
  • Lee JS, Choi JC, Shin JH, Lee JH, Lee Y, Park SY, Baek JE, Park JD, Ahn K, Yu IJ. 2015. Health surveillance study of workers who manufacture multi-walled carbon nanotubes. Nanotoxicology. 9:802–811.
  • Lee JH, Lee SB, Bae GN, Jeon KS, Yoon JU, Ji JH, Sung JH, Lee BG, Lee JH, Yang JS, et al. 2010. Exposure assessment of carbon nanotube manufacturing workplaces. Inhal Toxicol. 22:369–381.
  • Leung CC, Yu ITS, Chen W. 2012. Silicosis. Lancet. 379:2008–2018.
  • Li X, Peng Y, Qu X. 2006. Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B-A transition in solution. Nucleic Acids Res. 34:3670–3676.
  • Li R, Wang X, Ji Z, Sun B, Zhang H, Chang CH, Lin S, Meng H, Liao YP, Wang M, et al. 2013. Surface charge and cellular processing of covalently functionalized multiwall carbon nanotubes determine pulmonary toxicity. ACS Nano. 7:2352–2368.
  • Lindberg HK, Falck GC, Singh R, Suhonen S, Jarventaus H, Vanhala E, Catalán J, Farmer PB, Savolainen KM, Norppa H. 2013. Genotoxicity of short single-wall and multi-wall carbon nanotubes in human bronchial epithelial and mesothelial cells in vitro. Toxicology. 313:24–37.
  • Lindberg HK, Falck GC, Suhonen S, Vippola M, Vanhala E, Catalán J, Savolainen K, Norppa H. 2009. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett. 186:166–173.
  • Liou SH, Tsai CS, Pelclova D, Schubauer-Berigan MK, Schulte PA. 2015. Assessing the first wave of epidemiological studies of nanomaterial workers. J Nanopart Res. 17:413.
  • Lippmann M. 1990. Effects of fiber characteristics on lung deposition, retention and disease. Environ Health Perspect. 88:311–317.
  • Liu X, Hurt RH, Kane AB. 2010. Biodurability of single-walled carbon nanotubes depends on surface functionalization. Carbon N Y. 48:1961–1969.
  • Lohcharoenkal W, Wang L, Stueckle TA, Park J, Tse W, Dinu C-Z, Rojanasakul Y. 2014. Role of H-Ras/ERK signaling in carbon nanotube-induced neoplastic-like transformation of human mesothelial cells. Front Physiol. 5:222. PMID:24971065.
  • Lucente-Schultz RM, Moore VC, Leonard AD, Price BK, Kosynkin DV, Lu M, Partha R, Conyers JL, Tour JM. 2009. Antioxidant single-walled carbon nanotubes. J Am Chem Soc. 131:3934–3941.
  • Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F, Mertler M, Wiench K, Gamer AO, Ravenzwaay B, Landsiedel R. 2009. Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci. 112:468–481.
  • Maddox C, Wang B, Kirby PA, Wang K, Ludewig G. 2008. Mutagenicity of 3-methylcholanthrene, pcb3, and 4-oh-pcb3 in the lung of transgenic bigblue rats. Environ Toxicol Pharmacol. 25:260–266.
  • Madl AK, Pinkerton KE. 2009. Health effects of inhaled engineered and incidental nanoparticles. Crit Rev Toxicol. 39:629–658.
  • Malkinson AM. 1991. Genetic-studies on lung-tumor susceptibility and histogenesis in mice. Environ Health Perspect. 93:149–159.
  • Malkova A, Haber JE. 2012. Mutations arising during repair of chromosome breaks. Annu Rev Genet. 46:455–473.
  • Manshian BB, Jenkins GJS, Williams PM, Wright C, Barron AR, Brown AP, Hondow N, Dunstan PR, Rickman R, Brady K, Doak SH. 2013. Single-walled carbon nanotubes: differential genotoxic potential associated with physico-chemical properties. Nanotoxicology. 7:144–156.
  • Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V. 2004. Exposure to carbon nanotube material: aerosol release during the handling of unrefined single walled carbon nanotube material. J Toxicol Environ Health Part A. 67:87–107.
  • Maynard AD, Kuempel E. 2005. Airborne nanostructured particles and occupational health. J Nanoparticle Res. 7:587–614.
  • McClellan RO. 1997. Use of mechanistic data in assessing human risks from exposure to particles. Environ Health Perspect. 105:1363–1372.
  • McGregor DB, Rice JM, Venitt S, eds. 1999. The use of short- and medium-term tests for carcinogens and data on genetic effects in carcinogenic hazard evaluation. IARC Scientific Publication No. 146. Lyon, France: International Agency for Research on Cancer.
  • Melnick RL, Huff J, Barrett JC, Maronpot RR, Lucier G, Portier CJ. 1993. Cell proliferation and chemical carcinogenesis: symposium overivew. Environ Health Perspect. 101:3–8.
  • Meng J, Li X, Wang C, Guo H, Liu J, Xu H. 2015. Carbon nanotubes activate macrophages into a M1/M2 mixed status: recruiting naïve macrophages and supporting angiogenesis. ACS Appl Mater Interfaces. 7:3180–3188.
  • Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Schwegler-Berry D, Castranova V, Porter DW. 2010. Distribution and persistence of pleural penetrations by multi-walled carbon nanotubes. Part Fibre Toxicol. 7:1–11.
  • Mercer RR, Hubbs AF, Scabilloni JF, Wang L, Battelli LA, Friend S, Castranova V, Porter DW. 2011. Pulmonary fibrotic response to aspiration of multi-walled carbon nanotubes. Part Fibre Toxicol. 8:21.
  • Mercer RR, Scabilloni JF, Hubbs AF, Battelli LA, McKinney W, Friend S, Wolfarth MG, Andrew M, Castranova V, Porter DW. 2013a. Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol. 10:33.
  • Mercer RR, Scabilloni JF, Hubbs AF, Wang L, Battelli LA, McKinney W, Castranova V, Porter DW. 2013b. Extrapulmonary transport of MWCNT following inhalation exposure. Part Fibre Toxicol. 10:38.
  • Mercer R, Scabilloni J, Wang L, Kisin E, Murray AD, Shvedova AA, Castranova AV. 2008. Alteration of deposition patterns and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am J Physiol Lung Cell Mol Physiol. 294:L87–L97.
  • Methner MM, Birch ME, Evans DE, Ku B-K, Crouch KG, Hoover MD. 2007. Case study: identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations. J Occup Environ Hyg. 4:D125–D130.
