477
Views
38
CrossRef citations to date
0
Altmetric
Review Articles

Weight of evidence analysis for assessing the genotoxic potential of carbon nanotubes

&
Pages 871-888 | Received 09 Jan 2017, Accepted 11 Aug 2017, Published online: 22 Sep 2017

References

  • Asakura M, Sasaki T, Sugiyama T, Takaya M, Koda S, Nagano K, Arito H, Fukushima S. 2010. Genotoxicity and cytotoxicity of multi-wall carbon nanotubes in cultured Chinese hamster lung cells in comparison with chrysotile A fibers. J Occup Health. 52:155–166.
  • Barlow CA, Lievense L, Gross S, Ronk CJ, Paustenbach DJ. 2013. The role of genotoxicity in asbestos-induced mesothelioma: an explanation for the differences in carcinogenic potential among fiber types. Inhal Toxicol. 25:553–567.
  • Barregard L, Møller P, Henriksen T, Mistry V, Koppen G, Rossner P, Sram RJ, Weimann A, Poulsen HE, Nataf R, et al. 2013. Human and methodological sources of variability in the measurement of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine. Antioxid Redox Signal. 18:2377–2391.
  • Borghini A, Roursgaard M, Andreassi MG, Kermanizadeh A, Moller P. 2017. Repair activity of oxidatively damaged DNA and telomere length in human lung epithelial cells after exposure to multi-walled carbon nanotubes. Mutagenesis. 32:173–180.
  • Cao Y, Jacobsen NR, Danielsen PH, Lenz AG, Stoeger T, Loft S, Wallin H, Roursgaard M, Mikkelsen L, Møller P. 2014. Vascular effects of multi-walled carbon nanotubes in dyslipidemic ApoE−/− mice and cultured endothelial cells. Toxicol Sci. 138:104–116.
  • Catalan J, Jarventaus H, Vippola M, Savolainen K, Norppa H. 2012. Induction of chromosomal aberrations by carbon nanotubes and titanium dioxide nanoparticles in human lymphocytes in vitro. Nanotoxicology. 6:825–836.
  • Catalan J, Siivola KM, Nymark P, Lindberg H, Suhonen S, Jarventaus H, Koivisto AJ, Moreno C, Vanhala E, Wolff H, et al. 2016. In vitro and in vivo genotoxic effects of straight versus tangled multi-walled carbon nanotubes. Nanotoxicology. 10:794–806.
  • Christophersen DV, Jacobsen NR, Andersen MH, Connell SP, Barfod KK, Thomsen MB, Miller MR, Duffin R, Lykkesfeldt J, Vogel U, et al. 2016. Cardiovascular health effects of oral and pulmonary exposure to multi-walled carbon nanotubes in ApoE-deficient mice. Toxicology. 371:29–40.
  • Colognato R, Ponti J, D’Errico MR, Migliore L, Rossi F. 2009. Genotoxic assays analysis for carbon nanotubes: friends or foes? Preliminary results on human peripheral leukocytes. Ijenvh. 3:275–284.
  • Corradi S, Gonzalez L, Thomassen LC, Bilanicova D, Birkedal RK, Pojana G, Marcomini A, Jensen KA, Leyns L, Kirsch-Volders M. 2012. Influence of serum on in situ proliferation and genotoxicity in A549 human lung cells exposed to nanomaterials. Mutat Res. 745:21–27.
  • Di Giorgio ML, Di BS, Ragnelli AM, Aimola P, Santucci S, Poma A. 2011. Effects of single and multi walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy. Mutat Res. 722:20–31.
  • Dinu CZ, Bale SS, Zhu G, Dordick JS. 2009. Tubulin encapsulation of carbon nanotubes into functional hybrid assemblies. Small. 5:310–315.
  • Duffin R, Tran L, Brown D, Stone V, Donaldson K. 2007. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol. 19:849–856.
