652
Views
32
CrossRef citations to date
0
Altmetric
Review Articles

Methodological considerations when conducting in vitro, air–liquid interface exposures to engineered nanoparticle aerosols

ORCID Icon, ORCID Icon & ORCID Icon
Pages 225-262 | Received 30 Sep 2015, Accepted 02 Aug 2016, Published online: 20 Sep 2016

References

  • Adamcakova-Dodd A, Stebounova LV, Kim JS, Vorrink SU, Ault AP, O’Shaughnessy PT, Grassian VH, Thorne PS. 2014. Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models. Part Fibre Toxicol. 11:15.
  • Adamson J, Azzopardi D, Errington G, Dickens C, McAughey J, Gaça MD. 2011. Assessment of an in vitro whole cigarette smoke exposure system: the Borgwaldt RM20S 8-syringe smoking machine. Chem Cent J. 5:50.
  • Ahmad S, Raemy DO, Loader JE, Kailey JM, Neeves KB, White CW, Ahmad A, Gehr P, Rothen-Rutishauser BM. 2012. Interaction and localization of synthetic nanoparticles in healthy and cystic fibrosis airway epithelial cells: effect of ozone exposure. J Aerosol Med Pulm Drug Deliv. 25:7–15.
  • Asimakopoulou A, Daskalos E, Lewinski N, Riediker M, Papaioannou E, Konstandopoulos AG. 2013. Development of a dose-controlled multiculture cell exposure chamber for efficient delivery of airborne and engineered nanoparticles. J Phys Conf Ser. 429:1–10.
  • Asimakopoulou A, Daskalos M, Chasapidis L, Akritidis T, Vlachos ND, Papaioannou E, Konstandopoulos AG. 2011. Characterization of a multiculture in-vitro cell exposure chamber for assessing the biological impact of diesel engine exhaust. J Phys Conf Ser. 304:1–9.
  • Aufderheide M, Halter B, Möhle N, Hochrainer D. 2013. The CULTEX RFS: a comprehensive technical approach for the in vitro exposure of airway epithelial cells to the particulate matter at the air–liquid interface. Biomed Res Int. 2013:1–15.
  • Aufderheide M, Knebel JW, Ritter D. 2003. An improved in vitro model for testing the pulmonary toxicity of complex mixtures such as cigarette smoke. Exp Toxicol Pathol. 55:51–57.
  • Baber O, Jang M, Barber D, Powers K. 2011. Amorphous silica coatings on magnetic nanoparticles enhance stability and reduce toxicity to in vitro BEAS-2B cells. Inhal Toxicol. 23:532–543.
  • Bachler G, Losert S, Umehara Y, von Goetz N, Rodriguez-Lorenzo L, Petri-Fink A, Rothen-Rutishauser B, Hungerbuehler K. 2015. Translocation of gold nanoparticles across the lung epithelial tissue barrier: combining in vitro and in silico methods to substitute in vivo experiments. Part Fibre Toxicol. 12:18.
  • Baggs RB, Ferin J, Oberdörster G. 1997. Regression of pulmonary lesions produced by inhaled titanium dioxide in rats. Vet Pathol. 34:592–597.
  • Baisch BL, Corson NM, Wade-mercer P, Gelein R, Kennell AJ, Oberdörster G. 2014. Equivalent titanium dioxide nanoparticle deposition by intratracheal instillation and whole body inhalation: the effect of dose rate on acute respiratory tract inflammation. Part Fibre Toxicol. 11:1–16.
  • Bajaj P, Harris JF, Huang J-H, Nath P, Iyer R. 2016. Advances and challenges in recapitulating human pulmonary systems: at the cusp of biology and materials. ACS Biomater Sci Eng. 2:473–480.
  • Bakand S, Hayes A. 2010. Troubleshooting methods for toxicity testing of airborne chemicals in vitro. J Pharmacol Toxicol Methods. 61:76–85.
  • Beckett WS, Chalupa DF, Pauly-Brown A, Speers DM, Stewart JC, Frampton MW, Utell MJ, Huang L-S, Cox C, Zareba W, Oberdörster G. 2005. Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study. Am J Respir Crit Care Med. 171:1129–1135.
  • Bermudez E, Mangum JB, Asgharian B, Wong BA, Reverdy EE, Janszen DB, Hext PM, Warheit DB, Everitt JI. 2002. Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles. Toxicol Sci. 70:86–97.
  • Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI. 2004. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci. 77:347–357.
  • Bérubé K, Aufderheide M, Breheny D, Clothier R, Combes R, Duffin R, Forbes B, Gaça M, Gray A, Hall I, et al. 2009. In vitro models of inhalation toxicity and disease. The report of a FRAME workshop. Alta Altern Lab Anim. 37:89–141.
  • Bitterle E, Karg E, Schroeppel A, Kreyling WG, Tippe A, Ferron GA, Schmid O, Heyder J, Maier KL, Hofer T. 2006. Dose-controlled exposure of A549 epithelial cells at the air–liquid interface to airborne ultrafine carbonaceous particles. Chemosphere. 65:1784–1790.
  • Braakhuis HM, Kloet SK, Kezic S, Kuper F, Park MVDZ, Bellmann S, van der Zande M, Le Gac S, Krystek P, Peters RJB, et al. 2015. Progress and future of in vitro models to study translocation of nanoparticles. Arch Toxicol. 89:1469–1495.
