758
Views
41
CrossRef citations to date
0
Altmetric
Review Articles

Adoption of in vitro systems and zebrafish embryos as alternative models for reducing rodent use in assessments of immunological and oxidative stress responses to nanomaterials

, , , , , ORCID Icon, , , , & show all
Pages 252-271 | Received 15 Aug 2017, Accepted 10 Nov 2017, Published online: 14 Dec 2017

References

  • Abrikossova N, Skoglund C, Ahrén M, Bengtsson T, Uvdal K. 2012. Effects of gadolinium oxide nanoparticles on the oxidative burst from human neutrophil granulocytes. Nanotechnology. 23:275101.
  • Afrikanova T, Serruys AS, Buenafe OE, Clinckers R, Smolders I, de Witte PA, Crawford AD, Esguerra CV. 2013. Validation of the zebrafish pentylenetetrazol seizure model: locomotor versus electrographic responses to antiepileptic drugs. PLoS One. 8:e54166.
  • Agius C, Roberts RJ. 2003. Melano-macrophage centres and their role in fish pathology. J Fish Dis. 26:499–509.
  • Babin K, Antoine F, Goncalves DM, Girard D. 2013. TiO2, CeO2 and ZnO nanoparticles and modulation of the degranulation process in human neutrophils. Toxicol Lett. 221:57–63.
  • Baktur R, Patel H, Kwon S. 2011. Effect of exposure conditions on SWCNT-induced inflammatory response in human alveolar epithelial cells. Toxicol In Vitro. 25:1153–1160.
  • Barros TP, Alderton WK, Reynolds HM, Roach AG, Berghmans S. 2008. Zebrafish: an emerging technology for in vivo pharmacological assessment to identify potential safety liabilities in early drug discovery. Br J Pharmacol. 154:1400–1413.
  • Beerman RW, Matty MA, Au GG, Looger LL, Choudhury KR, Keller PJ, Tobin DM. 2015. Direct in vivo manipulation and imaging of calcium transients in neutrophils identify a critical role for leading-edge calcium flux. Cell Rep. 13:2107–2117.
  • Benard EL, van der Sar AM, Ellett F, Lieschke GJ, Spaink HP, Meijer AH. 2012. Infection of zebrafish embryos with intracellular bacterial pathogens. J Vis Exp. 15:3781.
  • Bilberg K, Bruun Hovgaard M, Besenbacher F, Baatrup E. 2012. In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). J Toxicol. 2012:293784.
  • Borm PJ, Tran L. 2002. From quartz hazard to quartz risk: the coal mines revisited. Ann Occup Hyg. 46:25–32.
  • Boyles MS, Ranninger C, Reischl R, Rurik M, Tessadri R, Kohlbacher O, Duschl A, Huber CG. 2016. Copper oxide nanoparticle toxicity profiling using untargeted metabolomics. Part Fibre Toxicol. 13:49.
  • Boyles MS, Young L, Brown DM, MacCalman L, Cowie H, Moisala A, Smail F, Smith PJ, Proudfoot L, Windle AH, et al. 2015. Multi-walled carbon nanotube induced frustrated phagocytosis, cytotoxicity and pro-inflammatory conditions in macrophages are length dependent and greater than that of asbestos. Toxicol In Vitro. 29:1513–1528.
  • Brown DM, Dickson C, Duncan P, Al-Attili F, Stone V. 2010. Interaction between nanoparticles and cytokine proteins: impact on protein and particle functionality. Nanotechnology. 21:215104.
  • Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, Jimenez LA, Stone V. 2004. Ca2+ and ROS-mediated activation of transcription factors and TNF-cytokine gene expression in macrophages exposed to ultrafine particles. Am J Physiol: Lung Cell Mol Physiol. 286:L344–L353.
  • Brown DM, Kinloch IA, Bangert U, Windle AH, Walter DM, Walker GS, Scotchford CA, Donaldson K, Stone V. 2007. An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon. 45:1743–1756.
  • Brown SB, Tucker CS, Ford C, Lee Y, Dunbar DR, Mullins JJ. 2007. Class III antiarrhythmic methanesulfonanilides inhibit leukocyte recruitment in zebrafish. J Leukoc Biol. 82:79–84.
  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K. 2001. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol. 175:191–199.
  • Burden N, Aschberger K, Chaudhry Q, Clift MJD, Doak S, Fowler P, Johnston H, Landsiedel R, Rowland J, Stone V. 2017. The 3Rs as a framework to support a 21st century approach for nanosafety assessment. Nano Today. 12:10–13.
  • Burden N, Benstead R, Clook M, Doyle I, Edwards P, Maynard SK, Ryder K, Sheahan D, Whale G, van Egmond R, et al. 2016. Advancing the 3Rs in regulatory ecotoxicology: a pragmatic cross-sector approach. Integr Environ Assess Manag. 12:417–421.
  • Burden N, Mahony C, Müller BP, Terry C, Westmoreland C, Kimber I. 2015. Aligning the 3Rs with new paradigms in the safety assessment of chemicals. Toxicology. 330:62–66.
  • Burns CG, Milan DJ, Grande EJ, Rottbauer W, MacRae CA, Fishman MC. 2005. High-throughput assay for small molecules that modulate zebrafish embryonic heart rate. Nat Chem Biol. 1:263–264.
  • Chakraborty C, Sharma AR, Sharma G, Lee SS. 2016. Zebrafish: a complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnol. 14:65.
  • Cheung CY, Webb SE, Love DR, Miller AL. 2011. Visualization, characterization and modulation of calcium signaling during the development of slow muscle cells in intact zebrafish embryos. Int J Dev Biol. 55:153–174.
  • Cho WS, Duffin R, Poland CA, Howie SE, MacNee W, Bradley M, Megson IL, Donaldson K. 2010. Metal oxide nanoparticles induce unique inflammatory footprints in the lung: important implications for nanoparticle testing. Environ Health Perspect. 118:1699–1706.
  • Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J, Ryu DY. 2010. Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol. 100:151–159.
  • Choi JY, Ramachandran G, Kandlikar M. 2009. The impact of toxicity testing costs on nanomaterial regulation. Environ Sci Technol. 43:3030–3034.
  • Chu J, Sadler KC. 2009. A new school in liver development: lessons from zebrafish. Hepatology. 50:1656–1663.