  • Methner M, Crawford C, Geraci C. 2012. Evaluation of the potential airborne release of carbon nanofibers during the preparation, grinding, and cutting of epoxy-based nanocomposite material. J Occup Environ Hyg. 9:308–318.
  • Migliore L, Saracino D, Bonelli A, Colognato R, D'Errico MR, Magrini A, Bergamaschi A, Bergamaschi E. 2010. Carbon nanotubes induce oxidative DNA damage in RAW 264.7 cells. Environ Mol Mutagen. 51:294–303.
  • Miller FJ. 2000. Dosimetry of particles in laboratory animals and humans in relationship to issues surrounding lung overload and human health. risk assessment: a critical review. Inhal Toxicol. 12:19–57.
  • Miserocchi G, Sancini G, Mantegazza F, Chiappino G. 2008. Translocation pathways for inhaled asbestos fibers. Environ Health. 7:4.
  • Mitchell LA, Gao J, Wal RV, Gigliotti A, Burchiel SW, McDonald JD. 2007. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci. 100:203–214.
  • Mitchell LA, Lauer FT, Burchiel SW, McDonald JD. 2009. Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice. Nat Nanotechnol. 4:451–456.
  • Møller P. 2005. Genotoxicity of environmental agents assessed by the alkaline comet assay. Basic Clin Pharmacol Toxicol. 96:1–42.
  • Møller P, Danielsen PH, Jantzen K, Roursgaard M, Loft S. 2013. Oxidatively damaged DNA in animals exposed to particles. Crit Rev Toxicol. 43:96–118.
  • Møller P, Hemmingsen JG, Jensen DM, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Cao Y, Kermanizadeh H, Klingberg H, et al. 2015a. Applications of the comet assay in particle toxicology: air pollution and engineered nanomaterials exposure. Mutagenesis. 30:67–83.
  • Møller P, Jensen DM, Christophersen DV, Kermanizadeh A, Jacobsen NR, Hemmingsen JG, Danielsen PH, Karottki DG, Roursgaard M, Cao Y, et al. 2015b. Measurement of oxidative damage to DNA in nanomaterial exposed cells and animals. Environ Mol Mutagen. 56:97–110.
  • Møller P, Loft S. 2010. Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution. Environ Health Perspect 118:1126–1136.
  • Møller P, Loft S. 2014. Statistical analysis of comet assay results. Front Genet. 5:292.
  • Montesano R, Bartsch H, Vainio H, Wilbourn J, Yamasaki H, eds. 1986. Long-term and short-term assays for carcinogenesis - a critical appraisal. IARC Scientific Publication No. 83. Lyon, France: International Agency for Research on Cancer.
  • Morfeld P, Bruch J, Ngiewich Y, Chaudhuri I, Muranko H, Myerson R, McCunney R. 2015. Translation toxicology in setting occupational exposure limits for dusts and hazard classification – a critical evaluation of a recent approach to translate dust overload findings from rats to humans. Part Fibre Toxicol. 12:3.
  • Morimoto Y, Hirohashi M, Kobayashi N, Ogami A, Horie M, Oyabu T, Myojo T, Hashiba M, Mizuguchi Y, Kambara T, et al. 2012a. Pulmonary toxicity of well-dispersed single-wall carbon nanotubes after inhalation. Nanotoxicology. 6:766–775.
  • Morimoto Y, Hirohashi M, Ogami A, Oyabu T, Myojo T, Todoroki M, Yamamoto M, Hashiba M, Mizuguchi Y, Lee BW, et al. 2012b. Pulmonary toxicity of well-dispersed multi-wall carbon nanotubes following inhalation and intratracheal instillation. Nanotoxicology. 6:587–599.
  • Morimoto Y, Hirohashi M, Horie M, Ogami A, Oyabu T, Myojo T, Hashiba M, Mizuguchi Y, Kambara T, Lee BW, et al. 2012c. Pulmonary toxicity of well-dispersed single-wall carbon nanotubes following intratracheal instillation. J Nano Res. 18–19:9–25.
  • Moriya M. 1993. Single-stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8-oxoguanine in DNA induces targeted G.C-T.A transversions in simian kidney cells. Proc Natl Acad Sci USA. 90:1122–1126.
  • Morrow PE. 1988. Possible mechanisms to explain dust overloading of the lungs. Fundam Appl Toxicol. 10:369–384.
  • Mossman BT, Morton L, Hesterberg TW, Kelsey KT, Barchowsky A, Bonner JC. 2011. Pulmonary endpoints (lung carcinomas and asbestosis) following inhalation exposure to asbestos. J Toxicol Environ Health B Crit Rev. 14:76–121.
  • Mossman BT, Shukla A, Heintz NH, Verschraegen CF, Thomas A, Hassan R. 2013. New insights into understanding the mechanisms, pathogenesis and management of malignant mesotheliomas. Am J Pathol. 182:1065–1077.
  • Mrakovcic M, Meindl C, Leitinger G, Roblegg E, Fröhlich E. 2015. Carboxylated short single-walled carbon nanotubes but not plain and multi-walled short carbon nanotubes show in vitro genotoxicity. Toxicol Sci. 144:114–127.
  • Muhle H, Bellmann B, Creutzenberg O, Heinrich U, Ketkar M, Mermelstein R. 1990. Dust overloading of lungs after exposure of rats to particles of low solubility: comparative studies. J Aerosol Science. 21:374–377.
  • Mühlfeld C, Poland CA, Duffin R, Brandenberger C, Murphy FA, Rothen-Rutishauser B, Gehr P, Donaldson K. 2012. Differential effects of long and short carbon nanotubes on the gas-exchange region of the mouse lung. Nanotoxicology. 6:867–879.
  • Mukhopadhyay S, Farver CF, Vaszar LT, Dempsey OJ, Popper HH, Mani H, Capelozzi VL, Fukuoka J, Kerr KM, Zeren EH, et al. 2012. Causes of pulmonary granulomas: a retrospective study of 500 cases from seven countries. J Clin Pathol. 65:51–57.
  • Muller J, Decordier I, Hoet PH, Lombaert N, Thomassen L, Huaux F, Lison D, Kirsch-Volders M. 2008a. Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis. 29:427–433.
  • Muller J, Delos M, Panin N, Rabolli V, Huaux F, Lison D. 2009. Absence of carcinogenic response to multiwall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the rat. Toxicol Sci. 110:442–448. Available from: http://dx.doi.org/10.1093/toxsci/kfp100 PMID:19429663.