  • Brandenberger C, Mühlfeld C, Ali Z, Lenz AG, Schmid O, Parak WJ, Gehr P, Rothen-Rutishauser B. 2010a. Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. Small. 6:1669–1678.
  • Brandenberger C, Rothen-Rutishauser B, Mühlfeld C, Schmid O, Ferron GA, Maier KL, Gehr P, Lenz AG. 2010b. Effects and uptake of gold nanoparticles deposited at the air–liquid interface of a human epithelial airway model. Toxicol Appl Pharmacol. 242:56–65.
  • Broßell D, Tröller S, Dziurowitz N, Plitzko S, Linsel G, Asbach C, Azong-Wara N, Fissan H, Schmidt-Ott A. 2013. A thermal precipitator for the deposition of airborne nanoparticles onto living cells – rationale and development. J Aerosol Sci. 63:75–86.
  • Brown JS, Wilson WE, Grant LD. 2005. Dosimetric comparisons of particle deposition and retention in rats and humans. Inhal Toxicol. 17:355–385.
  • Chang E, Thekkek N, Yu WW, Colvin VL, Drezek R. 2006. Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small. 2:1412–1417.
  • Chithrani BD, Chan WCW. 2007. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 7:1542–1550.
  • Chortarea S, Clift MJD, Vanhecke D, Endes C, Wick P, Petri-Fink A, Rothen-Rutishauser B. 2015. Repeated exposure to carbon nanotube-based aerosols does not affect the functional properties of a 3D human epithelial airway model. Nanotoxicology. 5390:1–11.
  • Clift MJD, Gehr P, Rothen-Rutishauser B. 2011. State of the art toxicological and microscopic assessment of biomedical nanocrystals on the lung in vitro. Prog Biomed Opt Imaging – Proc SPIE. 7909:1–16.
  • Cohen JM, Teeguarden JG, Demokritou P. 2014. An integrated approach for the in vitro dosimetry of engineered nanomaterials. Part Fibre Toxicol. 11:20.
  • Comouth A, Saathoff H, Naumann KH, Muelhopt S, Paur HR, Leisner T. 2013. Modelling and measurement of particle deposition for cell exposure at the air–liquid interface. J Aerosol Sci. 63:103–114.
  • De Bruijne K, Ebersviller S, Sexton KG, Lake S, Leith D, Goodman R, Jetters J, Walters GW, Doyle-Eisele M, Woodside R, et al. 2009. Design and testing of Electrostatic Aerosol in Vitro Exposure System (EAVES): an alternative exposure system for particles. Inhal Toxicol. 21:91–101.
  • De Souza Carvalho C, Daum N, Lehr CM. 2014. Carrier interactions with the biological barriers of the lung: advanced in vitro models and challenges for pulmonary drug delivery. Adv Drug Deliv Rev. 75:129–140.
  • Davies KJA. 1999. The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life. 48:41–47.
  • Deloid G, Cohen JM, Darrah T, Derk R, Rojanasakul L, Pyrgiotakis G, Wohlleben W, Demokritou P. 2014. Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat Commun. 5:3514.
  • Delorme MP, Muro Y, Arai T, Banas DA, Frame SR, Reed KL, Warheit DB. 2012. Ninety-day inhalation toxicity study with a vapor grown carbon nanofiber in rats. Toxicol Sci. 128:449–460.
  • Desantes JM, Margot X, Gil A, Fuentes E. 2006. Computational study on the deposition of ultrafine particles from Diesel exhaust aerosol. J Aerosol Sci. 37:1750–1769.
  • Durán N, Silveira CP, Durán M, Martinez DST. 2015. Silver nanoparticle protein corona and toxicity: a mini-review. J Nanobiotechnol. 13:55.
  • Elihn K, Cronholm P, Karlsson HL, Midander K, Odnevall Wallinder I, Möller L. 2013. Cellular dose of partly soluble Cu particle aerosols at the air–liquid interface using an in vitro lung cell exposure system. J Aerosol Med Pulm Drug Deliv. 26:84–93.
  • Ellinger-Ziegelbauer H, Pauluhn J. 2009. Pulmonary toxicity of multi-walled carbon nanotubes (Baytubes®) relative to α-quartz following a single 6 h inhalation exposure of rats and a 3 months post-exposure period. Toxicology. 266:16–29.
  • Endes C, Müller S, Schmid O, Vanhecke D, Foster EJ, Petri-Fink A, Rothen-Rutishauser B, Weder C, Clift MJD. 2013. Risk assessment of released cellulose nanocrystals – mimicking inhalatory exposure. J Phys Conf Ser. 429:012008.
  • Fadeel B, Fornara A, Toprak MS, Bhattacharya K. 2015. Keeping it real: the importance of material characterization in nanotoxicology. Biochem Biophys Res Commun. 468:498–503.
  • Fattal E, Grabowski N, Mura S, Vergnaud J, Tsapis N, Hillaireau H. 2014. Lung toxicity of biodegradable nanoparticles. J Biomed Nanotechnol. 10:2852–2864.
  • Ferin J, Oberdörster G, Penney DP. 1992. Pulmonary retention of ultrafine and fine particles in rats. Am J Respir Cell Mol Biol. 6:535–542.
  • Fröhlich E, Bonstingl G, Höfler A, Meindl C, Leitinger G, Pieber TR, Roblegg E. 2013. Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols. Toxicol In Vitro. 27:409–417.
