5,091
Views
5
CrossRef citations to date
0
Altmetric
Review Articles

Evaluating the evidence on genotoxicity and reproductive toxicity of carbon black: a critical review

, , &
Pages 143-169 | Received 09 Jun 2017, Accepted 09 Oct 2017, Published online: 02 Nov 2017

References

  • Aderem A. 2003. Phagocytosis and the inflammatory response. J Infect Dis. 187(Supplement_2):S340–S345.
  • Aderem A, Underhill DM. 1999. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 17:593–623.
  • Adler A, Cieslewicz G, Irvin CG. 2004. Unrestrained plethysmography is an unreliable measure of airway responsiveness in BALB/c and C57BL/6 mice. J Appl Physiol. 97:286–292.
  • Agurell E, Löfroth G. 1983. Presence of various types of mutagenic impurities in a carbon black detected by the Salmonella assay. In: Waters M, Sandhu S, Lewtas J, Claxton L, Chernoff N, Nesnow S, editors. Short-term bioassays in the analysis of complex environmental mixtures III. New York: Plenum Press, p. 297–306.
  • Agurell E, Löfroth G. 1993. Impurity variations in a carbon black: characterization by the Ames Salmonella mutagenicity assay and polycyclic aromatic hydrocarbon analysis. Environ Toxicol Chem 12:219–223.
  • Albertine KH, Wang L, Watanabe S, Marathe GK, Zimmerman GA, McIntyre TM. 2002. Temporal correlation of measurements of airway hyperresponsiveness in ovalbumin-sensitized mice. Am J Physiol Lung Cell Mol Physiol. 283:L219–L233.
  • Almutary A, Sanderson BJS. 2016. The MTT and crystal violet assays: potential confounders in nanoparticle toxicity testing. Int J Toxicol. 35:454–462.
  • Arandjelovic S, Ravichandran KS. 2015. Phagocytosis of apoptotic cells in homeostasis. Nat Immunol. 16:907–917.
  • Babu P, Prasad V, Rao K, Ahuja Y. 1989. A cytogenetic study in carbon black exposed individuals of tyre industry (Abstract). Environ Mol Mutagen. 14:15.
  • Belinsky SA, Snow SS, Nikula KJ, Finch GL, Tellez CS, Palmisano WA. 2002. Aberrant CpG island methylation of the p16(INK4a) and estrogen receptor genes in rat lung tumors induced by particulate carcinogens. Carcinogenesis. 23:335–339.
  • Belinsky SA, Swafford DS, Finch GL, Mitchell CE, Kelly G, Hahn FF, Anderson MW, Nikula KJ. 1997. Alterations in the K-ras and p53 genes in rat lung tumors. Environ Health Perspect. 105 Suppl 4:901–906.
  • Bellingan GJ, Laurent GJ. (2008) Fate of macrophages once having ingested apoptotic cells: Lymphatic clearance or in situ apoptosis? In: Rossi AG, Sawatzky DA editors. The resolution of inflammation. Basel: Birkhäuser Basel, p. 75–91.
  • Boisen AM, Shipley T, Jackson P, Wallin H, Nellemann C, Vogel U, Yauk CL, Hougaard KS. 2013. In utero exposure to nanosized carbon black (Printex90) does not induce tandem repeat mutations in female murine germ cells. Reprod Toxicol. 41:45–48.
  • Bond JA, Johnson NF, Snipes MB, Mauderly JL, Sega GA. 1990. DNA adduct formation in rat alveolar type II cells: cells potentially at risk for inhaled diesel exhaust. Environ Mol Mutagen. 16:64–69.
  • Borm PJ, Cakmak G, Jermann E, Weishaupt C, Kempers P, van Schooten FJ, Oberdörster G, Schins RP. 2005. Formation of PAH-DNA adducts after in vivo and vitro exposure of rats and lung cells to different commercial carbon blacks. Toxicol Appl Pharmacol. 205:157–167.
  • Bott J, Störmer A, Franz R. 2014. Migration of nanoparticles from plastic packaging materials containing carbon black into foodstuffs. Food Addit Contam A. 31:1769–1782.
  • Botta A, Benameur B. (2011) Nanoparticle toxicity mechanisms: genotoxicity. In: Houdy P, Lahmaci M, Marano F, editors. Nanoethics and nanotoxicology. Berlin: Springer.