  • Muller J, Huaux F, Fonseca A, Nagy JB, Moreau N, Delos M, Raymundo-Pinero E, Beguin F, Kirsch-Volders M, Fenoglio I, et al. 2008b. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem Res Toxicol. 21:1698–1705.
  • Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D. 2005. Respiratory toxicity of multiwall carbon nanotubes. Toxicol Appl Pharmacol. 207:221–231.
  • Multhoff G, Molls M, Radons J. 2012. Chronic inflammation in cancer development. Front Immunol. 2:98–17.
  • Murphy FA, Poland CA, Duffin R, Al-Jamal KT, Ali-Boucetta H, Nunes A, Byrne F, Prina-Mello A, Volkov Y, Li S, et al. 2011. Length-dependent retention of carbon nanotubes in the pleural space of mice initiates sustained inflammation and progressive fibrosis on the parietal pleura. Am J Pathol. 178:2587–2600.
  • Murphy FA, Poland CA, Duffin R, Donaldson K. 2013. Length-dependent pleural inflammation and parietal pleural responses after deposition of carbon nanotubes in the pulmonary airspaces of mice. Nanotoxicology. 7:1157–1167.
  • Murray AR, Kisin ER, Tkach AV, Yanamala N, Mercer R, Young SH, Fadeel B, Kagan VE, Shvedova AA. 2012. Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos. Part Fibre Toxicol. 9:10.
  • Nagai H, Okazaki Y, Chew SH, Misawa N, Miyata Y, Shinohara H, Toyokuni S. 2013. Intraperitoneal administration of tangled multiwalled carbon nanotubes of 15 nm in diameter does not induce mesothelial carcinogenesis in rats. Pathol Int. 63:457–462.
  • Nagai H, Okazaki Y, Chew SH, Misawa N, Yamashita Y, Akatsuka S, Ishihara T, Yamashita K, Yoshikawa Y, Yasui H, et al. 2011. Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci USA. 108:E1330–E1338.
  • Nagai H, Toyokuni S. 2012. Differences and similarities between carbon nanotubes and asbestos fibers during mesothelial carcinogenesis: shedding light on fiber entry mechanism. Cancer Sci. 103:1378–1390.
  • Naya M, Kobayashi N, Endoh S, Maru J, Honda K, Ema M, Tanaka J, Fukumuro M, Hasegawa K, Nakajima M, et al. 2012. In vivo genotoxicity study of single-wall carbon nanotubes using comet assay following intratracheal instillation in rats. Regul Toxicol Pharmacol. 64:124–129.
  • Naya M, Kobayashi N, Mizuno K, Matsumoto K, Ema M, Nakanishi J. 2011. Evaluation of the genotoxic potential of single-wall carbon nanotubes by using a battery of in vitro and in vivo genotoxicity assays. Regul Toxicol Pharmacol. 61:192–198.
  • Nel AE, Nasser E, Godwin H, Avery D, Bahadori T, Bergeson L, Beryt E, Bonner JC, Boverhof D, Carter J, et al. 2013. A multi-stakeholder perspective on the use of alternative test strategies for nanomaterial safety assessment. ACS Nano. 7:6422–6433.
  • Nikota J, Williams A, Yauk CL, Wallin H, Vogel U, Halappanavar S. 2016. Meta-analysis of transcriptomic responses as a means to identify pulmonary disease outcomes for engineered nanomaterials. Part Fibre Toxicol. 13:25.
  • Nikula KJ, Vallyathan V, Green FH, Hahn FF. 2001. Influence of exposure concentration or dose on the distribution of particulate material in rat and human lungs. Environ Health Perspect. 109:311–318.
  • NIOSH. 2013. Current Intelligence Bulletin 65: Occupational Exposure to Carbon Nanotubes and Nanofibers. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, Ohio. DHHS (NIOSH) Publication Number 2013-14.
  • Nishimura SL, Broaddus VC. 1998. Asbestos-induced pleural disease. Clin Chest Med. 19:311–329.
  • Oberdörster G. 1995. Lung particle overload: implications for occupational exposures to particles. Regulatory Toxicol Pharmacol. 27:123–135.
  • Oberdörster G, Castranova V, Asgharian B, Sayre P. 2015. Inhalation exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF): methodology and dosimetry. J Toxicol Environ Health B Crit Rev. 18:121–212.
  • Oberdörster G, Ferin J, Soderholm S, Gelein R, Cox C, Baggs R, Morrow PE. 1994. Increased pulmonary toxicity of inhaled ultrafine particles: due to lung overload alone? Ann Occup Hyg. 38:295–302.
  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group, et al. 2005b. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Report of the International Life Sciences Institute Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group. Part Fibre Toxicol. 2:8.
  • Oberdörster G, Oberdörster E, Oberdörster J. 2005a. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 113:823–839.
  • OECD [Internet]. 2009. OECD Guideline for the Testing of Chemicals: Subchronic Inhalation Toxicity: 90-Day Study. OECD/PCDE TG 413. Adopted: 7 September 2009. Available from: http://www.oecd-ilibrary.org/environment/test-no-413-subchronic-inhalation-toxicity-90-day-study_9789264070806-en
  • OECD [Internet]. 2014. OECD Guideline for the Testing of Chemicals: In Vivo Mammalian Alkaline Comet Assay. OECD/OCDE TG 489. Adopted: 26 September 2014. Available from: http://www.oecd-ilibrary.org/environment/test-no-489-in-vivo-mammalian-alkaline-comet-assay_9789264224179-en
  • O’Hagan HM, Wang W, Sen S, Destefano Shields C, Lee SS, Zhang YW, Clements EG, Cai Y, Van Neste L, Easwaran H, et al. 2011. Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell. 20:606–619.
  • Oyabu T, Myojo T, Morimoto Y, Ogami A, Hirohashi M, Yamamoto M, Todoroki M, Mizuguchi Y, Hashiba M, Lee BW, et al. 2011. Biopersistence of inhaled MWCNT in rat lungs in a 4-week well-characterized exposure. Inhal Toxicol. 23:784–791.
  • Pacurari M, Yin XJ, Zhao J, Ding M, Leonard SS, Schwegler-Berry D, Ducatman BS, Sbarra D, Hoover MD, Castranova V, Vallyathan V. 2008. Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-kappaB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect. 116:1211–1217.
  • Pairon JC, Laurent F, Rinaldo M, Clin B, Andujar P, Ameille J, Brochard P, Chammings S, Ferretti G, Galateau-Sallé F, et al. 2013. Pleural plaques and the risk of pleural mesothelioma. J Natl Cancer Inst. 105:293–301.
