725
Views
22
CrossRef citations to date
0
Altmetric
Review Articles

Metabolomic approaches in the discovery of potential urinary biomarkers of drug-induced liver injury (DILI)

, , , &
Pages 638-654 | Received 04 Oct 2016, Accepted 19 Mar 2017, Published online: 24 Apr 2017

References

  • Aithal GP, Watkins PB, Andrade RJ, Larrey D, Molokhia M, Takikawa H, Hunt CM, Wilke RA, Avigan M, Kaplowitz N, et al. 2011. Case definition and phenotype standardization in drug-induced liver injury. Clin Pharmacol Ther. 89:806–815.
  • Amacher DE, Schomaker SJ, Aubrecht J. 2013. Development of blood biomarkers for drug-induced liver injury: an evaluation of their potential for risk assessment and diagnostics. Mol Diagn Ther. 17:343–354.
  • Amacher DE. 2002. A toxicologist's guide to biomarkers of hepatic response. Hum Exp Toxicol. 21:253–262.
  • Amacher DE. 2010. The discovery and development of proteomic safety biomarkers for the detection of drug-induced liver toxicity. Toxicol Appl Pharmacol. 245:134–142.
  • Andrade RJ, Lucena MI, Fernandez MC, Pelaez G, Pachkoria K, Garcia-Ruiz E, Garcia-Munoz B, Gonzalez-Grande R, Pizarro A, Duran JA, et al. 2005. Drug-induced liver injury: an analysis of 461 incidences submitted to the Spanish registry over a 10-year period. Gastroenterology. 129:512–521.
  • Andrade RJ, Robles M, Ulzurrun E, Lucena MI. 2009. Drug-induced liver injury: insights from genetic studies. Pharmacogenomics. 10:1467–1487.
  • Assfalg M, Bertini I, Colangiuli D, Luchinat C, Schafer H, Schutz B, Spraul M. 2008. Evidence of different metabolic phenotypes in humans. Proc Natl Acad Sci USA. 105:1420–1424.
  • Bando K, Kunimatsu T, Sakai J, Kimura J, Funabashi H, Seki T, Bamba T, Fukusaki E. 2011. GC–MS-based metabolomics reveals mechanism of action for hydrazine induced hepatotoxicity in rats. J Appl Toxicol. 31:524–535.
  • Beckwith-Hall BM, Nicholson JK, Nicholls AW, Foxall PJ, Lindon JC, Connor SC, Abdi M, Connelly J, Holmes E. 1998. Nuclear magnetic resonance spectroscopic and principal components analysis investigations into biochemical effects of three model hepatotoxins. Chem Res Toxicol. 11:260–272.
  • Beger RD, Sun J, Schnackenberg LK. 2010. Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity. Toxicol Appl Pharmacol. 243:154–166.
  • Beger RD. 2013. A review of applications of metabolomics in cancer. Metabolites. 3:552–574.
  • Bell LN, Chalasani N. 2009. Epidemiology of idiosyncratic drug-induced liver injury. Semin Liver Dis. 29:337–347.
  • Benichou C. 1990. Criteria of drug-induced liver disorders. Report of an International Consensus Meeting. J Hepatol. 11:272–276.
  • Bjornsson E, Davidsdottir L. 2009. The long-term follow-up after idiosyncratic drug-induced liver injury with jaundice. J Hepatol. 50:511–517.
  • Bleibel W, Kim S, D'Silva K, Lemmer ER. 2007. Drug-induced liver injury: review article. Dig Dis Sci. 52:2463–2471.
  • Bollard ME, Keun HC, Beckonert O, Ebbels TM, Antti H, Nicholls AW, Shockcor JP, Cantor GH, Stevens G, Lindon JC, et al. 2005a. Comparative metabonomics of differential hydrazine toxicity in the rat and mouse. Toxicol Appl Pharmacol. 204:135–151.
  • Bollard ME, Stanley EG, Lindon JC, Nicholson JK, Holmes E. 2005b. NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed. 18:143–162.
  • Broadhurst DI, Kell DB. 2006. Statistical strategies for avoiding false discoveries in metabolomics and related experiments. Metabolomics. 2:171–196.
  • Capizzo F, Roberts RJ. 1971. α-naphthylisothiocyanate (ANIT)-induced hepatotoxicity and disposition in various species. Toxicol Appl Pharmacol. 19:176–187.