  • Fröhlich E, Salar-Behzadi S. 2014. Toxicological assessment of inhaled nanoparticles: role of in vivo, ex vivo, in vitro, and in Silico Studies. Int J Mol Sci. 15:4795–4822.
  • Fujitani Y, Sugaya Y, Hashiguchi M, Furuyama A, Hirano S, Takami A. 2015. Particle deposition efficiency at air–liquid interface of a cell exposure chamber. J Aerosol Sci. 81:90–99.
  • Fukano Y, Ogura M, Eguchi K, Shibagaki M, Suzuki M. 2004. Modified procedure of a direct in vitro exposure system for mammalian cells to whole cigarette smoke. Exp Toxicol Pathol. 55:317–323.
  • Fukano Y, Yoshimura H, Yoshida T. 2006. Heme oxygenase-1 gene expression in human alveolar epithelial cells (A549) following exposure to whole cigarette smoke on a direct in vitro exposure system. Exp Toxicol Pathol. 57:411–418.
  • Geiser M, Casaulta M, Kupferschmid B, Schulz H, Semmler-Behnke M, Kreyling W. 2008. The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol. 38:371–376.
  • Geiser M, Kreyling WG. 2010. Deposition and biokinetics of inhaled nanoparticles. Part Fibre Toxicol. 7:2.
  • Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Hof VI, Heyder J, Gehr P. 2005. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect. 113:1555–1560.
  • Gernand JM, Casman EA. 2014. A meta-analysis of carbon nanotube pulmonary toxicity studies-how physical dimensions and impurities affect the toxicity of carbon nanotubes. Risk Anal. 34:583–597.
  • Grabinski CM, Hussain SM, Mohan Sankaran R. 2015. Simulations of submicron aerosol deposition at an air–liquid interface for in vitro toxicology. J Aerosol Sci. 90:87–102.
  • Grainger CI, Greenwell LL, Lockley DJ, Martin GP, Forbes B. 2006. Culture of Calu-3 cells at the air interface provides a representative model of the airway epithelial barrier. Pharm Res. 23:1482–1490.
  • Grass RN, Limbach LK, Athanassiou EK, Stark WJ. 2010. Exposure of aerosols and nanoparticle dispersions to in vitro cell cultures: a review on the dose relevance of size, mass, surface and concentration. J Aerosol Sci. 41:1123–1142.
  • Grassian VH, O’Shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS. 2007a. Inhalation exposure study of Titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect. 115:397–402.
  • Grassian VH, Adamcakova-Dodd A, Pettibone JM, O-Shaughnessy PT, Thorne PS. 2007b. Inflammatory response of mice to manufactured titanium dioxide nanoparticles: comparison of size effects through different exposure routes. Nanotoxicology. 3:221–226.
  • Grigg J, Tellabati A, Rhead S, Almeida G, Higgins J, Bowman K, Jones G, Howes P. 2009. DNA damage of macrophages at an air-tissue interface induced by metal nanoparticles macrophage. Nanotoxicology. 3:348–354.
  • Hayes A, Bakand S. 2010. Inhalation toxicology. EXS. 100:461–488.
  • Hayes A, Bakand S. 2014. Toxicological perspectives of inhaled therapeutics and nanoparticles. Expert Opin Drug Metab Toxicol. 10:933–947.
  • He C, Morawska L, Hitchins J, Gilbert D. 2004. Contribution from indoor sources to particle number and mass concentrations in residential houses. Atmos Environ. 38:3405–3415.
  • Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B, Koch W, Levsen K. 1995. Chronic inhalation exposure of wistar rats and two different strains of mice to diesel engine exhaust, carbon black, and titanium dioxide. Inhal Toxicol. 7:533–556.
  • Henderson RF, Driscoll KE, Harkema JR, Lindenschmidt RC, Chang I-Y, Maples KR, Barr EB. 1995. A comparison of the inflammatory response of the lung to inhaled versus instilled particles in F344 rats. Fundam Appl Toxicol. 24:183–197.
  • Herzog F, Clift MJ, Piccapietra F, Behra R, Schmid O, Petri-Fink A, Rothen-Rutishauser B. 2013. Exposure of silver–nanoparticles and silver–ions to lung cells in vitro at the air–liquid interface. Part Fibre Toxicol. 10:11.
  • Herzog F, Loza K, Balog S, Clift MJD, Epple M, Gehr P, Petri-Fink A, Rothen-Rutishauser B. 2014. Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches. Beilstein J Nanotechnol. 5:1357–1370.
  • Hinderliter PM, Minard KR, Orr G, Chrisler WB, Thrall BD, Pounds JG, Teeguarden JG. 2010. ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol. 7:36.
  • Ho M, Wu K-Y, Chein H-M, Chen L-C, Cheng T-J. 2011. Pulmonary toxicity of inhaled nanoscale and fine zinc oxide particles: mass and surface area as an exposure metric. Inhal Toxicol. 23:947–956.
  • Holder AL, Lucas D, Goth-goldstein R, Koshland CP. 2008. Cellular response to diesel exhaust particles strongly depends on the exposure method. Toxicol Sci. 103:108–115.
  • Holder AL, Marr LC. 2013. Toxicity of silver nanoparticles at the air–liquid interface. Biomed Res Int. 2013:1–11.
  • Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. 2010. Reconstituting organ-level lung functions on a chip. Science. 328:1662–1668.
  • Jang M, Ghio AJ, Cao G. 2006. Exposure of BEAS-2B cells to secondary organic aerosol coated on magnetic nanoparticles. Chem Res Toxicol. 19:1044–1050.