  • Palomäki J, Välimäki E, Sund J, Vippola M, Clausen PA, Jensen KA, Savolainen K, Matikainen S, Alenius H. 2011. Long, needle-like carbon nanotubes and asbestos activate the NLRP3 inflammasome through a similar mechanism. ACS Nano. 5:6861–6870.
  • Pandiri A. 2015. Comparative pathobiology of environmentally induced lung cancers in humans and rodents. Toxicol Pathol. 43:107–114.
  • Park EJ, Cho WS, Jeong J, Yi J, Choi K, Park K. 2009. Pro-inflammatory and potential allergic responses resulting from B cell activation in mice treated with multi-walled carbon nanotubes by intratracheal instillation. Toxicology. 259:113–121.
  • Park EJ, Roh J, Kim SN, Kang MS, Han YA, Kim Y, Hong JT, Choi K. 2011a. A single intratracheal instillation of single-walled carbon nanotubes induced early lung fibrosis and subchronic tissue damage in mice. Arch Toxicol. 85:1121–1131.
  • Park EJ, Roh J, Kim SN, Kang MS, Lee BS, Kim Y, Choi S. 2011b. Biological toxicity and inflammatory response of semi-single-walled carbon nanotubes. PLoS One. 6:e25892
  • Park EJ, Roh J, Kim SN, Kim Y, Han SB, Hong JT. 2013. CCR5 plays an important role in resolving an inflammatory response to single-walled carbon nanotubes. J Appl Toxicol. 33:845–853.
  • Pauluhn J. 2010. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci. 113:226–242.
  • Pauluhn J. 2014a. Derivation of occupational exposure levels (OELs) of low-toxicity isometric biopersistent particles: How can the kinetic lung overload paradigm be used for improved inhalation toxicity study design and OEL-derivation? Part Fibre Toxicol. 11:72.
  • Pauluhn J. 2014b. The metrics of MWCNT-induced pulmonary inflammation are dependent on the selected testing regimen. Regul Toxicol Pharmacol. 68:343–352.
  • Pauluhn J, Rosenbruch M. 2015. Lung burdens and kinetics of multi-walled carbon nanotubes (Baytubes) are highly dependent on the disaggregation of aerosolized MWCNT. Nanotoxicology. 9:242–252.
  • Pelka J, Gehrke H, Rechel A, Kappes M, Hennrich F, Hartinger CG, Marko D. 2013. DNA damaging properties of single walled carbon nanotubes in human colon carcinoma cells. Nanotoxicology. 7:2–20.
  • Pietroiusti A, Massimiani M, Fenoglio I, Colonna M, Valentini F, Palleschi G, Camaioni A, Magrini A, Siracusa G, Bergamaschi A, et al. 2011. Low doses of pristine and oxidized single-wall carbon nanotubes affect mammalian embryonic development. ACS Nano. 5:4624–4633.
  • Pinkerton KE, Plopper CG, Hyde DM, Harkema JR, Tyler WS, Morgan KT, St. George JA, Kay M, Mariassy A. 1997. Structure and function of the respiratory tract. In: Massaro EJ, editor. Handbook of human toxicology. Chapter 11. New York (NY): CRC Press. pp. 469–491.
  • Pitot HC, Dragan YP. 1993. Stage of tumor progression, progressor agents, and human risk. Proc Soc Exp Biol Med. 202:37–43.
  • Plopper CG, Hyde DM. 2015. Epithelial cells of the bronchiole. In: RA Parent, editor. Comparative biology of the normal lung. 2nd ed. Chapter 7. San Diego (CA): Academic Press. pp 83–92.
  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K. 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 3:423–428.
  • Ponti J, Broggi F, Mariani V, De ML, Colognato R, Marmorato P, Gioria S, Gilliland D, Pascual GC, Meschini S, et al. 2013. Morphological transformation induced by multiwall carbon nanotubes on Balb/3T3 cell model as an in vitro end point of carcinogenic potential. Nanotoxicology. 7:221–233.
  • Porter DW, Hubbs AF, Chen BT, McKinney W, Mercer RR, Wolfarth MG, Battelli L, Wu N, Sriram K, Leonard S, et al. 2013. Acute pulmonary dose–responses to inhaled multi-walled carbon nanotubes. Nanotoxicology. 7:1179–1194.
  • Porter DW, Hubbs AF, Mercer RR, Wu N, Wolfarth MG, Sriram K, Leonard SS, Battelli L, Schwegler-Berry D, Friend S, et al. 2010. Mouse pulmonary dose-and time course-responses induced by exposure to multi-walled carbon nanotubes. Toxicology. 269:136–147.
  • Porter DW, Sriram K, Wolfarth M, Jefferson A, Schwegler-Berry D, Andrew M, Castranova V. 2008. A biocompatible medium for nanoparticle dispersion. Nanotoxicol. 2:144–154.
  • Pothmann D, Simar S, Schuler D, Dony E, Gaering S, Le Net JL, Okazaki Y, Chabagno JM, Bessibes C, Beausoleil J, et al. 2015. Lung inflammation and lack of genotoxicity in the comet and micronucleus assays of industrial multiwalled carbon nanotubes Graphistrength((c)) C100 after a 90-day nose-only inhalation exposure of rats. Part Fibre Toxicol. 12:21.
  • Pott F, Roller M, Rippe RM, German P-G, Bellmann B. 1991. Tumours by the intraperitoneal and intrapleural routes and their significance for the classification of mineral fibres. In: Brown RC, Hoskins JA, Johnson NF, editors. Mechanisms in fibre carcinogenesis. New York: Plenum Press. pp. 547–565.
  • Pott F, Ziem U, Reiffer F, Huth F, Ernst H, Mohr U. 1987. Carcinogenicity studies of fibres, metal compounds and some other dusts in rats. Exp Path. 32:129–152.
  • Poulsen SS, Jacobsen NR, Labib S, Wu D, Husain M, Williams A, Bogelund JP, Andersen O, Kobler C, Molhave K, et al. 2013. Transcriptomic analysis reveals novel mechanistic insight into murine biological responses to multi-walled carbon nanotubes in lungs and cultured lung epithelial cells. PLoS One. 8:e80452.
  • Poulsen SS, Saber AT, Williams A, Andersen O, Kobler C, Atluri R, Pozzebon ME, Mucelli SP, Simion M, Rickerby D, et al. 2015. MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol. 284:16–32.