  • Chalasani N, Bjornsson E. 2010. Risk factors for idiosyncratic drug-induced liver injury. Gastroenterology. 138:2246–2259.
  • Chalasani N, Fontana RJ, Bonkovsky HL, Watkins PB, Davern T, Serrano J, Yang H, Rochon J, Drug Induced Liver Injury N. 2008. Causes, clinical features, and outcomes from a prospective study of drug-induced liver injury in the United States. Gastroenterology. 135:1924–1934. 1934e1–4.
  • Chen C, Kim S. 2013. LC–MS-based metabolomics of xenobiotic-induced toxicities. Comput Struct Biotechnol J. 4:e201301008.
  • Clayton TA, Lindon JC, Cloarec O, Antti H, Charuel C, Hanton G, Provost JP, Le Net JL, Baker D, Walley RJ, et al. 2006. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature. 440:1073–1077.
  • Clayton TA, Lindon JC, Everett JR, Charuel C, Hanton G, Le Net JL, Provost JP, Nicholson JK. 2004. Hepatotoxin-induced hypercreatinaemia and hypercreatinuria: their relationship to one another, to liver damage and to weakened nutritional status. Arch Toxicol. 78:86–96.
  • Conotte R, Colet JM. 2014. A metabonomic evaluation of the monocrotaline-induced sinusoidal obstruction syndrome (SOS) in rats. Toxicol Appl Pharmacol. 276:147–156.
  • Corsini A, Bortolini M. 2013. Drug-induced liver injury: the role of drug metabolism and transport. J Clin Pharmacol. 53:463–474.
  • Daly AK, Day CP. 2012. Genetic association studies in drug-induced liver injury. Drug Metab Rev. 44:116–126.
  • Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe'er I, Floratos A, Daly MJ, Goldstein DB, John S, Nelson MR, et al. 2009. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet. 41:816–819.
  • Day CP. 2002. NASH-related liver failure: one hit too many? Am J Gastroenterol. 97:1872–1874.
  • de Abajo FJ, Montero D, Madurga M, Garcia Rodriguez LA. 2004. Acute and clinically relevant drug-induced liver injury: a population based case-control study. Br J Clin Pharmacol. 58:71–80.
  • Dettmer K, Aronov PA, Hammock BD. 2007. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 26:51–78.
  • Dettmer K, Hammock BD. 2004. Metabolomics—a new exciting field within the ‘omics’ sciences. Environ Health Perspect. 112:A396–A397.
  • Devarbhavi H. 2012. An update on drug-induced liver injury. J Clin Exp Hepatol. 2:247–259.
  • Diémé B, Mavel S, Blasco H, Tripi G, Bonnet-Brilhault F, Malvy J, Bocca C, Andres C, Nadal-Desbarats L, Emond P. 2015. Metabolomics study of urine in autism spectrum disorders using a multiplatform analytical methodology. J Proteome Res. 14:5273–5282.
  • Dunn WB, Bailey NJ, Johnson HE. 2005. Measuring the metabolome: current analytical technologies. Analyst. 130:606–625.
  • El-Serag HB, Everhart JE. 2002. Diabetes increases the risk of acute hepatic failure. Gastroenterology. 122:1822–1828.
  • Fisher K, Vuppalanchi R, Saxena R. 2015. Drug-induced liver injury. Arch Pathol Lab Med. 139:876–887.
  • Fountain FF, Tolley E, Chrisman CR, Self TH. 2005. Isoniazid hepatotoxicity associated with treatment of latent tuberculosis infection: a 7-year evaluation from a public health tuberculosis clinic. Chest. 128:116–123.
  • Fukuhara K, Ohno A, Ando Y, Yamoto T, Okuda H. 2011. A 1H NMR-based metabolomics approach for mechanistic insight into acetaminophen-induced hepatotoxicity. Drug Metab Pharmacokinet. 26:399–406.
  • Garcia-Canaveras JC, Jimenez N, Gomez-Lechon MJ, Castell JV, Donato MT, Lahoz A. 2015. LC–MS untargeted metabolomic analysis of drug-induced hepatotoxicity in HepG2 cells. Electrophoresis. 36:2294–2302.
  • Gavaghan CL, Holmes E, Lenz E, Wilson ID, Nicholson JK. 2000. An NMR-based metabonomic approach to investigate the biochemical consequences of genetic strain differences: application to the C57BL10J and Alpk:ApfCD mouse. FEBS Lett. 484:169–174.