  • Clift MJ, Boyles MS, Brown DM, Stone V. 2010. An investigation into the potential for different surface-coated quantum dots to cause oxidative stress and affect macrophage cell signalling in vitro. Nanotoxicology. 4:139–149.
  • Clift MJ, Rothen-Rutishauser B, Brown DM, Duffin R, Donaldson K, Proudfoot L, Guy K, Stone V. 2008. The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line. Toxicol Appl Pharmacol. 232:418–427.
  • Costa PM, Fadeel B. 2016. Emerging systems biology approaches in nanotoxicology: towards a mechanism-based understanding of nanomaterial hazard and risk. Toxicol Appl Pharmacol. 299:101–111.
  • Couto D, Freitas M, Vilas-Boas V, Dias I, Porto G, Lopez-Quintela MA, Rivas J, Freitas P, Carvalho F, Fernandes E. 2014. Interaction of polyacrylic acid coated and non-coated iron oxide nanoparticles with human neutrophils. Toxicol Lett. 225:57–65.
  • Davis EE, Frangakis S, Katsanis N. 2014. Interpreting human genetic variation with in vivo zebrafish assays. Biochim Biophys Acta. 1842:1960–1970.
  • Davies LC, Jenkins SJ, Allen JE, Taylor PR. 2013. Tissue-resident macrophages. Nat Immunol. 14:986–995.
  • Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L. 2002. Real-time visualization of mycobacterium–macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity. 17:693–702.
  • Davies LC, Taylor PR. 2015. Tissue-resident macrophages: then and now. Immunology. 144:541–548.
  • de Oliveira S, Lopez-Muñoz A, Martínez-Navarro FJ, Galindo-Villegas J, Mulero V, Calado Â. 2015. Cxcl8-l1 and Cxcl8-l2 are required in the zebrafish defense against Salmonella Typhimurium. Dev Comp Immunol. 49:44–48.
  • de Oliveira S, Reyes-Aldasoro CC, Candel S, Renshaw SA, Mulero V, Calado A. 2013. Cxcl8 (IL-8) mediates neutrophil recruitment and behavior in the zebrafish inflammatory response. J Immunol. 190:4349–4359.
  • Deng Q, Sarris M, Bennin DA, Green JM, Herbomel P, Huttenlocher A. 2013. Localized bacterial infection induces systemic activation of neutrophils through Cxcr2 signaling in zebrafish. J Leukoc Biol. 93:761–769.
  • Dockery DW, Pope CA, 3rd, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG, Jr, Speizer FE. 1993. An association between air pollution and mortality in six U.S. cities. N Engl J Med. 329:1753–1759.
  • Dodd A, Curtis PM, Williams LC, Love DR. 2000. Zebrafish: bridging the gap between development and disease. Hum Mol Genet. 9:2443–2449.
  • Donaldson K, Seaton A. 2012. A short history of the toxicology of inhaled particles. Part Fibre Toxicol. 9:13.
  • Donaldson K, Stone V, Borm PJ, Jimenez LA, Gilmour PS, Schins RP, Knaapen AM, Rahman I, Faux SP, Brown DM, et al. 2003. Oxidative stress and Ca2+ signaling in the adverse effects of environmental particles (PM10). Free Radic Biol Med. 34:1369–1382.
  • Driessen M, Kienhuis AS, Pennings JL, Pronk TE, van de Brandhof EJ, Roodbergen M, Spaink HP, van de Water B, van der Ven LT. 2013. Exploring the zebrafish embryo as an alternative model for the evaluation of liver toxicity by histopathology and expression profiling. Arch Toxicol. 87:807–823.
  • Driessen M, Vitins AP, Pennings JL, Kienhuis AS, Water B, van der Ven LT. 2015. A transcriptomics-based hepatotoxicity comparison between the zebrafish embryo and established human and rodent in vitro and in vivo models using cyclosporine A, amiodarone and acetaminophen. Toxicol Lett. 232:403–412.
  • Driscoll T, Nelson DI, Steenland K, Leigh J, Concha-Barrientos M, Fingerhut M, Prüss-Ustün A. 2005. The global burden of non-malignant respiratory disease due to occupational airborne exposures. Am J Ind Med. 48:432–445.
  • Drummond IA, Davidson AJ. 2010. Zebrafish kidney development. Methods Cell Biol. 100:233–260.
  • Duffin R, Tran L, Brown D, Stone V, Donaldson K. 2007. Proinflammogenic effects of low-toxicity and metal nanoparticles in vivo and in vitro: highlighting the role of particle surface area and surface reactivity. Inhal Toxicol. 19:849–856.
  • Duan J, Yu Y, Li Y, Li Y, Liu H, Jing L, Yang M, Wang J, Li C, Sun Z. 2016a. Low-dose exposure of silica nanoparticles induces cardiac dysfunction via neutrophil-mediated inflammation and cardiac contraction in zebrafish embryos. Nanotoxicology. 10:575–585.
  • Duan J, Yu Y, Li Y, Wang Y, Sun Z. 2016b. Inflammatory response and blood hypercoagulable state induced by low level co-exposure with silica nanoparticles and benzo[a]pyrene in zebrafish (Danio rerio) embryos. Chemosphere. 151:152–162.
  • Duan J, Yu Y, Shi H, Tian L, Guo C, Huang P, Zhou X, Peng S, Sun Z. 2013. Toxic effects of silica nanoparticles on zebrafish embryos and larvae. PLoS One. 8:e74606.
  • ECHA. 2011. The use of alternatives to testing on animals for the REACH regulation. https://echa.europa.eu/documents/10162/13639/alternatives_test_animals_2011_en.pdf/9b0f7e93-4d61-401d-ba2c-80b3b9faaf66.
  • ECHA. 2014. The use of alternatives to testing on animals for the REACH regulation. Second report under Article 117(3) of the REACH Regulation. https://echa.europa.eu/documents/10162/13639/alternatives_test_animals_2014_en.pdf.
  • ECHA. 2015. Read-across assessment framework (RAAF). https://echa.europa.eu/documents/10162/13628/raaf_en.pdf.
  • ECHA. 2016a. REACH testing requirements and the ban on animal testing for cosmetics: reply to Peta campaign. http://ec.europa.eu/environment/chemicals/reach/animal_en.htm.