  • Quinn MM, Smith TJ, Eisen EA, Wegman DH, Ellenbecker MJ. 2000. Implications of different fiber measures for epidemiologic studies of man-made vitreous fibers. Am J Ind Med. 38:132–139.
  • Rabolli V, Badissi AA, Devosse R, Uwambayinema F, Yakoub Y, Palmai-Pallag M, Lebrun A, De Gussem V, Couillin I, Ryffel B, et al. 2014. The alarmin IL-1α is a master cytokine in acute lung inflammation induced by silica micro- and nanoparticles. Part Fibre Toxicol. 11:69.
  • Raghu G, Nyberg F, Morgan G. 2004. The epidemiology of interstitial lung disease and its association with lung cancer. Br J Cancer. 91:S3–S10.
  • Ramírez-Salazar EG, Salinas-Silva LC, Vázquez-Manríquez ME, Gayosso-Gómez LV, Negrete-Garcia MC, Ramírez-Rodriguez SL, Chávez R, Zenteno E, Santillán P, Kelly-García J, Ortiz-Quintero B. 2014. Analysis of microRNA expression signatures in malignant pleural mesothelioma, pleural inflammation, and atypical mesothelial hyperplasia reveals common predictive tumorigenesis-related targets. Exper Molec Path. 97:375–385.
  • Ravichandran P, Baluchamy S, Sadanandan B, Gopikrishnan R, Biradar S, Ramesh V, Hall JC, Ramesh GT. 2010. Multiwalled carbon nanotubes activate NF-kappaB and AP-1 signaling pathways to induce apoptosis in rat lung epithelial cells. Apoptosis. 15:1507–1516.
  • Reddy ARN, Krishna DR, Reddy YN, Himabindu V. 2010. Translocation and extra pulmonary toxicities of multi wall carbon nanotubes in rats. Toxicol Mech Methods. 20:267–272.
  • Regad T. 2015. Targeting RTK signaling pathways in cancer. Cancers. 7:1758–1784.
  • Renwick LC, Brown D, Clouter A, Donaldson K. 2004. Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particles. Occup Environ Med. 61:442–447.
  • Renwick LC, Donaldson K, Clouter A. 2001. Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol Applied Pharmacol. 172:119–127.
  • Ress NB, Chou BJ, Renne RA, Dill JA, Miller RA, Roycroft JH, Hailey JR, Haseman JK, Bucher JR. 2003. Carcinogenicity of inhaled vanadium pentoxide in F344/N rats and B6C3F1 mice. Toxicol Sci. 74:287–296.
  • Rittinghausen S, Hackbarth A, Creutzenberg O, Ernst H, Heinrich U, Leonhardt A, Schaudien D. 2014. The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats. Part Fibre Toxicol. 11:59.
  • Roda E, Coccini T, Acerbi D, Barni S, Vaccarone R, Manzo L. 2011. Comparative pulmonary toxicity assessment of pristine and functionalized multi-walled carbon nanotubes intratracheally instilled in rats: morphohistochemical evaluations. Histol Histopathol. 26:357–367.
  • Rom WL. 1991. Relationship of inflammatory cell cytokines to disease severity in individuals with occupational inorganic dust exposure. Am J Indus Med. 19:15–27.
  • Rothfuss A, O'Donovan M, De BM, Brault D, Czich A, Custer L, Hamada S, Plappert-Helbig U, Hayashi M, Howe J, et al. 2010. Collaborative study on fifteen compounds in the rat-liver Comet assay integrated into 2- and 4-week repeat-dose studies. Mutat Res. 702:40–69.
  • Ryman-Rasmussen JP, Cesta MF, Brody AR, Shipley-Phillips JK, Everitt JI, Tewksbury EW, Moss OR, Wong BA, Dodd DE, Andersen ME, Bonner JC. 2009. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nat Nanotechnol. 4:747–751.
  • Sager TM, Wolfarth MW, Andrew M, Hubbs A, Friend S, Chen TH, Porter DW, Wu N, Yang F, Hamilton RF, Holian A. 2014. Effect of multi-walled carbon nanotube surface modification on bioactivity in the C57BL/6 mouse model. Nanotoxicology. 8:317–327.
  • Sager TM, Wolfarth MW, Battelli LA, Leonard SS, Andrew M, Steinbach T, Endo M, Tsuruoka S, Porter DW, Castranova V. 2013. Investigation of the pulmonary bioactivity of double-walled carbon nanotubes. J Toxicol Environ Health A. 76:922–936.
  • Sakamoto Y, Nakae D, Fukumori N, Tayama K, Maekawa A, Imai K, Hirose A, Nishimura T, Ohashi N, Ogata A. 2009. Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J Toxicol Sci. 34:65–76. http://dx.doi.org/10.2131/jts.34.65 PMID:19182436.
  • Sanchez VC, Pietruska JR, Miselis NR, Hurt RH, Kane AB. 2009. Biopersistence and potential adverse health impacts of fibrous nanomaterials: what have we learned from asbestos? Wiley Interdiscip Rev Nanomed Nanobiotechnol. 1:511–529.
  • Sanchez VC, Weston P, Yan A, Hurt RH, Kane AB. 2011. A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials. Part Fibre Toxicol. 8:17.
  • Sargent L, Dragan Y, Xu YH, Sattler G, Wiley J, Pitot HC. 1996. Karyotypic changes in a multistage model of chemical hepatocarcinogenesis in the rat. Cancer Res. 56:2985–2991.
  • Sargent LM, Hubbs AF, Young SH, Kashon ML, Dinu CZ, Salisbury JL, Benkovic SA, Lowry DT, Murray AR, Kisin ER, et al. 2012. Single-walled carbon nanotube-induced mitotic disruption. Mutat Res. 745:28–37.
  • Sargent LM, Shvedova AA, Hubbs AF, Salisbury JL, Benkovic SA, Kashon ML, Lowry DT, Murray AR, Kisin ER, Friend S, et al. 2009. Induction of aneuploidy by single-walled carbon nanotubes. Environ Mol Mutagen. 50:708–717.
  • Sargent LM, Porter DW, Staska LM, Hubbs AF, Lowry DT, Battelli L, Siegrist KJ, Kashon ML, Mercer RR, Bauer AK, et al. 2014. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol. 11:3.
  • Sarkar S, Sharma C, Yog R, Periakaruppan A, Jejelowo O, Thomas R, Barrera EV, Rice-Ficht AC, Wilson BL, Ramesh GT. 2007. Analysis of stress responsive genes induced by single-walled carbon nanotubes in BJ Foreskin cells. J Nanosci Nanotechnol. 7:584–592.