  • Gomase VS, Changbhale SS, Patil SA, Kale KV. 2008. Metabolomics. Curr Drug Metab. 9:89–98.
  • Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB. 2004. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol. 22:245–252.
  • Gu H, Chen H, Pan Z, Jackson AU, Talaty N, Xi B, Kissinger C, Duda C, Mann D, Raftery D, Cooks RG. 2007. Monitoring diet effects via biofluids and their implications for metabolomics studies. Anal Chem. 79:89–97.
  • Holmes E, Loo RL, Stamler J, Bictash M, Yap IKS, Chan Q, Ebbels T, De Iorio M, Brown IJ, Veselkov KA, et al. 2008. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature. 453:396–400.
  • Holmes E, Nicholls AW, Lindon JC, Connor SC, Connelly JC, Haselden JN, Damment SJ, Spraul M, Neidig P, Nicholson JK. 2000. Chemometric models for toxicity classification based on NMR spectra of biofluids. Chem Res Toxicol. 13:471–478.
  • Hong H, Tong W. 2014. Emerging efforts for discovering new biomarkers of liver disease and hepatotoxicity. Biomarkers Med. 8:143–146.
  • Hussaini SH, Farrington EA. 2007. Idiosyncratic drug-induced liver injury: an overview. Expert Opin Drug Saf. 6:673–684.
  • Iruzubieta P, Arias-Loste MT, Barbier-Torres L, Martinez-Chantar ML, Crespo J. 2015. The need for biomarkers in diagnosis and prognosis of drug-induced liver disease: does metabolomics have any role? Biomed Res Int. 2015:386186.
  • Ishihara K, Katsutani N, Aoki T. 2006. A metabonomics study of the hepatotoxicants galactosamine, methylene dianiline and clofibrate in rats. Basic Clin Pharmacol Toxicol. 99:251–260.
  • Ishihara K, Katsutani N, Asai N, Inomata A, Uemura Y, Suganuma A, Sawada K, Yokoi T, Aoki T. 2009. Identification of urinary biomarkers useful for distinguishing a difference in mechanism of toxicity in rat model of cholestasis. Basic Clin Pharmacol Toxicol. 105:156–166.
  • Johnson CH, Manna SK, Krausz KW, Bonzo JA, Divelbiss RD, Hollingshead MG, Gonzalez FJ. 2013. Global metabolomics reveals urinary biomarkers of breast cancer in a MCF-7 xenograft mouse model. Metabolites. 3:658–672.
  • Kaddurah-Daouk R, Kristal BS, Weinshilboum RM. 2008. Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol. 48:653–683.
  • Katajamaa M, Miettinen J, Ore IM. 2006. MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics. 22:634–636.
  • Kim B, Moon JY, Choi MH, Yang HH, Lee S, Lim KS, Yoon SH, Yu KS, Jang IJ, Cho JY. 2013. Global metabolomics and targeted steroid profiling reveal that rifampin, a strong human PXR activator, alters endogenous urinary steroid markers. J Proteome Res. 12:1359–1368.
  • Kim JW, Ryu SH, Kim S, Lee HW, Lim MS, Seong SJ, Kim S, Yoon YR, Kim KB. 2013. Pattern recognition analysis for hepatotoxicity induced by acetaminophen using plasma and urinary 1H NMR-based metabolomics in humans. Anal Chem. 85:11326–11334.
  • Kim K, Mall C, Taylor SL, Hitchcock S, Zhang C, Wettersten HI, Jones AD, Chapman A, Weiss RH. 2014. Mealtime, temporal, and daily variability of the human urinary and plasma metabolomes in a tightly controlled environment. PLoS One. 9:e86223.
  • Kleiner DE, Chalasani NP, Lee WM, Fontana RJ, Bonkovsky HL, Watkins PB, Hayashi PH, Davern TJ, Navarro V, Reddy R, et al. 2014. Hepatic histological findings in suspected drug-induced liver injury: systematic evaluation and clinical associations. Hepatology. 59:661–670.
  • Kleiner DE. 2013. Chapter 15 – histopathological evaluation of drug-induced liver disease A2. In: Kaplowitz N, DeLeve LD, editors. Drug-induced liver disease. 3rd ed. Boston: Academic Press; p. 241–263.