  • Bourdon JA, Halappanavar S, Saber AT, Jacobsen NR, Williams A, Wallin H, Vogel U, Yauk CL. 2012a. Hepatic and pulmonary toxicogenomic profiles in mice intratracheally instilled with carbon black nanoparticles reveal pulmonary inflammation, acute phase response, and alterations in lipid homeostasis. Toxicol Sci.. 127:474–484.
  • Bourdon JA, Saber AT, Halappanavar S, Jackson PA, Wu D, Hougaard KS, Jacobsen NR, Williams A, Vogel U, Wallin H, et al. 2012b. Carbon black nanoparticle intratracheal installation results in large and sustained changes in the expression of miR-135b in mouse lung. Environ Mol Mutagen. 53:462–468.
  • Bourdon JA, Saber AT, Jacobsen NR, Jensen KA, Madsen AM, Lamson JS, Wallin H, Møller P, Loft S, Yauk CL, et al. 2012c. Carbon black nanoparticle instillation induces sustained inflammation and genotoxicity in mouse lung and liver. Part Fibre Toxicol. 9:5.
  • Bourdon JA, Williams A, Kuo B, Moffat I, White PA, Halappanavar S, Vogel U, Wallin H, Yauk CL. 2013. Gene expression profiling to identify potentially relevant disease outcomes and support human health risk assessment for carbon black nanoparticle exposure. Toxicology. 303:83–93.
  • Cao Y, Roursgaard M, Danielsen PH, Moller P, Loft S. 2014. Carbon black nanoparticles promote endothelial activation and lipid accumulation in macrophages independently of intracellular ROS production. PLoS One. 9:e106711.
  • Carter JM, Corson N, Driscoll KE, Elder A, Finkelstein JN, Harkema JN, Gelein R, Wade-Mercer P, Nguyen K, Oberdorster G. 2006. A comparative dose-related response of several key pro- and antiinflammatory mediators in the lungs of rats, mice, and hamsters after subchronic inhalation of carbon black. J Occup Environ Med. 48:1265–1278.
  • Choucroun P, Gillet D, Dorange G, Sawicki B, Dewitte JD. 2001. Comet assay and early apoptosis. Mutat Res. 478:89–96.
  • Chuang HC, Cheng YL, Lei YC, Chang HH, Cheng TJ. 2013. Protective effects of pulmonary epithelial lining fluid on oxidative stress and DNA single-strand breaks caused by ultrafine carbon black, ferrous sulphate and organic extract of diesel exhaust particles. Toxicol Appl Pharmacol. 266:329–334.
  • Dai Y, Niu Y, Duan H, Bassig BA, Ye M, Zhang X, Meng T, Bin P, Jia X, Shen M, et al. 2016. Effects of occupational exposure to carbon black on peripheral white blood cell counts and lymphocyte subsets. Environ Mol Mutagen. 57:615–622.
  • Danielsen PH, Loft S, Jacobsen NR, Jensen KA, Autrup H, Ravanat JL, Wallin H, Møller P. 2010. Oxidative stress, inflammation, and DNA damage in rats after intratracheal instillation or oral exposure to ambient air and wood smoke particulate matter. Toxicol Sci. 118:574–585.
  • Degussa AG. 1997. Reverse mutation assay using bacteria (Salmonella typhimurium and Escherichia coli). Unpublished report.
  • Degussa AG. 1998. Reverse mutation assay using bacteria (Salmonella typhimurium and Escherichia coli). Unpublished report.
  • Dell LD, Gallagher AE, Crawford L, Jones RM, Mundt KA. 2015. Cohort study of carbon black exposure and risk of malignant and nonmalignant respiratory disease mortality in the US carbon black industry. J Occup Environ Med. 57:984–997.
  • DFG. 2013. Deutsche forschungsgemeinschaft. Nanomaterials. New Jersey: John Wiley & Sons.
  • Di Giorgio ML, Di Bucchianico S, Ragnelli AM, Aimola P, Santucci S, Poma A. 2011. Effects of single and multi-walled carbon nanotubes on macrophages: cyto and genotoxicity and electron microscopy. Mutat Res. 722:20–31.