  • Sasaki YF, Sekihashi K, Izumiyama F, Nishidate E, Saga A, Ishida K, Tsuda S. 2000. The comet assay with multiple mouse organs: comparison of comet assay results and carcinogenicity with 208 chemicals selected from the IARC monographs and U.S. NTP carcinogenicity database. Crit Rev Toxicol. 30:629–799.
  • Schärer OD. 2013. Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect Biol. 5:a012609.
  • Schins RPF, Knaapen AM. 2007. Genotoxicity of poorly soluble particles. Inhal Toxicol. 19:189–198.
  • Schinwald A, Murphy FA, Prina-Mello A, Poland CA, Byrne F, Glass JR, Dickerson JC, Schultz DA, Movia D, Jeffree CE, et al. 2012. The threshold length for fibre-induced acute pleural inflammation: shedding light on the early events in asbestos-induced mesothelioma. Toxicol Sci. 128:461–470.
  • Schulz H, Brand P, Heyder J. (2000). Particle deposition in the respiratory tract. In: Gehr P, Heyder J, editors. Particle-lung interactions. New York: Marcel Dekker Inc. pp. 229–290.
  • SCOEL. 2012. Recommendation from the Scientific Committee on Occupational Exposure Limits for man-made mineral fibres (MMMF) with no indication for carcinogenicity and not specified elsewhere. SCOEL/SUM/88:1–17.
  • Shannahan JH, Brown JM, Chen R, Ke PC, Lai X, Mitra S, Witzmann FA. 2013. Comparison of nanotube-protein corona composition in cell culture media. Small. 9:2171–2181.
  • Sharma OP, Lamb C. 2003. Cancer in interstitial pulmonary fibrosis and sarcoidosis. Curr Opin Pulm Med. 9:398–401.
  • Sherwood V. 2015. WNT signaling: an emerging mediator of cancer cell metabolism? Mol Cell Biol. 35:2–10.
  • Shinohara N, Nakazato T, Ohkawa K, Tamura M, Kobayashi N, Morimoto Y, Oyabu T, Myojo T, Shimada M, Yamamoto K, et al. 2016. Long-term retention of pristine multi-walled carbon nanotubes in rat lungs after intratracheal instillation. J Appl Toxicol. 36:501–509.
  • Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, Gorelik O, Arepalli S, Schwegler-Berry D, et al. 2005. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol. 289:L698–L708.
  • Shvedova AA, Kapralov AA, Feng WH, Kisin ER, Murray AR, Mercer RR, St Croix CM, Lang MA, Watkins SC, Konduru NV, et al. 2012. Impaired clearance and enhanced pulmonary inflammatory/fibrotic response to carbon nanotubes in myeloperoxidase-deficient mice. PLoS One. 7:e30923.
  • Shvedova AA, Kisin ER, Murray AR, Gorelik O, Arepalli S, Castranova V, Young SH, Gao F, Tyurina YY, Oury TD, Kagan VE. 2007. Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice. Toxicol Appl Pharmacol. 221:339–348.
  • Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, Hubbs AF, Mercer RR, Keohavong P, Sussman N, et al. 2008. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol. 295:L552–L565.
  • Shvedova AA, Yanamala N, Kisin ER, Khailullin TO, Birch ME, Fatkhutdinova LM. 2016. Integrated Analysis of Dysregulated ncRNA and mRNA Expression Profiles in Humans Exposed to Carbon Nanotubes. PLoS One. 11:e0150628.
  • Shvedova AA, Yanamala N, Kisin ER, Tkach AV, Murray AR, Hubbs A, Chirila MM, Keohavong P, Sycheva LP, Kagan VE, Castranova V. 2014. Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons. Am J Physiol Lung Cell Mol Physiol. 306:L170–L182.
  • Shieh Y-T, Wang W-W. 2014. Radical scavenging efficiencies of modified and microwave-treated multiwalled carbon nanotubes. Carbon. 79:354–362.
  • Sica A, Mantovani A. 2012. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 122:787–795.
  • Siegrist KJ, Reynolds SH, Kashon ML, Lowry DT, Dong C, Hubbs AF, Young SH, Salisbury JL, Porter DW, Benkovic SA, et al. 2014. Genotoxicity of multi-walled carbon nanotubes at occupationally relevant doses. Part Fibre Toxicol. 11:6.
  • Silva RM, Doudrick K, Franzi LM, TeeSy C, Anderson DS, Wu Z, Mitra S, Vu V, Dutrow G, Evans JE, et al. 2014. Instillation versus inhalation of multiwalled carbon nanotubes: exposure-related health effects, clearance, and the role of particle characteristics. ACS Nano. 8:8911–8931.
  • Smith MT, Guyton KZ, Gibbons CF, Fritz JM, Portier C, Rusyn I, DeMarini DM, Caldwell JC, Kavlock R, Lambert P, et al. 2016. Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ Health Perspect. 124:713–721.
  • Snipes MB. 1989. Long-term retention and clearance of particles inhaled by mammalian species. Crit Rev Toxicol. 20:175–211.
  • Snyder-Talkington BN, Dong C, Sargent LM, Porter DW, Staska LM, Hubbs AF, Raese R, McKinney W, Chen BT, Battelli L, et al. 2016. mRNAs and miRNAs in whole blood associated with lung hyperplasia, fibrosis, and bronchiolo-alveolar adenoma and adenocarcinoma after multi-walled carbon nanotube inhalation exposure in mice. J Appl Toxicol. 36:161–174.
  • Snyder-Talkington BN, Dymacek J, Porter DW, Wolfarth MG, Mercer RR, Pacurari M, Denvir J, Castranova V, Qian Y, Guo NL. 2013a. System-based identification of toxicity pathways associated with multi-walled carbon nanotube-induced pathological responses. Toxicol Appl Pharmacol. 272:476–489.
  • Snyder-Talkington BN, Pacurari M, Dong C, Leonard SS, Schwegler-Berry D, Castranova V, Qian Y, Guo NL. 2013b. Systematic analysis of multiwalled carbon nanotube-induced cellular signaling and gene expression in human small airway epithelial cells. Toxicol Sci. 133:79–89.
  • Srivastava RK, Pant AB, Kashyap MP, Kumar V, Lohani M, Jonas L, Rahman Q. 2011. Multi-walled carbon nanotubes induce oxidative stress and apoptosis in human lung cancer cell line-A549. Nanotoxicology. 5:195–207.