  • Jeannet N, Fierz M, Kalberer M, Geiser M, Burtscher H. 2014. Nano Aerosol Chamber for In-Vitro Toxicity (NACIVT) studies. Nanotoxicology 5390. 1–9.
  • Jeannet N, Fierz M, Schneider S, Künzi L, Baumlin N, Salathe M, Burtscher H, Geiser M. 2015. Acute toxicity of silver and carbon nanoaerosols to normal and cystic fibrosis human bronchial epithelial cells. Nanotoxicology. 1:13.
  • Ji JH, Jung JH, Kim SS, Yoon J-U, Park JD, Choi BS, Chung YH, Kwon IH, Jeong J, Han BS, et al. 2007. Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol. 19:857–871.
  • Jing X, Park JH, Peters TM, Thorne PS. 2015. Toxicology in vitro toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air–liquid interface compared with in vivo assessment. Toxicol In Vitro. 29:502–511.
  • Jones CF, Grainger DW. 2009. In vitro assessments of nanomaterial toxicity. Adv Drug Deliv Rev. 61:438–456.
  • Kapp N, Kreyling W, Schulz H, Im Hof V, Gehr P, Semmler M, Geiser M. 2004. Electron energy loss spectroscopy for analysis of inhaled ultrafine particles in rat lungs. Microsc Res Tech. 63:298–305.
  • Kasai T, Gotoh K, Nishizawa T, Sasaki T, Katagiri T, Umeda Y, Toya T, Fukushima S. 2014. Development of a new multi-walled carbon nanotube (MWCNT) aerosol generation and exposure system and confirmation of suitability for conducting a single-exposure inhalation study of MWCNT in rats. Nanotoxicology. 8:169–178.
  • Kasai T, Umeda Y, Ohnishi M, Kondo H, Takeuchi T, Also S, Nishizawa T, Matsumoto M, Fukushima S. 2015. Thirteen-week study of toxicity of fiber-like multi-walled carbon nanotubes with whole-body inhalation exposure in rats. Nanotoxicology. 9:413–422.
  • Kim JS, Peters TM, O’Shaughnessy PT, Adamcakova-Dodd A, Thorne PS. 2013. Validation of an in vitro exposure system for toxicity assessment of air-delivered nanomaterials. Toxicol In Vitro. 27:164–173.
  • Kim JS, Sung JH, Choi BG, Ryu HY, Song KS, Shin JH, Lee JS, Hwang JH, Lee JH, Lee GH, et al. 2014. In vivo genotoxicity evaluation of lung cells from Fischer 344 rats following 28 days of inhalation exposure to MWCNTs, plus 28 days and 90 days post-exposure. Inhal Toxicol. 26:222–234.
  • Kim JS, Sung JH, Song KS, Lee JH, Kim SM, Lee GH, Ahn KH, Lee JS, Shin JH, Park JD, Yu IJ. 2012. Persistent DNA damage measured by comet assay of Sprague Dawley rat lung cells after five days of inhalation exposure and 1 month post-exposure to dispersed multi-wall carbon nanotubes (MWCNTS) generated by new MWCNT aerosol generation system. Toxicol Sci. 128:439–448.
  • Kim S, Ryu DY. 2013. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. J Appl Toxicol. 33:78–89.
  • Klein SG, Hennen J, Serchi T, Blömeke B, Gutleb AC. 2011. Potential of coculture in vitro models to study inflammatory and sensitizing effects of particles on the lung. Toxicol In Vitro. 25:1516–1534.
  • Klein SG, Serchi T, Hoffmann L, Blömeke B, Gutleb AC. 2013. An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung. Part Fibre Toxicol. 10:31.
  • Klimisch H-J, Andreae M, Tillmann U. 1997. A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul Toxicol Pharmacol. 25:1–5.
  • Krug HF. 2014. Nanosafety research-are we on the right track? Ang Chem Int Ed Engl. 53:12304–12319.
  • Kuempel ED, Sweeney LM, Morris JB, Jarabek AM. 2015. Advances in inhalation dosimetry models and methods for occupational risk assessment and exposure limit derivation. J Occup Environ Hyg. 12:S18–S40.
  • Landsiedel R, Ma-Hock L, Hofmann T, Wiemann M, Strauss V, Treumann S, Wohlleben W, Gröters S, Wiench K, van Ravenzwaay B. 2014. Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials. Part Fibre Toxicol. 11:16.
  • Landsiedel R, Ma-Hock L, Kroll A, Hahn D, Schnekenburger J, Wiench K, Wohlleben W. 2010. Testing metal-oxide nanomaterials for human safety. Adv Mater Weinheim. 22:2601–2627.
  • Lee JF, Tung SP, Wang D, Yeh DY, Fong Y, Young YC, Leu FJ. 2014. Lipoxygenase pathway mediates increases of airway resistance and lung inflation induced by exposure to nanotitanium dioxide in rats. Oxid Med Cell Longev. 2014:1–9.
  • Lee YK, Choi EJ, Webster TJ, Kim SH, Khang D. 2015. Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int J Nanomed. 10:97–113.
  • Lehmann AD, Daum N, Bur M, Lehr CM, Gehr P, Rothen-Rutishauser B. 2011. An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier. Eur J Pharm Biopharm. 77:398–406.