  • Ema M, Imamura T, Suzuki H, Kobayashi N, Naya M, Nakanishi J. 2012. Evaluation of genotoxicity of multi-walled carbon nanotubes in a battery of in vitro and in vivo assays. Regul Toxicol Pharmacol. 63:188–195.
  • Ema M, Imamura T, Suzuki H, Kobayashi N, Naya M, Nakanishi J. 2013. Genotoxicity evaluation for single-walled carbon nanotubes in a battery of in vitro and in vivo assays. J Appl Toxicol. 33:933–939.
  • ESCODD (European Standards Committee on Oxidative DNA Damage). 2002. Comparative analysis of baseline 8-oxo-7,8-dihydroguanine in mammalian cell DNA, by different methods in different laboratories: an approach to consensus. Carcinogenesis. 23:2129–2133.
  • ESCODD (European Standards Committee on Oxidative DNA Damage). 2003. Measurement of DNA oxidation in human cells by chromatographic and enzymic methods. Free Radic Biol Med. 34:1089–1099.
  • Fenoglio I, Greco G, Tomatis M, Muller J, Raymundo PE, Beguin F, Fonseca A, Nagy JB, Lison D, Fubini B, 2008. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: physicochemical aspects. Chem Res Toxicol. 21:1690–1697.
  • Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Møller P. 2009. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. Environ Health Perspect. 117:703–708.
  • Fowler P, Homan A, Atkins D, Whitwell J, Lloyd M, Bradford R. 2016. The utility of the in vitro micronucleus test for evaluating the genotoxicity of natural and manmade nano-scale fibres. Mutat Res. 809:33–42.
  • Gernand JM, Casman EA. 2014. A meta-analysis of carbon nanotube pulmonary toxicity studies-how physical dimensions and impurities affect the toxicity of carbon nanotubes . Risk Anal. 34:583–597.
  • Green BS. 1991. How many subjects does it take to do a regression analysis. Multivariate Behav Res. 26:499–510.
  • Grosse Y, Loomis D, Guyton KZ, Lauby-Secretan B, El GF, Bouvard V, Benbrahim-Tallaa L, Guha N, Scoccianti C, Mattock H, et al. 2014. Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. Lancet Oncol. 15:1427–1428.
  • Hristozov DR, Zabeo A, Foran C, Isigonis P, Critto A, Marcomini A, Linkov I. 2014. A weight of evidence approach for hazard screening of engineered nanomaterials. Nanotoxicology. 8:72–87.
  • Huaux F, d’Ursel dB V, Parent MA, Orsi M, Uwambayinema F, Devosse R, Ibouraadaten S, Yakoub Y, Panin N, Palmai-Pallag M, et al. 2016. Mesothelioma response to carbon nanotubes is associated with an early and selective accumulation of immunosuppressive monocytic cells. Part Fibre Toxicol. 13:46.
  • Jackson P, Kling K, Jensen KA, Clausen PA, Madsen AM, Wallin H, Vogel U. 2015. Characterization of genotoxic response to 15 multiwalled carbon nanotubes with variable physicochemical properties including surface functionalizations in the FE1-Muta(TM) mouse lung epithelial cell line. Environ Mol Mutagen. 56:183–203.
  • Jacobsen NR, Møller P, Cohn CA, Loft S, Vogel U, Wallin H. 2008a. Diesel exhaust particles are mutagenic in FE1-MutaMouse lung epithelial cells. Mutat Res. 641:54–57.
  • Jacobsen NR, Møller P, Jensen JA, Vogel U, Ladefoged O, Loft S, Wallin H. 2009. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE−/− mice. Part Fibre Toxicol. 6:2.
  • Jacobsen NR, Pojana G, White P, Møller P, Cohn CA, Korsholm KS, Vogel U, Marcomini A, Loft S, Wallin H. 2008b. Genotoxicity, cytotoxicity and reactive oxygen species induced by single-walled carbon nanotubes and C60 fullerenes in the FE1-MutaTMMouse lung epithelial cells. Environ Mol Mutagen. 49:476–487.