  • ECHA. 2016b. Practical guide: how to use alternatives to animal testing. https://echa.europa.eu/documents/10162/13655/practical_guide_how_to_use_alternatives_en.pdf.
  • Eimon PM, Rubinstein AL. 2009. The use of in vivo zebrafish assays in drug toxicity screening. Expert Opin Drug Metab Toxicol. 5:393–401.
  • Ellett F, Elks PM, Robertson AL, Ogryzko NV, Renshaw SA. 2015. Defining the phenotype of neutrophils following reverse migration in zebrafish. J Leukoc Biol. 98:975–981.
  • Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ. 2011. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood. 117:e49–e56.
  • Ermak G, Davies KJ. 2002. Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol. 38:713–721.
  • European Commission. 2011. Recommendation on the definition of a nanomaterial. http://ec.europa.eu/environment/chemicals/nanotech/pdf/commission_recommendation.pdf.
  • European Parliament. 2010. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32010L0063.
  • Fairbrother A, Fairbrother JR. 2009. Are environmental regulations keeping up with innovation? A case study of the nanotechnology industry. Ecotoxicol Environ Saf. 72:1327–1330.
  • Fang L, Green SR, Baek JS, Lee SH, Ellett F, Deer E, Lieschke GJ, Witztum JL, Tsimikas S, Miller YI. 2011. In vivo visualization and attenuation of oxidized lipid accumulation in hypercholesterolemic zebrafish. J Clin Invest. 121:4861–4869.
  • Farcal L, Torres Andón F, Di Cristo L, Rotoli BM, Bussolati O, Bergamaschi E, Mech A, Hartmann NB, Rasmussen K, Riego-Sintes J, et al. 2015. Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: first steps towards an intelligent testing strategy. PLoS One. 10:e0127174.
  • Faria M, Navas JM, Ráldua D, Soares AM, Barata C. 2014. Oxidative stress effects of titanium dioxide nanoparticle aggregates in zebrafish embryos. Sci Total Environ. 470–471:379–389.
  • Farrera C, Bhattacharya K, Lazzaretto B, Andón FT, Hultenby K, Kotchey GP, Star A, Fadeel B. 2014. Extracellular entrapment and degradation of single-walled carbon nanotubes. Nanoscale. 6:6974–6983.
  • Feng Y, Santoriello C, Mione M, Hurlstone A, Martin P. 2010. Live imaging of innate immune cell sensing of transformed cells in zebrafish larvae: parallels between tumor initiation and wound inflammation. PLoS Biol. 8:e1000562.
  • Filep JG, Kebir DE .2009. Neutrophil apoptosis: a target for enhancing the resolution of inflammation. J Cell Biochem. 108:1039–1046.
  • Foucaud L, Wilson MR, Brown DM, Stone V. 2007. Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicol Lett. 174:1–9.
  • Ganesan S, Anaimalai Thirumurthi N, Raghunath A, Vijayakumar S, Perumal E. 2016. Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos. J Appl Toxicol. 36:554–567.
  • Geiser M, Casaulta M, Kupferschmid B, Schulz H, Semmler-Behnke M, Kreyling W. 2008. The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol. 38:371–376.
  • Gerloff K, Pereira DI, Faria N, Boots AW, Kolling J, Förster I, Albrecht C, Powell JJ, Schins RP. 2013. Influence of simulated gastrointestinal conditions on particle-induced cytotoxicity and interleukin-8 regulation in differentiated and undifferentiated Caco-2 cells. Nanotoxicology. 7:353–366.
  • Goldsmith JR, Jobin C. 2012. Think small: zebrafish as a model system of human pathology. J Biomed Biotechnol. 2012:817341.
  • Gonçalves DM, Chiasson S, Girard D. 2010. Activation of human neutrophils by titanium dioxide (TiO2) nanoparticles. Toxicol In Vitro. 24:1002–1008.
  • Gonçalves DM, Girard D. 2011. Titanium dioxide (TiO2) nanoparticles induce neutrophil influx and local production of several pro-inflammatory mediators in vivo. Int Immunopharmacol. 11:1109–1115.
  • Goodhead RM, Moger J, Galloway TS, Tyler CR. 2015. Tracing engineered nanomaterials in biological tissues using coherent anti-Stokes Raman scattering (CARS) microscopy - a critical review. Nanotoxicology. 9:928–939.
  • Gosens I, Kermanizadeh A, Jacobsen NR, Lenz AG, Bokkers B, de Jong WH, Krystek P, Tran L, Stone V, Wallin H, et al. 2015. Comparative hazard identification by a single dose lung exposure of zinc oxide and silver nanomaterials in mice. PLoS One. 10:e0126934.
  • Gratacap RL, Scherer AK, Seman BG, Wheeler RT. 2017. Control of mucosal candidiasis in the zebrafish swim bladder depends on neutrophils that block filament invasion and drive extracellular-trap production. Infect Immun. 85:e00276-17.
  • Haase H, Fahmi A, Mahltig B. 2014. Impact of silver nanoparticles and silver ions on innate immune cells. J Biomed Nanotechnol. 10:1146–1156.
  • Hall CJ, Boyle RH, Astin JW, Flores MV, Oehlers SH, Sanderson LE, Ellett F, Lieschke GJ, Crosier KE, Crosier PS. 2013. Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating β-oxidation-dependent mitochondrial ROS production. Cell Metab. 18:265–278.
  • Hall CJ, Wicker SM, Chien AT, Tromp A, Lawrence LM, Sun X, Krissansen GW, Crosier KE, Crosier PS. 2014. Repositioning drugs for inflammatory disease - fishing for new anti-inflammatory agents. Dis Model Mech. 7:1069–1081.
  • Halpern BN, Benacerraf B, Biozzi G. 1953. Quantitative study of the granulopectic activity of the reticulo-endothelial system, I: The effect of the ingredients present in india ink and of substances affecting blood clotting in vivo on the fate of carbon particles administered intravenously in rats, mice and rabbits. Br J Exp Pathol. 34:426–440.
  • Hartung T, Sabbioni E. 2011. Alternative in vitro assays in nanomaterial toxicity. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 3:545–573.