  • Lenz AG, Karg E, Brendel E, Hinze-Heyn H, Maier KL, Eickelberg O, Stoeger T, Schmid O. 2013. Inflammatory and oxidative stress responses of an alveolar epithelial cell line to airborne zinc oxide nanoparticles at the air–liquid interface: a comparison with conventional, submerged cell-culture conditions. Biomed Res Int. 2013:1–12.
  • Lenz AG, Karg E, Lentner B, Dittrich V, Brandenberger C, Rothen-Rutishauser B, Schulz H, Ferron G, Schmid O. 2009. A dose-controlled system for air–liquid interface cell exposure and application to zinc oxide nanoparticles. Part Fibre Toxicol. 6:32.
  • Lenz A-G, Stoeger T, Cei D, Schmidmeir M, Semren N, Burgstaller G, Lentner B, Eickelber O, Meiners S, Schmid O. 2014. Efficient bioactive delivery of aerosolized drugs to human pulmonary epithelial cells cultured in air–liquid interface conditions. Am J Respir Cell Mol Biol. 51:526–535.
  • Lindberg HK, Falck GC-M, Catalán J, Koivisto AJ, Suhonen S, Järventaus H, Rossi EM, Nykäsenoja H, Peltonen Y, Moreno C, et al. 2012. Genotoxicity of inhaled nanosized TiO(2) in mice. Mutat Res Toxicol Environ Mutagen. 745:58–64.
  • Linkov I, Bates ME, Canis LJ, Seager TP, Keisler JM. 2011. A decision-directed approach for prioritizing research into the impact of nanomaterials on the environment and human health. Nat Nanotechnol. 6:784–787.
  • Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ. 2005. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol. 39:9370–9376.
  • Ma-Hock L, Strauss V, Treumann S, Küttler K, Wohlleben W, Hofmann T, Gröters S, Wiench K, van Ravenzwaay B, Landsiedel R. 2013. Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black. Part Fibre Toxicol. 10:23.
  • Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F, Mertler M, Wiench K, Gamer AO, van Ravenzwaay B, Landsiedel R. 2009. Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci. 112:468–481.
  • Methner M, Beaucham C, Crawford C, Hodson L, Geraci C. 2012. Field application of the Nanoparticle Emission Assessment Technique (NEAT): task-based air monitoring during the processing of engineered nanomaterials (ENM) at four facilities. J Occup Environ Hyg. 9:543–555.
  • Mercer RR, Scabilloni JF, Hubbs AF, Battelli LA, McKinney W, Friend S, Wolfarth MG, Andrew M, Castranova V, Porter DW. 2013. Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol. 10:33.
  • Mertes P, Praplan AP, Künzi L, Dommen J, Baltensperger U, Geiser M, Weingartner E, Ricka J, Fierz M, Kalberer M. 2013. A compact and portable deposition chamber to study nanoparticles in air-exposed tissue. J Aerosol Med Pulm Drug Deliv. 26:228–235.
  • Messing ME, Svensson CR, Pagels J, Meuller BO, Deppert K, Rissler J. 2012. Gas-borne particles with tunable and highly controlled characteristics for nanotoxicology studies. Nanotoxicology. 12:1
  • Mihai C, Chrisler WB, Xie Y, Hu D, Szymanski C, Tolic A, Klein J, Smith JN, Tarasevich BJ, Orr G. 2015. Intracellular accumulation dynamics and fate of zinc ions in alveolar epithelial cells exposed to airborne ZnO nanoparticles at the air–liquid interface. Nanotoxicology. 9:9–22.
  • Mitchell LA, Gao J, Wal RV, Gigliotti A, Burchiel SW, McDonald JD. 2007. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci. 100:203–214.
  • Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. 2009. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. PLoS Med. 6:e1000097.
  • Möller W, Felten K, Seitz J, Sommerer K, Takenaka S, Wiebert P, Philpson K, Svartengren M, Kreyling WG. 2006. A generator for the production of radiolabelled ultrafine carbonaceous particles for deposition and clearance studies in the respiratory tract. J Aerosol Sci. 37:631–644.
  • Mülhopt S, Diabaté S, Krebs T, Weiss C, Paur HR. 2009. Lung toxicity determination by in vitro exposure at the air liquid interface with an integrated online dose measurement. J Phys: Conf Ser. 170:1–4.
  • Müller L, Gasser M, Raemy DO, Herzog F, Brandenberger C, Schmid O, Gehr P, Rothen-Rutishauser B, Clift MJD. 2011. Realistic exposure methods for investigating the interaction of nanoparticles with the lung at the air–liquid interface in vitro. Insci J. 1:30–64.
  • Nazarenko Y, Zhen H, Han T, Lioy PJ, Mainelis G. 2012. Nanomaterial inhalation exposure from nanotechnology based cosmetic powders: a quantitative assessment. J Nanopart Res. 14:1229.
  • Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, Zhang H. 2013. Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res. 46:607–621.
  • Noël A, Maghni K, Cloutier Y, Dion C, Wilkinson KJ, Hallé S, Tardif R, Truchon G. 2012. Effects of inhaled nano-TiO2 aerosols showing two distinct agglomeration states on rat lungs. Toxicol Lett. 214:109–119.
  • Nurkiewicz TR, Porter DW, Hubbs AF, Cumpston JL, Chen BT, Frazer DG, Castranova V. 2008. Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction. Part Fibre Toxicol. 5:1.
  • Oberdörster G, Ferin J, Lehnert BE. 1994. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect. 102:173–179.