  • Jacobsen NR, Saber AT, White P, Møller P, Pojana G, Vogel U, Loft S, Gingerich J, Soper L, Douglas GR, et al. 2007. Increased mutant frequency by carbon black, but not quartz, in the lacZ and cII transgenes of muta mouse lung epithelial cells. Environ Mol Mutagen. 48:451–461.
  • Johnston H, Pojana G, Zuin S, Jacobsen NR, Møller P, Loft S, Semmler-Behnke M, McGuiness C, Balharry D, Marcomini A, et al. 2013. Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges. Crit Rev Toxicol. 43:1–20.
  • Karlsson HL, Di BS, Collins AR, Dusinska M. 2015. Can the comet assay be used reliably to detect nanoparticle-induced genotoxicity? Environ Mol Mutagen. 56:82–96.
  • Kasai T, Umeda Y, Ohnishi M, Mine T, Kondo H, Takeuchi T, Matsumoto M, Fukushima S. 2016. Lung carcinogenicity of inhaled multi-walled carbon nanotube in rats. Part Fibre Toxicol. 13:53.
  • Kato T, Totsuka Y, Ishino K, Matsumoto Y, Tada Y, Nakae D, Goto S, Masuda S, Ogo S, Kawanishi M, et al. 2013. Genotoxicity of multi-walled carbon nanotubes in both in vitro and in vivo assay systems. Nanotoxicology. 7:452–461.
  • Kermanizadeh A, Gaiser BK, Hutchison GR, Stone V. 2012. An in vitro liver model–assessing oxidative stress and genotoxicity following exposure of hepatocytes to a panel of engineered nanomaterials. Part Fibre Toxicol. 9:28.
  • Kermanizadeh A, Gosens I, MacCalman L, Johnston H, Danielsen PH, Jacobsen NR, Lenz AG, Fernandes T, Schins RP, Cassee FR, et al. 2016. A multilaboratory toxicological assessment of a panel of 10 engineered nanomaterials to human health – ENPRA Project – the highlights, limitations, and current and future challenges. J Toxicol Environ Health B Crit Rev. 19:1–28.
  • Kermanizadeh A, Løhr M, Roursgaard M, Messner S, Gunness P, Kelm JM, Møller P, Stone V, Loft S. 2014. Hepatic toxicology following single and multiple exposure of engineered nanomaterials utilising a novel primary human 3D liver microtissue model. Part Fibre Toxicol. 11:56.
  • Kermanizadeh A, Vranic S, Boland S, Moreau K, Baeza-Squiban A, Gaiser BK, Andrzejczuk LA, Stone V. 2013. An in vitro assessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity. BMC Nephrol. 14:96.
  • Kim JS, Lee K, Lee YH, Cho HS, Kim KH, Choi KH, Lee SH, Song KS, Kang CS, Yu IJ. 2011. Aspect ratio has no effect on genotoxicity of multi-wall carbon nanotubes. Arch Toxicol. 85:775–786.
  • Kim JS, Song KS, Yu IJ. 2015. Evaluation of in vitro and in vivo genotoxicity of single-walled carbon nanotubes. Toxicol Ind Health. 31:747–757.
  • Kirsch-Volders M, Sofuni T, Aardema M, Albertini S, Eastmond D, Fenech M, Ishidate M Jr, Kirchner S, Lorge E, Morita T, et al. 2003. Report from the in vitro micronucleus assay working group. Mutat Res. 540:153–163.
  • Kisin ER, Murray AR, Keane MJ, Shi XC, Schwegler-Berry D, Gorelik O, Arepalli S, Castranova V, Wallace WE, Kagan VE, et al. 2007. Single-walled carbon nanotubes: geno- and cytotoxic effects in lung fibroblast V79 cells. J Toxicol Environ Health A. 70:2071–2079.
  • Kisin ER, Murray AR, Sargent L, Lowry D, Chirila M, Siegrist KJ, Schwegler-Berry D, Leonard S, Castranova V, Fadeel B, et al. 2011. Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos? Toxicol Appl Pharmacol. 252:1–10.