  • Stayner LT, Kuempel E, Gilbert S, Hein M, Dement J. 2008. An epidemiologic study of the role of chrysotile asbestos fiber dimensions in determining respiratory disease risk in exposed workers. Occup Environ Med. 65:613–619.
  • Stanton MF, Layard M, Tegeris A, Miller E, May M, Morgan E, Smith A. 1981. Relation of particle dimension to carcinogenicity in amphibole asbestos and other fibrous minerals. J Natl Cancer Inst. 67:965–975.
  • Stern ST, Adiseshaiah PP, Crist RM. 2012. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol. 9:20.
  • Su W-C, Cheng YS. 2014. Carbon nanotubes size classification, characterization and nasal airway deposition. Inhal Toxicol. 26:843–852.
  • Su W-C, Cheng YS. 2015. Estimation of carbon nanotubes deposition in a human respiratory tract replica. J Aerosol Sci. 79:72–85.
  • Sun B, Wang X, Ji Z, Wang M, Liao Y-P, Chang CH, Li R, Zhang H, Nel AE, Xia T. 2015. NADPH oxidase-dependent NLRP3 inflammasome activation and its important role in lung fibrosis by multiwalled carbon nanotubes. Small. 11:2087–2097.
  • Sureka B, Thukral BB, Mittal MK, Mittal A, Sinha M. 2013. Radiological review of pleural tumors. Indian J Radiol Imaging. 23:313–320.
  • Suzui M, Futakuchi M, Fukamachi K, Numano T, Elgied MA, Takahashi S, Ohnishi M, Omori T, Tsuruoka S, Hirose A, et al. 2016. Multiwalled carbon nanotubes intratracheally instilled into the rat lung induce development of pleural malignant mesothelioma and lung tumors. Cancer Science. [Epub ahead of print]. DOI: 10.1111/cas.12954.
  • Szendi K, Varga C. 2008. Lack of genotoxicity of carbon nanotubes in a pilot study. Anticancer Res. 28:349–352.
  • Takagi A, Hirose A, Futakuchi M, Tsuda H, Kanno J. 2012. Dose-dependent mesothelioma induction by intraperitoneal administration of multi-wall carbon nanotubes in p53 heterozygous mice. Cancer Sci. 103:1440–1444.
  • Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, Kitajima S, Kanno J. 2008. Induction of mesothelioma in p53+/- mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci. 33:105–116.
  • Takanashi S, Hara K, Aoki K, Usui Y, Shimizu M, Haniu H, Ogihara N, Ishigaki N, Nakamura K, Okamoto M, et al. 2012. Carcinogenicity evaluation for the application of carbon nanotubes as biomaterials in rasH2 mice. Sci Rep. 2:498.
  • Tamaoki J, Isono K, Takeyama K, Tagaya E, Nakata J, Nagai A. 2004. Ultrafine carbon black particles stimulate proliferation of human airway epithelium via EGF receptor-mediated signaling pathway. Am J Physiol Lung Cell Mol Physiol. 287:L1127–L1133.
  • Tavares AM, Louro H, Antunes S, Quarre S, Simar S, De Temmerman PJ, Verleysen E, Mast J, Jensen KA, Norppa H, et al. 2014. Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes. Toxicol In Vitro. 28:60–69.
  • Taylor AA, Aron GM, Beall GW, Dharmasiri N, Zhang Y, McLean RJ. 2014. Carbon and clay nanoparticles induce minimal stress responses in gram negative bacteria and eukaryotic fish cells. Environ Toxicol. 29:961–968.
  • Thurnherr T, Brandenberger C, Fischer K, Diener L, Manser P, Maeder-Althaus X, Kaiser JP, Krug HF, Rothen-Rutishauser B, Wick P. 2011. A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro. Toxicol Lett. 200:176–186. .
  • Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD, Donaldson K. 2000. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhal Toxicol. 12:1113–1126.
  • Trinchieri G. 2012. Cancer and inflammation: an old intuition with rapidly evolving new concepts. Ann Rev Immunol. 30:677–706.
  • Treumann S, Ma-Hock L, Gröters S, Landsiedel R, van Ravenzwaay B. 2013. Additional histopathologic examination of the lungs from a 3-month inhalation toxicity study with multiwall carbon nanotubes in rats. Toxicol Sci. 134:103–110.
  • Tsai S, Hofmann M, Hallock M, Ada E, Kong J, Ellenbecker M. 2009. Characterization and evaluation of nanoparticle release during the synthesis of single-walled and multiwalled carbon nanotubes by chemical vapor deposition. Environ Sci Technol. 43:6017–6023.
  • Ursini CL, Cavallo D, Fresegna AM, Ciervo A, Maiello R, Buresti G, Casciardi S, Bellucci S, Iavicoli S. 2014. Differences in cytotoxic, genotoxic, and inflammatory response of bronchial and alveolar human lung epithelial cells to pristine and COOH-functionalized multiwalled carbon nanotubes. BioMed Res Intl. 2014:359506. doi: 10.1155/2014/359506.
  • Vallyathan V, Goins M, Lapp LN, Pack D, Leonard S, Shi X, Castranova V. 2000. Changes in bronchoalveolar lavage indices associated with radiographic classification in coal miners. Am J Respir Crit Care Med. 162:958–965.
  • Vankoningsloo S, Piret JP, Saout C, Noel F, Mejia J, Coquette A, Zouboulis CC, Delhalle J, Lucas S, Toussaint O. 2012. Pro-inflammatory effects of different MWCNTs dispersions in p16(INK4A)-deficient telomerase-expressing human keratinocytes but not in human SV-40 immortalized sebocytes. Nanotoxicology. 6:77–93.
  • Varga C, Szendi K. 2010. Carbon nanotubes induce granulomas but not mesotheliomas. In Vivo. 24:153–156.
  • Vassallo R. 2012. Diffuse lung diseases in cigarette smokers. Semin Respir Crit Care Med. 33:533–542.
  • Velazquez SF, Schoeny R, Rice GE, Cogliano VJ. 1996. Cancer risk assessment: historical perspectives, current issues, and future directions. Drug Chem Toxicol. 19:161–185.
  • Vesterdal LK, Danielsen PH, Folkmann JK, Jespersen LF, Aguilar-Pelaez K, Roursgaard M, Loft S, Møller P. 2014a. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles. Toxicol Appl Pharmacol. 274:350–360.