  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, et al. 2005a. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol. 2:8.
  • Oberdörster G, Oberdörster E, Oberdörster J. 2005b. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 113:823–839.
  • Okuwa K, Tanaka M, Fukano Y, Nara H, Nishijima Y, Nishino T. 2010. In vitro micronucleus assay for cigarette smoke using a whole smoke exposure system: a comparison of smoking regimens. Exp Toxicol Pathol. 62:433–440.
  • Olivera DS, Boggs SE, Beenhouwer C, Aden J, Knall C. 2007. Cellular mechanisms of mainstream cigarette smoke-induced lung epithelial tight junction permeability changes in vitro. Inhal Toxicol. 19:13–22.
  • Oosthuizen MA, Oberholzer HM, Scriba MR, van der Spuy WJ, Pretorius E. 2012. Evaluation of the morphological changes in the lungs of BALB/c mice after inhalation of spherical and rod-shaped titanium nanoparticles. Micron. 43:863–869.
  • Panas A, Comouth A, Saathoff H, Leisner T, Al-Rawi M, Simon M, Seemann G, Dössel O, Mülhopt S, Paur HR, et al. 2014. Silica nanoparticles are less toxic to human lung cells when deposited at the air–liquid interface compared to conventional submerged exposure. Beilstein J Nanotechnol. 5:1590–1602.
  • Pauluhn J. 2010. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci. 113:226–242.
  • Pauluhn J, Rosenbruch M. 2015. Lung burdens and kinetics of multi-walled carbon nanotubes (Baytubes) are highly dependent on the disaggregation of aerosolized MWCNT. Nanotoxicology. 9:242–252.
  • Paur HR, Cassee FR, Teeguarden J, Fissan H, Diabate S, Aufderheide M, Kreyling W, Hänninen O, Kasper G, Riediker M, et al. 2011. In-vitro cell exposure studies for the assessment of nanoparticle toxicity in the lung-A dialog between aerosol science and biology. J Aerosol Sci. 42:668–692.
  • Paur HR, Mülhopt S, Weiss C, Diabaté S. 2008. In vitro exposure systems and bioassays for the assessment of toxicity of nanoparticles to the human lung. J Fur Verbraucherschutz Und Leb. 3:319–329.
  • Polk WW, Sharma M, Sayes CM, Hotchkiss JA, Clippinger AJ. 2016. Aerosol generation and characterization of multi-walled carbon nanotubes exposed to cells cultured at the air–liquid interface. Part Fibre Toxicol. 13:20.
  • Porter DW, Wu N, Hubbs AF, Mercer RR, Funk K, Meng F, Li J, Wolfarth MG, Battelli L, Friend S, et al. 2013. Differential mouse pulmonary dose and time course responses to titanium dioxide nanospheres and nanobelts. Toxicol Sci. 131:179–193.
  • Rach J, Budde J, Möhle N, Aufderheide M. 2014. Direct exposure at the air–liquid interface: evaluation of an in vitro approach for simulating inhalation of airborne substances. J Appl Toxicol. 34:506–515.
  • Raemy DO, Grass RN, Stark WJ, Schumacher CM, Clift MJD, Gehr P, Rothen–Rutishauser B. 2012. Effects of flame made zinc oxide particles in human lung cells – a comparison of aerosol and suspension exposures. Part Fibre Toxicol. 9:33.
  • Raemy DO, Limbach LK, Rothen-Rutishauser B, Grass RN, Gehr P, Birbaum K, Brandenberger C, Günther D, Stark WJ. 2011. Cerium oxide nanoparticle uptake kinetics from the gas-phase into lung cells in vitro is transport limited. Eur J Pharm Biopharm. 77:368–375.
  • Rösslein M, Elliott JT, Salit M, Petersen EJ, Hirsch C, Krug HF, Wick P. 2015. Use of cause-and-effect analysis to design a high-quality nanocytotoxicology assay. Chem Res Toxicol. 28:21–30.
  • Rothen-Rutishauser B, Grass R, Blank F, Limbach LK 2009. Direct combination of nanoparticle fabrication and exposure to lung cell cultures in a closed setup as a method to simulate accidental nanoparticle exposure. Environ Sci Technol. 43:2634–2640.
  • Rothen-Rutishauser B, Kiama SG, Gehr P. 2005. A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am J Respir Cell Mol Biol. 32:281–289.
  • Ryman-Rasmussen JP, Tewksbury EW, Moss OR, Cesta MF, Wong BA, Bonner JC. 2009. Inhaled multiwalled carbon nanotubes potentiate airway fibrosis in murine allergic asthma. Am J Respir Cell Mol Biol. 40:349–358.
  • Savi M, Kalberer M, Lang D, Ryser M, Fierz M, Gaschen A, Rička J, Geiser M. 2008. A novel exposure system for the efficient and controlled deposition of aerosol particles onto cell cultures. Environ Sci Technol. 42:5667–5674.
  • Sayes CM, Reed KL, Warheit DB. 2007. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicology of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci. 97:163–180.
  • Schaudien D, Knebel J, Creutzenberg O. 2012. In vitro study revealed different size behavior of different nanoparticles. J Nanopart Res. 14:1–9.
  • Schleh C, Mühlfeld C, Pulskamp K, Schmiedl A, Nassimi M, Lauenstein HD, Braun A, Krug N, Erpenbeck VJ, Hohlfeld JM. 2009. The effect of titanium dioxide nanoparticles on pulmonary surfactant function and ultrastructure. Respir Res. 10:90.