  • Kuempel ED, Jaurand MC, Møller P, Morimoto Y, Kobayashi N, Pinkerton KE, Sargent LM, Vermeulen RCH, Fubini B, Kane AB. 2017. Evaluating the mechanistic evidence and key data gaps in assessing the potential carcinogenicity of carbon nanotubes and nanofibers in humans. Crit Rev Toxicol. 47:1–58.
  • Li X, Peng Y, Qu X. 2006. Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B-A transition in solution. Nucleic Acids Res. 34:3670–3676.
  • Lindberg HK, Falck GC, Suhonen S, Vippola M, Vanhala E, Catalan J, Savolainen K, Norppa H. 2009. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol Lett. 186:166–173.
  • Louro H, Pinhao M, Santos J, Tavares A, Vital N, Silva MJ. 2016. Evaluation of the cytotoxic and genotoxic effects of benchmark multi-walled carbon nanotubes in relation to their physicochemical properties. Toxicol Lett. 262:123–134.
  • Lynch HN, Loftus CT, Cohen JM, Kerper LE, Kennedy EM, Goodman JE. 2016. Weight-of-evidence evaluation of associations between particulate matter exposure and biomarkers of lung cancer. Regul Toxicol Pharmacol. 82:53–93.
  • Manshian BB, Jenkins GJS, Williams PM, Wright C, Barron AR, Brown AP, Hondow N, Dunstan PR, Rickman R, Brady K, et al. 2013. Single-walled carbon nanotubes: differential genotoxic potential associated with physico-chemical properties. Nanotoxicology. 7:144–156.
  • Migliore L, Saracino D, Bonelli A, Colognato R, D’Errico MR, Magrini A, Bergamaschi A, Bergamaschi E. 2010. Carbon nanotubes induce oxidative DNA damage in RAW 264.7 cells. Environ Mol Mutagen. 51:294–303.
  • Møller P, Christophersen DV, Jacobsen NR, Skovmand A, Gouveia AC, Andersen MH, Kermanizadeh A, Jensen DM, Danielsen PH, Roursgaard M, et al. 2016. Atherosclerosis and vasomotor dysfunction in arteries of animals after exposure to combustion-derived particulate matter or nanomaterials. Crit Rev Toxicol. 46:437–476.
  • Møller P, Christophersen DV, Jensen DM, Kermanizadeh A, Roursgaard M, Jacobsen NR, Hemmingsen JG, Danielsen PH, Cao Y, Jantzen K, et al. 2014. Role of oxidative stress in carbon nanotube-generated health effects. Arch Toxicol. 88:1939–1964.
  • Møller P, Danielsen PH, Jantzen K, Roursgaard M, Loft S. 2013. Oxidatively damaged DNA in animals exposed to particles. Crit Rev Toxicol. 43:96–118.
  • Møller P, Hemmingsen JG, Jensen DM, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Cao Y, Kermanizadeh A, Klingberg H, et al. 2015a. Applications of the comet assay in particle toxicology: air pollution and engineered nanomaterials exposure. Mutagenesis. 30:67–83.
  • Møller P, Jensen DM, Christophersen DV, Kermanizadeh A, Jacobsen NR, Hemmingsen JG, Danielsen PH, Karottki DG, Roursgaard M, Cao Y, et al. 2015b. Measurement of oxidative damage to DNA in nanomaterial exposed cells and animals. Environ Mol Mutagen. 56:97–110.
  • Mrakovcic M, Meindl C, Leitinger G, Roblegg E, Frohlich E. 2015. Carboxylated short single-walled carbon nanotubes but not plain and multi-walled short carbon nanotubes show in vitro genotoxicity. Toxicol Sci. 144:114–127.
  • Muller J, Decordier I, Hoet PH, Lombaert N, Thomassen L, Huaux F, Lison D, Kirsch-Volders M. 2008a. Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis. 29:427–433.