  • Don Porto Carero A, Hoet PH, Verschaeve L, Schoeters G, Nemery B. 2001. Genotoxic effects of carbon black particles, diesel exhaust particles, and urban air particulates and their extracts on a human alveolar epithelial cell line (A549) and a human monocytic cell line (THP-1). Environ Mol Mutagen. 37:155–163.
  • Driscoll KE. 1996. Role of inflammation in the development of rat lung tumors in response to chronic particle exposure. Inhal Toxicol. 8:139–153.
  • Driscoll KE, Carter JM, Howard BW, Hassenbein DG, Pepelko W, Baggs RB, Oberdörster G. 1996. Pulmonary inflammatory, chemokine, and mutagenic responses in rats after subchronic inhalation of carbon black. Toxicol Appl Pharmacol. 136:372–380.
  • Driscoll KE, Costa DL, Hatch G, Henderson R, Oberdorster G, Salem H, Schlesinger RB. 2000. Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: uses and limitations. Toxicol Sci. 55:24–35.
  • Driscoll KE, Deyo LC, Carter JM, Howard BW, Hassenbein DG, Bertram TA. 1997. Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells. Carcinogenesis. 18:423–430.
  • ECETOC. 2013. Poorly Soluble Particles/Lung Overload. Technical Report No. 122, Brussels.
  • ECHA. 2015. European Chemicals Agency – Guidance on Information Requirements and Chemical Safety Assessment. Chapter R.7a: Endpoint specific guidance.
  • El-Sayed YS, Shimizu R, Onoda A, Takeda K, Umezawa M. 2015. Carbon black nanoparticle exposure during middle and late fetal development induces immune activation in male offspring mice. Toxicology. 327:53–61.
  • Elder A, Gelein R, Finkelstein JN, Driscoll KE, Harkema J, Oberdörster G. 2005. Effects of subchronically inhaled carbon black in three species. I. retention kinetics, lung inflammation, and histopathology. Toxicol Sci. 88:614–629.
  • Ema M, Hougaard KS, Kishimoto A, Honda K. 2015. Reproductive and developmental toxicity of carbon-based nanomaterials: A literature review. Nanotoxicology. 10:391–412.
  • Erdely A, Dahm M, Chen BT, Zeidler-Erdely PC, Fernback JE, Birch ME, Evans DE, Kashon ML, Deddens JA, Hulderman T, et al. 2013. Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology. Part Fibre Toxicol. 10:53.
  • Fedulov AV, Leme A, Yang Z, Dahl M, Lim R, Mariani TJ, Kobzik L. 2008. Pulmonary exposure to particles during pregnancy causes increased neonatal asthma susceptibility. Am J Respir Cell Mol Biol. 38:57–67.
  • Finotto S, De Sanctis GT, Lehr HA, Herz U, Buerke M, Schipp M, Bartsch B, Atreya R, Schmitt E, Galle PR, et al. 2001. Treatment of allergic airway inflammation and hyperresponsiveness by antisense-induced local blockade of GATA-3 expression. J Exp Med. 193:1247–1260.
  • Frikke-Schmidt H, Roursgaard M, Lykkesfeldt J, Loft S, Nojgaard JK, Moller P. 2011. Effect of vitamin C and iron chelation on diesel exhaust particle and carbon black induced oxidative damage and cell adhesion molecule expression in human endothelial cells. Toxicol Lett. 203:181–189.
  • Gallagher J, Heinrich U, George M, Hendee L, Phillips DH, Lewtas J. 1994. Formation of DNA adducts in rat lung following chronic inhalation of diesel emissions, carbon black and titanium dioxide particles. Carcinogenesis 15:1291–1299.
  • Gallagher J, Sams R, Inmon J, Gelein R, Elder A, Oberdörster G, Prahalad AK. 2003. Formation of 8-oxo-7,8-dihydro-2′-deoxyguanosine in rat lung DNA following subchronic inhalation of carbon black. Toxicol Appl Pharmacol. 190:224–231.
  • Gerloff K, Albrecht C, Boots AW, Förster I, Schins RPF. 2009. Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology. 3:355–364.
  • Gonzalez L, Sanderson BJS, Kirsch-Volders M. 2011. Adaptations of the in vitro MN assay for the genotoxicity assessment of nanomaterials. Mutagenesis. 26:185–191.
  • Gray CA, Muranko H. 2006. Studies of robustness of industrial aciniform aggregates and agglomerates–carbon black and amorphous silicas: a review amplified by new data. J Occup Environ Med Am Coll Occup Environ Med. 48:1279–1290.