  • Knowles SR, Uetrecht J, Shear NH. 2000. Idiosyncratic drug reactions: the reactive metabolite syndromes. Lancet. 356:1587–1591.
  • Kyriakides M, Hardwick RN, Jin Z, Goedken MJ, Holmes E, Cherrington NJ, Coen M. 2014. Systems level metabolic phenotype of methotrexate administration in the context of non-alcoholic steatohepatitis in the rat. Toxicol Sci. 142:105–116.
  • Lammert C, Einarsson S, Saha C, Niklasson A, Bjornsson E, Chalasani N. 2008. Relationship between daily dose of oral medications and idiosyncratic drug-induced liver injury: search for signals. Hepatology. 47:2003–2009.
  • Larrey D. 2000. Drug-induced liver diseases. J Hepatol. 32:77–88.
  • Larrey D. 2002. Epidemiology and individual susceptibility to adverse drug reactions affecting the liver. Semin Liver Dis. 22:145–155.
  • Lee WM, Senior JR. 2005. Recognizing drug-induced liver injury: current problems, possible solutions. Toxicol Pathol. 33:155–164.
  • Lenz EM, Bright J, Wilson ID, Hughes A, Morrisson J, Lindberg H, Lockton A. 2004. Metabonomics, dietary influences and cultural differences: a 1H NMR-based study of urine samples obtained from healthy British and Swedish subjects. J Pharm Biomed Anal. 36:841–849.
  • Lenz EM, Williams RE, Sidaway J, Smith BW, Plumb RS, Johnson KA, Rainville P, Shockcor J, Stumpf CL, Granger JH, Wilson ID. 2007. The application of microbore UPLC/oa-TOF-MS and 1H NMR spectroscopy to the metabonomic analysis of rat urine following the intravenous administration of pravastatin. J Pharm Biomed Anal. 44:845–852.
  • Lenz EM, Wilson ID. 2007. Analytical strategies in metabonomics. J Proteome Res. 6:443–458.
  • Li Z, Li Q, Geng L, Chen X, Bi K. 2013. Use of the local false discovery rate for identification of metabolic biomarkers in rat urine following Genkwa Flos-induced hepatotoxicity. PLoS One. 8:e67451.
  • Licata A. 2016. Adverse drug reactions and organ damage: the liver. Eur J Intern Med. 28:9–16.
  • Lommen A. 2009. MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal Chem. 81:3079–3086.
  • Lucena MI, Andrade RJ, Fernandez MC, Pachkoria K, Pelaez G, Duran JA, Villar M, Rodrigo L, Romero-Gomez M, Planas R, et al. 2006. Determinants of the clinical expression of amoxicillin-clavulanate hepatotoxicity: a prospective series from Spain. Hepatology. 44:850–856.
  • Lucena MI, Andrade RJ, Kaplowitz N, Garcia-Cortes M, Fernandez MC, Romero-Gomez M, Bruguera M, Hallal H, Robles-Diaz M, Rodriguez-Gonzalez JF, et al. 2009. Phenotypic characterization of idiosyncratic drug-induced liver injury: the influence of age and sex. Hepatology. 49:2001–2009.
  • Lucena MI, Andrade RJ, Rodrigo L, Salmeron J, Alvarez A, Lopez-Garrido MJ, Camargo R, Alcantara R. 2000. Trovafloxacin-induced acute hepatitis. Clin Infect Dis. 30:400–401.
  • Lucena MI, Molokhia M, Shen Y, Urban TJ, Aithal GP, Andrade RJ, Day CP, Ruiz-Cabello F, Donaldson PT, Stephens C, et al. 2011. Susceptibility to amoxicillin-clavulanate-induced liver injury is influenced by multiple HLA class I and II alleles. Gastroenterology. 141:338–347.
  • Maddrey WC. 2005. Drug-induced hepatotoxicity: 2005. J Clin Gastroenterol. 39:S83–S89.
  • Malhi H, Gores GJ. 2008. Cellular and molecular mechanisms of liver injury. Gastroenterology. 134:1641–1654.
  • Mikus M, Drobin K, Gry M, Bachmann J, Lindberg J, Yimer G, Aklillu E, Makonnen E, Aderaye G, Roach J, et al. 2016. Elevated levels of circulating CDH5 and FABP1 in association with human drug-induced liver injury. Liver International. 37:132–140.