  • Han X, Corson N, Wade-Mercer P, Gelein R, Jiang J, Sahu M, Biswas P, Finkelstein JN, Elder A, Oberdörster G. 2012. Assessing the relevance of in vitro studies in nanotoxicology by examining correlations between in vitro and in vivo data. Toxicology. 297:1–9.
  • Hartung T. 2009. Toxicology for the twenty-first century. Nature. 460:208–212.
  • Harvie EA, Huttenlocher A. 2015. Non-invasive imaging of the innate immune response in a zebrafish larval model of Streptococcus iniae infection. J Vis Exp. 98:e52788.
  • He JH, Gao JM, Huang CJ, Li CQ. 2014. Zebrafish models for assessing developmental and reproductive toxicity. Neurotoxicol Teratol. 42:35–42.
  • Henry KM, Loynes CA, Whyte MK, Renshaw SA. 2013. Zebrafish as a model for the study of neutrophil biology. J Lekoc Biol. 94:633–642.
  • Herbomel P, Thisse B, Thisse C. 1999. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development. 126:3735–3745.
  • Hermann AC, Millard PJ, Blake SL, Kim CH. 2004. Development of a respiratory burst assay using zebrafish kidneys and embryos. J Immunol Methods. 292:119–129.
  • Hill AJ, Teraoka H, Heideman W, Peterson RE. 2005. Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci. 86:6–19.
  • Hoodless LJ, Lucas CD, Duffin R, Denvir MA, Haslett C, Tucker CS, Rossi AG. 2016. Genetic and pharmacological inhibition of CDK9 drives neutrophil apoptosis to resolve inflammation in zebrafish in vivo. Sci Rep. 5:36980.
  • Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L, et al. 2013. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 496:498–503.
  • International Agency for Research on Cancer (IARC). 1997. Monographs on the evaluation of carcinogenic risks to humans. Vol. 68. Silica, some silicates, coal dust and para-aramid fibrils. Lyon, France.
  • Jim KK, Engelen-Lee J, van der Sar AM, Bitter W, Brouwer MC, van der Ende A, Veening JW, van de Beek D, Vandenbroucke-Grauls CM. 2016. Infection of zebrafish embryos with live fluorescent Streptococcus pneumoniae as a real-time pneumococcal meningitis model. J Neuroinflammation. 13:188.
  • Johnston H, Brown DM, Kanase N, Euston M, Gaiser BK, Robb CT, Dyrynda E, Rossi AG, Brown ER, Stone V. 2015. Mechanism of neutrophil activation and toxicity elicited by engineered nanomaterials. Toxicol In Vitro. 29:1177–1187.
  • Jones HR, Robb CT, Perretti M, Rossi AG. 2016. The role of neutrophils in inflammation resolution. Semin Immunol. 28:137–145.
  • Jovanović B, Anastasova L, Rowe EW, Zhang Y, Clapp AR, Palić D. 2011. Effects of nanosized titanium dioxide on innate immune system of fathead minnow (Pimephales promelas Rafinesque, 1820). Ecotoxicol Environ Saf. 74:675–683.
  • Kagan VE, Tyurina YY, Tyurin VA, Konduru NV, Potapovich AI, Osipov AN, Kisin ER, Schwegler-Berry D, Mercer R, Castranova V, et al. 2006. Direct and indirect effects of single walled carbon nanotubes on RAW 264.7 macrophages: role of iron. Toxicol Lett. 165:88–100.
  • Kanther M, Sun X, Mühlbauer M, Mackey LC, Flynn EJ, III, Bagnat M, Jobin C, Rawls JF. 2011. Microbial colonization induces dynamic temporal and spatial patterns of NF-κB activation in the zebrafish digestive tract. Gastroenterology. 141:197–207.
  • Kermanizadeh A, Brown DM, Hutchison GR, Stone V. 2013. Engineered nanomaterial impact in the liver following exposure via an intravenous route – the role of polymorphonuclear leukocytes and gene expression in the organ. J Nanomed Nanotechnol. 4:157.
  • Kermanizadeh A, Gosens I, MacCalman L, Johnston H, Danielsen PH, Jacobsen NR, Lenz AG, Fernandes T, Schins RP, Cassee FR, et al. 2016. A multilaboratory toxicological assessment of a Panel of 10 engineered nanomaterials to human health–ENPRA Project–the highlights, limitations, and current and future challenges. J Toxicol Environ Health B Crit Rev. 19:1–28.
  • Kermanizadeh A, Pojana G, Gaiser BK, Birkedal R, Bilanicová D, Wallin H, Jensen KA, Sellergren B, Hutchison GR, Marcomini A, et al. 2013. In vitro assessment of engineered nanomaterials using a hepatocyte cell line: cytotoxicity, pro-inflammatory cytokines and functional markers. Nanotoxicology. 7:301–313.
  • Kermanizadeh A, Vranic S, Boland S, Moreau K, Baeza-Squiban A, Gaiser BK, Andrzejczuk LA, Stone V. 2013. An in vitro assessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity. BMC Nephrol. 14:96.
  • Kim HJ, Huh D, Hamilton G, Ingber DE. 2012. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 12:2165–2174.
  • Kim YH, Boykin E, Stevens T, Lavrich K, Gilmour MI. 2014. Comparative lung toxicity of engineered nanomaterials utilizing in vitro, ex vivo and in vivo approaches. J Nanobiotechnol. 12:47.
  • Knaapen AM, Güngör N, Schins RP, Borm PJ, Van Schooten FJ. 2006. Neutrophils and respiratory tract DNA damage and mutagenesis: a review. Mutagenesis. 21:225–236.
  • Kong H, Zhang Y, Li Y, Cui Z, Xia K, Sun Y, Zhao Q, Zhu Y. 2013. Size-dependent cytotoxicity of nanocarbon blacks. Int J Mol Sci. 14:22529–22543.
  • Labib S, Williams A, Yauk CL, Nikota JK, Wallin H, Vogel U, Halappanavar S. 2016. Nano-risk Science: application of toxicogenomics in an adverse outcome pathway framework for risk assessment of multi-walled carbon nanotubes. Part Fibre Toxicol. 13:15.
  • Landsiedel R, Ma-Hock L, Hofmann T, Wiemann M, Strauss V, Treumann S, Wohlleben W, Gröters S, Wiench K, van Ravenzwaay B. 2014. Application of short-term inhalation studies to assess the inhalation toxicity of nanomaterials. Part Fibre Toxicol. 11:16.