  • Hamelmann E, Schwarze J, Takeda K, Oshiba A, Larsen GL, Irvin CG, Gelfand EW. 1997. Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am J Respir Crit Care Med. 156:766–775.
  • Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B, Koch W, Levsen K. 1995. Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel engine exhaust, carbon black, and titanium dioxide. Inhal Toxicol. 7:533–556.
  • Hirota K, Terada H. 2012. Endocytosis of particle formulations by macrophages and its application to clinical treatment. In: Ceresa B, editor. Molecular regulation of endocytosis. Croatia: InTech.
  • Hobson S. 2011 Carbon Black (E300281, Batch C3949): reverse mutation in five histidine-requiring strains of Salmonella tiphimurium. Covance Study No. 8251057 as cited in SCCS Opinion on Carbon Black, 2015.
  • Hougaard KS, Campagnolo L, Chavatte-Palmer P, Tarrade A, Rousseau-Ralliard D, Valentino S, Park MV, de Jong WH, Wolterink G, Piersma AH, et al. 2015. A perspective on the developmental toxicity of inhaled nanoparticles. Reprod Toxicol. 56:118–140.
  • Husain M, Kyjovska ZO, Bourdon-Lacombe J, Saber AT, Jensen KA, Jacobsen NR, Williams A, Wallin H, Halappanavar S, et al. 2015. Carbon black nanoparticles induce biphasic gene expression changes associated with inflammatory responses in the lungs of C57BL/6 mice following a single intratracheal instillation. Toxicol Appl Pharmacol. 289:573–588.
  • Hussain S, Thomassen LCJ, Ferecatu I, Borot MC, Andreau K, Martens JA, Fleury J, Baeza-Squiban A, Marano F, Boland S. 2010. Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells. Part Fibre Toxicol. 7:10-10.
  • IARC. 2010. IARC monographs on the evaluation of carcinogenic risks to humans. Vol. 93. Carbon black, titanium dioxide, and talc. Lyon: IARC.
  • ICBA. 2016. Carbon Black User’s Guide. International Carbon Black Association. Available from: http://www.carbon-black.org/index.php/carbon-black-uses/carbon-black-user-s-guide.
  • International Life Sciences Institute [ILSI]. 2000. The relevance of the rat lung response to particle overload for human risk assessment: a workshop consensus report. Inhal Toxicol. 12:1–17.
  • Jackson P, Hougaard KS, Boisen AM, Jacobsen NR, Jensen KA, Møller P, Brunborg G, Gutzkow KB, Andersen O, Loft S, et al. 2012a. Pulmonary exposure to carbon black by inhalation or instillation in pregnant mice: effects on liver DNA strand breaks in dams and offspring. Nanotoxicology. 6:486–500.
  • Jackson P, Hougaard KS, Vogel U, Wu D, Casavant L, Williams A, Wade M, Yauk CL, Wallin H, Halappanavar S. 2012b. Exposure of pregnant mice to carbon black by intratracheal instillation: toxicogenomic effects in dams and offspring. Mutat Res. 745:73–83.
  • Jackson P, Vogel U, Wallin H, Hougaard KS. 2011. Prenatal exposure to carbon black (printex 90): effects on sexual development and neurofunction. Basic Clin Pharmacol Toxicol. 109:434–437.
  • Jacobsen NR, Moller P, Jensen KA, Vogel U, Ladefoged O, Loft S, Wallin H. 2009. Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE-/- mice. Part Fibre Toxicol. 6:2.
  • Jacobsen NR, Pojana G, White P, Møller P, Cohn CA, Korsholm KS, Vogel U, Marcomini A, Loft S, Wallin H. 2008. Genotoxicity, cytotoxicity, and reactive oxygen species induced by single-walled carbon nanotubes and C(60) fullerenes in the FE1-Mutatrade markMouse lung epithelial cells. Environ Mol Mutagen. 49:476–487.
  • Jacobsen NR, Saber AT, White P, Møller P, Pojana G, Vogel U, Loft S, Gingerich J, Soper L, Douglas GR, et al. 2007. Increased mutant frequency by carbon black, but not quartz, in the lacZ and cII transgenes of muta mouse lung epithelial cells. Environ Mol Mutagen. 48:451–461.