  • Nicholls AW, Mortishire-Smith RJ, Nicholson JK. 2003. NMR spectroscopic-based metabonomic studies of urinary metabolite variation in acclimatizing germ-free rats. Chem Res Toxicol. 16:1395–1404.
  • Nicholson JK, Lindon JC, Holmes E. 1999. 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 29:1181–1189.
  • Ohta T, Masutomi N, Tsutsui N, Sakairi T, Mitchell M, Milburn MV, Ryals JA, Beebe KD, Guo L. 2009. Untargeted metabolomic profiling as an evaluative tool of fenofibrate-induced toxicology in Fischer 344 male rats. Toxicol Pathol. 37:521–535.
  • Oldiges M, Lutz S, Pflug S, Schroer K, Stein N, Wiendahl C. 2007. Metabolomics: current state and evolving methodologies and tools. Appl Microbiol Biotechnol. 76:495–511.
  • Oliver SG. 2002. Functional genomics: lessons from yeast. Philos Trans R Soc Lond B Biol Sci. 357:17–23.
  • Otani K, Kaneko S, Tasaki H, Fukushima Y. 1989. Hepatic injury caused by mianserin. BMJ. 299:519.
  • Park EM, Lee E, Joo HJ, Oh E, Lee J, Lee JS. 2009. Inter- and intra-individual variations of urinary endogenous metabolites in healthy male college students using 1H NMR spectroscopy. Clin Chem Lab Med. 47:188–194.
  • Parman T, Bunin DI, Ng HH, McDunn JE, Wulff JE, Wang A, Swezey R, Rasay L, Fairchild DG, Kapetanovic IM, Green CE. 2011. Toxicogenomics and metabolomics of pentamethylchromanol (PMCol)-induced hepatotoxicity. Toxicol Sci. 124:487–501.
  • Pauling L, Robinson AB, Teranishi R, Cary P. 1971. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc Natl Acad Sci USA. 68:2374–2376.
  • Pessayre D, Bentata M, Degott C, Nouel O, Miguet JP, Rueff B, Benhamou JP. 1977. Isoniazid-rifampin fulminant hepatitis. A possible consequence of the enhancement of isoniazid hepatotoxicity by enzyme induction. Gastroenterology. 72:284–289.
  • Pessayre D, Mansouri A, Haouzi D, Fromenty B. 1999. Hepatotoxicity due to mitochondrial dysfunction. Cell Biol Toxicol. 15:367–373.
  • Powell CJ, Connelly JC, Jones SM, Grasso P, Bridges JW. 1986. Hepatic responses to the administration of high doses of BHT to the rat: their relevance to hepatocarcinogenicity. Food Chem Toxicol. 24:1131–1143.
  • Ricaurte B, Guirguis A, Taylor HC, Zabriskie D. 2006. Simvastatin–amiodarone interaction resulting in rhabdomyolysis, azotemia, and possible hepatotoxicity. Ann Pharmacother. 40:753–757.
  • Robles-Diaz M, Garcia-Cortes M, Medina-Caliz I, Gonzalez-Jimenez A, Gonzalez-Grande R, Navarro JM, Castiella A, Zapata EM, Romero-Gomez M, Blanco S, et al. 2015. The value of serum aspartate aminotransferase and gamma-glutamyl transpeptidase as biomarkers in hepatotoxicity. Liver Int. 35:2474–2482.
  • Robles-Diaz M, Medina-Caliz I, Stephens C, Andrade RJ, Lucena MI. 2016. Biomarkers in DILI: one more step forward. Front Pharmacol. 7:267.
  • Ruiz-Aracama A, Peijnenburg A, Kleinjans J, Jennen D, van Delft J, Hellfrisch C, Lommen A. 2011. An untargeted multi-technique metabolomics approach to studying intracellular metabolites of HepG2 cells exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. BMC Genomics. 12:251.
  • Russmann S, Kullak-Ublick GA, Grattagliano I. 2009. Current concepts of mechanisms in drug-induced hepatotoxicity. Curr Med Chem. 16:3041–3053.
  • Saito Y, Kodama S, Sugiyama E, Nakamura R. 2015. Predictive genomic markers for severe adverse drug reactions. Yakugaku Zasshi. 135:589–595.