  • Muller J, Huaux F, Fonseca A, Nagy JB, Moreau N, Delos M, Raymundo-Piñero E, Béguin F, Kirsch-Volders M, Fenoglio I, et al. 2008b. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem Res Toxicol. 21:1698–1705.
  • Muller J, Delos M, Panin N, Rabolli V, Huaux F, Lison D. 2009. Absence of carcinogenic response to multiwall carbon nanotubes in a 2-year bioassay in the peritoneal cavity of the rat. Toxicol Sci. 110:442–448.
  • Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D. 2005. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol. 207:221–231.
  • Nagai H, Okazaki Y, Chew SH, Misawa N, Yamashita Y, Akatsuka S, Ishihara T, Yamashita K, Yoshikawa Y, Yasui H, et al. 2011. Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc Natl Acad Sci USA. 108:E1330–E1338.
  • Nagai H, Okazaki Y, Chew SH, Misawa N, Miyata Y, Shinohara H, Toyokuni S. 2013. Intraperitoneal administration of tangled multiwalled carbon nanotubes of 15 nm in diameter does not induce mesothelial carcinogenesis in rats. Pathol Int. 63:457–462.
  • Naya M, Kobayashi N, Mizuno K, Matsumoto K, Ema M, Nakanishi J. 2011. Evaluation of the genotoxic potential of single-wall carbon nanotubes by using a battery of in vitro and in vivo genotoxicity assays. Regul Toxicol Pharmacol. 61:192–198.
  • OECD. 1986. Test No. 479: genetic toxicology: in vitro sister chromatid exchange assay in mammalian cells. Paris: OECD Publishing. DOI: http://dx.doi.org/10.1787/9789264071384-en.
  • OECD. 1997. Test No. 473: in vitro mammalian chromosome aberration test. Paris: OECD Publishing. DOI: http://dx.doi.org/10.1787/9789264071261-en.
  • OECD. 2016a. OECD Environment, Health and Safety Publications. Series on the Safety of Manufactured Nanomaterials. No. 68. ENV/JM/Mono(2016)20.
  • OECD. 2016b. Test No. 476: in vitro mammalian cell gene mutation tests using the Hprt and xprt genes. Paris: OECD Publishing. DOI: http://dx.doi.org/10.1787/9789264264809-en.
  • OECD. 2016c. Test No. 490: in vitro mammalian cell gene mutation tests using the thymidine kinase gene. Paris: OECD Publishing. DOI: http://dx.doi.org/10.1787/9789264264908-en.
  • OECD. 2016d. Test No. 487: in vitro mammalian cell micronucleus test. Paris: OECD Publishing. DOI: http://dx.doi.org/10.1787/9789264264861-en.
  • Oner D, Moisse M, Ghosh M, Duca RC, Poels K, Luyts K, Putzeys E, Cokic SM. 2017. Epigenetic effects of carbon nanotubes in human monocytic cells. Mutagenesis. 32:181–191.
  • Ponti J, Broggi F, Mariani V, De ML, Colognato R, Marmorato P, Gioria S, Gilliland D, Pascual Garcìa C, Meschini S, et al. 2013. Morphological transformation induced by multiwall carbon nanotubes on Balb/3T3 cell model as an in vitro end point of carcinogenic potential. Nanotoxicology. 7:221–233.
  • Pothmann D, Simar S, Schuler D, Dony E, Gaering S, Le Net JL, Okazaki Y, Chabagno JM, Bessibes C, Beausoleil J, et al. 2015. Lung inflammation and lack of genotoxicity in the comet and micronucleus assays of industrial multiwalled carbon nanotubes Graphistrength(©) C100 after a 90-day nose-only inhalation exposure of rats. Part Fibre Toxicol. 12:21.
  • Poulsen SS, Jackson P, Kling K, Knudsen KB, Skaug V, Kyjovska ZO, Thomsen BL, Clausen PA, Atluri R, Berthing T, et al. 2016. Multi-walled carbon nanotube physicochemical properties predict pulmonary inflammation and genotoxicity. Nanotoxicology. 10:1263–1275.