  • Landsiedel R, Sauer UG, Ma-Hock L, Schnekenburger J, Wiemann M. 2014. Pulmonary toxicity of nanomaterials: a critical comparison of published in vitro assays and in vivo inhalation or instillation studies. Nanomedicine (Lond). 9:2557–2585.
  • Lanone S, Rogerieux F, Geys J, Dupont A, Maillot-Marechal E, Boczkowski J, Lacroix G, Hoet P. 2009. Comparative toxicity of 24 manufactured nanoparticles in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol. 6:14.
  • Lee HM, Shin DM, Song HM, Yuk JM, Lee ZW, Lee SH, Hwang SM, Kim JM, Lee CS, Jo EK. 2009. Nanoparticles up-regulate tumor necrosis factor-alpha and CXCL8 via reactive oxygen species and mitogen-activated protein kinase activation. Toxicol Appl Pharmacol. 238:160–169.
  • Lee KJ, Browning LM, Nallathamby PD, Desai T, Cherukuri PK, Xu XH. 2012. In vivo quantitative study of sized-dependent transport and toxicity of single silver nanoparticles using zebrafish embryos. Chem Res Toxicol. 25:1029–1046.
  • Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XH. 2007. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano. 1:133–143.
  • Lee O, Green JM, Tyler CR. 2015. Transgenic fish systems and their application in ecotoxicology. Crit Rev Toxicol. 45:124–141.
  • Lehmann AD, Daum N, Bur M, Lehr CM, Gehr P, Rothen-Rutishauser BM. 2011. An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier. Eur J Pharm Biopharm. 77:398–406.
  • Levraud JP, Disson O, Kissa K, Bonne I, Cossart P, Herbomel P, Lecuit M. 2009. Real-time observation of listeria monocytogenes-phagocyte interactions in living zebrafish larvae. Infect Immun. 77:3651–3660.
  • Li N, Xia T, Nel AE. 2008. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med. 44:1689–1699.
  • Li L, Zhang WQ, Yan B, Shi YQ, Wen ZL. 2012. Live imaging reveals differing roles of macrophages and neutrophils during zebrafish tail fin regeneration. J Biol Chem. 287:25353–25360.
  • Lieschke GJ, Currie PD. 2007. Animal models of human disease: zebrafish swim into view. Nat Rev Genet. 8:353–367.
  • Lin A, Loughman JA, Zinselmeyer BH, Miller MJ, Caparon MG. 2009. Streptolysin S inhibits neutrophil recruitment during the early stages of Streptococcus pyogenes infection. Infect Immun. 77:5190–5201.
  • Lin S, Zhao Y, Nel AE, Lin S. 2013. Zebrafish: an in vivo model for nano EHS studies. Small. 9:1608–1618.
  • Lin S, Zhao Y, Xia T, Meng H, Ji Z, Liu R, George S, Xiong S, Wang X, Zhang H, et al. 2011. High content screening in zebrafish speeds up hazard ranking of transition metal oxide nanoparticles. ACS Nano. 5:7284–7295.
  • Liz R, Simard JC, Leonardi LB, Girard D. 2015. Silver nanoparticles rapidly induce atypical human neutrophil cell death by a process involving inflammatory caspases and reactive oxygen species and induce neutrophil extracellular traps release upon cell adhesion. Int Immunopharmacol. 28:616–625.
  • Loynes CA, Martin JS, Robertson A, Trushell DM, Ingham PW, Whyte MK, Renshaw SA. 2010. Pivotal advance: pharmacological manipulation of inflammation resolution during spontaneously resolving tissue neutrophilia in the zebrafish. J Leukoc Biol. 87:203–212.
  • Lucas CD, Allen KC, Dorward DA, Hoodless LJ, Melrose LA, Marwick JA, Tucker CS, Haslett C, Duffin R, Rossi AG. 2013. Flavones induce neutrophil apoptosis by down-regulation of Mcl-1 via a proteasomal-dependent pathway. FASEB J. 27:1084–1094.
  • MacRae CA, Peterson RT. 2015. Zebrafish as tools for drug discovery. Nat Rev Drug Discov. 14:721–731.
  • Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F, Mertler M, Wiench K, Gamer AO, van Ravenzwaay B, Landsiedel R. 2009. Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci. 112:468–481.
  • Marjoram L, Alvers A, Deerhake ME, Bagwell J, Mankiewicz J, Cocchiaro JL, Beerman RW, Willer J, Sumigray KD, Katsanis N, et al. 2015. Epigenetic control of intestinal barrier function and inflammation in zebrafish. Proc Natl Acad Sci USA. 112:2770–2775.
  • Martin JS, Renshaw SA. 2009. Using in vivo zebrafish models to understand the biochemical basis of neutrophilic respiratory disease. Biochem Soc Trans. 37:830–837.
  • Massarsky A, Dupuis L, Taylor J, Eisa-Beygi S, Strek L, Trudeau VL, Moon TW. 2013. Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. Chemosphere. 92:59–66.
  • Mathias JR, Saxena MT, Mumm JS. 2012. Advances in zebrafish chemical screening technologies. Future Med Chem. 4:1811–1822.
  • Mathias JR, Walters KB, Huttenlocher A. 2009. Neutrophil motility in vivo using zebrafish. Methods Mol Biol. 571:151–166.
  • Mayadas TN, Cullere X, Lowell CA. 2014. The multifaceted functions of neutrophils. Annu Rev Pathol. 9:181–218.
  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, et al. 2006. Safe handling of nanotechnology. Nature. 444:267–269.
  • McLeish JA, Chico TJ, Taylor HB, Tucker C, Donaldson K, Brown SB. 2010. Skin exposure to micro- and nano-particles can cause haemostasis in zebrafish larvae. Thromb Haemost. 103:797–807.
  • McWilliams A. 2016. The maturing nanotechnology market: products and applications. Wellesley (MA): BCCResearch.
  • Meeker ND, Trede NS. 2008. Immunology and zebrafish: spawning new models of human disease. Dev Comp Immunol. 32:745–757.
  • Meijer AH. 2016. Protection and pathology in TB: learning from the zebrafish model. Semin Immunopathol. 38:261–273.