  • Jacobsen NR, White PA, Gingerich J, Møller P, Saber AT, Douglas GR, Vogel U, Wallin H. 2011. Mutation spectrum in FE1-MUTA(TM) Mouse lung epithelial cells exposed to nanoparticulate carbon black. Environ Mol Mutagen. 52:331–337.
  • Karlsson HL, Cronholm P, Gustafsson J, Moller L. 2008. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol. 21:1726–1732.
  • Kirwin CJ, LeBlanc JV, Thomas WC. 1981. Evaluation of the genetic activity of industrially produced carbon black. J Toxicol Environ Health. 7:973–989.
  • Kong H, Xia K, Pan L, Zhang J, Luo Y, Zhang Y, Cui Z, El-Sayed NN, Aldalbahi A, Chen N, et al. 2017. Autophagy and lysosomal dysfunction: a new insight into mechanism of synergistic pulmonary toxicity of carbon black-metal ions co-exposure. Carbon. 111:322–333.
  • Kroll A, Dierker C, Rommel C, Hahn D, Wohlleben W, Schulze-Isfort C, Göbbert C, Voetz M, Hardinghaus F, Schnekenburger J. 2011. Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays. Part Fibre Toxicol. 8:9.
  • Kroll A, Pillukat MH, Hahn D, Schnekenburger J. 2009. Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm. 72:370–377.
  • Kroll A, Pillukat MH, Hahn D, Schnekenburger J. 2012. Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol. 86:1123–1136.
  • Kuhlbusch TAJ, Krug HF, Nau K. (2009) NanoCare: health related aspects of nanomaterials: final scientific report. Frankfurt am Main, Germany: Federal Ministry of Education and Research.
  • Kyjovska ZO, Boisen AM, Jackson P, Wallin H, Vogel U, Hougaard KS. 2013. Daily sperm production: application in studies of prenatal exposure to nanoparticles in mice. Reprod Toxicol (Elmsford, NY). 36:88–97.
  • Kyjovska ZO, Jacobsen NR, Saber AT, Bengtson S, Jackson P, Wallin H, Vogel U. 2015. DNA damage following pulmonary exposure by instillation to low doses of carbon black (Printex 90) nanoparticles in mice. Environ Mol Mutagen. 56:41–49.
  • Lee CC, Huang HY, Chiang BL. 2008. Lentiviral-mediated GATA-3 RNAi decreases allergic airway inflammation and hyperresponsiveness. Mol Ther. 16:60–65.
  • LeFevre ME, Joel DD. 1986. Distribution of label after intragastric administration of 7Be-labeled carbon to weanling and aged mice. Proc Soc Exp Biol Med Soc Exp Biol Med (New York, NY). 182:112–119.
  • Lindner K, Ströbele M, Schlick S, Webering S, Jenckel A, Kopf J, Danov O, Sewald K, Buj C, Creutzenberg O, et al. 2017. Biological effects of carbon black nanoparticles are changed by surface coating with polycyclic aromatic hydrocarbons. Part Fibre Toxicol. 14:8.
  • Lloyd M. 2011. Carbon black (E300281, Batch C3949): mutation at the hprt locus of mouse lymphoma L5178Y cells using the Microtitre® fluctuation technique. Covance Study No. 8250669 as cited in the SCCS Opinion on Carbon Black, 2015.
  • Lloyd M. 2012. Carbon black (E300281, Batch C3949): induction of micronuclei in cultured Chinese Hamster ovary (CHO) cells. Covance Study No. 8250671 as cited in the SCCS Opinion on Carbon Black, 2015.
  • Long CM, Nascarella MA, Valberg PA. 2013. Carbon black vs. black carbon and other airborne materials containing elemental carbon: physical and chemical distinctions. Environ Pollut. 181:271–286.
  • Mangum JB, Turpin EA, Antao-Menezes A, Cesta MF, Bermudez E, Bonner JC. 2006. Single-walled carbon nanotube (SWCNT)-induced interstitial fibrosis in the lungs of rats is associated with increased levels of PDGF mRNA and the formation of unique intercellular carbon structures that bridge alveolar macrophages in situ. Part Fibre Toxicol. 3:15.