  • Sangster T, Major H, Plumb R, Wilson AJ, Wilson ID. 2006. A pragmatic and readily implemented quality control strategy for HPLC–MS and GC–MS-based metabonomic analysis. Analyst. 131:1075–1078.
  • Sanins SM, Nicholson JK, Elcombe C, Timbrell JA. 1990. Hepatotoxin-induced hypertaurinuria: a proton NMR study. Arch Toxicol. 64:407–411.
  • Scheffner D, Konig S, Rauterberg-Ruland I, Kochen W, Hofmann WJ, Unkelbach S. 1988. Fatal liver failure in 16 children with valproate therapy. Epilepsia. 29:530–542.
  • Schlotterbeck G, Ross A, Dieterle F, Senn H. 2006. Metabolic profiling technologies for biomarker discovery in biomedicine and drug development. Pharmacogenomics. 7:1055–1075.
  • Schnackenberg LK, Sun J, Espandiari P, Holland RD, Hanig J, Beger RD. 2007. Metabonomics evaluations of age-related changes in the urinary compositions of male Sprague Dawley rats and effects of data normalization methods on statistical and quantitative analysis. BMC Bioinformatics. 8:S3.
  • Shi C, Wu CQ, Cao AM, Sheng HZ, Yan XZ, Liao MY. 2007. NMR-spectroscopy-based metabonomic approach to the analysis of Bay41-4109, a novel anti-HBV compound, induced hepatotoxicity in rats. Toxicol Lett. 173:161–167.
  • Slupsky CM, Rankin KN, Wagner J, Fu H, Chang D, Weljie AM, Saude EJ, Lix B, Adamko DJ, Shah S, et al. 2007. Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Anal Chem. 79:6995–7004.
  • Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. 2006. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 78:779–787.
  • Spratlin JL, Serkova NJ, Eckhardt SG. 2009. Clinical applications of metabolomics in oncology: a review. Clin Cancer Res. 15:431–440.
  • Stella C, Beckwith-Hall B, Cloarec O, Holmes E, Lindon JC, Powell J, van der Ouderaa F, Bingham S, Cross AJ, Nicholson JK. 2006. Susceptibility of human metabolic phenotypes to dietary modulation. J Proteome Res. 5:2780–2788.
  • Sugimoto M, Kawakami M, Robert M, Soga T, Tomita M. 2012. Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Curr Bioinform. 7:96–108.
  • Sumner SJ, Burgess JP, Snyder RW, Popp JA, Fennell TR. 2010. Metabolomics of urine for the assessment of microvesicular lipid accumulation in the liver following isoniazid exposure. Metabolomics. 6:238–249.
  • Sun J, Schnackenberg LK, Holland RD, Schmitt TC, Cantor GH, Dragan YP, Beger RD. 2008. Metabonomics evaluation of urine from rats given acute and chronic doses of acetaminophen using NMR and UPLC/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 871:328–340.
  • Suzuki A, Brunt EM, Kleiner DE, Miquel R, Smyrk TC, Andrade RJ, Lucena MI, Castiella A, Lindor K, Bjornsson E. 2011. The use of liver biopsy evaluation in discrimination of idiopathic autoimmune hepatitis versus drug-induced liver injury. Hepatology. 54:931–939.
  • Tajiri K, Shimizu Y. 2008. Practical guidelines for diagnosis and early management of drug-induced liver injury. World J Gastroenterol. 14:6774–6785.
  • Timbrell JA, Waterfield CJ, Draper RP. 1995. Use of urinary taurine and creatine as biomarkers of organ dysfunction and metabolic perturbations. Comp Haematol Int. 5:112–119.
  • Uetrecht J. 2007. Idiosyncratic drug reactions: current understanding. Annu Rev Pharmacol Toxicol. 47:513–539.
  • van Swelm RP, Kramers C, Masereeuw R, Russel FG. 2014. Application of urine proteomics for biomarker discovery in drug-induced liver injury. Crit Rev Toxicol. 44:823–841.
  • Walsh MC, Brennan L, Malthouse JPG, Roche HM, Gibney MJ. 2006. Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am J Clin Nutr. 84:531–539.
  • Wang Q, Jiang Y, Wu C, Zhao J, Yu S, Yuan B, Yan X, Liao M. 2006. Study of a novel indolin-2-ketone compound Z24 induced hepatotoxicity by NMR-spectroscopy-based metabonomics of rat urine, blood plasma, and liver extracts. Toxicol Appl Pharmacol. 215:71–82.