  • Merrifield DL, Shaw BJ, Harper GM, Saoud IP, Davies SJ, Handy RD, Henry TB. 2013. Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish (Danio rerio). Environ Pollut. 174:157–163.
  • Mesens N, Crawford AD, Menke A, Hung PD, Van Goethem F, Nuyts R, Hansen E, Wolterbeek A, Van Gompel J, De Witte P, et al. 2015. Are zebrafish larvae suitable for assessing the hepatotoxicity potential of drug candidates? J Appl Toxicol. 35:1017–1029.
  • Mestas J, Hughes CC. 2004. Of mice and not men: differences between mouse and human immunology. J Immunol. 172:2731–2738.
  • Mitrano DM, Nowack B. 2017. The need for a life-cycle based aging paradigm for nanomaterials: importance of real-world test systems to identify realistic particle transformations. Nanotechnology. 28:072001.
  • Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 20:1126–1167.
  • Monteiller C, Tran L, MacNee W, Faux S, Jones A, Miller B, Donaldson K. 2007. The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med. 64:609–615.
  • Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE. 2005. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett. 155:377–384.
  • Mugoni V, Camporeale A, Santoro MM. 2014. Analysis of oxidative stress in zebrafish embryos. JoVE. 89:51328.
  • Murphy FA, Poland CA, Duffin R, Donaldson K. 2013. Length-dependent pleural inflammation and parietal pleural responses after deposition of carbon nanotubes in the pulmonary airspaces of mice. Nanotoxicology. 7:1157–1167.
  • Nathan C. 2006. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol. 6:173–182.
  • Nel A, Xia T, Madler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science. 311:622–627.
  • Nguyen KC, Richards L, Massarsky A, Moon TW, Tayabali AF. 2016. Toxicological evaluation of representative silver nanoparticles in macrophages and epithelial cells. Toxicol In Vitro. 33:163–173.
  • Nguyen-Chi M, Phan QT, Gonzalez C, Dubremetz J-F, Levraud J-P, Lutfalla G. 2014. Transient infection of the zebrafish notochord with E. coli induces chronic inflammation. Dis Models Mech. 7:871–882.
  • Niethammer P, Grabher C, Look AT, Mitchison TJ. 2009. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature. 459:996–999.
  • Novoa B, Figueras A. 2012. Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases. Adv Exp Med Biol. 946:253–275.
  • Nowack B. 2017. Evaluation of environmental exposure models for engineered nanomaterials in a regulatory context. NanoImpact., 8:38–47.
  • Oberdörster G, Stone V, Donaldson K. 2007. Toxicology of nanoparticles: a historical perspective. Nanotoxicology. 1:2–25.
  • Ogawara K, Yoshida M, Higaki K, Kimura T, Shiraishi K, Nishikawa M, Takakura Y, Hashida M. 1999. Hepatic uptake of polystyrene microspheres in rats: effect of particle size on intrahepatic distribution. J Control Release. 59:15–22.
  • Olsen H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, Lilly P, Sanders J, Sipes G, Bracken W, et al. 2000. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol. 32:56–67.
  • Osborne OJ, Johnston BD, Moger J, Balousha M, Lead JR, Kudoh T, Tyler CR. 2013. Effects of particle size and coating on nanoscale Ag and TiO2 exposure in zebrafish (Danio rerio) embryos. Nanotoxicology. 7:1315–1324.
  • Osborne OJ, Lin S, Chang CH, Ji Z, Yu X, Wang X, Lin S, Xia T, Nel AE. 2015. Organ-specific and size-dependent ag nanoparticle toxicity in gills and intestines of adult zebrafish. ACS Nano. 9:9573–9584.
  • Osborne OJ, Mukaigasa K, Nakajima H, Stolpe B, Romer I, Philips U, Lynch I, Mourabit S, Hirose S, Lead JR, et al. 2016. Sensory systems and ionocytes are targets for silver nanoparticle effects in fish. Nanotoxicology. 10:1276–1286.
  • Park EJ, Park K. 2009. Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicol Lett. 184:18–25.
  • Pase L, Layton JE, Wittmann C, Ellett F, Nowell CJ, Reyes-Aldasoro CC, Varma S, Rogers KL, Hall CJ, Keightley MC, et al. 2012. Neutrophil-delivered myeloperoxidase dampens the hydrogen peroxide burst after tissue wounding in zebrafish. Curr Biol. 22:1818–1824.
  • Pati R, Das I, Mehta RK, Sahu R, Sonawane A. 2016. Zinc-oxide nanoparticles exhibit genotoxic, clastogenic, cytotoxic and actin depolymerization effects by inducing oxidative stress responses in macrophages and adult mice. Toxicol Sci. 150:454–472.
  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K. 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 3:423–428.
  • Poon IK, Lucas CD, Rossi AG, Ravichandran KS. 2014. Apoptotic cell clearance: basic biology and therapeutic potential. Nat Rev Immunol. 14:166–180.
  • Progatzky F, Cook HT, Lamb JR, Bugeon L, Dallman MJ. 2016. Mucosal inflammation at the respiratory interface: a zebrafish model. Am J Physiol Lung Cell Mol Physiol. 310:L551–L561.
  • Rauscher H, Rasmussen K, Sokull-Klüttgen B. 2017. Regulatory aspects of nanomaterials in the EU. Chem Ingenieur Techn. 89:224–231.
  • Renshaw SA, Loynes CA, Elworthy S, Ingham PW, Whyte MK. 2007. Modeling inflammation in the zebrafish: how a fish can help us understand lung disease. Exp Lung Res. 33:549–554.
  • Renshaw SA, Loynes CA, Trushell DM, Elworthy S, Ingham PW, Whyte MK. 2006. A transgenic zebrafish model of neutrophilic inflammation. Blood. 108:3976–3978.
  • Rizzo LY, Golombek SK, Mertens ME, Pan Y, Laaf D, Broda J, Jayapaul J, Möckel D, Subr V, Hennink WE, et al. 2013. In vivo nanotoxicity testing using the zebrafish embryo assay. J Mater Chem B Mater Biol Med. 1:10–23.
  • Robb CT, Regan KH, Dorward DA, Rossi AG. 2016. Key mechanisms governing resolution of lung inflammation. Semin Immunopathol. 38:425–448.