  • Mao L, Hu M, Pan B, Xie Y, Petersen EJ. 2016. Biodistribution and toxicity of radio-labeled few layer graphene in mice after intratracheal instillation. Part Fibre Toxicol. 13:7.
  • Mauderly JL. 1997. Relevance of particle-induced rat lung tumors for assessing lung carcinogenic hazard and human lung cancer risk. Environ Health Perspect. 105 Suppl 5:1337–1346.
  • Mauderly JL, McCunney R. 1996. Particle overload in the rat. Implications for human risk assessment. Proceedings of a Conference Held at the Massachusetts Institute of Technology on March 29 and 30, 1995. Washington: Taylor & Francis.
  • Mauderly JL, Snipes MB, Barr EB, Belinsky SA, Bond JA, Brooks AL, Chang IY, Cheng YS, Gillett NA, Griffith WC, et al. 1994. Pulmonary toxicity of inhaled diesel exhaust and carbon black in chronically exposed rats. Part I: Neoplastic and nonneoplastic lung lesions. Res Rep Health Eff Inst. 68:1–75. discussion 77–97.
  • McCunney RJ, Muranko HJ, Long CM, Hamade AK, Valberg PA, Morfeld P. (2012) Carbon black. In: Bingham E, Cohrssen B, editors. Patty’s toxicology. 6th ed., vol. 5. New York, NY: John Wiley & Sons, Inc., p. 429–453.
  • Migliore L, Saracino D, Bonelli A, Colognato R, D'Errico MR, Magrini A, Bergamaschi A, Bergamaschi E, et al. 2010. Carbon nanotubes induce oxidative DNA damage in RAW 264.7 cells. Environ Mol Mutagen. 51:294–303.
  • Mitsunaga F, Umezawa M, Takeda K, Nakamura S. 2016. Maternal administration of nanomaterials elicits hemoglobin upregulation in the neonatal brain of non-human primates. J Toxicol Sci. 41:265–271.
  • Møller P, Jacobsen NR. 2017. Weight of evidence analysis for assessing the genotoxic potential of carbon nanotubes. Crit Rev Toxicol. [1–18]. https://doi.org/10.1080/10408444.2017.1367755.
  • Monteiro-Riviere NA, Inman AO. 2006. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon. 44:1070–1078.
  • Morfeld P, Bruch J, Levy L, Ngiewih Y, Chaudhuri I, Muranko HJ, Myerson R, McCunney RJ. 2015. Translational toxicology in setting occupational exposure limits for dusts and hazard classification – a critical evaluation of a recent approach to translate dust overload findings from rats to humans. Part Fibre Toxicol. 12:3.
  • Mroz RM, Schins RP, Li H, Drost EM, Macnee W, Donaldson K. 2007. Nanoparticle carbon black driven DNA damage induces growth arrest and AP-1 and NFkappaB DNA binding in lung epithelial A549 cell line. J Physiol Pharmacol. 58 Suppl 5:461–470.
  • Mroz RM, Schins RP, Li H, Jimenez LA, Drost EM, Holownia A, MacNee W, Donaldson K. 2008. Nanoparticle-driven DNA damage mimics irradiation-related carcinogenesis pathways. Eur Respir J. 31:241–251.
  • Murray J, Barbara JA, Dunkley SA, Lopez AF, Van Ostade X, Condliffe AM, Dransfield I, Haslett C, Chilvers ER. 1997. Regulation of neutrophil apoptosis by tumor necrosis factor-alpha: requirement for TNFR55 and TNFR75 for induction of apoptosis in vitro. Blood. 90:2772–2783.
  • Nikolova T, Dvorak M, Jung F, Adam I, Krämer E, Gerhold-Ay A, Kaina B. 2014. The gammaH2AX assay for genotoxic and nongenotoxic agents: comparison of H2AX phosphorylation with cell death response. Toxicol Sci. 140:103–117.
  • Nikula KJ. 2000. Rat lung tumors induced by exposure to selected poorly soluble nonfibrous particles. Inhal Toxicol. 12:97–119.
  • Nikula KJ, Snipes MB, Barr EB, Griffith WC, Henderson RF, Mauderly JL. 1995. Comparative pulmonary toxicities and carcinogenicities of chronically inhaled diesel exhaust and carbon black in F344 rats. Toxicol Sci. 25:80–94.