  • Poulsen SS, Saber AT, Williams A, Andersen O, Kobler C, Atluri R, Pozzebon ME, Mucelli SP, Simion M, Rickerby D, et al. 2015. MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol. 284:16–32.
  • Rasmussen K, Mast J, De Temmerman PJ, Verleysen E, Waegeneers N, Van Steen F, Pizzolon JC, De Temmerman L, Van Doren E, Jensen KA, et al. 2014. Multi-walled carbon nanotubes, NM-400, NM-401, NM-402, NM-403: Characterization and physico-chemical properties. JRC Science and Policy Reports. http://publications.jrc.ec.europa.eu/repository/bitstream/JRC91205/mwcnt-online.pdf.
  • Rasmussen K, Gonzalez M, Kearns P, Sintes JR, Rossi F, Sayre P. 2016. Review of achievements of the OECD Working Party on Manufactured Nanomaterials' Testing and Assessment Programme. From exploratory testing to test guidelines. Regul Toxicol Pharmacol. 74:147–160.
  • Rhomberg LR, Goodman JE, Bailey LA, Prueitt RL, Beck NB, Bevan C, Honeycutt M, Kaminski NE, Paoli G, Pottenger LH, et al. 2013. A survey of frameworks for best practices in weight-of-evidence analyses. Crit Rev Toxicol. 43:753–784.
  • Riley RD, Higgins JP, Deeks JJ. 2011. Interpretation of random effects meta-analyses. BMJ. 342:d549.
  • Rittinghausen S, Hackbarth A, Creutzenberg O, Ernst H, Heinrich U, Leonhardt A, Schaudien D. 2014. The carcinogenic effect of various multi-walled carbon nanotubes (MWCNTs) after intraperitoneal injection in rats. Part Fibre Toxicol. 11:59.
  • Rubio L, El YN, Kazimirova A, Dusinska M, Marcos R. 2016. Multi-walled carbon nanotubes (NM401) induce ROS-mediated HPRT mutations in Chinese hamster lung fibroblasts. Environ Res. 146:185–190.
  • Sakamoto Y, Nakae D, Fukumori N, Tayama K, Maekawa A, Imai K, Hirose A, Nishimura T, Ohashi N, Ogata A. 2009. Induction of mesothelioma by a single intrascrotal administration of multi-wall carbon nanotube in intact male Fischer 344 rats. J Toxicol Sci. 34:65–76.
  • Sargent LM, Hubbs AF, Young SH, Kashon ML, Dinu CZ, Salisbury JL, Benkovic SA, Lowry DT, Murray AR, Kisin ER, et al. 2012. Single-walled carbon nanotube-induced mitotic disruption. Mutat Res. 745:28–37.
  • Sargent LM, Porter DW, Staska LM, Hubbs AF, Lowry DT, Battelli L, Siegrist KJ, Kashon ML, Mercer RR, Bauer AK, et al. 2014. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Part Fibre Toxicol. 11:3.
  • Sargent LM, Shvedova AA, Hubbs AF, Salisbury JL, Benkovic SA, Kashon ML, Lowry DT, Murray AR, Kisin ER, Friend S, et al. 2009. Induction of aneuploidy by single-walled carbon nanotubes. Environ Mol Mutagen. 50:708–717.
  • Sasaki T, Asakura M, Ishioka C, Kasai T, Katagiri T, Fukushima S. 2016. In vitro chromosomal aberrations induced by various shapes of multi-walled carbon nanotubes (MWCNTs). J Occup Health. 58:622–631.
  • Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, Hubbs AF, Mercer RR, Keohavong P, Sussman N, et al. 2008. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol. 295:L552–L565.
  • Shvedova AA, Yanamala N, Kisin ER, Tkach AV, Murray AR, Hubbs A, Chirila MM, Keohavong P, Sycheva LP, Kagan VE, et al. 2014. Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons. Am J Physiol Lung Cell Mol Physiol. 306:L170–L182.