  • Vesterdal LK, Jantzen K, Sheykhzade M, Roursgaard M, Folkmann JK, Loft S, Møller P. 2014b. Pulmonary exposure to particles from diesel exhaust, urban dust or single-walled carbon nanotubes and oxidatively damaged DNA and vascular function in apoE(-/-) mice. Nanotoxicology. 8:61–71.
  • Vainio H, Magee P, McGregor D, McMichael A, eds. 1992. Mechanisms of carcinogenesis in risk identification. IARC Scientific Publication No. 116. Lyon, France: International Agency for Research on Cancer.
  • Vietti G, Lison D, van den Brule S. 2016. Mechanisms of lung fibrosis induced by carbon nanotubes: towards an adverse outcome pathway (AOP). Part Fibre Toxicol. 13:11.
  • Visalli G, Bertuccio MP, Iannazzo D, Piperno A, Pistone A, Di PA. 2015. Toxicological assessment of multi-walled carbon nanotubes on A549 human lung epithelial cells. Toxicol In Vitro. 29:352–362.
  • Vittorio O, Raffa V, Cuschieri A. 2009. Influence of purity and surface oxidation on cytotoxicity of multiwalled carbon nanotubes with human neuroblastoma cells. Nanomedicine (Lond Print). 5:424–431.
  • Wang X, Katwa P, Podila R, Chen P, Ke PC, Rao AM, Walters DM, Wingard CJ, Brown JM. 2011b. Multi-walled carbon nanotube instillation impairs pulmonary function in C57BL/6 mice. Part Fibre Toxicol. 8:24.
  • Wang L, Luanpitpong S, Castranova V, Tse W, Lu Y, Pongrakhananon V, Rojanasakul Y. 2011a. Carbon nanotubes induce malignant transformation and tumorigenesis of human lung epithelial cells. Nano Lett. 11:2796–2803.
  • Wang L, Mercer RR, Rojanasakul Y, Qiu A, Lu Y, Scabilloni JF, Wu N, Castranova V. 2010. Direct fibrogenic effects of dispersed single-walled carbon nanotubes on human lung fibroblasts. J Toxicol Environ Health Part A. 73:410–422.
  • Wang X, Shannahan JH, Brown JM. 2014b. IL-33 modulates chronic airway resistance changes induced by multi-walled carbon nanotubes. Inhal Toxicol. 26:240–249.
  • Wang L, Stueckle TA, Mishra A, Derk R, Meighan T, Castranova V, Rojanasakul Y. 2014a. Neoplastic-like transformation effect of single-walled and multi-walled carbon nanotubes compared to asbestos on human lung small airway epithelial cells. Nanotoxicology. 8:484–507.
  • Wang J, Sun P, Bao Y, Dou B, Song D, Li Y. 2012. Vitamin E renders protection to PC12 cells against oxidative damage and apoptosis induced by single-walled carbon nanotubes. Toxicol In Vitro. 26:32–41.
  • Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR. 2004. Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci. 77:117–125.
  • Watts PCP, Fearon PK, Hsu WK, Billingham NC, Kroto HW, Walton DRM. 2003. Carbon nanotubes as polymer antioxidants. J Mater Chem. 13:491–495.
  • Weissenberg A, Sydlik U, Peuschel H, Schroeder P, Schneider M, Schins RP, Abel J, Unfried K. 2010. Reactive oxygen species as mediators of membrane-dependent signaling induced by ultrafine particles. Free Radic Biol Med. 49:597–605.
  • WHO. (2006). Transgenic animal mutagenicity assays. Geneva: World Health Organization.
  • Wirnitzer U, Herbold B, Voetz M, Ragot J. 2009. Studies on the in vitro genotoxicity of baytubes, agglomerates of engineered multi-walled carbon-nanotubes (MWCNT). Toxicol Lett. 186:160–165.
  • Wu P, Yuan SS, Ho CC, Hsieh WY, Hong QS, Yu SL, Chen W, Chen HY, Wang CD, Li KC, et al. 2013. Focal amplification of HOXD-harboring chromosome region is implicated in multiple-walled carbon nanotubes-induced carcinogenicity. Nano Lett. 13:4632–4641.
  • Wyrick JJ, Roberts SA. 2015. Genomic approaches to DNA repair and mutagenesis. DNA Repair (Amst). 36:146–155.
  • Xu J, Alexander DB, Futakuchi M, Numano T, Fukamachi K, Suzui M, Omori T, Kanno J, Hirose A, Tsuda H. 2014. Size- and shape-dependent pleural translocation, deposition, fibrogenesis, and mesothelial proliferation by multiwalled carbon nanotubes. Cancer Sci. 105:763–769.
  • Xu J, Futakuchi M, Shimizu H, Alexander DB, Yanagihara K, Fukamachi K, Suzui M, Kanno J, Hirose A, Ogata A, et al. 2012. Multi-walled carbon nanotubes translocate into the pleural cavity and induce visceral mesothelial proliferation in rats. Cancer Sci. 103:2045–2050.
  • Yamashita K, Yoshioka Y, Higashisaka K, Morishita Y, Yoshida T, Fujimura M, Kayamuro H, Nabeshi H, Yamashita T, Nagano K, et al. 2010. Carbon nanotubes elicit DNA damage and inflammatory response relative to their size and shape. Inflammation. 33:276–280.
  • Yang H, Liu C, Yang D, Zhang H, Xi Z. 2009. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol. 29:69–78.
  • Ye R, Wang S, Wang J, Luo Z, Peng Q, Cai X, Lin Y. 2013. Pharmacokinetics of CNT-based drug delivery systems. Curr Drug Metab. 14:910–920.
  • Yegles M, Janson X, Dong HY, Renier A, Jaurand MC. 1995. Role of fibre characteristics on cytotoxicity and induction of anaphase/telophase aberrations in rat pleural mesothelial cells in vitro: correlations with in vivo animal findings. Carcinogenesis. 16:2751–2758.
  • Yu KN, Kim JE, Seo HW, Chae C, Cho MH. 2013. Differential toxic responses between pristine and functionalized multiwall nanotubes involve induction of autophagy accumulation in murine lung. J Toxicol Environ Health A. 76:1282–1292.
  • Zhang Y, Yan B. 2012. Cell cycle regulation by carboxylated multiwalled carbon nanotubes through p53-independent induction of p21 under the control of the BMP signaling pathway. Chem Res Toxicol. 25:1212–1221.
  • Zhu L, Chang DW, Dai L, Hong Y 2007. DNA damage induced by multiwalled carbon nanotubes in mouse embryonic stem cells. Nano Lett. 7:3592–3597.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.