  • OECD. 2015. Genetic Toxicology Guidance Document. Guidance Document on Revisions to OECD Genetic Toxicology Test Guidelines, 31 August. Paris: OECD.
  • Onoda A, Umezawa M, Takeda K, Ihara T, Sugamata M. 2014. Effects of maternal exposure to ultrafine carbon black on brain perivascular macrophages and surrounding astrocytes in offspring mice. PLoS One. 9:e94336.
  • Petak F, Habre W, Donati YR, Hantos Z, Barazzone-Argiroffo C. 2001. Hyperoxia-induced changes in mouse lung mechanics: forced oscillations vs. barometric plethysmography. J Appl Physiol (Bethesda, MD: 1985). 90:2221–2230.
  • Poma A, Limongi T, Pisani C, Granato V, Picozzi P. 2006. Genotoxicity induced by fine urban air particulate matter in the macrophages cell line RAW 264.7. Toxicol In Vitro. 20:1023–1029.
  • Ramesh. 2012 Carbon black (E300281, Batch C3949): prenatal development toxicity study of E300281 in Wistar rats by oral route. Advinus Study No. G7978. As cited in SCCS Opinion on Carbon Black (2015).
  • Reisetter AC, Stebounova LV, Baltrusaitis J, Powers L, Gupta A, Grassian VH, Monick MM. 2011. Induction of inflammasome-dependent pyroptosis by carbon black nanoparticles. J Biol Chem. 286:21844–21852.
  • Reliene R, Hlavacova A, Mahadevan B, Baird WM, Schiestl RH. 2005. Diesel exhaust particles cause increased levels of DNA deletions after transplacental exposure in mice. Mutat Res. 570:245–252.
  • Riebe-Imre M, Aufderheide M, Gärtner-Hübsch S, Peraud A, Straub M. (1994) Cytotoxic and genotoxic effects of insoluble particles in vitro. In: Mohr U, Dungworth DL, Mauderly JL, Oberdörster G, editors. Toxic and carcinogenic effects of solid particles in the respiratory tract. ILSI Monographs. Washington DC: ILSI Press, 519 p.
  • Rim K-T, Kim S-J, Han J-H, Kang M-G, Kim J-K, Yang J-S. 2011. Effects of carbon black to inflammation and oxidative DNA damages in mouse macrophages. Mol Cell Toxicol. 7:415–423.
  • Rittinghausen S, Bellmann B, Creutzenberg O, et al. 2013. Evaluation of immunohistochemical markers to detect the genotoxic mode of action of fine and ultrafine dusts in rat lungs. Toxicology. 303:177–186.
  • Roberts JR, Mercer RR, Stefaniak AB, et al. 2016. Evaluation of pulmonary and systemic toxicity following lung exposure to graphite nanoplates: a member of the graphene-based nanomaterial family. Part Fibre Toxicol. 13:34.
  • Rosenkranz HS. 1996. Mutagenic nitroarenes, diesel emissions, particulate-induced mutations and cancer: an essay on cancer-causation by a moving target. Mutat Res. 367:65–72.
  • Rosenkranz HS, McCoy EC, Sanders DR, Butler M, Kiriazides DK, Mermelstein R. 1980. Nitropyrenes: isolation, identificaton, and reduction of mutagenic impurities in carbon black and toners. Science (New York, NY) 209:1039–1043.
  • Saber AT, Bornholdt J, Dybdahl M, Sharma AK, Loft S, Vogel U, Wallin H. 2005. Tumor necrosis factor is not required for particle-induced genotoxicity and pulmonary inflammation. Arch Toxicol. 79:177–182.
  • Saber AT, Jensen KA, Jacobsen NR, Birkedal R, Mikkelsen L, Møller P, Loft S, Wallin H, Vogel U. 2012. Inflammatory and genotoxic effects of nanoparticles designed for inclusion in paints and lacquers. Nanotoxicology. 6:453–471.
  • SCCS. 2015. Scientific Committee on Consumer Safety, Opinion on carbon black (nano-form), 12 December 2013, SCCS/1515/13, first revision of 27 March 2014, second revision of 15 December.
  • Schins RP, Knaapen AM. 2007. Genotoxicity of poorly soluble particles. Inhal Toxicol. 19 Suppl 1:189–198.