  • Roberts JR, Antonini JM, Porter DW, Chapman RS, Scabilloni JF, Young SH, Schwegler-Berry D, Castranova C, Mercer RR. 2013. Lung toxicity and biodistribution of Cd/Se-ZnS quantum dots with different surface functional groups after pulmonary exposure in rats. Part Fibre Toxicol. 10:5.
  • Robertson AL, Ogryzko NV, Henry KM, Loynes CA, Foulkes MJ, Meloni MM, Wang X, Ford C, Jackson M, Ingham PW, et al. 2016. Identification of benzopyrone as a common structural feature in compounds with anti-inflammatory activity in a zebrafish phenotypic screen. Dis Model Mech. 9:621–632.
  • Rombough P. 2002. Gills are needed for ionoregulation before they are needed for O(2) uptake in developing zebrafish, Danio rerio. J Exp Biol. 205:1787–1794.
  • Rovida C, Hartung T. 2009. Re-evaluation of animal numbers and costs for in vivo tests to accomplish REACH legislation requirements for chemicals – a report by the transatlantic think tank for toxicology (t(4)). ALTEX. 26:187–208.
  • Rubinstein AL. 2006. Zebrafish assays for drug toxicity screening. Expert OPin Drug Metab Toxicol. 2:231–240.
  • Rushton EK, Jiang J, Leonard SS, Eberly S, Castranova V, Biswas P, Elder A, Han X, Gelein R, Finkelstein J, et al. 2010. Concept of assessing nanoparticle hazards considering nanoparticle dosemetric and chemical/biological response metrics. J Toxicol Environ Health A. 73:445–461.
  • Russell WMS, Burch RL. 1959. (as reprinted 1992). The principles of humane experimental technique. Wheathampstead (UK): Universities Federation for Animal Welfare.
  • Sadauskas E, Wallin H, Stoltenberg M, Vogel U, Doering P, Larsen A, Danscher G. 2007. Kupffer cells are central in the removal of nanoparticles from the organism. Part Fibre Toxicol. 4:10.
  • Sayes CM, Reed KL, Warheit DB. 2007. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci. 97:163–180.
  • Scherbart AM, Langer J, Bushmelev A, van Berlo D, Haberzettl P, van Schooten FJ, Schmidt AM, Rose CR, Schins RP, Albrecht C. 2011. Contrasting macrophage activation by fine and ultrafine titanium dioxide particles is associated with different uptake mechanisms. Part Fibre Toxicol. 8:31.
  • Schmidt CW. 2009. Nanotechnology-related environment, health, and safety research examining the national strategy. Environ Health Perspect. 117:A158–A161.
  • Schmidt K. 2007. NanoFrontiers: visions for the future of nanotechnology. Washington (DC): The Project on Emerging Nanotechnologies, Woodrow Wilson International Center for Scholars; 2007. http://www.nanotechproject.org/process/assets/files/2704/181_pen6_nanofrontiers.pdf.
  • Selck H, Handy RD, Fernandes TF, Klaine SJ, Petersen EJ. 2016. Nanomaterials in the aquatic environment: a European Union-United States perspective on the status of ecotoxicity testing, research priorities, and challenges ahead. Environ Toxicol Chem. 35:1055–1067.
  • Semmler-Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, Schmid G, Brandau W. 2008. Biodistribution of 1.4- and 18-nm gold particles in rats. Small. 4:2108–2111.
  • Semmler-Behnke M, Takenaka S, Fertsch S, Wenk A, Seitz J, Mayer P, Oberdörster G, Kreyling WG. 2007. Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ Health Perspect. 115:728–733.
  • Shi M, Kwon HS, Peng Z, Elder A, Yang H. 2012. Effects of surface chemistry on the generation of reactive oxygen species by copper nanoparticles. ACS Nano. 6:2157–2164.
  • Shiau CE, Kaufman Z, Meireles AM, Talbot WS. 2015. Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish. PLoS One. 10:e0117513.
  • Sipes NS, Padilla S, Knudsen TB. 2011. Zebrafish: as an integrative model for twenty-first century toxicity testing. Birth Defects Res C Embryo Today. 93:256–267.
  • Soares T, Ribeiro D, Proença C, Chisté RC, Fernandes E, Freitas M. 2016. Size-dependent cytotoxicity of silver nanoparticles in human neutrophils assessed by multiple analytical approaches. Life Sci. 145:247–254.
  • Soehnlein O, Steffens S, Hidalgo A, Weber C. 2017. Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol. 17:248–261.
  • Stone V, Miller MR, Clift MJ, Elder A, Mills NL, Møller P, Schins RP, Vogel U, Kreyling WG, Jensen KA, et al. 2017. Nanomaterials vs ambient ultrafine particles: an opportunity to exchange toxicology knowledge. Environ Health Perspect. 125:106002.
  • Stone V, Pozzi-Mucelli S, Tran L, Aschberger K, Sabella S, Vogel U, Poland C, Balharry D, Fernandes T, Gottardo S, et al. 2014. ITS-NANO: prioritising nanosafety research to develop a stakeholder driven intelligent testing strategy. Part Fibre Toxicol. 11:9.
  • Stone V, Shaw J, Brown DM, MacNee W, Faux SP, Donaldson K. 1998. The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicol In Vitro. 12:649–659.
  • Stone V, Tuinman M, Vamvakopoulos JE, Shaw J, Brown D, Petterson S, Faux SP, Borm P, MacNee W, Michaelangeli F, et al. 2000. Increased calcium influx in a monocytic cell line on exposure to ultrafine carbon black. Eur Respir J. 15:297–303.
  • Strähle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, Schumacher A, Selderslaghs I, Weiss C, Witters H, et al. 2012. Zebrafish embryos as an alternative to animal experiments—a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol. 33:128–132.
  • Sukardi H, Chng HT, Chan EC, Gong Z, Lam SH. 2011. Zebrafish for drug toxicity screening: bridging the in vitro cell-based models and in vivo mammalian models. Expert Opin Drug Metab Toxicol. 7:579–589.
  • Susewind J, de Souza Carvalho-Wodarz C, Repnik U, Collnot EM, Schneider-Daum N, Griffiths GW, Lehr CM. 2016. A 3D co-culture of three human cell lines to model the inflamed intestinal mucosa for safety testing of nanomaterials. Nanotoxicology. 10:53–62.