  • Schroeter JD, Kimbell JS, Bonner AM, Roberts KC, Andersen ME, Dorman DC. 2006. Incorporation of tissue reaction kinetics in a computational fluid dynamics model for nasal extraction of inhaled hydrogen sulfide in rats. Toxicol Sci. 90:198–207.
  • Schumacher K, Strehl R, De Vries U, Minuth WW. 2002. Advanced technique for long term culture of epithelia in a continuous luminal-basal medium gradient. Biomaterials. 23:805–815.
  • Schütz C, Juillerat-Jeanneret L, Mueller H, Lynch I, Riediker M. 2013a. Therapeutic nanoparticles in clinics and under clinical evaluation. Nanomedicine (Lond). 8:449–467.
  • Schütz C, Juillerat-Jeanneret L, Soltmann C, Mueller H. 2013b. Toxicity data of therapeutic nanoparticles in patent documents. World Pat Inf. 35:110–114.
  • Sellgren K, Butala E, Gilmour B, Randell S, Grego S. 2014. A biomimetic multicellular model of the airway using primary human cells. Lab Chip. 14:3349–3358.
  • Sharma M, Nikota J, Halappanavar S, Castranova V, Rothen-Rutishauser B, Clippinger AJ. 2016. Predicting pulmonary fibrosis in humans after exposure to multi-walled carbon nanotubes (MWCNTs). Arch Toxicol. 90:1605–1622.
  • Song KS, Sung JH, Ji JH, Lee JH, Lee JS, Ryu HR, Lee JK, Chung YH, Park HM, Shin BS, et al. 2013. Recovery from silver-nanoparticle-exposure-induced lung inflammation and lung function changes in Sprague Dawley rats. Nanotox. 7:169–180.
  • Stapleton PA, Minarchick VC, Cumpston AM, McKinney W, Chen BT, Sager TM, Frazer DG, Mercer RR, Scabilloni J, Andrew ME, et al. 2012. Impairment of coronary arteriolar endothelium-dependent dilation after multi-walled carbon nanotube inhalation: a time-course study. Int J Mol Sci. 13:13781–13803.
  • Stebounova LV, Adamcakova-dodd A, Kim JS, Park H, Shaughnessy PTO, Grassian VH, Thorne PS. 2011. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part Fiber Toxicol. 8:5.
  • Steiner S, Czerwinski J, Comte P, Heeb NV, Mayer A, Petri-Fink A, Rothen-Rutishauser B. 2015. Effects of an iron-based fuel-borne catalyst and a diesel particle filter on exhaust toxicity in lung cells in vitro. Anal Bioanal Chem. 407:5977–5986.
  • Steiner S, Czerwinski J, Comte P, Müller LL, Heeb NV, Mayer A, Petri-Fink A, Rothen-Rutishauser B. 2013a. Reduction in (pro-)inflammatory responses of lung cells exposed in vitro to diesel exhaust treated with a non-catalyzed diesel particle filter. Atmos Environ. 81:117–124.
  • Steiner S, Czerwinski J, Comte P, Popovicheva O, Kireeva E, Müller L, Heeb N, Mayer A, Fink A, Rothen-Rutishauser B. 2013b. Comparison of the toxicity of diesel exhaust produced by bio-and fossil diesel combustion in human lung cells invitro. Atmos Environ. 81:380–388.
  • Steinritz D, Möhle N, Pohl C, Papritz M, Stenger B, Schmidt A, Kirkpatrick CJ, Thiermann H, Vogel R, Hoffmann S, Aufderheide M. 2013. Use of the Cultex Radial Flow System as an in vitro exposure method to assess acute pulmonary toxicity of fine dusts and nanoparticles with special focus on the intra-and inter-laboratory reproducibility. Chem Biol Interact. 206:479–490.
  • Stevens JP, Zahardis J, MacPherson M, Mossman BT, Petrucci GA. 2008. A new method for quantifiable and controlled dosage of particulate matter in vitro studies: the electrostatic particulate dosage and exposure system (EPDExS). Toxicol In Vitro. 22:1768–1774.
  • Stoehr LC, Endes C, Radauer-Preiml I, Boyles MSP, Casals E, Balog S, Pesch M, Petri-Fink A, Rothen-Rutishauser B, Himly M, et al. 2015. Assessment of a panel of interleukin-8 reporter lung epithelial cell lines to monitor the pro-inflammatory response following zinc oxide nanoparticle exposure under different cell culture conditions. Part Fiber Toxicol. 12:29.
  • Stucki A, Stucki J, Hall S, Felder M, Mermoud Y, Schmid R, Geiser T, Guenat O. 2015. A lung-on-a-chip array with an integrated bio-inspired respiration mechanism. Lab Chip. 15:1302–1310.
  • Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS, Song MY, Jeong J, Han BS, Han JH, et al. 2009. Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci. 108:452–461.
  • Sung JH, Ji JH, Song KS, Lee JH, Choi KH, Lee SH, Yu IJ. 2011. Acute inhalation toxicity of silver nanoparticles. Toxicol Ind Health. 27:149–154.
  • Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J, Han BS, Han JH, Chung YH, Kim J, et al. 2008. Lung function changes in Sprague–Dawley rats after prolonged inhalation exposure to silver nanoparticles lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol. 20:567–574.