  • Waterfield CJ, Turton JA, Scales MD, Timbrell JA. 1993. Investigations into the effects of various hepatotoxic compounds on urinary and liver taurine levels in rats. Arch Toxicol. 67:244–254.
  • Waters NJ, Holmes E, Williams A, Waterfield CJ, Farrant RD, Nicholson JK. 2001. NMR and pattern recognition studies on the time-related metabolic effects of alpha-naphthylisothiocyanate on liver, urine, and plasma in the rat: an integrative metabonomic approach. Chem Res Toxicol. 14:1401–1412.
  • Watkins PB. (2013) Chapter 17 – biomarkers for drug-induced liver injury A2 – Kaplowitz, Neil. In: DeLeve LD, editor. Drug-induced liver disease. 3rd ed. Boston: Academic Press; p. 275–286.
  • Wei DD, Wang JS, Wang PR, Li MH, Yang MH, Kong LY. 2014. Toxic effects of chronic low-dose exposure of thioacetamide on rats based on NMR metabolic profiling. J Pharm Biomed Anal. 98:334–338.
  • Wei L, Liao P, Wu H, Li X, Pei F, Li W, Wu Y. 2008. Toxicological effects of cinnabar in rats by NMR-based metabolic profiling of urine and serum. Toxicol Appl Pharmacol. 227:417–429.
  • Williams RE, Lenz EM, Lowden JS, Rantalainen M, Wilson ID. 2005. The metabonomics of aging and development in the rat: an investigation into the effect of age on the profile of endogenous metabolites in the urine of male rats using 1H NMR and HPLC-TOF MS. Mol BioSyst. 1:166–175.
  • Winnike JH, Li Z, Wright FA, Macdonald JM, O'Connell TM, Watkins PB. 2010. Use of pharmaco-metabonomics for early prediction of acetaminophen-induced hepatotoxicity in humans. Clin Pharmacol Ther. 88:45–51.
  • Wishart DS. 2008. Metabolomics: applications to food science and nutrition research. Trends Food Sci Technol. 19:482–493.
  • Wynne HA, Cope LH, Mutch E, Rawlins MD, Woodhouse KW, James OF. 1989. The effect of age upon liver volume and apparent liver blood flow in healthy man. Hepatology. 9:297–301.
  • Xia J, Broadhurst DI, Wilson M, Wishart DS. 2013. Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics. 9:280–299.
  • Yang K, Woodhead JL, Watkins PB, Howell BA, Brouwer KLR. 2014a. Systems pharmacology modeling predicts delayed presentation and species differences in bile acid-mediated troglitazone hepatotoxicity. Clin Pharmacol Ther. 96:589–598.
  • Yang X, Schnackenberg LK, Shi Q, Salminen WF. 2014b. Chapter 13 – hepatic toxicity biomarkers A2. In: Gupta RC, editor. Biomarkers in toxicology. Boston: Academic Press; p. 241–259.
  • Yasui N, Otani K, Kaneko S, Ohkubo T, Osanai T, Ishida M, Mihara K, Kondo T, Sugawara K, Fukushima Y. 1995. Inhibition of trazodone metabolism by thioridazine in humans. Ther Drug Monit. 17:333–335.
  • Zhang A, Sun H, Wang P, Han Y, Wang X. 2012. Metabonomics for discovering biomarkers of hepatotoxicity and nephrotoxicity. Pharmazie. 67:99–105.
  • Zhang A, Sun H, Wang P, Han Y, Wang X. 2012. Recent and potential developments of biofluid analyses in metabolomics. J Proteomics. 75:1079–1088.
  • Zhang A, Sun H, Wang X. 2014. Urinary metabolic profiling of rat models revealed protective function of scoparone against alcohol induced hepatotoxicity. Sci Rep. 4:6768.
  • Zhang LF, Liu LS, Chu XM, Xie H, Cao LJ, Guo C, Ji-Ye A, Cao B, Li MJ, Wang GJ, Hao HP. 2014. Combined effects of a high-fat diet and chronic valproic acid treatment on hepatic steatosis and hepatotoxicity in rats. Acta Pharmacol Sin. 35:363–372.
  • Zimmerman HJ. 2000. Drug-induced liver disease. Clin Liver Dis. 4:73–96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.