  • Shimizu R, Umezawa M, Okamoto S, Onoda A, Uchiyama M, Tachibana K, Watanabe S, Ogawa S, Abe R, Takeda K. 2014. Effect of maternal exposure to carbon black nanoparticle during early gestation on the splenic phenotype of neonatal mouse. J Toxicol Sci. 39:571–578.
  • Stern ST, Adiseshaiah PP, Crist RM. 2012. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Part Fibre Toxicol. 9:20
  • Stone V, Shaw J, Brown DM, MacNee W, Faux SP, Donaldson K. 1998. The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicol In Vitro. 12:649–659.
  • Swafford DS, Nikula KJ, Mitchell CE, Belinsky SA. 1995. Low frequency of alterations in p53, K-ras, and mdm2 in rat lung neoplasms induced by diesel exhaust or carbon black. Carcinogenesis. 16:1215–1221.
  • Tamaoki J, Isono K, Takeyama K, Tagaya E, Nakata J, Nagai A. 2004. Ultrafine carbon black particles stimulate proliferation of human airway epithelium via EGF receptor-mediated signaling pathway. Am J Physiol Lung Cell Mol Physiol. 287:L1127–L1133.
  • Totsuka Y, Higuchi T, Imai T, Nishikawa A, Nohmi T, Kato T, Masuda S, Kinae N, Hiyoshi K, Ogo S, et al. 2009. Genotoxicity of nano/microparticles in in vitro micronuclei, in vivo comet and mutation assay systems. Part Fibre Toxicol. 6:23.
  • Umezawa M, Kudo S, Yanagita S, Shinkai Y, Niki R, Oyabu T, Takeda K, Ihara T, Sugamata M. 2011. Maternal exposure to carbon black nanoparticle increases collagen type VIII expression in the kidney of offspring. J Toxicol Sci. 36:461–468.
  • Vesterdal LK, Danielsen PH, Folkmann JK, Jespersen LF, Aguilar-Pelaez K, Roursgaard M, Loft S, Møller P. 2014. Accumulation of lipids and oxidatively damaged DNA in hepatocytes exposed to particles. Toxicol Appl Pharmacol. 274:350–360.
  • Wang MJ, Gray CA, Reznek SA, Mahmud K, Kutsovsky Y. (2004) Carbon black. In: Kirk-Othmer encyclopedia of chemical technology. 5th ed., Vol 4. New York: John Wiley & Sons, p. 761–803.
  • Warheit DB, Kreiling R, Levy LS. 2016. Relevance of the rat lung tumor response to particle overload for human risk assessment-Update and interpretation of new data since ILSI 2000. Toxicology. 374:42–59.
  • Watson AY, Valberg PA. 2001. Carbon black and soot: two different Substances. Am Ind Hyg Assoc. 62:218–228.
  • Wolff RK, Bond JA, Henderson RF, Harkema JR, Mauderly JL. 1990. Pulmonary inflammation and DNA adducts in rats inhaling diesel exhaust or carbon black. Inhal Toxicol. 2:241–254.
  • Yang H, Liu C, Yang D, Zhang H, Xi Z. 2009. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol. 29:69–78.
  • Yoshida S, Hiyoshi K, Ichinose T, Takano H, Oshio S, Sugawara I, Takeda K, Shibamoto T. 2009. Effect of nanoparticles on the male reproductive system of mice. Int J Androl. 32:337–342.
  • Yoshida S, Hiyoshi K, Oshio S, Takano H, Takeda K, Ichinose T. 2010. Effects of fetal exposure to carbon nanoparticles on reproductive function in male offspring. Fertil Steril. 93:1695–1699.
  • Zhang R, Dai Y, Zhang X, Niu Y, Meng T, Li Y, Duan H, Bin P, Ye M, Jia X, et al. 2014. Reduced pulmonary function and increased pro-inflammatory cytokines in nanoscale carbon black-exposed workers. Part Fibre Toxicol. 11:73.
  • Zhong BZ, Whong WZ, Ong TM. 1997. Detection of mineral-dust-induced DNA damage in two mammalian cell lines using the alkaline single cell gel/comet assay. Mutat Res. 393:181–187.
  • Ziemann C, Rittinghausen S, Ernst H, Kolling A, Mangelsdorf I, Creutzenberg O. 2011. Genotoxic mode of action of fine and ultrafine dusts in lungs. Research Project F 2135. Federal Institute for Occupational Safety and Health (BAuA).