  • Takenaka S, Karg E, Roth C, Schulz H, Ziesenis A, Heinzmann U, Schramel P, Heyder J. 2001. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect. 109:547–551.
  • Teeguarden JG, Hinderliter PM, Orr G, Thrall BD, Pounds JG. 2007. Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci. 95:300–312.
  • Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, Schlenk F, Fischer D, Kiouptsi K, Reinhardt C, et al. 2013. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol. 8:772–781.
  • Tippe A, Heinzmann U, Roth C. 2002. Deposition of fine and ultrafine aerosol particles during exposure at the air/cell interface. J Aerosol Sci. 33:207–218.
  • Toman B, Rösslein M, Elliott JT, Petersen EJ. 2016. Estimation and uncertainty analysis of dose response in an inter-laboratory experiment. Metrologia. 53:S40–S45.
  • Treumann S, Ma-Hock L, Gröters S, Landsiedel R, van Ravenzwaay B. 2013. Additional histopathologic examination of the lungs from a 3-month inhalation toxicity study with multiwall carbon nanotubes in rats. Toxicol Sci. 134:103–110.
  • Tsukue N, Okumura H, Ito T, Sugiyama G, Nakajima T. 2010. Toxicological evaluation of diesel emissions on A549 cells. Toxicol In Vitro. 24:363–369.
  • Umeda Y, Kasai T, Saito M, Kondo H, Toya T, Aiso S, Okuda H, Nishizawa T, Fukushima S. 2013. Two-week toxicity of multi-walled carbon nanotubes by whole-body inhalation exposure in rats. J Toxicol Pathol. 26:131–140.
  • van Ravenzwaay B, Landsiedel R, Fabian E, Burkhardt S, Strauss V, Ma-Hock L. 2009. Comparing fate and effects of three particles of different surface properties: nano-TiO2, pigmentary TiO2 and quartz. Toxicol Lett. 186:152–159.
  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Rejeski D, Hull MS. 2015. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. 6:1769–1780.
  • Venditto VJ, Szoka FC. 2013. Cancer nanomedicines: so many papers and so few drugs!. Adv Drug Deliv Rev. 65:80–88.
  • Volckens J, Dailey L, Walters G, Devlin R. 2009. Particle-to-cell deposition of coarse ambient particulate matter increases the production if inflammatory mediators from cultured human airway epithelial cells. Environ Sci Technol. 43:4595–4599.
  • Walkey C, Olsen J, Song F, Liu R, Guo H, Olsen DW, Cohen Y, Emili A, Chan WCW. 2014. Protein corona fingerprinting predicts the cellular interaction of gold and silver nanoparticles. ACS Nano. 8:2439–2455.
  • Wang J, Fan Y. 2014. Lung injury induced by TiO2 nanoparticles depends on their structural features: size, shape, crystal phases, and surface coating. Int J Mol Sci. 15:22258–22278.
  • Warheit DB, Sayes CM, Reed KL. 2009. Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures? Environ Sci Technol. 43:7939–7945.
  • Waters KM, Masiello LM, Zangar RC, Tarasevich BJ, Karin NJ, Quesenberry RD, Bandyophadhyay S, Teeguarden JG, Pounds JG, Thrall BD. 2009. Macrophage responses to silica nanoparticles are highly conserved across particle sizes. Toxicol Sci. 107:553–569.
  • Wehner B, Birmili W, Gnauk T, Wiedensohler A. 2002. Particle number size distributions in a street canyon and their transformation into the urban-air background: measurements and a simple model study. Atmos Environ. 36:2215–2223.
  • Wiemann M, Vennemann A, Sauer UG, Wiench K, Ma-Hock L, Landsiedel R. 2016. An in vitro alveolar macrophage assay for predicting the short-term inhalation toxicity of nanomaterials. J Nanobiotechnol. 14:16.
  • Wolz L, Krause G, Scherer G, Aufderheide M, Mohr U. 2002. In vitro genotoxicity assay of sidestream smoke using a human bronchial epithelial cell line. Food Chem Toxicol. 40:845–850.
  • Xie Y, Williams NG, Tolic A, Chrisler WB, Teeguarden JG, Maddux BLS, Pounds JG, Laskin A, Orr G. 2012. Aerosolized ZnO nanoparticles induce toxicity in alveolar type II epithelial cells at the air–liquid interface. Toxicol Sci. 125:450–461.
  • Xu J, Futakuchi M, Shimizu H, Alexander DB, Yanagihara K, Fukamachi K, Suzui M, Kanno J, Hirose A, Ogata A, et al. 2012. Multi-walled carbon nanotubes translocate into the pleural cavity and induce visceral mesothelial proliferation in rats. Cancer Sci. 103:2045–2050.
  • Yang W, Peter JI, Williams IIIRO. 2008. Inhaled nanoparticles – a current review. Int J Pharm. 356:239–247.
  • Zavala J, Lichtveld K, Ebersviller S, Carson J, Walters G, Jaspers I, Jeffries H, Sexton K, Vizuete W. 2014. The Gillings Sampler – an electrostatic air sampler as an alternative method for aerosol in vitro exposure studies. Chem Biol Interact. 220:158–168.
  • Zhang R, Dai Y, Zhang X, Niu Y, Meng T, Li Y, Duan H, Bin P, Ye M, Jia X, et al. 2014. Reduced pulmonary function and increased pro-inflammatory cytokines in nanoscale carbon black-exposed workers. Part Fiber Toxicol. 11:73.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.