  • Smith CC, O’Donovan MR, Martin EA. 2006. hOGG1 recognizes oxidative damage using the comet assay with greater specificity than FPG or ENDOIII. Mutagenesis. 21:185–190.
  • Speit G, Schutz P, Bonzheim I, Trenz K, Hoffmann H. 2004. Sensitivity of the FPG protein towards alkylation damage in the comet assay. Toxicol Lett. 146:151–158.
  • Stoeger T, Reinhard C, Takenaka S, Schroeppel A, Karg E, Ritter B, Heyder J, Schulz H. 2006. Instillation of six different ultrafine carbon particles indicates a surface area threshold dose for acute lung inflammation in mice. Environ Health Perspect. 114:328–333.
  • Takagi A, Hirose A, Futakuchi M, Tsuda H, Kanno J. 2012. Dose-dependent mesothelioma induction by intraperitoneal administration of multi-wall carbon nanotubes in p53 heterozygous mice. Cancer Sci. 103:1440–1444.
  • Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, Kitajima S, Kanno J. 2008. Induction of mesothelioma in p53± mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci. 33:105–116.
  • Tavares AM, Louro H, Antunes S, Quarre S, Simar S, De Temmerman PJ, Verleysen E, Mast J, Jensen KA, Norppa H, et al. 2014. Genotoxicity evaluation of nanosized titanium dioxide, synthetic amorphous silica and multi-walled carbon nanotubes in human lymphocytes. Toxicol In Vitro. 28:60–69.
  • Thongkam W, Gerloff K, van BD, Albrecht C, Schins RP. 2017. Oxidant generation, DNA damage and cytotoxicity by a panel of engineered nanomaterials in three different human epithelial cell lines. Mutage. 32:105–115.
  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF. 2000. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen. 35:206–221.
  • Vales G, Rubio L, Marcos R. 2016. Genotoxic and cell-transformation effects of multi-walled carbon nanotubes (MWCNT) following in vitro sub-chronic exposures. J Hazard Mater. 306:193–202.
  • Vesterdal LK, Danielsen PH, Folkmann JK, Jespersen LF, Aguilar-Pelaez K, Roursgaard M, Loft S, Møller P. 2014a. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles. Toxicol Appl Pharmacol. 274:350–360.
  • Vesterdal LK, Jantzen K, Sheykhzade M, Roursgaard M, Folkmann JK, Loft S, Møller P. 2014b. Pulmonary exposure to particles from diesel exhaust, urban dust or single-walled carbon nanotubes and oxidatively damaged DNA and vascular function in apoE(−/−) mice. Nanotoxicology. 8:61–71.
  • Wang Y, Okazaki Y, Shi L, Kohda H, Tanaka M, Taki K, Nishioka T, Hirayama T, Nagasawa H, Yamashita Y, et al. 2016. Role of hemoglobin and transferrin in multi-wall carbon nanotube-induced mesothelial injury and carcinogenesis. Cancer Sci. 107:250–257.
  • Weed DL. 2005. Weight of evidence: a review of concept and methods. Risk Anal. 25:1545–1557.
  • Wirnitzer U, Herbold B, Voetz M, Ragot J. 2009. Studies on the in vitro genotoxicity of baytubes, agglomerates of engineered multi-walled carbon-nanotubes (MWCNT). Toxicol Lett. 186:160–165.
  • Zuin S, Micheletti C, Critto A, Pojana G, Johnston H, Stone V, Tran L, Marcomini A. 2011. Weight of evidence approach for the relative hazard ranking of nanomaterials. Nanotoxicology. 5:445–458.
  • Suzui M, Futakuchi M, Fukamachi K, Numano T, Abdelgied M, Takahashi S, Ohnishi M, Omori T, Tsuruoka S, Hirose A, et al. 2016. Multiwalled carbon nanotubes intratracheally instilled into the rat lung induce development of pleural malignant mesothelioma and lung tumors. Cancer Sci. 107:924–935.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.