  • Teeguarden JG, Mikheev VB, Minard KR, Forsythe WC, Wang W, Sharma G, Karin N, Tilton SC, Waters KM, Asgharian B, et al. 2014. Comparative iron oxide nanoparticle cellular dosimetry and response in mice by the inhalation and liquid cell culture exposure routes. Part Fibre Toxicol. 11:46.
  • Törnqvist E, Annas A, Granath B, Jalkesten E, Cotgreave I, Öberg M. 2014. Strategic focus on 3R principles reveals major reductions in the use of animals in pharmaceutical toxicity testing. PLoS One. 9:e101638.
  • Torraca V, Masud S, Spaink HP, Meijer AH. 2014. Macrophage–pathogen interactions in infectious diseases: new therapeutic insights from the zebrafish host model. Dis Model Mech. 7:785–797.
  • Torres M, Forman HJ. 2003. Redox signaling and the MAP kinase pathways. Biofactors. 17:287–296.
  • Traver D, Herbomel P, Patton EE, Murphey RD, Yoder JA, Litman GW, Catic A, Amemiya CT, Zon LI, Trede NS. 2003. The zebrafish as a model organism to study development of the immune system. Adv Immunol. 81:253–330.
  • Trede NS, Langenau DM, Traver D, Look AT, Zon LI. 2004. The use of zebrafish to understand immunity. Immunity. 20:367–379.
  • Tuomela S, Autio R, Buerki-Thurnherr T, Arslan O, Kunzmann A, Andersson-Willman B, Wick P, Mathur S, Scheynius A, Krug HF, et al. 2013. Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles. PLoS One. 8:e68415.
  • Usenko CY, Harper SL, Tanguay RL. 2008. Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicol Appl Pharmacol. 229:44–55.
  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 39:44–84.
  • van Aerle R, Lange A, Moorhouse A, Paszkiewicz K, Ball K, Johnston BD, de-Bastos E, Booth T, Tyler CR, Santos EM. 2013. Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environ Sci Technol. 47:8005–8014.
  • van Berlo D, Wessels A, Boots AW, Wilhelmi V, Scherbart AM, Gerloff K, van Schooten FJ, Albrecht C, Schins RP. 2010. Neutrophil-derived ROS contribute to oxidative DNA damage induction by quartz particles. Free Radic Biol Med. 49:1685–1693.
  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Jr, Rejeski D, Hull MS. 2015. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol. 6:1769–1780.
  • Vojtech LN, Sanders GE, Conway C, Ostland V, Hansen JD. 2009. Host immune response and acute disease in a zebrafish model of Francisella pathogenesis. Infect Immun.77:914–925.
  • Wagner JC, Sleggs CA, Marcgand P. 1960. Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province. Br J Ind Med. 17:260–271.
  • Walker SL, Ariga J, Mathias JR, Coothankandaswamy V, Xie X, Distel M, Köster RW, Parsons MJ, Bhalla KN, Saxena MT, Mumm JS. 2012. Automated reporter quantification in vivo: high-throughput screening method for reporter-based assays in zebrafish. PLoS One. 7:e29916.
  • Wang J, Arase H. 2014. Regulation of immune responses by neutrophils. Ann N Y Acad Sci. 1319:66–81.
  • Wang X, Robertson AL, Li J, Chai RJ, Haishan W, Sadiku P, Ogryzko NV, Everett M, Yoganathan K, Luo HR, et al. 2014. Inhibitors of neutrophil recruitment identified using transgenic zebrafish to screen a natural product library. Dis Model Mech. 7:163–169.
  • Warheit DB, Sayes CM, Reed KL. 2009. Nanoscale and fine zinc oxide particles: can in vitro assays accurately forecast lung hazards following inhalation exposures? Environ Sci Technol. 43:7939–7945.
  • White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, Bourque C, Dovey M, Goessling W, Burns CE, et al. 2008. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell. 2:183–189.
  • Wiemann M, Vennemann A, Sauer UG, Wiench K, Ma-Hock L, Landsiedel R. 2016. An in vitro alveolar macrophage assay for predicting the short-term inhalation toxicity of nanomaterials. J Nanobiotechnol. 14:16.
  • Wilson MR, Foucaud L, Barlow PG, Hutchison GR, Sales J, Simpson RJ, Stone V. 2007. Nanoparticle interactions with zinc and iron: implications for toxicology and inflammation. Toxicol Appl Pharmacol. 225:80–89.
  • Wilson MR, Lightbody JH, Donaldson K, Sales J, Stone V. 2002. Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol. 184:172–179.
  • Witasp E, Shvedova AA, Kagan VE, Fadeel B. 2009. Single-walled carbon nanotubes impair human macrophage engulfment of apoptotic cell corpses. Inhal Toxicol. 21(Suppl 1):131–136.
  • Xiong D, Fang T, Yu L, Sima X, Zhu W. 2011. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ. 409:1444–1452.
  • Xu H, Dong X, Zhang Z, Yang M, Wu X, Liu H, Lao Q, Li C. 2015. Assessment of immunotoxicity of dibutyl phthalate using live zebrafish embryos. Fish Shellfish Immunol. 45:286–292.
  • Yang LL, Wang GQ, Yang LM, Huang ZB, Zhang WQ, Yu LZ. 2014. Endotoxin molecule lipopolysaccharide-induced zebrafish inflammation model: a novel screening method for anti-inflammatory drugs. Molecules. 19:2390–2409.
  • Zhang Y, Zhu L, Zhou Y, Chen J. 2015. Accumulation and elimination of iron oxide nanomaterials in zebrafish (Danio rerio) upon chronic aqueous exposure. J Environ Sci (China). 30:223–230.
  • Zhao X, Wang S, Wu Y, You H, Lv L. 2013. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat Toxicol. 136–137:49–59.
  • Zhu X, Tian S, Cai Z. 2012. Toxicity assessment of iron oxide nanoparticles in zebrafish (Danio rerio) early life stages. PLoS One. 7:e46286.
  • Zon LI, Peterson RT. 2005. In vivo drug discovery in zebrafish. Nat Rev Drug Discov. 4:35–44.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.